Cure Shrinkage Characterization of a
Thermosetting Resin with Three-Dimensional
Digital Image Correlation (3D-DIC)

KALIMA BUKENYA, ALESSANDRO SABATO
and MARIANNA MAIARU

ABSTRACT

This work presents the application of three-dimensional digital image correlation
(3D-DIC) to capture pre- and post-gelation volumetric chemical shrinkage of EPON
862 thermosetting resin paired with hardener triethylenetetramine (TETA) and cured
at room temperature. The manufacturer-recommended 100:14 resin-hardener mixing
ratio is used for DIC experimentation. A stress-free boundary condition is employed
with a thin Teflon sheet placed between the resin mixture and the specimen container.
For the first time, a spray-painted speckle pattern is applied directly to the resin to
record full-field strain measurements during curing. This speckle pattern is employed
immediately after the resin mixture is poured on the Teflon-covered specimen
container for the pre-gelation case, and after gelation has been visibly observed for
the post-gelation case. Strain capture with 3D-DIC is initiated directly after speckle
pattern application with stereo-images captured every 30 seconds for one hour and
then every 60 seconds for two hours. Differential scanning calorimetry (DSC) is
used to determine resin cure kinetics to correlate chemical shrinkage with degree of
cure. The presented technique provides an innovative methodology to characterize
the chemical shrinkage of thermosets during curing.

INTRODUCTION

From the creation of plywood by the ancient Mesopotamians in the 4™ millennium
B.C. to the invention of the carbon fiber 3D printer by MarkForged in the 21*
century, composites have remained a symbol of technological innovation and a
catalyst for the advancement of human civilization. As present-day society looks
toward the future of advanced materials, polymer matrix composites (PMCs) have
become increasingly important across various engineering fields due to their high
specific properties and low production costs [1-14]. Thermosetting resins are a
class of polymers that undergo polymerization where monomers combine to form
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cross-linked polymer chains during curing. Volumetric chemical shrinkage is a
byproduct of polymerization and a driving factor for residual stress development and
subsequent under-performance in thermoset composites [15-19]. Multiscale process
modeling is an emerging field in materials engineering that leverages numerical
modeling methods with characterized neat resin properties to predict cure-induced
residual stresses and mechanical response [3, 19]. Chemical shrinkage must therefore
be accurately characterized to fully understand the influence of the cure cycle and
optimize composite performance [3, 20-23].

A crucial component of chemical shrinkage characterization lies in the capture
of the phase change as the material solidifies from its liquid state. Several
experimental practices have been developed to measure the volumetric shrinkage of
thermoset resins. These methods are commonly designated as volume dilatometric
and non-volume dilatometric. Volume dilatometers directly measure volumetric
changes to derive chemical shrinkage and are classified as plunger-type, capillary
type, and gravimetric [24-26]. Non-volume dilatometric procedures obtain shrinkage
measurements through contacting or non-contacting transducers [27-29]. Examples
of shrinkage measurement strategies under this category include density variation
[30, 31], fibre Bragg grating (FBG) [32-34], and rheology [3, 35]. A detailed
evaluation of volume and non-volume dilatometric techniques is found in Nawab
et al [36]. The choice between a volume and a non-volume dilatometric technique is
dependent on the processing constraints of the material, and many methods require an
additional procedure such as differential scanning calorimetry (DSC) to characterize
degree of cure.

Digital image correlation (DIC) has emerged as a promising optical method
of measuring volumetric chemical shrinkage [37-39]. Recent studies have used
two-dimenational (2D-) and three-dimensional DIC (3D-DIC) to record post-gelation
shrinkage behaviors [40] and in-situ shrinkage evolution during autoclave processing
[41]. Volumetric changes were tracked with a printed speckle pattern on a thin film
adhered to the resin. Singer et al. used 3D-DIC and a fine SiC powder applied to the
liquid resin surface to characterize shrinkage of polymer adhesive anchor systems
with 3D-DIC [42]. Bukenya et al. employed 3D-DIC to characterize chemical
shrinkage in a thermoset resin before and after gelation, and observed excellent
agreement with validation data from rheology [43].

The proposed work applies 3D-DIC with stereovision cameras to investigate pre-
and post-gelation chemical shrinkage stress-free strain fields as a function of degree
of cure for thermosetting resin EPON 862 and curing agent TETA. DSC is used to
predict degree of cure evolution.

This manuscript is outlined as follows. The upcoming section provides the theory,
materials, and experimental methods employed during this study. Results are then
shown and discussed in the succeeding section. Main conclusions are drawn in the
final section.



METHODOLOGY

The resin chosen for this study includes the low-viscosity thermosetting resin
produced by Hexion Inc. and commercially sold as EPON™ Resin 862. It was
coupled with EPIKURE™ Curing Agent 3234, also known as triethylenetetramine
(TETA), to allow for a room-temperature cure. The material system presented in this
work (henceforth referred to as EPON 862/TETA) was mixed with a stoichiometric
ratio of 100:14 as recommended in the manufacturer safety data sheet. A schematic
of the molecular structures for EPON 862 and TETA are shown below in Figure 1.
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Figure 1. Molecular structure of (a) EPON resin 862 and (b) curing agent TETA.

