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Abstract. Can a sender non-interactively transmit one of two strings
to a receiver without knowing which string was received? Does there ex-
ist minimally-interactive secure multiparty computation that only makes
(black-box) use of symmetric-key primitives? We provide affirmative an-
swers to these questions in a model where parties have access to shared
EPR pairs, thus demonstrating the cryptographic power of this resource.

– First, we construct a one-shot (i.e., single message) string oblivious
transfer (OT) protocol with random receiver bit in the shared EPR
pairs model, assuming the (sub-exponential) hardness of LWE.

Building on this, we show that secure teleportation through quantum
channels is possible. Speciőcally, given the description of any quan-
tum operation 𝑄, a sender with (quantum) input 𝜌 can send a single
classical message that securely transmits 𝑄(𝜌) to a receiver. That
is, we realize an ideal quantum channel that takes input 𝜌 from the
sender and provably delivers 𝑄(𝜌) to the receiver without revealing
any other information.

This immediately gives a number of applications in the shared EPR
pairs model: (1) non-interactive secure computation of unidirectional
classical randomized functionalities, (2) NIZK for QMA from stan-
dard (sub-exponential) hardness assumptions, and (3) a non-interactive
zero-knowledge state synthesis protocol.

– Next, we construct a two-round (round-optimal) secure multiparty
computation protocol for classical functionalities in the shared EPR
pairs model that is unconditionally-secure in the (quantum-accessible)
random oracle model.

Classically, both of these results cannot be obtained without some form
of correlated randomness shared between the parties, and the only known
approach is to have a trusted dealer set up random (string) OT correla-
tions. In the quantum world, we show that shared EPR pairs (which are
simple and can be deterministically generated) are sufficient. At the heart
of our work are novel techniques for making use of entangling operations
to generate string OT correlations, and for instantiating the Fiat-Shamir
transform using correlation-intractability in the quantum setting.
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1 Introduction

Understanding the nature of shared entanglement is one of the most prominent
goals of quantum information science, and its study has repeatedly unearthed
surprisingly strong properties. A remarkable example of this is the quantum
teleportation protocol of [15], which demonstrated that shared EPR pairs [32],
the most basic entangled resource, are łcompletež for quantum communication
using classical channels. That is, if Alice and Bob share EPR pairs a priori,
then Alice can communicate an arbitrary state 𝜌 to Bob by sending just a single
classical message. In particular, this result positions shared EPR pairs at the
center of proposals for building a quantum internet.

1.1 Our contributions

In this work, we investigate the cryptographic power of shared EPR pairs.

Secure Teleportation through a Quantum Channel. First, we revisit the setting of
quantum teleportation, which shows that shared EPR pairs and one-way classical
communication give rise to a quantum channel implementing the identity map
𝜌 → 𝜌. We ask: what if Alice would instead like to send her state 𝜌 to Bob
through some arbitrary quantum map 𝜌→ 𝑄(𝜌)?1

Note that this is trivial given quantum teleportation if we allow either Alice
or Bob to compute the map 𝜌→ 𝑄(𝜌) for themselves. However, we are interested
in guaranteeing that the effect of the protocol would be (computationally) łno
differentž than the effect of Alice inputting 𝜌 to an łidealž channel 𝑄, and Bob
receiving 𝑄(𝜌) on the other side, even if Alice or Bob attempt to save extra
information from or deviate from the protocol. In particular, we require each of
the following three properties to hold against arbitrarily malicious adversaries:
(1) Alice would not learn any side information created during the computation
of 𝑄(𝜌), (2) Bob would learn nothing about 𝜌 beyond 𝑄(𝜌), and (3) Bob would
be convinced that the state he received was actually computed as the output
of the map 𝑄 (on some input 𝜌). We show that this is possible under the sub-
exponential hardness of learning with errors (LWE), a standard post-quantum
security assumption.

Informal Theorem 1. For any efficient quantum map 𝑄, there exists a protocol
for łsecure teleportation through 𝑄ž in the shared EPR pairs model assuming the
sub-exponential hardness of LWE. That is, there exists a one-shot2 protocol in
the shared EPR pairs model that computes the ideal functionality 𝜌→ 𝑄(𝜌).

1 We will also allow for preserving entanglement that 𝜌 may have with its environment,
so technically we consider 𝑄 to map a state on Alice’s input register 𝒜 to a state on
Bob’s output register ℬ.

2 We use one-shot, one-message, and non-interactive interchangeably to refer to a
protocol that consists of a single message from a sender to a receiver.
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Building Block: One-shot String OT. The main building block for this protocol,
and the key technical contribution of this paper, is a one-shot protocol for (ran-
dom receiver bit) string oblivious transfer (OT) in the shared EPR pairs model,
which realizes an ideal funtionality that takes two strings 𝑚0,𝑚1 from a sender
Alice, and delivers (𝑏,𝑚𝑏) to Bob for a uniformly random bit 𝑏.3

Informal Theorem 2. Assuming the sub-exponential hardness of LWE, there
exists a simulation-secure one-shot protocol for (random receiver bit) string OT
in the shared EPR pairs model.

Given such an OT protocol, we rely on two key previous results to obtain
our őnal implication to secure teleportation through quantum channels: (1) [34]
showed how to construct a one-message protocol for secure computation of any
unidirectional classical randomized functionality 𝑓 that maps 𝑥→ 𝑓(𝑥; 𝑟) given
a one-message protocol for string OT, and (2) [8] (building on the work of [19])
showed (implicitly) how to construct a one-message protocol for secure compu-
tation of any unidirectional quantum functionality given a one-message protocol
for unidirectional classical functionalities.

Correlation Interactability. There have been many recent works that show how
to instantiate random oracles with a concrete hash function family and base
the security of (classical) primitives such as NIZKs and SNARGs on standard
cryptographic assumptions [21, 54, 18, 45, 46, 40, 25, 49, 24, 41, 48, 23]. These
works proceed by constructing a special hash function family that satisőes the
cryptographic notion of correlation-intractability [22]. Ours is the őrst to ap-
ply correlation-intractability to a setting that involves quantum communication,
addressing technical barriers along the way. In fact, we obtain our one-message
string OT protocol (refer to Informal Theorem 2) by utilizing correletion-intractability,
which we discuss further in Section 2.

The Multiparty Setting. Next, we consider the multiparty setting, where all pairs
of parties have access to shared EPR pairs. If each party has their own private
input 𝑥𝑖, and their goal is to compute 𝐶(𝑥1, . . . , 𝑥𝑛) for some (classical) circuit 𝐶,
they will have to use at least two rounds of interaction as single round protocols
are susceptible to resetting attacks [39].

Classically, two rounds are known to suffice for secure multiparty computa-
tion, under the (minimal) assumption that two-round (chosen-input) oblivious
transfer [36, 13] protocols exist.4 In the classical setting, OT is a łpublic-key-
stylež primitive that provably cannot be built from łminicrypt-stylež primitives,
including hash functions modeled as a random oracle [42]. On the other hand,
a line of work beginning with [28] and culminating with [9, 38] established that

3 Note that it is impossible to obtain a one-shot protocol for őxed receiver bit OT,
since Bob does not send any message.

4 In chosen-input OT, the receiver speciőes their input bit 𝑏, and they receive the
message 𝑚𝑏. We contrast this with the notion of OT discussed above, where the
receiver’s bit 𝑏 is chosen uniformly at random.
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with quantum communication, it is possible to obtain oblivious transfer, and thus
multiparty computation, from one-way functions or potentially even weaker as-
sumptions [47, 7, 53]. However, these protocols require many rounds, and the
possibility of achieving round-optimal (two-round) secure computation without
public-key primitives was left open.

In this work, we show that round-optimal secure computation that makes
black-box use of symmetric-key primitives (speciőcally, a random oracle) can be
obtained in the shared EPR pairs model.

Informal Theorem 3. There exists a two-round secure multiparty computation
protocol in the shared EPR pairs model with either of the following properties.

ś Unconditional security in the quantum-accesible random oracle model (QROM).
ś Computational security assuming (the black-box use of) non-interactive ex-

tractable commitments and hash functions that are correlation-intractable for
efficient functions.

Discussion: Towards Weaker Correlated Randomness. In the classical world, it
can be shown that without any form of correlated randomness shared between
the parties, it is impossible to obtain either one-shot OT or two-round MPC
(even with public-key primitives). Furthermore, we show in the full version [11]
that one-shot (random receiver bit) string OT is impossible in the classical com-
mon reference string model, even when parties can compute and communicate
quantumly. On the other hand, we remark that both our results can be obtained
(even in the classical world) with an łOT correlationsž setup, which assumes
that a trusted dealer has sampled random strings 𝑥0, 𝑥1 and bit 𝑏 and delivered
𝑥0, 𝑥1 to the sender and 𝑏, 𝑥𝑏 to the receiver. For the case of string OT, this
consequence is immediate and for the case of two-round MPC, this result follows
from the work of Garg et al. [35].

Our results state that in the quantum world, shared EPR pairs are suffi-
cient to obtain (i) one-shot (random receiver bit) string OT and (ii) two-round
MPC from symmetric-key primitives. As noted in [2], shared EPR pairs are a
fundamentally different resource than OT correlations. Indeed, OT correlations
are speciőc to OT, while, as indicated above, shared EPR pairs are known to
be broadly useful and have been widely studied independent of OT. Moreover,
an OT correlations setup requires private (hidden) randomness, while generat-
ing EPR pairs is a fully deterministic quantum process.5 Our work can thus be
viewed as a step towards realizing secure computation protocols using weaker

5 In particular, any (even semi-honest) dealer that sets up OT correlations can learn
the parties’ private inputs by observing the resulting transcript of communication,
while this is not necesarily true of an EPR pair setup, by monogamy of entangle-
ment. We also remark that obtaining OT correlations from any deterministically
generated shared quantum state is non-trivial. In particular, if the parties shared
a (deterministically generated) superposition over classical OT correlations, the re-
ceiver could simply decide not to measure the register holding their choice bit, and
obtain a superposition over the sender’s strings, which violates the security of OT.
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forms of correlated randomness. Finally, we remark that, unlike the case of one-
shot OT, it may be possible to achieve two-round MPC from symmetric-key
primitives in the classical common reference string model (i.e., without shared
EPR pairs), and we leave this as an intriguing open question for future study.

1.2 Applications

We now discuss several applications of our one-shot string OT construction and
secure teleportation through quantum channel protocol.

