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Abstract. Obtaining three round zero-knowledge from standard cryp-
tographic assumptions has remained a challenging open problem. Mean-
while, there has been exciting progress in realizing useful relaxations such
as weak zero-knowledge, strong witness indistinguishability and witness
hiding in two or three rounds. In particular, known realizations from
generic assumptions obtain: (1) security against adaptive verifiers assum-
ing fully homomorphic encryption among other standard assumptions
(Bitansky et. al., STOC 2019), and (2) security against non-adaptive

verifiers in the distributional setting from oblivious transfer (Jain et. al.,
Crypto 2017).
This work builds three round weak zero-knowledge for NP in the non-
adaptive setting from doubly-enhanced injective trapdoor functions. We
obtain this result by developing a new distinguisher-dependent simula-
tion technique that makes crucial use of the Goldreich-Levin list decoding
algorithm, and may be of independent interest.
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1 Introduction

Zero-knowledge (ZK) proofs are among the most widely used cryptographic prim-
itives, with a rich history of study. In particular there has been significant recent
interest in understanding the round complexity of zero-knowledge and its vari-
ants.

Zero-knowledge protocols are typically defined via the simulation paradigm.
A simulator Sim is a polynomial-time algorithm that mimics the interaction
of an adversarial verifier V∗ with an honest prover P. Sim has access to the
verifier V∗ and knows the statement, i.e., x ∈ L, for an instance x of an NP

language L. Importantly, the simulator does not have access to any other “secret”
information, including the (typically hard to find) NP witness for x.

The goal of the simulator is to generate a simulated view for the verifier V∗,
given only the information that x ∈ L, such that this is indistinguishable from
the view that the verifier would have obtained in its real interaction with the



honest prover P. Informally, a protocol is zero-knowledge (ZK) iff there exists
a simulator Sim that with access to V∗ generates a view, which fools all distin-
guishers D∗ that may be trying to distinguish a simulated view from a real one.

Weak zero-knowledge [10]. The definition of weak zero-knowledge (WZK)
relaxes ZK by reversing the order of quantifiers: it requires that for every verifier-
distinguisher pair (V∗,D∗), there exists a simulator Sim that fools this pair.
This removes the need for a universal simulator that fools all distinguishers. In
applications, this reversal of quantifiers does not necessarily incur a large privacy
cost: e.g., this still guarantees that no (V∗,D∗) can recover the NP witness, or
any predicate of the NP witness. In fact, it also implies the following relaxations.

– Witness Hiding [12] loosely guarantees that a malicious verifier cannot
recover a witness from a proof unless the witness can be efficiently computed
from the statement alone.

– Strong Witness Indistinguishability (Strong WI) [13] requires that
for two indistinguishable statement distributions D0,D1, a proof (or argu-
ment) for statement d0 ← D0 must be indistinguishable from a proof (or
argument) for statement d1 ← D1.

– Witness indistinguishability (WI) [12] ensures that proofs of the same
statement generated using different witnesses are indistinguishable. WI does
not hold for statements sampled from different distributions, and is mean-
ingless for statements that have a unique witness associated with them.

Prior Techniques to Realize Weak ZK. Unlike zero-knowledge, weak ZK
(and therefore all the other relaxations it implies) has been shown to be achievable
in three rounds assuming the existence of unleveled fully-homomorphic encryp-
tion [4]. In a more relaxed “non-adaptive” setting, where the instance is sam-
pled from an entropic distribution only after the verifier’s challenge is fixed,
three round weak ZK (and similarly, all other relaxations) can be obtained
from weaker assumptions: namely any statistically sender-private (SSP) oblivious
transfer. This type of OT can be instantiated from algebraic assumptions such as
DDH [22,1], QR, N th residuosity [18], LWE [5], and most recently even LPN [3].
Similarly, while the primary contribution of [4] is to remove the non-adaptivity
requirement via fully homomorphic encryption, a pared-down version of their
protocol yields weak ZK in the non-adaptive setting from random self-reducible
public-key encryption (which can also be viewed as a type of homomorphism) as
opposed to OT. Finally, a recent work [6] obtains a realization of distinguisher-
dependent simulation under the specific assumption that factoring is hard.

At a high level, all the above works build strategies that enable a simu-
lator to learn a trapdoor by making repeated queries to a distinguisher, called
distinguisher-dependent simulation. This technique has subsequently had had ap-
plications to non-malleable cryptography [21] and MPC [2], to low-communication
laconic protocols [7] and new types of oblivious transfer [20,8]. Despite its appli-
cability, we lack an understanding of the generic assumptions under which this
technique is instantiable.
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This work: Non-adaptive Distinguisher-Dependent Simulation from
Doubly-Enhanced Injective TDFs. This work focuses on improving our un-
derstanding of the generic assumptions that can be used to realize distinguisher-
dependent simulation. In particular, while existing realizations from generic
assumptions require schemes with homomorphic capabilities, we ask whether
there are other classes of generic assumptions that imply three-round weak zero-
knowledge protocols.

We obtain a positive answer to this question, obtaining non-adaptive weak
ZK/strong witness indistinguishable/witness hiding arguments assuming the ex-
istence of enhanced, injective trapdoor functions and two-message witness indis-
tinguishable arguments. The latter can themselves be based on doubly-enhanced
injective trapdoor functions (with efficiently verifiable keys) [9] or an array of
assumptions such as (subexponentially hard versions of) DDH, QR, N th residu-
osity, LWE. Under the same assumptions, we also obtain three round arguments
of knowledge that satisfy weak zero-knowledge, strong witness indistinguishabil-
ity and witness hiding properties in the non-adaptive setting. Even in the non-
adaptive setting, these systems are already known to have several applications,
including to multiparty computation [19] and non-malleable commitments [21].

2 Our Techniques

The starting point of our work is the following template for distinguisher-dependent
simulation, that abstracts out and generalizes ideas underlying existing frame-
works.

A Template for Distinguisher-Dependent Simulation: Encrypted Proofs.
Suppose a prover P wants to convince a verifier V that an instance x ∈ L, for
some NP language L.

– The verifier V will first sample a puzzle together with a corresponding solu-
tion – which we will call the secret. V will send the puzzle to the prover P,
while keeping the secret hidden.

– Given a verifier message containing the puzzle, P will encrypt its proof in
such a way that anyone that holds the secret corresponding to this puzzle

can decrypt and check the proof.

For security, we will require that:

– Any proof encrypted to a puzzle cannot be decrypted without knowledge of
the corresponding secret, and

– Given a random puzzle, its corresponding secret is hard to find.

The first requirement on knowledge can be made more precise: consider any
distinguisher D∗ that distinguishes between encrypted proofs generated by an
honest prover, and proofs sampled (efficiently) by a simulator from a public
distribution. Then it should be possible to extract a secret from this distinguisher
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by building an efficient search algorithm S∗. In more detail, S∗ on input a random
puzzle should be able to use D∗ to efficiently find the secret for V∗’s puzzle.

Finally, using known techniques [11], this protocol can be designed to al-
low a simulator to easily generate simulated views once it knows the secret. In
summary, for any D∗, either

– Proofs sampled by Sim from a public distribution already fool D∗, and if
not, then

– Sim can use the search algorithm S∗ (which itself runs the verifier, and the
distinguisher D∗) to extract a secret that will enable Sim to fool D∗.

What are some generic assumptions under which this template can be in-
stantiated? To begin with, we observe that the template does appear necessitate
(a form of) public-key encryption. Injective trapdoor functions are among the
weakest generic primitives that are known to imply public-key encryption. In
this work, we will aim to understand whether this template can be instantiated
from trapdoored variants of injective one-way functions. Before studying this
question, a few remarks about prior works are in order.