Cure Kinetics

Thermoset resins such as EPON 862 undergo phase changes that result in
chemical shrinkage. The degree of cure ¢ is given as:

H(t)
¢ - H

T

where H (t) is the partial heat generation term with respect to time ¢ and Hrp is the

total heat of reaction. The cure rate % is expressed as:
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For this study, a phenomenological semi-empirical cure kinetics model developed
by Kamal [44] was chosen to represent the cure evolution.
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K, and K are Arrhenius rate functions while m and n are dimensionless cure-fitting
parameters. Equation 4 shows that the rate functions are dependent on activation
energies AF; and AFE, as well as the universal gas constant R and absolute



temperature 7. Cure kinetics characterization techniques outlined in Shah et al.
[3, 19] were employed with DSC to predict the degree of cure progression of the
EPON 862/TETA system. These constants can be found in Table I.

TABLE I. CURE KINETICS CONSTANTS FOR RESIN SYSTEM EPON 862/TETA

Al A2 AEl AEz m n
(1/sec) (1/sec) (kJ/mol) (kJ/mol) (-) (-)
242E+06 9.04E-02 72.5 11.5 0.92 1.75

Specimen Preparation for 3D-DIC Measurement

The specimen preparation for EPON 862/TETA for 3D-DIC experimentation is
incredibly time-sensitive. First, the EPON 862 resin was degassed in a vacuum
chamber for approximately 15 minutes. The TETA hardener was then integrated into
the resin and stirred thoroughly to achieve a homogeneous mixture. The hardener
reacts with the resin immediately upon contact. Therefore, a timer was started as
soon as the mixing began to track the gelation. The EPON 862/TETA system was
then degassed for an additional 15 minutes to remove any air bubbles produced by
stirring. The specimen container was prepped with a fitted Teflon sheet to enforce a
stress-free boundary condition during this process. The degassed mixture was then
poured into the specimen container. A stochastic pattern (i.e., black speckle dots on
a white background or vice versa) was then applied directly to the resin surface. Two
case studies were conducted to observe chemical shrinkage:

(1) Pre-Gelation Case: Strain measurement throughout the entire reaction. A black
stochastic pattern was administered to the liquid resin surface with spray-paint.

(2) Post-Gelation Case: Strain measurement only after gelation is reached. Upon
gelation (approximately 40 minutes) the gelled resin surface was given a white
spray-paint background before the stochastic pattern was implemented.

A schematic illustration of the prepared specimen is given in Figure 2.
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Figure 2. Graphic illustration of the prepared specimen.



3D-DIC Principles and Experimental Methods

Three-dimensional digital image correlation (3D-DIC) is a non-contacting,
full-field, and photogrammetric measuring technique. It enables the extraction of
surface strain, displacement, and geometry profiles from images obtained with a
synchronized stereo camera pair system [45]. 3D-DIC tracks the displacement of
a physical point P, with coordinates (Xp, Yp, Zp) in the global XY Z coordinate
system, on the surface of a targeted object between a reference state and altered
configuration as it is represented in the camera coordinate system (i.e., the retinal
plane x;/, y;, 0 in pixel units) [46]. The 3D space can then be obtained by combining
the coordinates of point P in the two cameras’ retinal planes with the intrinsic and
extrinsic parameters using triangulation [47]. A schematic of the 3D-DIC setup is
shown below in Figure 3.
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Figure 3. (a) Schematic illustration of 3D-DIC pinhole camera model transformations and
(b) experimental setup with trial specimen.

Using the stochastic pattern outlined in the previous section, the relative position
of each target is tracked as the surface deforms over time. For example, each image
can be examined as a matrix of natural integers, where white pixels have a gray-scale
level of 0 and black pixels have a gray-scale level of 100 [48]. A single value in a
pattern is not necessarily unique, thus a square neighborhood of pixels, such as facets,
is employed where each facet is a set of distinguishing correlation areas defined across
the measuring region. As facets are typically 15-50 pixels squared, several dots of the
stochastic pattern are included. The center of each facet is a measurement point that
can be regarded as an extensometer. The position of these facets is tracked throughout
each consecutively acquired image, and the 3D coordinates are then calculated for the
entire area of interest.

For all surface elements, the deformation gradient tensor F' was introduced to map
the undeformed line elements dX into the deformed line elements dx:

dx =F-dX &)



The deformation gradient was then decomposed into the rotation matrix R and
the right stretch tensor U such that:

F=R-U (6)

Linear strain values were then recorded directly from the stretch tensor:

e=U-1I (7

The DIC system chosen for this study included two Megapixel FWX201 series
digital cameras manufactured by Baumer GmBH using a 1/1.8” interline progressive
charge coupled device (CCD) monochrome image sensors with a resolution of
1626 x 1236 pixels and a pixel size of 4.4x4.4 10°m [49]. The cameras were fitted
with 12 mm focal length lenses manufactured by Schneider Optics, Inc. The 3D-DIC
system was positioned to have a base distance of 12x 10 10?m, a working distance of
approximately 32.0x 10 10 m, and a separation angle of about 27°. For all performed
tests, image capture took place every 30 seconds during the first hour of measurement,
and every 60 seconds for an additional two hours. This was done to ensure that
more data could be collected during the initial phase of strain measurement for both
pre-gelation and post-gelation cases. It should be noted that it was not possible to
evaluate the noise floor of the measurement during testing due to the velocity of the
chemical reaction taking place as the resin system was curing.