Non-Interactive Computation of Unidirectional Functionalities. The study of
non-interactive protocols for unidirectional classical functionalities was initiated
by [34]. Such functionalities are deőned by a classical circuit 𝑓 , take an input 𝑥
from the sender, (potentially) sample some random coins 𝑟, and deliver 𝑓(𝑥; 𝑟)
to the receiver. They showed the possibility (or impossibility) of achieving them
in a model where the sender and the receiver have access to an one-way com-
munication channel. In particular, they showed that ideal string OT channel
suffices to build non-interactive secure computation of unidirectional classical
functionalities. On the other hand, the work of Agrawal et al. [4] showed that
bit OT channels provably do not suffice for non-interactive secure computation.6

Using our one-shot string OT construction, we can instantiate the results of
Garg et al. [34] and obtain non-interactive secure computation of unidirectional
functionalities in the shared EPR pairs model, assuming sub-exponential LWE.

The works of [34, 5] also discuss several applications of non-interactive se-
cure computation of unidirectional classical functionalities, and we mention one
intriguing application here. The modern internet relies on a public-key infras-
tructure, where certiőcate authorities validate public keys by signing them under
their own signing key.7 A single message protocol for unidirectional classical func-
tionalities would enable key authorities to non-interactively generate and send
freshly sampled and signed public key secret key pairs to clients, without learning
the client’s secret key. Moreover, the client would not learn the secret signing
key of the authority who sent their fresh pair. Thus, we show that there is a
truly non-interactive solution to this widespread key certiőcation functionality
in a world where nodes are connected by shared EPR pairs.8

NIZKs for QMA. Our secure telportation through quantum channels immedi-
ately gives a non-interactive zero-knowlede (NIZK) for QMA in the shared EPR
pairs model, by letting the channel 𝑄 compute a QMA veriőcation circuit and

6 A followup work of [5] showed that, assuming ideal obfuscation, there exists a protocol
over a bit OT channel with 1/poly(𝜆) security.

7 Note that despite the existence of quantum key distribution [14], public-key infras-
tructure would still likely be required for the quantum internet, since QKD requires
authenticated classical channels.

8 We do stress that our model assumes the EPR pairs are generated honestly, for
example by an honest network administrator. Otherwise, such secure one-message
protocols would be impossible to achieve.
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output the resulting bit to the receiver. The only previous NIZK for QMA in
the shared EPR pairs model is due to [52], who argued security in the quantum
random oracle model.9 Thus, we obtain the őrst such protocol from a standard
(sub-exponential) hardness assumption.

Non-Interactive Zero-Knowledge State Synthesis. Many recent works consider
the problem of quantum state synthesis [1, 55, 43], which studies the efficiency
of preparing a complex quantum state with the help of an oracle or untrusted
powerful prover. That is, given the implicit description of a quantum circuit 𝑄,
can a veriőer prepare |𝜓⟩ = 𝑄 |0𝑛⟩ with the help of a prover, and be convinced
that they end up with the correct state?

In fact, [55] asked whether there is any meaningful notion of zero-knowledge
state synthesis. In this work, we propose one way to deőne zero-knowledge state
synthesis. Roughly, we consider any family of circuits {𝑄𝑤}𝑤 parameterized by
a potentially secret witness 𝑤, and require that a prover help the veriőer prepare
|𝜓𝑤⟩ = 𝑄𝑤 |0𝑛⟩ without leaking the witness 𝑤. We formalize our deőnition in
the full version [11] and show that our secure teleportation protocol immedi-
ately gives a one-message solution to this task in the shared EPR pairs model.
We stress that there may be other meaningful ways to deőne zero-knowledge
state synthesis, and we leave a more thorough exploration of deőnitions and
applications of zero-knowledge state synthesis to future work.

Non-Interactive Quantum Cryptography. Finally, we observe that the full power
of non-interactive secure computation of unidirectional quantum functionalities
gives rise to quantum analogues of the classical applications mentioned above.
For example, a certiőcate authority could non-interactively prepare and send
signed key pairs for encryption schemes with uncloneable or revocable decryp-
tion keys [37, 26, 3, 10, 6], where decryption keys are quantum states that can
either provably not be distributed or veriőably be destroyed. The novel guar-
antee is that even the certiőciate authority itself will not learn the (description
of) the decrpytion key.10 As another example, a bank could non-interactively
distribute signed quantum money states (technically, the serial number would
be signed), without ever learning the classical description of the state. In par-
ticular, while valid money states could be provably generated and distributed
non-interactively, no one (not even the bank) would ever learn a classical de-
scription that would enable cloning.

1.3 Related Works

This work continues a long line of research that studies the power of shared
entanglement as a resource. We show that shared EPR pairs, which already

9 We also remark that [12] achieve NIZK for QMA in the (incomparable) common
reference string model, but they argue security using classical oracles, or alterna-
tively assuming indistinguishability obfuscation and the non-black-box use of a hash
function modeled as a random oracle.

10 In this setting, publicly-verifiable revocation [10] seems crucial to ensure that no one
need know the classical description of the secret key.
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have a long history of study in communication [16, 15], cryptography [33, 51,
31, 2], and error-correction [20], can be leveraged to obtain perhaps surprisingly
powerful secure computation tasks.

We also compare our results with the prior work of [2], which also studies
oblivious transfer in the shared EPR pairs model. They achieve a one-message
protocol for bit OT, where the sender’s inputs are one bit each, and explicitly
leave open the problem of building string OT, which we address in this work.
We note that bit OT is not known to be complete for one-message secure com-
putation [34, 4]. Moreover, security of the protocols in [2] are all argued in the
quantum random oracle model, while we argue security without random oracles,
and based on concrete properies of hash functions instead.

Concurrent Work. Finally, we mention a concurrent and independent work [27]
that was posted recently to the arXiv. Their results and techniques are orthog-
onal to ours: in particular, they obtain two-message OT in the CRS model as-
suming NIZK (and an assumption on hash functions), whereas we obtain one-
message OT from sub-exponential LWE, as well as unconditional two-round
MPC in the QROM, both in the shared EPR pairs model. We do not believe
that (a simple modiőcation of) either work’s results or techniques immediately
subsumes or improves results in the other. We also remark that both our work
and [27] leave open the intriguing question of obtaining minimally-interactive
(two-round) MPC in the CRS model without the use of public-key primitives.
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2 Technical Overview

2.1 One-shot string OT

In this subsection, we focus on our key technical contribution, which is a con-
struction of one-shot string OT in the shared EPR pairs model. Throughout this
section, we deőne one-shot string OT as a one-message protocol that takes two
strings 𝑚0,𝑚1 from the sender, and delivers 𝑚𝑏 to the receiver for a random bit
𝑏 ← {0, 1}. For more discussion on our applications, we refer the reader to the
full version [11].

A string OT skeleton. As mentioned earlier, [2] constructed a one-shot bit OT
protocol in the shared EPR pairs model (where the sender’s inputs are one bit
each). However, their techniques don’t appear to extend easily to the setting of

7



one-shot string OT, for arbitrary length strings. In fact, [34, 4] showed that in
the non-interactive setting, it is impossible to obtain string OT from bit OT.
We additionally observe that prior quantum OT templates [28, 2] only obtain
łbitwisež correlations by sending unentangled BB84 states or by immediately
measuring each EPR pair independently.

To get around this barrier, our idea is to directly obtain string correlations
from shared entanglement. This can be done by őrst entangling the separate
EPR pairs in a special way before performing measurements.

Setup: An EPR pair on registers (𝒮ctl,ℛctl) and 𝜆 EPR pairs on registers
(𝒮msg,ℛmsg).

Sender’s message:

– Sample 𝑥← {0, 1}𝜆 and for each 𝑖 ∈ [𝜆] such that 𝑥𝑖 = 1, apply a CNOT gate
from 𝒮ctl to 𝒮msg

𝑖 .
– Measure 𝒮msg in the standard basis to obtain 𝑣 ∈ {0, 1}𝜆, and measure 𝒮ctl in

the Hadamard basis to delete the control bit.
– Given input (𝑚0,𝑚1), send ̃︀𝑚0 = 𝑚0 ⊕ 𝑣, ̃︀𝑚1 = 𝑚1 ⊕ 𝑣 ⊕ 𝑥.

Receiver’s computation:

– Measure ℛctl,ℛmsg in the standard basis to obtain 𝑏, 𝑣′, and output (𝑏,𝑚𝑏 =
̃︀𝑚𝑏 ⊕ 𝑣

′).

Fig. 1. An (insecure) skeleton for one-shot string OT

Our approach is illustrated in Fig. 1. Note that after the sender applies the
random CNOT gates and measures 𝒮msg to obtain 𝑣, the remaining state of the
system is

1√
2
|0⟩𝒮ctl |0⟩ℛctl |𝑣⟩ℛmsg +

1√
2
|1⟩𝒮ctl |1⟩ℛctl |𝑣 ⊕ 𝑥⟩ℛmsg .

Thus, tracing out 𝒮ctl, we see that the receiver has a uniform mixture over |0, 𝑣⟩
and |1, 𝑣 ⊕ 𝑥⟩, where 𝑣, 𝑣⊕𝑥 are uniformly random strings from their perspective,
exactly as desired. Unfortunately, since the sender’s control register is entangled
with the receiver’s, the sender could know exactly which bit 𝑏 the receiver obtains
by measuring 𝒮ctl in the standard basis. Thus, we instead ask that the sender
łdeletež their control bit by measuring it in the Hadamard basis. Of course, a
malicious (or even specious) sender may not follow these instructions, rendering
this protocol insecure. However, this protocol serves as the foundation for our
eventual secure realization of one-shot string OT.
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Measurement check. Next, we add a mechansim for łforcingž the sender to
delete their control bit. We build on the commitment-based cut-and-choose ap-
proach [28, 17, 2] as follows. Suppose the sender really did behave honestly, and
measured 𝒮ctl in the Hadamard basis to obtain a bit ℎ. Then, the state on the
receiver’s side will be

|𝜓𝑣,𝑥,ℎ⟩ :=
1√
2

(︀
|0, 𝑣⟩+ (−1)ℎ |1, 𝑣 ⊕ 𝑥⟩

)︀
.

So if the receiver was given (𝑣, 𝑥, ℎ), they could measure (ℛctl,ℛmsg) in the

{|𝜓𝑣,𝑥,ℎ⟩⟨𝜓𝑣,𝑥,ℎ| , I− |𝜓𝑣,𝑥,ℎ⟩⟨𝜓𝑣,𝑥,ℎ|}

basis and accept if the őrst outcome is observed. Of course, sending (𝑣, 𝑥, ℎ) to
the receiver would render the protocol insecure because the receiver could now
obtain both 𝑣 and 𝑣 ⊕ 𝑥. Instead, we apply a variant of the Fiat-Shamir-based
non-interactive measurement check subprotocol of [2], using a non-interactive
commitment scheme Com and a hash function 𝐻:

ś Repeat the skeleton protocol ℓ times in parallel, and have the sender commit
to all descriptions cm1 = Com(𝑣1, 𝑥1, ℎ1), . . . , cmℓ = Com(𝑣ℓ, 𝑥ℓ, ℎℓ).