First, we note that in retrospect, prior works [19,4,6] can be viewed as in-
stantiations of the generic template above under very specific homomorphic-style
assumptions. For example, the protocol in [19] uses two-round oblivious transfer
(OT) to ensure that a verifier obtains one out of two possible challenge openings
for a Σ−protocol4. At a very high level, the simulation technique in [19] builds
on the fact that (1) either simulated “garbage” Σ−protocol openings will already
fool a distinguisher, or (2) if the distinguisher is able to meaningfully recover one
(and only one, due to OT security) out of two Σ−protocol openings, then a simu-
lator can find which of the two is being recovered by running such a distinguisher
repeatedly, and this information can then be used to complete simulation. The
work of [4] instead relies on random-self-reducible encryption towards a similar
end: namely, (1) either a distinguisher cannot distinguish encryptions of 0 from
encryptions of 1, or (2) if the distinguisher is able to distinguish between these en-
cryptions, then it can be used to decrypt a specific challenge ciphertext, thereby
helping the simulator find a trapdoor. As such, while the generic template dis-
cussed above itself does not appear to necessitate any homomorphic properties,
these prior instantiations [19,4] require certain flavors of homomorphism (e.g.,
oblivious transfer is roughly equivalent to homomorphic encryption for certain
linear functions) to reduce solving specific instances to solving random instances
of a similar problem.

In contrast, in this work, we aim to add to the class of assumptions yielding
distinguisher-dependent simulation, by relying new types of generic assumptions
which do not a-priori satisfy self-reducibility or homomorphic properties. This
requires us to rely on other mechanisms for search-to-decision: in particular, we
develop new techniques that build on the Goldreich-Levin algorithm to enable
distinguisher-dependent simulation.

4 This basic protocol is repeated in parallel in [19] to reduce soundness error.
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Towards Distinguisher-Dependent Simulation from Trapdoor One-way
Functions. The Goldreich-Levin list decoding theorem provides a natural search
to decision strategy for encryption schemes: it guarantees that any adversary that
has better than negligible advantage in predicting the hardcore bit ⟨a, s⟩ for fixed
secret a and random s, can be used to find a with overwhelming probability.

Our first idea is to encrypt proofs in the template discussed above, via
Goldreich-Levin hardcore bits. Let us imagine that the prover (in an as-yet
unspecified manner) generates an initial proof π attesting to the fact that x is
in L. Each bit πi of π will be encrypted by XOR-ing it with Goldreich-Levin
hardcore bits, i.e., the prover will send for each i, the ciphertext

cti = f(ai), πi ⊕ ⟨ai, si⟩, si

for ai, si ← {0, 1}κ, and where f denotes an (injective) one-way function. Any
D∗ that distinguishes honestly generated encrypted proofs from encryptions of
junk values implies a search algorithm S∗ that inverts f . However, there is no
way for an honest verifier to decrypt and check the proof π.

To remedy this, we set f to be a family of trapdoored functions, where the
verifier samples the function family and the corresponding trapdoor. Namely,
our protocol is modified so that the verifier samples

(pk, sk)← KeyGen(1κ)

obtained by running the key generation algorithm for a trapdoor (injective) one-
way function family, and sends pk to the prover. Next, the prover computes

cti = fpk(ai), πi ⊕ ⟨ai, si⟩, si

and the verifier decrypts these ciphertexts to obtain π given the corresponding
secret key sk.

Now, given any D∗ that distinguishes ciphertexts that encrypt well-formed
proofs from ciphertexts that encrypt 0, it becomes possible to extract inverses
a1, . . . an of the one-way function outputs f(a1), . . . f(an) contained in the ci-
phertexts.

We can label these values (a1, . . . an) as the secret, and use these to provide
an alternative path to simulation. Namely, we will modify the proof itself (also
simplifying it along the way to use only one a value) so that the verifier sends
the prover a public key pk as before. Next, the prover computes

ct = (y1, y2) for y1 = fpk(a), y2 = 0⊕ ⟨a, s⟩, s

as an encryption of 0, and additionally computes a witness indistinguishable
(WI) proof attesting to the fact that

“either x ∈ L, or ct encrypts 1, or the prover knows an inverse ′a′ of y1”

The verifier accepts this proof if the WI proof accepts, and also ct decrypts to 0
(the verifier can decrypt ct since it knows the trapdoor for the one-way function).
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Fixing Soundness via Coin-Tossing and Enhanced TDFs. To ensure that
the prover cannot get away with generating accepting proofs for x ̸∈ L, we must
ensure that the prover actually does not know the inverse a of y1. This is not
true for the protocol described so far – in particular, the prover can always first
sample a, then sample y1 as fpk(a). To prevent this, we modify the protocol to
perform a coin-toss between the prover and verifier, namely, P first commits to
randomness r0, then V sends randomness r1, and finally P outputs a WI proof
attesting to the fact that

“either x ∈ L, or ct encrypts 1, or the prover knows an inverse ′a′ of r0 ⊕ r1”

With this modification, it becomes possible to show that r0 ⊕ r1 appears suf-
ficiently random to the prover, and the prover is unable to find an inverse of
r0⊕r1. However, to allow simulation to go through, we still need such an inverse
to exist for most choices of r0 ⊕ r1, which may not be true if we simply treat
r0 ⊕ r1 as an element of the co-domain.

As such, instead of requiring the prover to find an inverse a of r0 ⊕ r1, we
will have the prover use randomness r = r0 ⊕ r1 to sample an element y1 from
the image of the trapdoor function, and the WI proof will ask to find an inverse
a of y1. That is, the prover (as before) computes

ct = (y1, y2) for y1 = fpk(a), y2 = 0⊕ ⟨a, s⟩, s

as an encryption of 0, and computes a witness indistinguishable (WI) proof
attesting to the updated statement

“either x ∈ L, or ct encrypts 1,
or the prover knows an inverse ′a′ of y1 for y1 sampled from the image using

randomness r0 ⊕ r1”

As before, the verifier accepts this proof if the WI accepts, and also ct decrypts
to 0 (the verifier can decrypt ct since it has a trapdoor for the one-way function).

With this modification, we are able to prove soundness assuming that it is
hard to invert such a y1, even given the randomness r used to sample y1 (a
trapdoor function satisfying this property is called an enhanced trapdoor func-
tion [16]).

Building a Distinguisher-Dependent Simulator. A simulator Sim given a
statement x (and without knowing a witness w for x ∈ L), has the following
options:

– Generate ct as an encryption of 1, and use this as witness for the WI proof.
If D∗ cannot distinguish such a ciphertext from an honestly generated ci-
phertext (encrypting 0), then this option succeeds and the simulator’s job is
done.

– On the other hand, suppose the first option fails because D∗ distinguishes
a ciphertext encrypting 1 from the honestly generated one (encrypting 0).
Then the Goldreich-Levin theorem suggests that D∗ can be used by Sim
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to compute inverses. In particular Sim can generate ct = (y′1, y
′
2) for y′1 =

r0 ⊕ r1, and then use D∗ to find its inverse a. This also requires Sim to
sample other instance-witness pairs from the distribution on its own, which
is why our techniques are limited to the non-adaptive setting. Finally, Sim
can use a extracted above as a witness for the WI proof, thereby successfully
completing simulation.

A Technical Subtlety. We discuss one additional technical subtlety that re-
quires us to further modify the protocol sketched above. First, the definition
of enhanced trapdoor function families guarantees that honestly sampled keys
(pk, sk) lead to invertible distributions on y. But a malicious verifier may sample
pk for which y values sampled as above do not have an inverse. This would cause
the simulation strategy described above to break down.