ś Hash 𝑇 = 𝐻(cm1, . . . , cmℓ) to obtain a subset 𝑇 ⊂ [ℓ] of commitments.
ś The sender sends (cm1, . . . , cmℓ) along with openings to {cm𝑖}𝑖∈𝑇 .
ś For each 𝑖 ∈ 𝑇 , the receiver measures registers ℛctl

𝑖 ,ℛmsg
𝑖 in basis

{|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖

| , I− |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖

|}

and aborts if any of these measurements reject. Otherwise, the parties con-
tinue the protocol using indices 𝑖 ∈ 𝑇 .

Now, assuming𝐻 behaves as a random oracle, we should be able to claim that
conditioned on the receiver not aborting, their states on registers {ℛctl

𝑖 ,ℛmsg
𝑖 }𝑖∈𝑇

should be łclosež to the honest states {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩}𝑖∈𝑇 . We can make this precise

by arguing that after an appropriate change of basis, the states {ℛctl
𝑖 }𝑖∈𝑇 are in

a superposition of Hadamard basis states that are close in Hamming distance

to the honest state 𝐻⊗|𝑇 | |ℎ𝑇 ⟩, where ℎ𝑇 are the bits {ℎ𝑖}𝑖∈𝑇 . If this is the
case, then by the łXOR extractorž lemma of [2], measuring these bits in the
standard basis and XORing the results together would produce a bit 𝑏 that is
truly uniformly random and independent of the sender’s view. Thus, we should
be able to extract a perfectly random receiver’s bit by combining correlations
obtained from multiple instances 𝑖 ∈ 𝑇 of the skeleton protocol.

Deőning two sender strings. Unfortunately, if we XOR together the correlations
from all 𝑖 ∈ 𝑇 , it is no longer clear how to deőne the two sender strings. Indeed,
the receiver will obtain one out of two of each pair {(𝑣𝑖, 𝑣𝑖⊕𝑥𝑖)}𝑖∈𝑇 , which means

one out of 2|𝑇 | possible sets of strings! However, note that if the sender had used
the same offset 𝑥 for each repetition, then if the receiver XORs together one
out of two of each {(𝑣𝑖, 𝑣𝑖 ⊕ 𝑥)}𝑖∈𝑇 , they obtain either

⨁︀
𝑖∈𝑇 𝑣𝑖 or 𝑥⊕⨁︀𝑖∈𝑇 𝑣𝑖
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depending on the parity of their choice bits. Of course, since we are opening
the commitments on indices 𝑖 ∈ 𝑇 , the receiver would learn 𝑥, rendering this
approach insecure.

Our solution is to make use of this łcommon offsetž approach in a less di-
rect manner. In addition to the ℓ repetitions of the skeleton protocol described
above, the sender will sample an independent collection of strings 𝑡1, . . . , 𝑡ℓ, 𝛥
and include commitments

̂︁cm1,0 = Com(𝑡1),̂︁cm1,1 = Com(𝑡1⊕𝛥), . . . ,̂︁cmℓ,0 = Com(𝑡ℓ),̂︁cmℓ,1 = Com(𝑡ℓ⊕𝛥)

in their message. Then, the sender will use the random strings (𝑣1, 𝑣1⊕𝑥1), . . . , (𝑣ℓ, 𝑣ℓ⊕
𝑥ℓ) to mask the openings for the commitments (̂︁cm1,0,̂︁cm1,1), . . . , (̂︁cmℓ,0,̂︁cmℓ,1).
The effect of this is that the receiver will be able to open one out of two of each
pair of commitments {̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , obtaining either

⨁︀
𝑖∈𝑇 𝑡𝑖 or 𝛥⊕⨁︀𝑖∈𝑇 𝑡𝑖.

Finally, to maintain security, we require that the sender computes a non-
interactive zero-knowledge (NIZK) argument that they sampled {̂︁cm𝑖,𝑏}𝑖∈[ℓ],𝑏∈{0,1}
as commitments to pairs of strings that all share the same offset 𝛥.

Using correlation-intractability. This nearly completes the description of our
protocol. Turning to the security proof, our goal is to reduce to a standard
cryptographic assumption. Fortunately, the ŕavors of commitments and zero-
knowledge we require are known from LWE. However, we also need some security
from the Fiat-Shamir hash function 𝐻. In [2] this hash was modeled as a random
oracle, and it was left open whether one could obtain security in the plain model.

Classically, a recent exciting line of work has shown how to securely instan-
tiate the Fiat-Shamir transform from standard cryptographic assumptions in
many settings [21, 54, 18, 45, 46, 40, 25, 49, 24, 41, 48, 23]. These works rely on
the notion of correlation-intractability (CI), which is a property of the hash func-
tion 𝐻 requiring that for some relation 𝑅 over inputs and outputs, the adversary
can’t őnd any input 𝑥 such that (𝑥,𝐻(𝑥)) ∈ 𝑅. In particular, it is known how
to obtain CI for efficiently computable functions from LWE [21, 54]. Moreover,
[40] showed to extend this result to CI for efficiently veriőable product relations
𝑅, where the range of 𝐻 is the 𝑡-wise cartesian product of a set 𝑌 , and each
input 𝑥 is associated with sets 𝑆𝑥,1, . . . , 𝑆𝑥,𝑡 ⊂ 𝑌 such that (𝑥, (𝑦1, . . . , 𝑦𝑡)) ∈ 𝑅
iff each 𝑦𝑖 ∈ 𝑆𝑥,𝑖. The property of efficient veriőability states that there is an
efficient (classical) algorithm that, given (𝑥, 𝑖, 𝑦𝑖), determines whether 𝑦𝑖 ∈ 𝑆𝑥,𝑖.

Recall that in our protocol, we apply 𝐻 to a set of ℓ commitments in order to
obtain the description of a subset 𝑇 ⊂ [ℓ] of commitments to open. Intuitively, we
want it to be difficult for the sender to őnd a set of commitments (cm1, . . . , cmℓ)
to strings (𝑣1, 𝑥1, ℎ1), . . . , (𝑣ℓ, 𝑥ℓ, ℎℓ) such that 𝑇 = 𝐻(cm1, . . . , cmℓ) is a łbadž
set, meaning that the receiver’s registers {(ℛctl

𝑖 ,ℛmsg
𝑖 )}𝑖∈𝑇 are łclosež to the

states {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩}𝑖∈𝑇 (so the receiver won’t abort) but the registers {(ℛctl
𝑖 ,ℛmsg

𝑖 )}𝑖∈𝑇
are łfarž from the states {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩}𝑖∈𝑇 . Thus, given an input (cm1, . . . , cmℓ), it
appears that determining whether or not a potential output 𝑇 is łbadž requires
(at least) applying some quantum measurement to the receiver’s registers. Unfor-
tunately, all prior work has used CI in a purely classical setting, and extending
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the notion of efficiently veriőable relation to handle quantum veriőcation algo-
rithms appears to be beyond the reach of current techniques (though this may
be an interesting direction for future research).

Instead, we take a different approach. Suppose that the sender’s choices of
𝑥1, . . . , 𝑥ℓ were őxed before the protocol begins. Then, we could pre-measure
the receiver’s registers even before initializing the malicious sender to obtain
(𝑣1, ℎ1), . . . , (𝑣ℓ, ℎℓ). That is, we could őrst apply CNOTs from ℛctl

𝑖 to each of
the qubits in ℛmsg

𝑖 controlled on 𝑥𝑖, and then measure ℛctl
𝑖 in the Hadamard

basis to obtain ℎ𝑖 and measure ℛmsg
𝑖 in the standard basis to obtain 𝑣𝑖. Then

given just this classical data, we can distinguish between honest commitments
cm𝑖 to (𝑣𝑖, 𝑥𝑖, ℎ𝑖) and dishonest commitments cm𝑖 to some other string (as long
as the commitment is efficiently extractable). If we split ℓ into 𝑡 disjoint groups
and parse 𝑇 as 𝑡 different subsets of [ℓ/𝑡], then we can formulate a classically
efficiently veriőable product relation 𝑅 where ((cm1, . . . , cmℓ), 𝑇 ) ∈ 𝑅 iff all
{cm𝑖}𝑖∈𝑇 are honest and łmanyž {cm𝑖}𝑖∈𝑇 are dishonest.

Now, while we cannot guarantee that a malicious sender will sample any őxed
(𝑥1, . . . , 𝑥ℓ), we can guess beforehand which 𝑥1, . . . , 𝑥ℓ they will use, and simply
give up on reducing to CI if the guess is wrong. Using complexity leveraging
(and setting the security parameter of the CI hash function large enough), we
can hope that this is enough to still break sub-exponentially-secure CI. It turns
out that this strategy can only be made to work if our guessing loss depends
only on the security parameter 𝜆, and not on the number of repetitions ℓ (which
must depend on the level of security required from the CI hash). Thus, we make
one őnal tweak to the protocol. The sender will be required to sample 𝑥1, . . . , 𝑥ℓ
as the output of a pseudorandom generator with seed 𝑠 of length {0, 1}𝜆, and
prove using the NIZK that they have done so honestly. Then, in the reduction
to CI, it suffices to guess a 𝜆-bit string 𝑠 rather than a 𝜆ℓ-bit string (𝑥1, . . . , 𝑥ℓ).
This allows us to eventually reduce security to the sub-exponential hardness of
LWE.

Unconditional Protocols in the QROM. We remark that it appears plausible to
obtain more efficient and unconditionally secure variants of our non-interactive
protocols in the (quantum) random oracle model. In particular, following [2],
we expect that the measure-and-reprogram technique [30] in the quantum ran-
dom oracle model can be used in place of correlation intractability, which would
remove the need for sampling 𝑥1, . . . , 𝑥ℓ as the output of a PRG, and remove
complexity leveraging in the approach outlined above. It also may be possible
to rely on black-box commit-and-prove sigma protocols (e.g., variants of the pro-
tocol in [50]) to prove that commitments to pairs of strings share a common
offset, thereby making our protocol black-box and unconditionally secure in the
QROM. We leave a formalization and detailed analysis of this approach, and
more generally an exploration of one-message protocols in the QROM, to future
work.
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2.2 Two-round MPC

In this section, we give a brief overview of our approach to building two-round
MPC in the shared EPR model, which is presented in the full version [11]. Our
starting point is a three-round chosen-input string OT protocol from [2], which
can be viewed as a two-round protocol in the shared EPR model. In order to
use this protocol to build two-round MPC, we take the following steps.

1. Show that the protocol is łblack-box friendlyž. That is, we split the protocol
into an input-independent phase that uses both quantum measurements and
cryptographic operations, and an input-dependent phase that is fully classical
and information-theoretic.

2. Appeal to existing compilers (e.g. [29, 44]) to obtain a łblack-box friendlyž
MPC protocol in the shared EPR pair model. Again, we have (1) an input-
independent phase at the beginning where every party performs a measure-
ment on their halves of EPR pairs, broadcasts a message, and performs some
crytographic checks, and (2) an input-dependent multi-round phase that is
entirely classical and information-theoretic.

3. Use the [36] round-compressing compiler and two-round OT in the shared
EPR pair model to compress this black-box-friendly protocol into a two-
round MPC in the shared EPR pair model. Crucially, the compiler only has
to operate on the second (multi-round input-dependent) phase, and thus we
obtain a őnal protocol that makes black-box use of cryptography.

We stress that to make the above compiler work, we need to start with an
OT protocol in which all cryptographic operations and quantum computations
are performed indepedently of the parties’ inputs and before the second message.
That is, it does not follow from any two-round quantum OT protocol.

If we start with the protocol from [2] that was proven secure in the quantum
random oracle model, then we obtain a őnal MPC protocol in the quantum ran-
dom oracle model. In addition, we prove that a slight variant of the [2] protocol
is secure without random oracles, assuming non-interactive extractable commit-
ments and correlation-intractability for efficient functions. Interestingly, while
we use a similar approach as described above, we do not have to resort to sub-
exponential assumptions here. Roughly, this is because the [2] protocol is built
from łbitwisež rather than łstringwisež correlations, and it suffices for the reduc-
tion to correctly guess a random subset of the adversary’s bitwise measurements.

3 Preliminaries

Let 𝜆 denote the security parameter. We write negl(·) to denote any negligible
function, which is a function 𝑓 such that for every constant 𝑐 ∈ N there exists
𝑁 ∈ N such that for all 𝑛 > 𝑁 , 𝑓(𝑛) < 𝑛−𝑐. We write non-negl(·) to denote any
function 𝑓 that is not negligible. That is, there exists a constant 𝑐 such that for
inőnitely many 𝑛, 𝑓(𝑛) ≥ 𝑛−𝑐.
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3.1 Quantum information

A register 𝒳 is a named Hilbert space C
2𝑛 . A pure quantum state on register 𝒳

is a unit vector |𝜓⟩𝒳 ∈ C
2𝑛 , and we say that |𝜓⟩𝒳 consists of 𝑛 qubits. A mixed

state on register 𝒳 is described by a density matrix 𝜌𝒳 ∈ C
2𝑛×2𝑛 , which is a

positive semi-deőnite Hermitian operator with trace 1.
A quantum operation (also referred to as quantum map or quantum channel)

𝑄 is a completely-positive trace-preserving (CPTP) map from a register 𝒳 to
a register 𝒴, which in general may have different dimensions. That is, on input
a density matrix 𝜌𝒳 , the operation 𝑄 produces 𝜏𝒴 ← 𝑄(𝜌𝒳 ) a mixed state on
register 𝒴. We will sometimes write a quantum operation 𝑄 applied to a state
on register 𝒳 and resulting in a state on register 𝒴 as 𝒴 ← 𝑄(𝒳 ). Note that we
have left the actual mixed states on these registers implicit in this notation, and
just work with the names of the registers themselves.

A unitary 𝑈 : 𝒳 → 𝒳 is a special case of a quantum operation that satisőes
𝑈†𝑈 = 𝑈𝑈 † = I

𝒳 , where I
𝒳 is the identity matrix on register 𝒳 . A projector 𝛱

is a Hermitian operator such that 𝛱2 = 𝛱, and a projective measurement is a
collection of projectors {𝛱𝑖}𝑖 such that

∑︀
𝑖𝛱𝑖 = I.

Let Tr denote the trace operator. For registers 𝒳 ,𝒴, the partial trace Tr𝒴

is the unique operation from 𝒳 ,𝒴 to 𝒳 such that for all (𝜌, 𝜏)𝒳 ,𝒴 , Tr𝒴(𝜌, 𝜏) =
Tr(𝜏)𝜌. The trace distance between states 𝜌, 𝜏 , denoted TD(𝜌, 𝜏) is deőned as

TD(𝜌, 𝜏) :=
1

2
‖𝜌− 𝜏‖1 :=

1

2
Tr

(︂√︁
(𝜌− 𝜏)†(𝜌− 𝜏)

)︂
.

The trace distance between two states 𝜌 and 𝜏 is an upper bound on the proba-
bility that any (unbounded) algorithm can distinguish 𝜌 and 𝜏 . When clear from
context, we will write TD(𝒳 ,𝒴) to refer to the trace distance between a state
on register 𝒳 and a state on register 𝒴.

Lemma 1 (Gentle measurement [56]). Let 𝜌𝒳 be a quantum state and let
(𝛱, I−𝛱) be a projective measurement on 𝒳 such that Tr(𝛱𝜌) ≥ 1− 𝛿. Let

𝜌′ =
𝛱𝜌𝛱

Tr(𝛱𝜌)

be the state after applying (𝛱, I − 𝛱) to 𝜌 and post-selecting on obtaining the
őrst outcome. Then, TD(𝜌, 𝜌′) ≤ 2

√
𝛿.

A non-uniform quantum polynomial-time (QPT) machine {Adv𝜆, |𝜓⟩𝜆}𝜆∈N
is a family of polynomial-size quantum machines Adv𝜆, where each is initialized
with a polynomial-size advice state |𝜓𝜆⟩. Each Adv𝜆 is in general described by
a CPTP map. Similar to above, when we write 𝒴 ← Adv(𝒳 ), we mean that the
machine Adv takes as input a state on register 𝒳 and produces as output a state
on register 𝒴, and we leave the actual descripions of these states implicit. Finally,
a quantum interactive machine is simply a sequence of quantum operations, with
designated input, output, and work registers.
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Finally we will often use ≈𝑐 as a shorthard to denote computational indistin-
guishability between two families of distributions (over quantum states), and ≈𝑠

as a shorthard to denote statistical indistinguishability (or negligible closeness
in trace distance) between two families of distributions.

3.2 Correlation intractability

Deőnition 1 (Correlation intractable hash function). Let {𝒳𝜆,𝒴𝜆}𝜆∈N
be families of őnite sets. An efficiently computable keyed hash function family
{𝐻𝜆 : {0, 1}𝑘(𝜆) × 𝒳𝜆 → 𝒴𝜆}𝜆∈N with keys of length 𝑘(𝜆) is 𝜖(𝜆)-correlation
intractable for a relation ensemble {𝑅𝜆 ⊆ 𝒳𝜆×𝒴𝜆}𝜆∈N if for any QPT adversary
{Adv𝜆}𝜆∈N,

Pr

[︂
(𝑥,𝐻𝜆(hk, 𝑥)) ∈ 𝑅𝜆 :

hk← {0, 1}𝑘(𝜆)
𝑥← Adv𝜆(hk)

]︂
≤ 𝜖(𝜆).

We say that {𝐻𝜆}𝜆∈N is sub-exponentially correlation intractable for {𝑅𝜆}𝜆∈N
if it is 2−𝜆

𝛿

-correlation intractable for some constant 𝛿 > 0.

Deőnition 2 (Sparse, efficiently veriőable, approximate product rela-
tions [40]). A relation 𝑅 ⊆ 𝒳 × 𝒴𝑡 is an efficiently veriőable 𝛼-approximate
product relation with sparsity 𝜌 if the following hold.

ś Approximate product. For every 𝑥, the set 𝑅𝑥 := {𝑦 : (𝑥, 𝑦) ∈ 𝑅} consists
of 𝑦 = (𝑦1, . . . , 𝑦𝑡) ∈ 𝒴𝑡 such that

|{𝑖 ∈ [𝑡] : 𝑦𝑖 ∈ 𝑆𝑖}| ≥ 𝛼𝑡

for some sets 𝑆1,𝑥, . . . , 𝑆𝑡,𝑥 ⊆ 𝒴 that may depend on 𝑥.

ś Efficiently veriőable. There is a polynomial-size circuit 𝐶 such that for
every 𝑥, the sets 𝑆1,𝑥, . . . , 𝑆𝑡,𝑥 are such that for any 𝑖, 𝑦𝑖 ∈ 𝑆𝑖,𝑥 if and only
if 𝐶(𝑥, 𝑦𝑖, 𝑖) = 1.

ś Sparse. For every 𝑥, the sets 𝑆1,𝑥, . . . , 𝑆𝑡,𝑥 are such that for all 𝑖, |𝑆𝑖,𝑥| ≤
𝜌|𝒴|.

Imported Theorem 4 ([40]). Assuming the existence of an efficiently com-
putable keyed hash function family that is 𝜖(𝜆)-correlation intractable for any ef-
őcient function, there exists an efficiently computable keyed hash function family

{𝐻𝜆 : {0, 1}𝑘(𝜆)×𝒳𝜆 → 𝒴𝑡(𝜆)
𝜆 }𝜆∈N that is 𝜖(𝜆)-correlation intractable for any effi-

ciently veriőable 𝛼-approximate product relation ensemble {𝑅𝜆 ⊆ 𝒳𝜆×𝒴𝑡(𝜆)
𝜆 }𝜆∈N

with sparsity 𝜌, as long as 𝜌 < 𝛼 and 𝑡(𝜆) ≥ 𝜆/(𝛼− 𝜌)3.

Imported Theorem 5 ([21, 54]). Assuming the 𝜖(𝜆)-hardness of LWE, there
exists an efficiently computable keyed hash function family that is 𝜖(𝜆)-correlation
intractable for any efficient function.
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Deőnition 3 (Programmability). A hash function family {𝐻𝜆 : {0, 1}𝑘(𝜆)×
𝒳𝜆 → 𝒴𝜆}𝜆∈N is programmable if for any 𝜆, 𝑥 ∈ 𝒳𝜆, and 𝑦 ∈ 𝒴𝜆,

Pr
hk←{0,1}𝑘(𝜆)

[𝐻𝜆(hk, 𝑥) = 𝑦] =
1

2𝑚(𝜆)
,

and there exists a PPT sampling algorithm Samp(1𝜆, 𝑥, 𝑦) that samples from the
conditional distribution

hk : 𝐻𝜆(hk, 𝑥) = 𝑦.

Remark 1. [21] show a simple transformation that generically adds the above
notion of programmability to natural correlation intractable hash functions.

In the full version [11], we present additional preliminaries covering commit-
ments, zero-knowledge, and quantum leftover hashing.

3.3 Secure computation

An ideal functionality ℱ is an interactive (classical or quantum) machine spec-
ifying some distributed computation. In this work, we will speciőcally focus on
two-party functionalities between party 𝐴 and party 𝐵. In some cases, party 𝐵
will have a random input, or no input. The ideal functionalities we will consider
in this work are speciőed in Fig. 2.