We address this issue by relying on two-round witness indistinguishable (WI)
arguments. In particular, the protocol above is modified to have the verifier gen-
erate two sets of keys (pk1, sk1) and (pk2, sk2) and prove (via a WI argument)
that one of these pairs is well-formed, and will necessarily lead to invertible sam-
ples. We show that the resulting protocol is both simulatable and an argument
of knowledge by combining all the techniques discussed above with the two-key
technique [23].

This completes an overview of our protocol, where we assumed the existence
of (1) enhanced trapdoor functions and (2) two-round witness indistinguishable
arguments. For the sake of brevity, we swept some additional technical details
under the rug; we point the reader to Section 4 for a more detailed description
of our protocol. We conclude this section with a couple of natural problems that
would be useful to address in future research.

Open Problems and Directions for Future Work. A natural open prob-
lem given our work and prior works, is to understand whether distinguisher-
dependent simulation can be realized based on any public-key encryption scheme.
Second, in light of the generic template discussed earlier in the overview, it is rea-
sonable to wonder whether distinguisher-dependent simulation can be realized in
minicrypt, or if public-key encryption is necessary. We conjecture that two-round
proofs with distinguisher-dependent simulation imply public-key cryptography,
but leave a formal exploration of this question for future work. As these ques-
tions demonstrate, there remain gaps in our understanding of what assumptions
are necessary and sufficient for (non-trivial) distinguisher-dependent protocols
in two or three rounds. Nevertheless, we believe that demonstrating the utility
of the Goldreich-Levin search-to-decision reduction as is done in this work may
be a useful step towards answering some of these questions.

3 Preliminaries

Notation. Given an NP relation R, we denote the NP language associated with
it as LR := {x : ∃w such that R(x,w) = 1}.
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3.1 Goldreich-Levin List Decoding

In what follows, we recall the Goldreich-Levin Theorem [15], borrowing some
text verbatim from [17].

Definition 1 (Goldreich-Levin Bit Prediction Algorithm [15]). Fix ε >
0 and a secret x ∈ {0, 1}κ. A probabilistic Goldreich-Levin prediction algorithm
GL.Pred for secret x with advantage ε takes input r ∈ {0, 1}κ and outputs a value
in {0, 1} such that:

Pr
r

R←−{0,1}κ
[GL.Pred(r) = ⟨x, r⟩] ≥ 1/2 + ε

where probability is taken over r and the randomness of GL.Pred.

Theorem 1 (Goldreich-Levin Theorem [15]). For any given ε > 0 and
any polynomial-time computable function f : {0, 1}κ → {0, 1}poly(κ), there exists
an algorithm GL.Inv that runs in time poly(1/ε, κ) with the following property.

Let GL.Pred be a Goldreich-Levin prediction algorithm for secret x with ad-
vantage ε (Definition 1). Then GL.Inv, given oracle access to GL.Pred, queries
the oracle at most poly(1/ε, κ) times and outputs x with probability 1− 2−Ω(κ).
That is,

Pr[GL.InvGL.Pred(f(x)) = x] ≥ 1− negl(κ)

where probability is taken over the randomness of GL.Inv.

3.2 Building Blocks

Definition 2 (Enhanced trapdoor injective one-way functions [14]). A
family of enhanced trapdoor injective one-way functions is a collection of injective
functions fα : {Dα → Rα} such that:

– Syntax. There exist randomized PPT algorithms:
• I such that I(1n)→ (α, τ) where α is the index of the injective function

fα, and τ is a corresponding trapdoor for the function.
We will denote by I1(·) the function that runs I(·) and only outputs
the first coordinate α, and by I2(·) the function that runs I(·) and only
outputs the second coordinate τ .

• SD that on input α outputs an element from the domain Dα of the func-
tion fα.

• SR that on input α outputs an element from the range Rα of fα.
– Enhancement. For every α ∈ Supp(I1), the distributions SR(α) and fα(SD(α))

are computationally indistinguishable.
– Efficiency. There exists a deterministic polynomial-time algorithm F such

that for all α← I1(1
κ), and for all x ∈ Dα, F (α, x) = fα(x).

– Trapdoor Inversion. There exists a deterministic polynomial-time algo-
rithm B such that for all (α, τ)← I(1κ), and for all y ∈ Rα, B(τ, y) outputs
an x such that fα(x) = y.
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– Security (Hardness of Inversion). This guarantees that samples output
by the range sampler SR are hard to invert, even given the randomness used
to sample them.

Pr


fα(x

′) = y

∣∣∣∣∣∣∣∣

α← I1(1
n)

r
R←− {0, 1}∗

y ← SR(α; r)
x′ ← A(α, r)


 ≤ negl(n)

We note that these types of definitions have previously naturally arisen in
the study of oblivious transfer and non-interactive zero-knowledge, where some-
times a strengthening to permutations is considered. It is shown in [16] that
natural versions of the RSA and Rabin collections of trapdoor functions satisfy
the definition above, and in fact also yield doubly enhanced trapdoor permu-
tations. In this work, we will not require permutations, and can work with the
weaker definition above (this weakening has also been considered previously, e.g.,
in [16]).

Definition 3 (Perfectly Binding Non-Interactive Bit-Commitments).
A perfectly binding non-interactive bit-commitment scheme consists of a PPT
algorithm com such that:

– Perfect Binding: For all κ ∈ N, ∀r0, r1 ∈ {0, 1}κ, and ∀b0, b1 ∈ {0, 1}:

(com(b0; r0) = com(b1; r1)) =⇒ (b0 = b1)

– Computational Hiding: For all non-uniform PPT adversaries A, there
exists a negligible function µ such that for all κ ∈ N:

Pr
r

R←−{0,1}κ,b R←−{0,1}
[b′ = b|b′ ← A(1κ, com(b; r))] ≤ 1

2
+ µ(κ)

Bit commitments can be used to commit to strings of length poly(κ) by sepa-
rately committing to each bit of the string. This preserves perfect binding and
computational hiding.

Furthermore, perfectly binding non-interactive bit-commitments can be based
on any injective one-way trapdoor function family, simply by masking the input
with the Goldreich-Levin hardcore bit of the function.

3.3 Proof Systems

In this section, we recall definitions of proof systems, including delayed-input
protocols and weak-zero knowledge following [19].

Definition 4 (Delayed-Input Interactive Protocols [19]). An n-round
delayed-input interactive protocol (P, V ) for deciding a language L associated
with the relation RL is an interactive protocol for the same where:
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– To prove x ∈ L, the prover and the verifier initially receive the size of the
instance and execute the first n− 1 rounds of the protocol.

– At the start of the last round, the prover receives (x,w) ∈ RL and the verifier
receives x. They then execute the last round of the protocol.

Definition 5 (Delayed-Input Interactive Arguments [19]). An n-round
delayed-input interactive argument (P, V ) for deciding a language L associated
with the relation RL is an interactive protocol such that it satisfies the following:

– Completeness: For all (x,w) ∈ RL,

Pr[⟨P, V ⟩(x,w) = 1] ≥ 1− negl(κ)

where probability is taken over the randomness of P and V .
– Adaptive Soundness: For every κ, for every PPT P ∗ that chooses an

x ∈ {0, 1}κ \ L adaptively after the first n− 1 rounds of the protocol,

Pr[⟨P ∗, V ⟩(x) = 1] ≤ negl(κ)

where probability is taken over the randomness of P ∗ and V .

Definition 6 (Witness Indistinguishability [19]). An n-round delayed-
input interactive argument (P, V ) for deciding a language L associated with the
relation RL is said to be witness-indistinguishable if for every non-uniform PPT
verifier V ∗ and all (x,w1, w2) where w1, w2 ∈ RL(x), the following ensembles
are computationally indistinguishable:

{⟨P, V ∗⟩(x,w1)} and {⟨P, V ∗⟩(x,w2)}

Two-round witness indistinguishable arguments can be based on the existence
of doubly-enhanced injective trapdoor functions [9,16].