Security with abort. In what follows, we will by default consider the notion of se-
curity with abort, where the ideal functionality ℱ is always modiőed to (1) know
the identity of the corrupt party (if one exists) and (2) be slightly reactive: after
the parties have provided input, the functionality computes outputs and sends
output to the corrupt party only (if it expects output). Then the functionality
awaits either a łdeliverž or łabortž command from the corrupted party. Upon
receiving łdeliverž, the functionality delivers the honest party output. Upon re-
ceiving łabortž, the functionality instead delivers an abort message ⊥ to the
honest party. In the case where the corrupt party does not expect output, the
functionality ℱ still awaits a łdeliverž or łabortž from the corrupt party before
delivering output (or ⊥) to the honest party.

The real-ideal paradigm. A two-party protocol 𝛱ℱ for computing the functional-
ity ℱ consists of two families of quantum interactive machines {A𝜆}𝜆∈N, {B𝜆}𝜆∈N.
An adversary intending to attack the protocol by corrupting one of the parties
can be described by a family of quantum interactive machines {Adv𝜆}𝜆∈N and a

family of initial quantum states {|𝜓𝜆⟩𝒳 ,𝒜,𝒟}𝜆∈N on registers (𝒳 ,𝒜,𝒟), where 𝒳
is the honest party’s input register, 𝒜 is the adversary’s input register, and 𝒟 is
given directly to the distinguisher. That is, the honest party takes as input the
state on register 𝒳 , Adv𝜆 takes as input the state on register 𝒜, and they interact
in the protocol 𝛱ℱ . Then, the honest party outputs a state on register 𝒳 ′, Adv𝜆
outputs a state on register 𝒜′, and we deőne the random variable 𝛱ℱ [Adv𝜆, |𝜓𝜆⟩]

15



Ideal functionalities

Setup: Parties 𝐴 and 𝐵, security parameter 𝜆.

ℱOT

– ℱOT receives input 𝑚0,𝑚1 ∈ {0, 1}
𝜆 from 𝐴 and 𝑏 ∈ {0, 1} from 𝐵.

– ℱOT delivers 𝑚𝑏 to 𝐵.

ℱROT

– ℱROT receives input 𝑚0,𝑚1 ∈ {0, 1}
𝜆 from 𝐴.

– ℱROT samples a bit 𝑏← {0, 1} and delivers (𝑏,𝑚𝑏) to 𝐵.

ℱCL[𝐶]

– 𝐶 is a classical circuit with two inputs, one of length 𝑛1 = 𝑛1(𝜆) and one of
length 𝑛2 = 𝑛2(𝜆).

– ℱCL[𝐶] receives input 𝑥 ∈ {0, 1}𝑛1 from 𝐴.
– ℱCL[𝐶] samples a string 𝑟 ← {0, 1}𝑛2 and delivers 𝐶(𝑥, 𝑟) to 𝐵.

ℱQU[𝑄]

– 𝑄 is a quantum operation that takes as input a state on register 𝒳 of 𝑛 = 𝑛(𝜆)
qubits and outputs a state on register 𝒴.

– ℱQU[𝑄] receives as input a state on register 𝒳 from 𝐴.
– ℱQU[𝑄] computes 𝑄(𝒳 ) = 𝒴 and delivers 𝒴 to 𝐵.

Fig. 2. Ideal functionalities considered in this work.

to consist of the resulting state on registers (𝒳 ′,𝒜′,𝒟), which will be given to a
distinguisher. In the case where the honest party has no input, we don’t include
a register 𝒳 , and just consider families {|𝜓𝜆⟩𝒜,𝒟}𝜆∈N on registers 𝒜 and 𝒟. In
the case where the honest party has a classical input, we assume that 𝒳 is in
a standard basis state. In other words, we consider families {(𝑥𝜆, |𝜓𝜆⟩𝒜,𝒟

)}𝜆∈N,
where each 𝑥𝜆 is a classical string.

An ideal-world protocol ̃︀𝛱ℱ for functionality ℱ consists of łdummyž parties
̃︀𝐴 and ̃︀𝐵 that have access to an additional łtrustedž party that implements ℱ .
That is, ̃︀𝐴 and ̃︀𝐵 only interact directly with ℱ , providing inputs and receiving
outputs, and do not interact with each other. We consider the execution of
ideal-world protocols in the presence of a simulator, described by a family of
quantum interactive machines {Sim𝜆}𝜆∈N that controls either party ̃︀𝐴 or ̃︀𝐵.
The execution of the protocol in the presence of the simulator also begins with a
family of states {|𝜓𝜆⟩𝒳 ,𝒜,𝒟}𝜆∈N on registers (𝒳 ,𝒜,𝒟) as described above, and

we deőne the analogous random variable ̃︀𝛱ℱ [Sim𝜆, |𝜓𝜆⟩].
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Secure realization. We deőne what it means for a protocol to securely realize an
ideal functionality.

Deőnition 4 (Secure realization). A protocol 𝛱ℱ securely realizes the func-
tionality ℱ if for any QPT adversary {Adv𝜆}𝜆∈N corrupting party 𝑀 ∈ {𝐴,𝐵},
there exists a QPT simulator {Sim𝜆}𝜆∈N corrupting party 𝑀 such that for any

QPT distinguisher {D𝜆}𝜆∈N and polynomial-size family of states {|𝜓𝜆⟩𝒳 ,𝒜,𝒟}𝜆∈N,

⃒⃒
⃒⃒Pr[1← D𝜆(𝛱ℱ [Adv𝜆, |𝜓𝜆⟩])]− Pr

[︁
1← D𝜆( ̃︀𝛱ℱ [Sim𝜆, |𝜓𝜆⟩])

]︁⃒⃒
⃒⃒ = negl(𝜆).

3.4 The XOR extractor

Imported Theorem 6 ([2]). Let 𝒳 be an 𝑛-qubit register, and consider any

quantum state |𝛾⟩𝒜,𝒳
that can be written as

|𝛾⟩𝒜,𝒳
=

∑︁

𝑢:hw(𝑢)<𝑛/2

|𝜓𝑢⟩𝒜 |𝑢⟩𝒳 ,

where hw(·) denotes the Hamming weight. Let 𝜌𝒜,𝒫 be the mixed state that results
from measuring 𝒳 in the Hadamard basis to produce a string 𝑥 ∈ {0, 1}𝑛, and
writing

⨁︀
𝑖∈[𝑛] 𝑥𝑖 into a single qubit register 𝒫. Then it holds that

𝜌𝒜,𝒫 = Tr𝒳 (|𝛾⟩⟨𝛾|)⊗
(︂
1

2
|0⟩⟨0|+ 1

2
|1⟩⟨1|

)︂𝒫
.

4 One-Shot String Oblivious Transfer

4.1 Construction

In this section, we give our construction of one-shot (random receiver bit) string
oblivious transfer in the shared EPR pairs model.

Ingredients

ś Non-interactive extractable commitment (Com,ExtGen,Ext) in the common
random string model. This is known from LWE.

ś A programmable hash function family {𝐻𝜆}𝜆∈N that is sub-exponentially
correlation intractable for efficiently veriőable approximate product relations
with constant sparsity (Section 3.2). This is known from the sub-exponential
hardness of LWE (Imported Theorems 4 and 5).

ś Non-interactive zero-knowledge argument (NIZK.Prove,NIZK.Ver,NIZK.Sim)
in the common random string model. This is known from LWE.

ś Pseudorandom generator PRG.
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Parameters

ś Security parameter 𝜆.
ś Correlation intractable hash security parameter 𝜆CI := 𝜆1/𝛿, where 𝛿 > 0 is

the constant such that {𝐻𝜆CI
}𝜆CI∈N is 2−𝜆

𝛿
CI -correlation intractable.

ś Size of commitment key ℎ = ℎ(𝜆).
ś Size of NIZK crs 𝑛 = 𝑛(𝜆).
ś Size of hash key 𝑘 = 𝑘(𝜆CI).
ś Approximation parameter 𝛼 = 1/120.
ś Number of repetitions in each group 𝑐 = 480.

ś Sparsity 𝜌 =
((1−𝛼)𝑐

(1/2)𝑐 )
2𝑐 < 𝛼.

ś Product parameter 𝑡 = 𝑡(𝜆CI) = 1803𝜆CI ≥ 𝜆CI/(𝛼− 𝜌)3.
ś Total number of repetitions ℓ = ℓ(𝜆) = 𝑐 · 𝑡 = poly(𝜆).
ś PRG range {0, 1}2𝜆ℓ.
ś CI hash range 𝒴𝑡, where 𝒴 is the set of subsets of [𝑐] of size 𝑐/2. We will

also parse 𝑇 ∈ 𝒴𝑡 as a subset of [ℓ] of size ℓ/2.

We remark that we have not tried to fully optimize the constants in the
parameters above.

Setup

ś ℓ collections of EPR pairs indexed by 𝑖 ∈ [ℓ]. Each collection consists of one
łcontrolž pair {𝒮ctl𝑖 ,ℛctl

𝑖 } and 2𝜆 łmessagež pairs on registers {𝒮msg
𝑖,𝑗 ,ℛmsg

𝑖,𝑗 }𝑗∈[2𝜆].
For each 𝑖 ∈ [ℓ], we deőne 𝒮𝑖 := (𝒮ctl𝑖 ,𝒮msg

𝑖,1 , . . . ,𝒮msg
𝑖,2𝜆) andℛ𝑖 := (ℛctl

𝑖 ,ℛmsg
𝑖,1 , . . . ,ℛmsg

𝑖,2𝜆).

ś Commitment key ck← {0, 1}ℎ.
ś NIZK common random string crs← {0, 1}𝑛.
ś Correlation intractable hash key hk← {0, 1}𝑘.

Note that a shared uniformly random string can be obtained by measuring
shared EPR pairs in the same basis, and thus this entire Setup can be obtained
with just shared EPR pairs.

Finally, given a commitment key ck for Com and a set 𝑇 ⊂ [ℓ], we deőne the
NP language ℒck,𝑇 of instance-witness pairs as follows.

(︀(︀
{̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀
,
(︀
{𝑡𝑖}𝑖∈𝑇 , 𝛥, 𝑠

)︀)︀
∈ ℒck,𝑇

if and only if11

∀𝑖 ∈ 𝑇 ,̂︁cm𝑖,0 ∈ Com(ck, 𝑡𝑖) ∧ ̂︁cm𝑖,1 ∈ Com(ck, 𝑡𝑖 ⊕𝛥), and

∀𝑖 ∈ [ℓ], cm𝑖 ∈ Com(ck, (·, 𝑥𝑖, ·)),where (𝑥1, . . . , 𝑥ℓ) := PRG(𝑠).

Now, our protocol is described in Fig. 3.

11 Technically, the random coins used to compute the commitments must also be in-
cluded in the witness.
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One-shot protocol for ℱROT

Sender message. Input strings 𝑚0,𝑚1 ∈ {0, 1}
𝜆.

1. Sample a PRG seed 𝑠 ← {0, 1}𝜆 and set (𝑥1, . . . , 𝑥ℓ) := PRG(𝑠), where each
𝑥𝑖 ∈ {0, 1}

2𝜆.
2. For each 𝑖 ∈ [ℓ]:

– For each 𝑗 ∈ [2𝜆] such that 𝑥𝑖,𝑗 = 1, apply a CNOT gate from register 𝒮ctl
𝑖

to register 𝒮msg
𝑖,𝑗 .

– Measure {𝒮msg
𝑖,𝑗 }𝑗∈[2𝜆] in the standard basis to obtain 𝑣𝑖 ∈ {0, 1}

2𝜆 and

measure 𝒮ctl
𝑖 in the Hadamard basis to obtain ℎ𝑖 ∈ {0, 1}.

– Compute cm𝑖 := Com(ck, (𝑣𝑖, 𝑥𝑖, ℎ𝑖); 𝑟𝑖), where 𝑟𝑖 ← {0, 1}
𝜆 are the ran-

dom coins used for commitment.
3. Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)) ⊂ [ℓ] and let 𝑇 := [ℓ] ∖ 𝑇 .
4. Sample 𝛥← {0, 1}𝜆 and for each 𝑖 ∈ 𝑇 :

– Sample 𝑡𝑖 ← {0, 1}
𝜆 and compute ̂︁cm𝑖,0 := Com(ck, 𝑡𝑖; 𝑟𝑖,0) and ̂︁cm𝑖,1 :=

Com(ck, 𝑡𝑖 ⊕𝛥; 𝑟𝑖,1) where 𝑟𝑖,0, 𝑟𝑖,1 ← {0, 1}
𝜆 are the random coins used

for commitment.
– Deőne 𝑧𝑖,0 = (𝑡𝑖, 𝑟𝑖,0)⊕ 𝑣𝑖, 𝑧𝑖,1 = (𝑡𝑖 ⊕𝛥, 𝑟𝑖,1)⊕ 𝑣𝑖 ⊕ 𝑥𝑖.

5. Deőne
̃︀𝑚0 := 𝑚0 ⊕

⨁︁

𝑖∈𝑇

𝑡𝑖, ̃︀𝑚1 := 𝑚1 ⊕𝛥⊕
⨁︁

𝑖∈𝑇

𝑡𝑖.

6. Compute 𝜋 ← NIZK.Prove
(︀
crs,

(︀
{̂︁cm𝑖,0, ̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀
,
(︀
{𝑡𝑖}𝑖∈𝑇 , 𝛥, 𝑠

)︀)︀

for the language ℒck,𝑇 .

7. Send
(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0, ̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀
to

the receiver.

Receiver computation. In what follows, abort and output ⊥ if any check fails.

1. Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)) and check that for all 𝑖 ∈ 𝑇 , cm𝑖 =
Com(ck, (𝑣𝑖, 𝑥𝑖, ℎ𝑖); 𝑟𝑖).

2. For each 𝑖 ∈ 𝑇 , deőne |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩ := 1√
2

(︀
|0, 𝑣𝑖⟩+ (−1)ℎ𝑖 |1, 𝑣𝑖 ⊕ 𝑥𝑖⟩

)︀
, and

measure registerℛ𝑖 in the basis {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 | , I− |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |}.
Check that for all 𝑖 ∈ 𝑇 , the őrst outcome is observed.

3. Check that NIZK.Ver
(︀
crs,

(︀
{̂︁cm𝑖,0, ̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀
, 𝜋

)︀
= ⊤.

4. For each 𝑖 ∈ 𝑇 , measure register ℛ𝑖 in the standard basis to obtain 𝑏𝑖 ∈ {0, 1}
and 𝑣′𝑖 ∈ {0, 1}

2𝜆, compute (𝑡′𝑖, 𝑟
′
𝑖) = 𝑧𝑖,𝑏𝑖 ⊕ 𝑣

′
𝑖, and check that for each 𝑖 ∈ 𝑇 ,

̂︁cm𝑖,𝑏𝑖 = Com(ck, 𝑡′𝑖; 𝑟
′
𝑖).

5. Output

𝑏 :=
⨁︁

𝑖∈𝑇

𝑏𝑖, 𝑚𝑏 := ̃︀𝑚𝑏 ⊕
⨁︁

𝑖∈𝑇

𝑡′𝑖.

Fig. 3. A protocol for one-shot random string OT in the shared EPR pair model.
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4.2 Security

Theorem 7. The protocol in Fig. 3 securely realizes (Deőnition 4) the function-
ality ℱROT. Thus, assuming the sub-exponential hardness of LWE, there exists a
one-message protocol for ℱROT in the shared EPR pair model.

The proof of this theorem follows from receiver security, which is shown in
Lemma 2 and sender security, which is more straightforward and is deferred to
the full version [11].

Lemma 2. The protocol in Fig. 3 is secure against a malicious sender.

Proof. Let {Adv𝜆}𝜆∈N be a QPT adversary corrupting the sender, which takes as

input register 𝒜 of {|𝜓𝜆⟩𝒜,𝒟}𝜆∈N. Note that we don’t consider a register 𝒳 hold-
ing the honest party’s input, since an honest receiver has no input. We will deőne
a sequence of hybrids, beginning with the real distribution 𝛱ℱROT

[Adv𝜆, |𝜓𝜆⟩] and

ending with the distribution ̃︀𝛱ℱROT
[Sim𝜆, |𝜓𝜆⟩] deőned by a simulator {Sim𝜆}𝜆∈N.

Each hybrid is a distribution described by applying an operation to the input reg-
ister 𝒜, and a QPT distinguisher will obtain the output of this distribution along
with the register 𝒟. We drop the dependence of the hybrids on 𝜆 for convenience.

ℋ0(𝒜)

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

ck← {0, 1}ℎ, crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run the Receiver’s honest computation on the sender’s message to obtain

an output (𝑏,𝑚𝑏) or ⊥. Output either (𝒜′, (𝑏,𝑚𝑏)) or (𝒜′,⊥).

ℋ1(𝒜)

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run the Receiver’s honest computation on the sender’s message to obtain

an output (𝑏,𝑚𝑏) or ⊥. Output either (𝒜′, (𝑏,𝑚𝑏)) or (𝒜′,⊥).

ℋ2(𝒜)

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
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ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message
(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś We will now coherently apply the check described in Step 4 to the regis-

ters {ℛ𝑖}𝑖∈𝑇 . First we introduce some notation. For commitment key ck,

commitment ̂︁cm, and two strings 𝑧0, 𝑧1 ∈ {0, 1}2𝜆, let 𝛱[ck,̂︁cm, 𝑧0, 𝑧1] be
a projection onto strings (𝑏, 𝑣′) ∈ {0, 1}1+2𝜆 such that ̂︁cm = Com(ck, 𝑡; 𝑟),
where (𝑡, 𝑟) := 𝑧𝑏 ⊕ 𝑣′.
Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and aborts if the projection fails.
ś If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure

register ℛ𝑖 in the standard basis to obtain 𝑏𝑖 ∈ {0, 1} and 𝑣′𝑖 ∈ {0, 1}2𝜆, and
compute (𝑡′𝑖, 𝑟

′
𝑖) = 𝑧𝑖,𝑏𝑖 ⊕ 𝑣′𝑖. Then, deőne

𝑏 :=
⨁︁

𝑖∈𝑇

𝑏𝑖, 𝑚𝑏 := ̃︀𝑚𝑏 ⊕
⨁︁

𝑖∈𝑇

𝑡′𝑖,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ3(𝒜)
ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
ś For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥

or if there does not exist 𝛥 such that 𝑡𝑖,1 = 𝛥⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .
ś If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure

register ℛ𝑖 in the standard basis to obtain 𝑏𝑖 ∈ {0, 1} and 𝑣′𝑖 ∈ {0, 1}2𝜆, and
compute (𝑡′𝑖, 𝑟

′
𝑖) = 𝑧𝑖,𝑏𝑖 ⊕ 𝑣′𝑖. Then, deőne

𝑏 :=
⨁︁

𝑖∈𝑇

𝑏𝑖, 𝑚𝑏 := ̃︀𝑚𝑏 ⊕
⨁︁

𝑖∈𝑇

𝑡′𝑖,

and output (𝒜′, (𝑏,𝑚𝑏)).
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ℋ4(𝒜)

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
ś For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥

or if there does not exist 𝛥 such that 𝑡𝑖,1 = 𝛥⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .
ś If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure

register ℛctl
𝑖 in the standard basis to obtain 𝑏𝑖 ∈ {0, 1}. Then, deőne

𝑏 :=
⨁︁

𝑖∈𝑇

𝑏𝑖, 𝑚0 :=
⨁︁

𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕𝛥⊕
⨁︁

𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ5(𝒜)

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś We will insert a measurement on the registers {ℛ𝑖}𝑖∈𝑇 . Before specifying

this measurement, we introduce some notation.

∙ For {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 and a string 𝑒 ∈ {0, 1}|𝑇 |, deőne

𝛱[𝑒, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 ]{ℛ𝑖}𝑖∈𝑇 :=
⨂︁

𝑖:𝑒𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |ℛ𝑖⊗
⨂︁

𝑖:𝑒𝑖=1

I−|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |ℛ𝑖 .

∙ For {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 and a constant 𝛾 ∈ [0, 1], deőne

𝛱[𝛾, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 ]{ℛ𝑖}𝑖∈𝑇 :=
∑︁

𝑒∈{0,1}|𝑆|:hw(𝑒)<𝛾|𝑇 |

𝛱[𝑒, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 ]{ℛ𝑖}𝑖∈𝑇 .
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Compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖) ← Ext(ek, cm𝑖) for each 𝑖 ∈ 𝑇 . Attempt to project reg-
isters {ℛ𝑖}𝑖∈𝑇 onto

𝛱
[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
ś For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥

or if there does not exist 𝛥 such that 𝑡𝑖,1 = 𝛥⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .
ś If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure

register ℛctl
𝑖 in the standard basis to obtain 𝑏𝑖 ∈ {0, 1}. Then, deőne

𝑏 :=
⨁︁

𝑖∈𝑇

𝑏𝑖, 𝑚0 :=
⨁︁

𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕𝛥⊕
⨁︁

𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ6(𝒜)

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś Compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖) ← Ext(ek, cm𝑖) for each 𝑖 ∈ 𝑇 . Attempt to project reg-

isters {ℛ𝑖}𝑖∈𝑇 onto

𝛱
[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

𝛱
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.
ś For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥

or if there does not exist 𝛥 such that 𝑡𝑖,1 = 𝛥⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .

23



ś If there was an abort, output (𝒜′,⊥). Otherwise, for each 𝑖 ∈ 𝑇 , measure
register ℛctl

𝑖 in the standard basis to obtain 𝑏𝑖 ∈ {0, 1}. Then, deőne

𝑏 :=
⨁︁

𝑖∈𝑇

𝑏𝑖, 𝑚0 :=
⨁︁

𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕𝛥⊕
⨁︁

𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ7(𝒜)
ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś Compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖) ← Ext(ek, cm𝑖) for each 𝑖 ∈ 𝑇 . Attempt to project reg-

isters {ℛ𝑖}𝑖∈𝑇 onto

𝛱
[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

𝛱
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
,

and abort if this projection fails.
ś For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥

or if there does not exist 𝛥 such that 𝑡𝑖,1 = 𝛥⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .
ś If there was an abort, output (𝒜′,⊥). Otherwise, sample 𝑏 ← {0, 1}. Then,

deőne
𝑚0 :=

⨁︁

𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕𝛥⊕
⨁︁

𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ8(𝒜)
ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
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ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
ś For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥

or if there does not exist 𝛥 such that 𝑡𝑖,1 = 𝛥⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .
ś If there was an abort, output (𝒜′,⊥). Otherwise, sample 𝑏 ← {0, 1}. Then,

deőne
𝑚0 :=

⨁︁

𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕𝛥⊕
⨁︁

𝑖∈𝑇

𝑡𝑖,0,

and output (𝒜′, (𝑏,𝑚𝑏)).

ℋ9(𝒜) / Sim(𝒜)

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ], and sample

(ck, ek)← ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk until it outputs a message

(︀
{cm𝑖}𝑖∈[ℓ], {𝑣𝑖, 𝑥𝑖, ℎ𝑖, 𝑟𝑖}𝑖∈𝑇 , {̂︁cm𝑖,0,̂︁cm𝑖,1, 𝑧𝑖,0, 𝑧𝑖,1}𝑖∈𝑇 , 𝜋, ̃︀𝑚0, ̃︀𝑚1

)︀

and a state on register 𝒜′.
ś Run Steps 1-3 of the Receiver’s honest computation on the sender’s message.
ś Attempt to project registers {ℛ𝑖}𝑖∈𝑇 onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖 ,

and abort if the projection fails.
ś For each 𝑖 ∈ 𝑇 , 𝑏 ∈ {0, 1}, compute 𝑡𝑖,𝑏 ← Ext(ek,̂︁cm𝑖,𝑏). Abort if any 𝑡𝑖,𝑏 = ⊥

or if there does not exist 𝛥 such that 𝑡𝑖,1 = 𝛥⊕ 𝑡𝑖,0 for all 𝑖 ∈ 𝑇 .
ś If there was an abort, send ⊥ to the ideal functionality, and output 𝒜′.

Otherwise, deőne

𝑚0 :=
⨁︁

𝑖∈𝑇

𝑡𝑖,0, 𝑚1 := ̃︀𝑚1 ⊕𝛥⊕
⨁︁

𝑖∈𝑇

𝑡𝑖,0,

send (𝑚0,𝑚1) to the ideal functionality, and output 𝒜′.

Observe that ℋ9(𝒜) describes the behavior of a simulator Sim that operates
on input register 𝒜, and interacts with the ideal functionality ℱROT. Thus, The
following sequence of claims completes the proof.

Claim 8. ℋ0 ≈𝑐 ℋ1.

Proof. This follows directly from the extractability of the commitment.
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Claim 9. ℋ1 ≡ ℋ2.

Proof. The only difference is that we have applied the Step 4 check coherently
before measuring in the standard basis. Since these measurements commute,
these hybrids describe the same distribution.

Claim 10. ℋ2 ≈𝑠 ℋ3.

Proof. The newly introcued abort condition will only be triggered with negligible
probability due to the soundness of the NIZK and the extractability of the
commitment.

Claim 11. ℋ3 ≈𝑠 ℋ4.

Proof. We are now deőning 𝑚0,𝑚1 based on the strings extracted by Ext rather
than the strings measured by the Receiver. Since the strings measured by the
Receiver must be valid commitment openings, this only introduces a negligible
difference due to the extractability of the commitment.

Claim 12. ℋ4 ≈𝑠 ℋ5.

Proof. By Gentle Measurement (Lemma 1), it suffices to argue that the pro-
jection introduced in ℋ5 will succeed with probability 1 − negl(𝜆). So towards
contradiction, assume that the projection fails with non-negligible probability.
We will eventually use this assumption to break the correlation intractability of
𝐻. First, consider the following experiment.

Exp1

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ]. Sample (ck, ek)←
ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk, and receive a message that in-
cludes {cm𝑖}𝑖∈[ℓ], {̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , 𝜋.

ś Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)), check that for all 𝑖 ∈ 𝑇 , cm𝑖 =
Com(ck, (𝑣𝑖, 𝑥𝑖, ℎ𝑖); 𝑟𝑖), and that NIZK.Ver

(︀
crs,

(︀
{̂︁cm𝑖,0,̂︁cm𝑖,1}𝑖∈𝑇 , {cm𝑖}𝑖∈[ℓ]

)︀
, 𝜋
)︀
=

⊤, and abort if not.

ś For each 𝑖 ∈ [ℓ], compute (𝑣𝑖, 𝑥𝑖, ℎ𝑖)← Ext(ek, cm𝑖), and abort if any are ⊥.

ś For each 𝑖 ∈ [ℓ], measure registers ℛ𝑖 in the basis {|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖

| , I −
|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩⟨𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖 |} and deőne the bit 𝑒𝑖 = 0 if the őrst outome is observed
and 𝑒𝑖 = 1 if the second outcome is observed.

ś Output 1 if (i) there exists an 𝑠 ∈ {0, 1}𝜆 such that (𝑥1, . . . , 𝑥ℓ) = PRG(𝑠),12

(ii) 𝑒𝑖 = 0 for all 𝑖 ∈ 𝑇 , and (iii) 𝑒𝑖 = 1 for at least 1/30 fraction of 𝑖 : 𝑖 ∈ 𝑇 .

12 Note that this step is not efficient to implement, but this will not be important for
our arguments.
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We claim that Pr[Exp1 → 1] = non-negl(𝜆). This nearly follows from the as-
sumption that the measurement introduced in ℋ5 rejects with non-negligible
probability, except for the following two differences. One difference from ℋ3 is
that in Exp1, we are using {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇 extracted from {cm𝑖}𝑖∈𝑇 to measure
registers {ℛ𝑖}𝑖∈𝑇 , rather than the strings sent by the adversary. However, this
introduces a negligible difference due to the extractability of the commitment
scheme. The other difference is that we require (𝑥1, . . . , 𝑥ℓ), which are extracted
from {cm𝑖}𝑖∈[ℓ], to be in the image of PRG(·). However, by extractability of the
commitment scheme and soundness of the NIZK, the probability that the pro-
cedure does not abort and this fails to occur is negligible. Next, consider the
following experiment.

Exp2

ś Prepare ℓ collections of EPR pairs on registers {𝒮𝑖,ℛ𝑖}𝑖∈[ℓ]. Sample (ck, ek)←
ExtGen(1𝜆), crs← {0, 1}𝑛, and hk← {0, 1}𝑘.

ś Sample 𝑠* ← {0, 1}𝜆 and set (𝑥*1, . . . , 𝑥
*
ℓ ) = PRG(𝑠*). For each 𝑖 ∈ [ℓ]

and 𝑗 ∈ [2𝜆] such that 𝑥𝑖,𝑗 = 1, apply a CNOT gate from register ℛctl
𝑖

to ℛmsg
𝑖,𝑗 , then measure ℛctl

𝑖 in the Hadamard basis to obtain ℎ*𝑖 and measure

ℛmsg
𝑖,1 , . . . ,ℛmsg

𝑖,2𝜆 in the standard basis to obtain 𝑣*𝑖 .
ś Run Adv𝜆 on input 𝒜, {𝒮𝑖}𝑖∈[ℓ], ck, crs, hk, and receive a message that in-

cludes {cm𝑖}𝑖∈[ℓ].
ś Compute 𝑇 = 𝐻𝜆(hk, (cm1, . . . , cmℓ)) and (𝑣𝑖, 𝑥𝑖, ℎ𝑖)← Ext(ek, cm𝑖) for each
𝑖 ∈ [ℓ].

ś Output 1 if (i) (𝑥1, . . . , 𝑥ℓ) = (𝑥*1, . . . , 𝑥
*
ℓ ), (ii) (𝑣𝑖, ℎ𝑖) = (𝑣*𝑖 , ℎ

*
𝑖 ) for all 𝑖 ∈ 𝑇 ,

and (iii) (𝑣𝑖, ℎ𝑖) ̸= (𝑣*𝑖 , ℎ
*
𝑖 ) for at least 1/30 fraction of 𝑖 : 𝑖 ∈ 𝑇 .

It follows that Pr[Exp2 → 1] = non-negl(𝜆)/2𝜆 > 1/2𝜆
𝛿
CI , since the guess of 𝑠*

is uniformly random and independent of the adversary’s view. Finally, we will
show that Exp2 can be used to break the correlation intractability of 𝐻, but őrst
we introduce some notation.

ś For each (ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]), deőne the relation 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]] as
follows. Recalling that ℓ = 𝑐 ·𝑡, we will associate each 𝑖 ∈ [ℓ] with a pair (𝜄, 𝜅)
for 𝜄 ∈ [𝑡], 𝜅 ∈ [𝑐]. Also, for each set of strings {cm𝑖}𝑖∈[ℓ], we őx (𝑣𝑖, 𝑥𝑖, ℎ𝑖) :=
Ext(ek, cm𝑖) for each 𝑖 ∈ [ℓ]. Then the domain will consist of strings {cm𝑖}𝑖∈[ℓ]
such that (i) (𝑥1, . . . , 𝑥ℓ) = PRG(𝑠*), (ii) |𝑖 : (𝑣𝑖, ℎ𝑖) = (𝑣*𝑖 , ℎ

*
𝑖 )| ≤ (1−1/60)ℓ,

and (iii) for each 𝜄 ∈ [𝑡], |𝜅 : (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) = (𝑣*(𝜄,𝜅), ℎ
*
(𝜄,𝜅))| ≥ (1/2)𝑐.