Definition 7 (Argument of Knowledge). A delayed-input interactive argu-
ment is an argument of knowledge if there exists a polynomial time extractor E
such that for any polynomial-size prover P ∗, there exists a negligible µ such that
for any security parameter κ ∈ N,

Pr

[
V (x; τ) = 1∧
w /∈ RL(x)

∣∣∣∣
(x, τ)← ⟨P ∗, V ⟩
w ← EP∗

(x, τ)

]
≤ µ(κ).

A witness indistinguishable argument of knowledge is a proof system that
satisfies both the witness indistinguishability and the argument of knowledge
properties above. We now define what it means for an argument of knowledge
to satisfy reusable witness indistinguishability.

Definition 8 (Reusable Witness Indistinguishable Argument of Knowl-
edge [19]). An n-round delayed input interactive argument of knowledge (P, V )
for a language L is Reusable Witness Indistinguishable if for all PPT V ∗, all
k = poly(κ), Pr[b = b′] ≤ 1/2 + negl(κ) for the following game.
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– (P, V ∗) initially receive the size of the instance and execute the first n − 1
rounds.

– V ∗ then outputs (x1, w1), (x2, w2), ..., (xk−1, wk−1).
– P generates the nth message of the delayed-input witness indistinguishable

argument of knowledge for the instances (x1, x2, ..., xk−1) using the witnesses
(w1, w2, ...wk−1) and sends them to V ∗.

– V ∗ outputs (xk, wk
1 , w

k
2 ).

– P samples a single bit b and generates the nth message of the delayed-input
WIAoK for the instance xk using witness wk

b .
– V ∗ outputs b′.

Reusable WI arguments of knowledge can be based on the existence of two-round
witness indistinguishable arguments (ZAPs), as shown in [19].

Definition 9 (Non-adaptive Distributional ϵ-Weak Zero Knowledge [19]).
A delayed-input interactive argument (P, V ) for a language L is said to be dis-
tributional ϵ-weak zero knowledge against non-adaptive verifiers if there exists
a simulator S, which is an oracle-aided machine that runs in time poly(κ, ϵ)
such that for every efficiently sampleable distribution (Xκ,Wκ) on RL, i.e.,
Supp(Xκ,Wκ) = {(x,w) : x ∈ L ∩ {0, 1}κ, w ∈ RL(x)}, every non-adaptive
polynomial-size verifier V ∗, every polynomial-size distinguisher D, and every
ϵ = 1/poly(κ),

∣∣∣∣∣ Pr
(x,w)←(Xκ,Wκ)

[
D(x,ViewV ∗ [⟨P, V ∗⟩(x,w)]) = 1

]
−

Pr
(x,w)←(Xκ,Wκ)

[
D(x,SV ∗,D(x)) = 1

]
∣∣∣∣∣ ≤ ϵ(κ),

where the probability is over the random choices of (x,w) as well as the random
coins of the parties.

4 Construction

In this section, we describe our protocol. We will use the following ingredients.

– Let f be a family of enhanced one-way trapdoor functions according to Defi-
nition 2, and denote the index sampler, domain and range samplers, function
description and inversion function respectively by (I = (I1, I2), SD, SR, F,B).

– Let com be a non-interactive, statistically binding, computationally hiding
commitment scheme (Definition 3).

– Let ZAP = (ZAP1,ZAP2,ZAPverify) denote the verifier and prover next-
message functions, and the verification algorithm respectively for a two-
round witness indistinguishable argument (Definition 6) for NP. This will be
used to prove membership in the language Lzap defined below.
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– Let WI = (WI1,WI2,WI3,WIverify) denote the prover, verifier, and prover
next-message functions, and the verification algorithm respectively for a 3-
round delayed-input reusable witness indistinguishable argument of knowl-
edge (Definition 8) for NP. This will be used to prove membership in the
language Lwi defined below.

We fix the following predicates for notational convenience.

– Intuitively, the first predicate ϕchal takes in two tuples (yd, ikd, chald) for
d ∈ {0, 1}, and ensures that for each d, chald “encrypts” bd where b0 ̸= b1,
i.e. chald is of the form F (ikd, yd), bd ⊕ ⟨yd, rd⟩, rd. That is,

ϕchal(y0, y1, ik0, ik1, chal0, chal1) = 1

⇐⇒ ∃r̃0, r̃1, b0, b1 s.t.




chal0 = [F (ik0, y0), b0, r̃0] ∧
chal1 = [F (ik1, y1), b1, r̃1] ∧
b0 ⊕ b1 = ⟨y0, r̃0⟩ ⊕ ⟨y1, r̃1⟩ ⊕ 1




– The second predicate ϕinv on input a commitment c and strings r0, r1, s
checks that c is a commitment to r0 with randomness s; and that its remain-
ing input z is an inverse of r0⊕r1 with respect to atleast one of its two input
index keys ik0, ik1. Formally,

ϕinv(r0, s, z, r1, ik0, ik1, c) = 1

⇐⇒ (c = com(r0; s)) ∧
(
F (ik0, z) = SR(ik0; r0 ⊕ r1) ∨
F (ik1, z) = SR(ik1; r0 ⊕ r1)

)

We also define the following two languages.

– Let Lzap be a language with corresponding relation RLzap
defined as:

RLzap
(xzap, rzap) = 1 ⇐⇒ (x0 = I1(rzap)) ∨ (x1 = I1(rzap))

where xzap is parsed as (x0, x1).

– Let Lwi be a language with corresponding relation RLwi
defined as:

RLwi
(xwi, wwi) = 1 ⇐⇒




(x,w) ∈ RL ∨
ϕchal(y0, y1, ik0, ik1, chal0, chal1) ∨
ϕinv(r0, s, z, r1, ik0, ik1, c)




where L is a given language, xwi is parsed as (x, chal0, chal1, ik0, ik1, r1, c) and
wwi is parsed as (w, y0, y1, r0, s, z).

5 Proof of Security

In this section, we prove the following theorem.

Theorem 2. Assuming the existence of enhanced injective trapdoor functions
satisfying Definition 2 and two-round witness indistinguishable arguments satis-
fying Definition 6, the protocol in Figure 1 satisfies non-adaptive distributional
ϵ-weak zero knowledge.
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Weak Zero-Knowledge

Prover Input: An instance x ∈ L and witness w s.t. RL(x,w) = 1
Verifier Input: Language L

– Prover Message:

1. Sample r0
R
←− {0, 1}κ, s

R
←− {0, 1}κ, rwi ← {0, 1}

κ.
2. Compute c := com(r0; s), zap1 ← ZAP1(1

κ),wi1 ←
WI1(1

κ; rwi).
3. Send message m1 := (c, zap

1
,wi1) to the verifier.

– Verifier Message:

1. Sample r1
R
←− {0, 1}κ

2. Sample (ik0, τ0)
R
←− I(1κ; rik0) and (ik1, τ1)

R
←− I(1κ; rik1)

where rik0 and rik1 are uniformly sampled strings.
3. Set xzap := (ik0, ik1) and wzap := rik0
4. Compute wi2 ← WI2(wi1) and zap

2
← ZAP2(zap1, xzap, wzap)

proving that RLzap(xzap, wzap) = 1
5. Send message m2 := (r1, ik0, ik1,wi2, zap2) to the prover.

– Prover Message:

1. If ZAPverify(zap1, zap2) rejects, abort execution.

2. Sample q0
R
←− SD(ik0), q1

R
←− SD(ik1), r̃0, r̃1

R
←− {0, 1}κ

3. Compute chal0 = [F (ik0, q0), ⟨q0, r̃0⟩, r̃0], chal1 =
[F (ik1, q1), ⟨q1, r̃1⟩, r̃1]

4. Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := w.
5. Compute wi3 ← WI3(rwi,wi2, xwi, wwi) proving that

RLwi
(xwi, wwi) = 1.

6. Send m3 := (x, chal0, chal1,wi3) to the verifier.
– Verifier Output: The verifier uses the inversion trapdoors τ0, τ1

to perform the following checks, and outputs 1 iff
• There exist y0, y1 s.t. chal0 = [F (ik0, y0), ⟨y0, r̃0⟩, r̃0], chal1 =

[F (ik1, y1), ⟨y1, r̃1⟩, r̃1], and
• WIverify(wi1,wi2,wi3) accepts.

Fig. 1: A Non-adaptive Distributional ϵ-weak Zero Knowledge Argument

5.1 Simulator

For language L with corresponding NP relation RL, an efficiently sampleable
distribution (Xκ,Wκ) on RL, an adversarial verifier A, a distinguisher D, and
an ϵ = 1/poly(κ), we describe the following poly(κ, ϵ) time simulator S, where
ϵ′ := ϵ/7. The simulator is described in stages below.

Initialization:
In this section the simulator behaviour is identical to an honest prover.

– Receive x as input.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

13



Algorithm Predγ,Q,b(r)

The algorithm Predγ,Q,b takes an input r and is parameterised by the
inversion target γ, the state Q and the bit b that chooses an index key.

Q is parsed as (rwi,m1,m2, Q) where m1 is parsed as (c, zap
1
,wi1)

and m2 as (r1, ik0, ik1,wi2, zap2).

Pred does the following:

– Initialize A to state Q.

– Sample b̃
R
←− {0, 1}

– Sample q
R
←− SD(ik1−b).

– Sample r′
R
←− {0, 1}κ

– Sample (x′, w′)
R
←− (X ,W)

– Compute chalb =
[
γ, b̃, r

]
, chal1−b =

[
fik1−b

(q), ⟨q, r′⟩, r′
]

– Set x′
wi := (x′, chal0, chal1, ik0, ik1, r1, c) and w′

wi :=
(w′,⊥,⊥,⊥,⊥,⊥).

– Compute wi3 ←WI3(rwi,wi2, x
′
wi, w

′
wi, Lwi).

– Send x′, chal0, chal1,wi3 to the verifier.

If the output of D on input the view of the verifier is 1, output b̃, else
output 1− b̃

Fig. 2: Predicting the hardcore bit for γ w.r.t. ikb. Intuitively, m1 and m2 rep-
resent the first two messages of an execution of the protocol from Figure 1, and
Q is the state of the verifier A from the protocol just before A receives the third
message, after having received m1 and sent m2. rwi is interpreted as the random-
ness used to generate the first WI message wi1. Pred uses the distinguisher D to
guess the Goldreich-Levin hardcore bit for challenge γ for input r, w.r.t. ikb.

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output verifier view if verification

fails.

Let Q be the state of the adversary after the above. Define Q := (rwi,m1,m2, Q).

Key Check Stage:
The simulator will perform a test on both index keys in order to choose one to use
for inversion. The test aims to choose a key ik such that D does not distinguish
between a challenge ciphertext generated by calling fik on the output of SD(ik)
or one generated by SR(ik).

– Compute b
R←− ik-checkQ (from Figure 4) , where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Else, continue onto the next stage.
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Algorithm Inv(γ,Q, b, ε)

The algorithm Inv takes as input r, inversion target γ, state Q, a bit
b that chooses an index key, and prediction advantage ε.

Q is parsed as (rwi,m1,m2, Q) where m1 is parsed as (c, zap
1
,wi1)

and m2 as (r1, ik0, ik1,wi2, zap2).

Inv runs GL.Inv from Theorem 1 with oracle access to Predγ,Q,b. More
formally, Inv performs the following steps:

– For advantage ε and the polytime-computable function fikb :
Dikb → Rikb , let GL.Inv be the Goldreich-Levin inversion algo-
rithm given by Theorem 1.

– Construct an oracle P that answers queries by executing algo-
rithm Predγ,Q,b.

– Compute x = GL.InvP (γ)
– If fikb(x) = γ return x, else return ⊥.

Fig. 3: Inverting the trapdoor one-way function using Pred and Goldreich-Levin.

Inversion Stage:
The simulator will try to use the adversarial verifier and distinguisher to compute
q′ such that fikb(q

′) = (SR(ikb; r0 ⊕ r1)), where b is the output of ik-check in the
previous stage.

– Run Inv(SR(ikb; r0 ⊕ r1),Q, b, ϵ′/2) (from Figure 3).
– If Inv succeeds and outputs some q′ and proceed to the Success Stage.
– If Inv fails, proceed to Failure Stage.

Failure Stage:
If Inv fails to invert during the Inversion Stage, then intuitively the distinguisher
output does not depend on the Goldreich-Levin hardcore bit in the challenge with
sufficient probability. This can be used to produce a transcript using the second
branch of WI, by modifying the challenge. This requires knowledge of the inverse
of the challenge. Since the inverse is not known for the previous challenge, a
new challenge that fails inversion must be found.

For each i ∈ [κ/ϵ′]:

– Rewind the adversary to state Q (unless already in state Q).

– Sample q̃i
R←− SD(ikb)

– Run Inv(fikb(q̃i),Q, b, ϵ′/2).
– If Inv fails:
• Rewind the adversary to state Q.

• Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

• Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩ ⊕ 1, r̃b].
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Algorithm ik-checkQ

The algorithm ik-checkQ is parameterized by a state Q parsed
as (rwi,m1,m2, Q) where m1 is parsed as (c, zap

1
,wi1) and m2 as

(r1, ik0, ik1,wi2, zap2).

– Initial A in state Q.
– Let n′ := (4/ϵ′)3 and t := n′ϵ′/4
– Initialize c0,D ← 0, c0,R ← 0, c1,D ← 0, c1,R ← 0
– For i ∈ [n′] :

• Sample q0
R
←− SD(ik0), q1

R
←− SD(ik1)

• Sample γ0
R
←− SR(ik0), γ1

R
←− SR(ik1)

• Run Inv(fik0(q0),Q, 0, ϵ
′/2) and add 1 to c0,D if it succeeds.

• Run Inv(fik1(q1),Q, 1, ϵ
′/2) and add 1 to c1,D if it succeeds.

• Run Inv(γ0,Q, 0, ϵ
′/2) and add 1 to c0,R if it succeeds.

• Run Inv(γ1,Q, 1, ϵ
′/2) and add 1 to c1,R if it succeeds.

– Compute ∆0 := |c0,D − c0,R|
– Compute ∆1 := |c1,D − c1,R|

We say ikb passes the check if ∆b ≤ t. The algorithm always outputs
a b such that ikb passes the check. It outputs ⊥ if both fail.

– If ∆0 ≤ t and ∆1 ≤ t return a random bit.
– If ∆0 ≤ t, return 0.
– If ∆1 ≤ t, return 1.
– Return ⊥.

Fig. 4: Checking index keys: ik-check interacts with a copy of the adversarial
verifier A initialised to state Q. Intuitively, the algorithm compares (for some
fixed index key) the distribution resulting from generating a domain element
via SD and applying f , with the distribution resulting from generating a range
element via SR. If the index key is honestly generated, both distributions should
be close. ik-check performs this comparison for both index keys the verifier A
supplies in m2. A key passes the check if both distributions appear sufficiently
close, and ik-check can only output a key (or a bit indicating a key) that passes
the check.

• Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (⊥, q̃i, q1−b,⊥,⊥,⊥).
• Compute wi3 ←WI3(rwi,wi2, xwi, wwi).

• Send m3 := (x, chal0, chal1,wi3) to the verifier.

• Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

Output ⊥
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Success Stage:
If Inv successfully inverts, we can use the output q′ to produce a transcript using
the third branch of wi3. To do so, the simulator searches for a new challenge that
also successfully inverts.

For each i ∈ [κ/ϵ′]:

– Rewind the adversary to state Q (unless already in state Q).

– Sample q̃i
R←− SD(ikb)

– Run Inv(fikb(q̃i),Q, b, ϵ′/2).
– If Inv succeeds:
• Rewind the adversary to state Q.

• Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

• Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
• Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (⊥,⊥,⊥, r0, s, q′)
• Compute wi3 ←WI3(rwi,wi2, xwi, wwi).
• Send m3 = (x, chal0, chal1,wi3).
• Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

Output ⊥

5.2 Proof of Theorem 2

Proof. Given the simulator described above, we will now prove the main theo-
rem by contradiction: suppose there exists a distinguisher D that along with an
adversarial verifier A distinguishes between experiments where the prover gener-
ates a proof using witness w versus an experiment where the proof is simulated,
with advantage greater than ϵ, where ϵ = 1/poly(κ). We define ϵ′ := ϵ/7 and
consider a sequence of eight hybrid experiments, indexed by error parameter ϵ′

where the first hybrid corresponds to the honest execution and the final hybrid
corresponds to the simulated execution. D must necessarily distinguish some two
consecutive hybrids in the sequence with advantage greater than ϵ′ = ϵ/7. This
leads to a contradiction, because we prove that the advantage of the distinguisher
D for any two consecutive hybrids is always less than ϵ′.
In what follows, we let the random variable D(Hϵ′

i ) denote the output of the

distinguisher upon receiving as input the view of the verifier in hybrid Hϵ′

i .

Hybrid Hϵ′

0 :

This hybrid outputs the view of the verifier A when it interacts with an honest
prover that generates a proof for x using witness w. The hybrid interacts with
A acting as a prover for the protocol in the following manner:

– Sample x,w
R←− Xκ,Wκ.
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– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).

– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails.

– Sample q0
R←− SD(ik0), q1

R←− SD(ik1)

– Sample r̃0, r̃1
R←− {0, 1}κ

– Compute chal0 = [F (ik0, q0), ⟨q0, r̃0⟩, r̃0] and chal1 = [F (ik1, q1), ⟨q1, r̃1⟩, r̃1]
– Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
– Compute wi3 ←WI3(rwi,wi2, xwi, wwi)

– Send m3 = (x, chal0, chal1,wi3).

– Output the view of the verifier for the current session, i.e. for m1,m2,m3,
and halt execution.

Hybrid Hϵ′

1 :

This hybrid differs from Hϵ′

0 in that it runs an additional algorithm ik-check
once just after receiving the verifier’s message. If ik-check outputs ⊥, the hybrid
aborts, else, it continues as in Hϵ′

0 .

Interacting with A as a prover for the protocol, Hϵ′

1 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).

– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let
the state of A at this point be Q.

– Define Q := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Sample r̃0, r̃1
R←− {0, 1}κ

– Compute chal0 = [F (ik0, q0), ⟨q0, r̃0⟩, r̃0] and chal1 = [F (ik1, q1), ⟨q1, r̃1⟩, r̃1]
– Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
– Compute wi3 ←WI3(rwi,wi2, xwi, wwi)

– Send m3 = (x, chal0, chal1,wi3).

– Output the view of the verifier for the current session, i.e. for m1,m2,m3,
and halt execution.

Lemma 1.
∣∣∣Pr[D(Hϵ′

0 ) = 1]− Pr[D(Hϵ′

1 ) = 1]
∣∣∣ ≤ ϵ′
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Proof. (Overview) Note that the hybrids differ only if ik-check outputs b = ⊥,
and are identical conditioned on b ∈ {0, 1}. Therefore, the probability of distin-
guishing the hybrids is bounded by the probability of b = ⊥. We show that this
probability is negligible in the full version of this paper, and omit the proof here
due to space. Intuitively, this is because ik-check tests whether samples obtained
by fik(SD(ik)) and SR(ik) are indistinguishable to the adversary. ZAP ensures
that with high probability atleast one of the index keys is sampled correctly, and
by the enhancement property the samples will be indistinguishable. Therefore
with high probability atleast one key will pass the test.

Hybrid Hϵ′

2 :

This hybrid differs from Hϵ′

1 in that it runs Inv(fikb(qb),Q, b, ϵ′/2) just before
computing m3 and ignores the output, here represented as following the same
steps independent of the output.

Interacting with A as a prover for the protocol, Hϵ′

2 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.

– DefineQ := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Run Inv(fikb(qb),Q, b, ϵ′/2)
– If Inv succeeds and outputs q′ :

• Sample r̃0, r̃1
R←− {0, 1}κ

• Compute chal0 = [F (ik0, q0), ⟨q0, r̃0⟩, r̃0] and chal1 = [F (ik1, q1), ⟨q1, r̃1⟩, r̃1]
• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
• Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
• Send m3 = (x, chal0, chal1,wi3).
• Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– If Inv fails:

• Sample r̃0, r̃1
R←− {0, 1}κ

• Compute chal0 = [F (ik0, q0), ⟨q0, r̃0⟩, r̃0] and chal1 = [F (ik1, q1), ⟨q1, r̃1⟩, r̃1]
• Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
• Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
• Send m3 = (x, chal0, chal1,wi3).
• Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.
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Lemma 2.
∣∣∣Pr[D(Hϵ′

1 ) = 1]− Pr[D(Hϵ′

2 ) = 1]
∣∣∣ = 0

Proof. The distributions of m1,m2,m3 in Hϵ′

1 and Hϵ′

2 are identical because
the output Inv is effectively ignored, therefore the adversary’s view is identically
distributed between both hybrids.

Hybrid Hϵ′

3 :

This hybrid differs from Hϵ′

2 in that instead of computing the protocol execution
using the same qb for which Inv was called, it attempts to sample some q̃ identi-
cally distributed to qb given the output of Inv, and completes protocol execution
using q̃ if it succeeds.

Interacting with A as a prover for the protocol, Hϵ′

3 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.

– DefineQ := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Run Inv(fikb(qb),Q, b, ϵ′/2)
– If Inv succeeds and outputs q′, for each i ∈ [κ/ϵ′]:

• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Else if Inv fails, for each i ∈ [κ/ϵ′]:

• Rewind the adversary to state Q (unless already in state Q).
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• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Output ⊥

Lemma 3.
∣∣∣Pr[D(Hϵ′

2 ) = 1]− Pr[D(Hϵ′

3 ) = 1]
∣∣∣ ≤ ϵ′

Proof. Note that conditioned on successfully finding an appropriate q̃, the adver-
sary’s view is identically distributed in both hybrids. The hybrid distinguishing
probability is therefore bounded by the probability of failing to find q̃.