ś For each {cm𝑖}𝑖∈[ℓ] in the domain of 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]], deőne the sets
{𝑆𝜄,{cm𝑖}𝑖∈[ℓ]

}𝜄∈[𝑡] as follows. If (1/2)𝑐 ≤ |𝜅 : (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) = (𝑣*(𝜄,𝜅), ℎ
*
(𝜄,𝜅))| ≤

(1− 1/120)𝑐, let 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
consist of subsets 𝐶 ⊂ [𝑐] of size 𝑐/2 such that

for all 𝜅 ∈ 𝐶, (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) = (𝑣*(𝜄,𝜅), ℎ
*
(𝜄,𝜅)). Otherwise, let 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]

= ∅.
ś Deőne the set 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]

to consist of all 𝑦 = (𝐶1, . . . , 𝐶𝑡)
such that 𝐶𝜄 ∈ 𝑆𝜄,{cm}𝑖∈[ℓ]

for all 𝜄 such that 𝑆𝜄,{cm}𝑖∈[ℓ]
̸= ∅. We claim that

there are always at least 1/120 fraction of 𝜄 ∈ [𝑡] such that 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
̸= ∅. To

see this, note that 𝑆𝜄,{cm𝑖}𝑖∈[ℓ]
̸= ∅ iff |𝜅 : (𝑣(𝜄,𝜅), ℎ(𝜄,𝜅)) ̸= (𝑣*(𝜄,𝜅), ℎ

*
(𝜄,𝜅))| >
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(1/120)𝑐. However, if less 1/120 fraction of 𝜄 satisőes this condition, then
the fraction of 𝑖 ∈ [ℓ] such that (𝑣𝑖, ℎ𝑖) ̸= (𝑣*𝑖 , ℎ

*
𝑖 ) is at most (1/120) +

(1/120)(1− 1/120) < 1/60, which would contradict the fact that {cm𝑖}𝑖∈[ℓ]
is in the domain of 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]

.

Thus, 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]] is an 𝛼-approximate efficiently veriőable product

relation for 𝛼 = 1/120 with sparsity 𝜌 =
(︀
(1−𝛼)𝑐
(1/2)𝑐

)︀
/2𝑐 < 𝛼.

Now, whenever Exp2 = 1, it must be the case that {cm𝑖}𝑖∈[ℓ] is in the domain
of 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]], and 𝑇 ∈ 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]{cm𝑖}𝑖∈[ℓ]

. Thus, we can
break correlation intractability as follows. Begin running Exp2, but don’t sample
hk. Once ek, 𝑠* are sampled and {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ] are measured, declare the relation
𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]]. Then, receive hk from the correlation intractability chal-
lenger, continue running Exp2 until {cm𝑖}𝑖∈[ℓ] is obtained, and output this to the
challenger. The above analysis shows that this breaks correlation intractability
for the relation 𝑅[ek, 𝑠*, {𝑣*𝑖 , ℎ*𝑖 }𝑖∈[ℓ]].

Claim 13. ℋ5 ≈𝑠 ℋ6.

Proof. By Gentle Measurement (Lemma 1), it suffices to show that the projec-
tion introduced in ℋ6 will succeed with probability 1 − negl(𝜆). To do so, we
will rule out one bad case. For each 𝑖 ∈ 𝑇 , deőne the bit 𝑓𝑖 = 0 if and only
if ̂︁cm𝑖,0 = Com(ck, 𝑡𝑖,0; 𝑟𝑖,0) and ̂︁cm𝑖,1 = Com(ck, 𝑡𝑖,1; 𝑟𝑖,1), where (𝑡𝑖,0, 𝑟𝑖,0) =
𝑧𝑖,0⊕ 𝑣𝑖, (𝑡𝑖,1, 𝑟𝑖,1) = 𝑧𝑖,1⊕ 𝑣𝑖⊕𝑥𝑖, and (𝑣𝑖, 𝑥𝑖, ℎ𝑖) := Ext(ek, cm𝑖). Now we claim
that if the fraction of 𝑖 ∈ 𝑇 such that 𝑓𝑖 = 1 is ≥ 1/2−1/30, then the attempted
projection onto

⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]
ℛ𝑖

performed during Step 4 of the receiver’s computation would have failed with

probabilty 1−negl(𝜆). To see this, consider any state |𝜓⟩{ℛ𝑖}𝑖∈[ℓ],𝒳 in the image
of 𝛱

[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
, where 𝒳 is an arbitrary auxiliary register. Then,

deőning 𝛾 = 1/30, we write |𝜓⟩ as

|𝜓⟩ :=
∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<𝛾|𝑇 |

(︃ ⨂︁

𝑖:𝑒𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩ℛ𝑖

)︃
⊗ |𝜓𝑒⟩{ℛ𝑖}𝑖:𝑒𝑖=1,𝒳 ,
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where |𝜓𝑒⟩ is some unit vector that is orthogonal to |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩ for all 𝑖 such that

𝑒𝑖 = 1. Then,
⃦⃦
⃦⃦⨂︁

𝑖∈𝑇

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓⟩
⃦⃦
⃦⃦
2

≤
⃦⃦
⃦⃦ ∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<𝛾|𝑇 |

⨂︁

𝑖:𝑒𝑖=0

𝛱[ck,̂︁cm𝑖, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩ℛ𝑖

⃦⃦
⃦⃦
2

≤
(︂ |𝑇 |
𝛾|𝑇 |

)︂ ∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<𝛾|𝑇 |

⃦⃦
⃦⃦ ⨂︁

𝑖:𝑒𝑖=0

𝛱[ck,̂︁cm𝑖, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩ℛ𝑖

⃦⃦
⃦⃦
2

≤
(︂ |𝑇 |
𝛾|𝑇 |

)︂2

· 2−(1/2−2𝛾)|𝑇 | ≤ (3/𝛾)2𝛾|𝑇 | · 2−(1/2−2𝛾)|𝑇 |

= 2|𝑇 |(2𝛾 log(3/𝛾)−(1/2−2𝛾)) = negl(𝜆)

where the second inequality is Cauchy-Schwartz, the third inequality follow from
the fact that there are at least 1/2 − 2𝛾 fraction of indices where 𝑓𝑖 = 1 and
𝑒𝑖 = 0, and the őnal equality follows because 𝛾 = 1/30 is such that 2𝛾 log(3/𝛾)−
(1/2− 2𝛾) = 𝑂(1) and |𝑇 | = ℓ/2 = 𝛺(𝜆), so the exponent is 𝛺(𝜆).

Thus it suffices to consider the case where the fraction of 𝑖 ∈ 𝑇 such that
𝑓𝑖 = 1 is < 1/2 − 1/30. So consider any state |𝜓⟩{ℛ𝑖}𝑖∈[ℓ],𝒳 in the image of
𝛱
[︀
1/30, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
, which we can write as

|𝜓⟩ :=
∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<|𝑇 |/30

(︃ ⨂︁

𝑖:𝑒𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩ℛ𝑖

)︃
⊗ |𝜓𝑒⟩{ℛ𝑖}𝑖:𝑒𝑖=1,𝒳 .

Then,

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓⟩

=
∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<|𝑇 |/30

⎛
⎝ ⨂︁

𝑖:𝑒𝑖=0∧𝑓𝑖=0

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1] |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩

⎞
⎠

⊗

⎛
⎝ ⨂︁

𝑖:𝑒𝑖=1∨𝑓𝑖=1

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]

⎞
⎠ |𝜓𝑒⟩

=
∑︁

𝑒∈{0,1}|𝑇 |:hw(𝑒)<|𝑇 |/30

⎛
⎝ ⨂︁

𝑖:𝑒𝑖=0∧𝑓𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖
⟩

⎞
⎠⊗

⎛
⎝ ⨂︁

𝑖:𝑒𝑖=1∨𝑓𝑖=1

𝛱[ck,̂︁cm𝑖,0, 𝑧𝑖,0, 𝑧𝑖,1]

⎞
⎠ |𝜓𝑒⟩

=
∑︁

𝑒′∈{0,1}|𝑇 |:hw(𝑒′)<|𝑇 |/2

⎛
⎝⨂︁

𝑖:𝑒′𝑖=0

|𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩

⎞
⎠⊗ |𝜓𝑒′⟩

∈ Im
(︀
𝛱
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀)︀
,
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where the |𝜓𝑒′⟩ are some set of unit vectors.

Claim 14. ℋ6 ≡ ℋ7.

Proof. It suffices to show that in ℋ6, the bit 𝑏 =
⨁︀

𝑖∈𝑇 𝑏𝑖 sampled by measuring

registers {ℛctl
𝑖 }𝑖∈𝑇 of |𝜓⟩{ℛ𝑖}𝑖∈[ℓ],𝒳 in the standard basis is uniformly random,

even conditioned on the auxiliary register 𝒳 (which includes the view of the
adversarial sender). This follows from Imported Theorem 6 by applying a change
of basis. In more detail, deőne the unitary 𝑈𝑣𝑖,𝑥𝑖,ℎ𝑖

to be applied to ℛ𝑖 as follows:
For each 𝑗 ∈ [2𝜆] such that 𝑥𝑖,𝑗 = 1 apply a CNOT gate from ℛctl

𝑖,𝑗 to ℛmsg
𝑖,𝑗 , then

apply a classically controlled phase ŕip 𝑍ℎ𝑖 toℛctl
𝑖 , and őnally apply a Hadamard

gate to ℛctl
𝑖 . In particular,

𝑈𝑣𝑖,𝑥𝑖,ℎ𝑖 |𝜓𝑣𝑖,𝑥𝑖,ℎ𝑖⟩ = |0⟩ |𝑣𝑖⟩ .

Thus, for any |𝜓⟩ ∈ Im(𝛱
[︀
1/2, {(𝑣𝑖, 𝑥𝑖, ℎ𝑖)}𝑖∈𝑇

]︀
), it holds that registers {ℛctl

𝑖 }𝑖∈𝑇
of (
⨂︀

𝑖∈𝑇 𝑈𝑣𝑖,𝑥𝑖,ℎ𝑖
) |𝜓⟩ are in a superposition of standard basis states with Ham-

ming weight < |𝑇 |/2. Since applying 𝑈 †𝑣𝑖,𝑥𝑖,ℎ𝑖
to a standard basis measurement

of ℛctl
𝑖 yields a Hadamard basis measurement of ℛctl

𝑖 , Imported Theorem 6 di-
rectly implies that the bit 𝑏 =

⨁︀
𝑖∈𝑇 𝑏𝑖 is uniformly random, even conditioned

on the auxiliary register 𝒳 .

Claim 15. ℋ7 ≈𝑠 ℋ8.

Proof. We are removing the two measurements introduced in hybrids ℋ5 and
ℋ6, and indistinguishability follows from the same arguments used in the corre-
sponding claims Claim 12 and Claim 13.

Claim 16. ℋ8 ≡ ℋ9.

Proof. This is just a syntactic switch, routing information through the ideal
functionality ℱROT.
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