For a fixed (Q, b), let p be defined as follows:

p(Q, b) = Pr
q̃

R←−SD(ikb)

[Inv(fikb(q̃),Q, b, ϵ′/2) succeeds]

We omit the parameters in the remaining discussion. Summing the probabilities
of failing to find q̃:

∣∣∣Pr[D(Hϵ′

2 ) = 1]− Pr[D(Hϵ′

3 ) = 1]
∣∣∣ ≤ p(1− p)κ/ϵ

′

+ (1− p)pκ/ϵ
′

If p ≤ ϵ′/2, then:

p(1− p)κ/ϵ
′

+ (1− p)pκ/ϵ
′ ≤ ϵ′/2 + (1− p)pκ/ϵ

′ ≤ ϵ′/2 + (ϵ′/2)
κ/ϵ′ ≤ ϵ′

If p > ϵ′/2, then:

p(1− p)κ/ϵ
′

+ (1− p)pκ/ϵ
′ ≤

(
1− ϵ′

2

)κ/ϵ′

+ (ϵ′/2)
κ/ϵ′

By the Taylor series expansion, we have:

log

(
1− ϵ′

2

)
/ϵ′ ≤ −1

2
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which imples (
1− ϵ′

2

)κ/ϵ′

= e
κ

ϵ′
log

(
1− ϵ

′

2

)

≤ 1

eκ/2

Since ϵ′ = 1/poly(κ), for sufficiently large κ :

(
1− ϵ′

2

)κ/ϵ′

+ (ϵ′/2)
κ/ϵ′ ≤ 1

eκ/2
+ ϵ′/2 ≤ ϵ′

This completes the proof.

Hybrid Hϵ′

4 :

This hybrid differs from Hϵ′

3 in that the adversary flips the hardcore bit for chalb
in the case where Inv fails.

Interacting with A as a prover for the protocol, Hϵ′

4 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.

– DefineQ := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample q0

R←− SD(ik0), q1
R←− SD(ik1)

– Run Inv(fikb(qb),Q, b, ϵ′/2)
– If Inv succeeds and outputs q′, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Else if Inv fails, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).
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• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb =
[
F (ikb, q̃i), ⟨q̃i, r̃b⟩ ⊕ 1 , r̃b

]

∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Output ⊥

Lemma 4.
∣∣∣Pr[D(Hϵ′

3 ) = 1]− Pr[D(Hϵ′

4 ) = 1]
∣∣∣ ≤ ϵ′

Proof. (Overview) Due to lack of space, we defer the proof to the full version.
Intuitively, since the inversion algorithm fails for q̃i, the distinguisher does not
distinguish between correct and incorrect hardcore bits. Since the only difference
between hybrids is the hardcore bit, we show it is safe to send incorrect bits.

Hybrid Hϵ′

5 :

This hybrid differs from Hϵ′

4 in that the adversary attempts to invert a randomly
sampled SR(ikb) instead of fikb(qb). Since this change means that qb is unused,
it is no longer sampled. Interacting with A as a prover for the protocol, Hϵ′

5

performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, compute c = com(r0; s), compute the

first message zap1 of a ZAP, the first message wi1 of a WI, and send m1 =
(c, zap1,wi1) to the adversary.

– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.

– DefineQ := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample qb

R←− SD(ikb)

– Run Inv( SR(ikb; r̂) ,Q, b, ϵ′/2) for r̂
R←− {0, 1}κ .

– If Inv succeeds and outputs q′, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
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• If Inv succeeds:
∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Else if Inv fails, for each i ∈ [κ/ϵ′]:

• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩ ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Output ⊥

Lemma 5.
∣∣∣Pr[D(Hϵ′

4 ) = 1]− Pr[D(Hϵ′

5 ) = 1]
∣∣∣ ≤ ϵ′

Proof. Note that the behaviour of both hybrids for a given outcome of the
first Inv call (success or failure) is identical. If a difference arises, it must be
in the probability of Inv succeeding. Fix any Q := (rwi,m1,m2, Q), where m1 is
parsed as (c, zap1,wi1) and m2 is parsed as (r1, ik1, ik2,wi2, zap2). Define predi-
cates p0, p1, and p as:

p0(b) = Pr [Inv(fikb(qb),Q, b, ϵ′/2) succeeds.]

p1(b) = Pr [Inv(SR(ikb),Q, b, ϵ′/2) succeeds.]

p(b) = |p0(b)− p1(b)|
Further, define p as zero whenever b = ⊥. If we let Pr [b] be the probability that
ik-checkQ outputs b in either hybrid:

∣∣∣Pr[D(Hϵ′

4 ) = 1]− Pr[D(Hϵ′

5 ) = 1]
∣∣∣ ≤ max

Q

(
∑

b

Pr [b] ∗ p(b)
)
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where we consider b ∈ {0, 1} since p is zero if b = ⊥. Let {Xi}i∈[n′] be n′ iid
random variables that take values ∈ {0, 1}, and Pr[Xi = 1] = p1(m1,m2, Q, b).
Similarly, let {Yi}i∈[n′] be n′ iid random variables that take values ∈ {0, 1},
and Pr[Yi = 1] = p0(m1,m2, Q, b). Let Z =

∑
i∈[n′] Xi − Yi. Then Pr[Z ≤

t] = Pr [ikb passes key-check]. Since (m1,m2, Q, b) are fixed for the following
discussion, we omit the parameters from p0, p1, p. Note that E[Z] = pn′ and
V ar[Z] = n′(V ar[X] + V ar[Y ]) = n′p1(1− p1) + n′p0(1− p0) ≤ 2n′

Now, consider the case when p ≥ ϵ′/2. By applying Chebyshev’s Inequality to Z
we obtain:

Pr
[
Z ≤ E[Z]− k

√
V ar[Z]

]
≤ 1/k2

E[Z] = n′p and V ar[Z] ≤ 2n′, therefore:

Pr
[
Z ≤ n′p− k

√
2n′
]
≤ 1/k2

Since p ≥ ϵ′/2:

Pr
[
Z ≤ n′ϵ′/2− k

√
2n′
]
≤ 1/k2

Setting k = n′ϵ′/
√
32n′:

Pr [Z ≤ n′ϵ′/4] = Pr [Z ≤ t] ≤ 32

n′(ϵ′)2

Since n′ = (4/ϵ′)3:

Pr [Z ≤ t] ≤ ϵ′/2

Pr [ikb passes key-check] ≤ ϵ′/2

We use this result to show that the hybrid distinguishing probability is also
bounded by ϵ′. If p(b) ≥ ϵ′/2, then probability of ikb passing the check is no
more than ϵ′/2, which implies that Pr[b] ≤ ϵ′/2. Therefore, Pr[b] ∗ p(b) ≤ ϵ′/2,
which in turn implies

∑
b Pr [b] ∗ p(b) ≤ ϵ′. This completes the proof.

Hybrid Hϵ′

6 :

This hybrid differs from Hϵ′

5 in that the adversary uses r0 ⊕ r1 instead of fresh
randomness to sample from SR(ikb).

Interacting with A as a prover for the protocol, Hϵ′

6 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
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– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let
the state of A at this point be Q.

– DefineQ := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample qb

R←− SD(ikb)

– Run Inv( SR(ikb; r0 ⊕ r1) ,Q, b, ϵ′/2).
– If Inv succeeds and outputs q′, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Else if Inv fails, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩ ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Output ⊥

Lemma 6.
∣∣∣Pr[D(Hϵ′

5 ) = 1]− Pr[D(Hϵ′

6 ) = 1]
∣∣∣ ≤ ϵ′

Proof. (Overview) Due to lack of space, we defer the proof to the full version.
Intuitively, we switch from inverting a uniformly random string to inverting
r0 ⊕ r1. Since r0 is also sampled uniformly, the adversary’s view is identical
apart from the commitment to r0 in the first round. We therefore show that
an adversary that distinguishes the hybrids must be breaking the hiding of the
commitment scheme.
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Hybrid Hϵ′

7 :

This hybrid differs from Hϵ′

6 in that the hybrid uses the q′ obtained by Inv to
compute wi3 by the third branch in the success case.

Interacting with A as a prover for the protocol, Hϵ′

7 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.

– DefineQ := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample qb

R←− SD(ikb)
– Run Inv(SR(ikb; r1 ⊕ r2),Q, b, ϵ′/2).
– If Inv succeeds and outputs q′, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (⊥,⊥,⊥, r0, s, q′)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Else if Inv fails, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv fails:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩ ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (w,⊥,⊥,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
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∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Output ⊥

Lemma 7.
∣∣∣Pr[D(Hϵ′

6 ) = 1]− Pr[D(Hϵ′

7 ) = 1]
∣∣∣ ≤ ϵ′

Proof.

Pr
rwi

R←−{0,1}κ,bwi R←−{0,1}
R1,R2,R3,WI3



b′ = bwi

∣∣∣∣∣∣∣∣∣∣

wi1 ←WI1(1
κ; rwi)

wi2, {xwi,i, wwi,i}i, τ ← R1(wi1)
{wi3,i}i ← {WI3(rwi,wi2, xwi,i, wwi,i)}i

(xwi, w0, w1)← R2({wi3,i}i, τ)
b′ ← R3(WI3(rwi,wi2, xwi, wbwi))



≥ 1

2
+

ϵ′

2

Apart from the final construction of wi3, WI3 is always called during a call to
Pred, which in turn is called during a call to Inv. This means that WI3 is called
for some x′wi := (x′, chal0, chal1, ik0, ik1, r1, c) and w′wi := (w′,⊥5). Here, x′ and
w′ are chosen randomly each time, while ik0, ik1, r1 and c are fixed by m1 and
m2 before any WI3 call is made. Only the distributions of chal0 and chal1 change
between Pred calls. For any fixed b, the distributions of chal will be independent
of the output of any Pred call. The only interdependence will be dependence on
the bit b. This can be remedied by choosing two sets of inputs, one for b = 0
and one for b = 1. The outputs of one set may be later discarded depending on
the value of b. Therefore, all inputs may be chosen together immediately after
receiving m2. We represent this set of WI3 inputs as Swi := {xwii , wwi,i}i∈[poly(κ)]

We build a reduction R that interacts with an external challenger for WI by
running Hϵ′

6 with the following modifications:

1. Instead of computing the first message of WI, receive wi1 from the external
challenger.

2. Send wi2 parsed from m2 to the external verifier.
3. Choose the set Swi as specified above and send to the external verifier im-

mediately after sending wi2.
4. Receive Pwi := {wi3,i}i∈[poly(κ)] from the challenger immediately after sending

Swi, consisting of third WI messages for each (xwi,i, wwi,i) pair in Swi.
5. Proceed with hybrid execution until just before wi3 is computed, replacing

every WI3 call with its corresponding wi3,i.

6. Compute wwi as in Hϵ′

6 and label it w0.
7. Compute wwi as in Hϵ′

7 and label it w1.
8. Send (xwi, w0, w1) to the external challenger and receive wi3 as response.
9. Continue with hybrid execution using wi3 received from the challenger.
10. If the distinguisher returns 1, output 1. If not, or if any step fails, output 0.

The view of the adversarial verifier A in R is identical to the view in Hϵ′

6 when
bwi = 0 and the view in Hϵ′

7 when bwi = 1. If we denote the event that R outputs
b′ = bwi as R succeeding:

Pr[R succeeds|bwi = 1] = Pr[D(Hϵ′

7 ) = 1]
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Pr[R succeeds|bwi = 0] = Pr[D(Hϵ′

6 ) ̸= 1] = 1− Pr[D(Hϵ′

6 ) = 1]

Since bwi is chosen uniformly:

Pr[R succeeds] =
1

2

(
1 +

(
Pr[D(Hϵ′

7 ) = 1]− Pr[D(Hϵ′

6 ) = 1]
))
≥ 1

2
+

ϵ′

2

which contradicts the security of wi since ϵ′/2 is non-negligible.

Hybrid Hϵ′

8 :

This hybrid differs from Hϵ′

7 in that the hybrid uses the q̃ for which Inv fails to
compute wi3 via the third branch in the failure case.

Interacting with A as a prover for the protocol, Hϵ′

8 performs the following:

– Sample x,w
R←− Xκ,Wκ.

– Sample r0
R←− {0, 1}κ, s R←− {0, 1}κ, rwi R←− {0, 1}κ

– Compute c = com(r0; s), zap1 ← ZAP1(1
κ), wi1

R←−WI1(1
κ; rwi)

– Send m1 = (c, zap1,wi1) to a freshly initialised instance of the adversary A.
– Receive m2, parsed as (r1, ik0, ik1,wi2, zap2).
– Verify that ZAPverify(zap1, zap2) accepts. Output ⊥ if verification fails. Let

the state of A at this point be Q.

– DefineQ := (rwi,m1,m2, Q) and compute b
R←− ik-checkQ, where b ∈ {0, 1,⊥}

– If b = ⊥, return ⊥
– Sample qb

R←− SD(ikb)
– Run Inv(SR(ikb; r1 ⊕ r2),Q, b, ϵ′/2).
– If Inv succeeds and outputs q′, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
• If Inv succeeds:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c) and wwi := (⊥,⊥,⊥, r0, s, q′)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Else if Inv fails, for each i ∈ [κ/ϵ′]:
• Rewind the adversary to state Q (unless already in state Q).

• Sample q̃i
R←− SD(ikb)

• Run Inv(fikb(q̃i),Q, b, ϵ′/2).
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• If Inv fails:

∗ Rewind the adversary to state Q.

∗ Sample r̃0, r̃1
R←− {0, 1}κ, q1−b R←− SD(ik1−b).

∗ Compute chalb = [F (ikb, q̃i), ⟨q̃i, r̃b⟩ ⊕ 1, r̃b]
∗ Compute chal1−b = [F (ik1−b, q1−b), ⟨q1−b, r̃1−b⟩, r̃1−b]
∗ Set xwi := (x, chal0, chal1, ik0, ik1, r1, c)

∗ If b = 0:

· Set wwi := (⊥, q̃i, q1−b,⊥,⊥,⊥)
∗ If b = 1:

· Set wwi := (⊥, q1−b, q̃i,⊥,⊥,⊥)
∗ Compute wi3 ←WI3(rwi,wi2, xwi, wwi)
∗ Send m3 = (x, chal0, chal1,wi3).
∗ Output the view of the verifier for the current session, i.e. form1,m2,m3,
and halt execution.

– Output ⊥

Lemma 8.
∣∣∣Pr[D(Hϵ′

8 ) = 1]− Pr[D(Hϵ′

7 ) = 1]
∣∣∣ ≤ ϵ′

Proof. The proof proceeds identically to the proof of Lemma 7, except that in
R, w0 is computed as wi3 in Hϵ′

7 instead of as in Hϵ′

6 and w1 is computed as wi3
in Hϵ′

8 instead of as in Hϵ′

7 .

The view of the adversary in the final hybrid Hϵ′

8 is identically distributed to
the simulated view of the adversary. Since D is unable to distinguish any two
consecutive hybrids with probability greater than ϵ′, it cannot distinguish the
view of the adversary in an honest execution from the simulated view with
probability greater than ϵ.

5.3 Argument of Knowledge property

Theorem 3. Assuming enhanced injective trapdoor functions secure against PPT
adversaries, the protocol in Figure 1 is an argument of knowledge.

Proof. (Overview) Due to lack of space, we defer the proof to the full version.
Intuitively, the extractor uses the argument of knowledge property of WI to
extract a witness. Since an honest verifier will check challenge bits, this will
either yield a witness for x ∈ L or an inverse of r0 ⊕ r1, which we show implies
breaking one-wayness of f . One subtlety is that the inverse may be with respect
to either index key. We show that we may obtain an inverse with respect to the
desired index key by swapping the order of keys, which is undetectable by the
witness indistinguishability of ZAP.
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