RESULTS AND DISCUSSION

Three tests were conducted for each case, yielding a total of six shrinkage tests.
The ARAMIS acquisition software was used to collect full-field strain data that was
then further processed in MATLAB. Figure 4 displays snapshots of the cure strain
evolution captured with 3D-DIC.

Figure 4 indicates that some strain evolution exists prior to gelation that is not
captured by post-gelation shrinkage tests. However, there were notable boundary
effects that manifested from some of the resin slipping past the Teflon sheet during
curing, thus adhering to the specimen container. This made it difficult to find an
area of interest unaffected by the boundaries. Post-gelation strain fields captured by
3D-DIC have a homogeneous distribution with negligible boundary effects. Minor
areas of missing optical data were also observed for this case. Linear cure strains ¢,
Eyy, and €, were extracted from ARAMIS to plot strain component contour plots, as
shown in Figure 5.
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Figure 4. Visualization of cure strain development from 3D-DIC measurements for resin
system EPON 862/TETA.
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Figure 5. Post-gelation 3D-DIC linear cure strain contours post-processed with MATLAB.

It is evident from these contour plots that 3D-DIC is highly accurate in the
in-plane (e,, and ¢,,) directions. The linear in-plane cure strains highly compare
across all three post-gelation shrinkage tests. Approximately 20 data points were
sampled from the in-plane strain contour plots (see Figure 5) to plot the linear
shrinkage components ¢,,, €,,, and ... It can be seen from Figure 5 that the
through-thickness cure strains are nearly twice as high as the in-plane strains. This is
due to the fact that 3D-DIC experiments have a lower accuracy in the out-of-plane
direction than in the in-plane. Degree of cure evolution was predicted using the
cure kinetics parameters determined from DSC (see Table I). Gelation for these
tests occurred between 35 and 50 minutes depending on ambient room temperatures.
Figure 6 shows the linear shrinkage evolution from 3D-DIC experiments for the
EPON 862/TETA system with respect to time and degree of cure.
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Figure 6. Post-gelation 3D-DIC linear shrinkage for EPON 862/TETA plotted against (a)
time and (b) degree of cure.

Post-gelation experiments took between 200 and 220 minutes. In-plane 3D-DIC
results yielded a final linear shrinkage of approximately -1.5% at degree of cure ¢ ~
0.97. Figure 6(b) shows that the linear shrinkage evolves somewhat bilinearly with
respect to degree of cure. 3D-DIC is highly capable of capturing in-plane strains to
provide a more detailed relationship between chemical shrinkage and degree of cure.

Figure 7 shows the linear cure strain contour plots from 3D-DIC pre-gelation
tests. Two of these tests exhibited paint cracking induced by the exothermic chemical
reaction during curing.
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Figure 7. Pre-gelation 3D-DIC linear cure strain contours post-processed with MATLAB for
(a) Test 1, (b) Test 2, and (c) Test 3.

Out-of-plane strains are once again higher than in-plane strains due to the
decrease in through-thickness implicit in 3D-DIC measurement. This variability is
more pronounced for the pre-gelation case because more of the chemical reaction
was captured during curing, therefore creating more opportunity for variances to
manifest due to boundary effects and paint cracking. One of the pre-gelation tests
also experienced significant paint cracking upon gelation that resulted in some data
loss in subsequent images, as seen in Figure 7(b). The presence of these boundary
and surface imperfections indicate that the strain contours shown in Figure 7 are more
indicative of the macroscopic behavior of the resin rather than the chemical shrinkage
intrinsic to the material. However, it is still pertinent to observe this in-situ behavior
of the resin, and even more so prior to gelation. For this reason, the in-situ linear cure
strain evolution is shown below in Figure 8 and compared with post-gelation linear
cure strains to observe notable trends. Note that post-gelation final strain values were



shifted to match those of their corresponding pre-gelation tests.
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Figure 8. Pre- and post-gelation 3D-DIC linear cure strains for EPON 862/TETA plotted
against (a) time and (b) degree of cure.

The pre-gelation linear cure strains exhibited in Figure 8 are clearly shown to be
nonzero prior to gelation. One test reveals that the rate of strain evolution is negative
at the start of 3D-DIC data acquisition, then becomes positive and approaches such
that the strain zero at about 10 minutes prior to gelation. Local peaks occur close
to gelation across all three pre-gelation tests, after which the linear cure strains
evolves similarly to trends displayed by the post-gelation experiments. Two tests that
experienced paint cracking during curing show a notable drop in linear cure strain
at the start of the experiment. These pre-gelation 3D-DIC tests illustrate how the
mechanical constraint imposed by the geometry or by the presence of reinforcements
(such as carbon or glass fibers) plays a key role in quantifying in-situ strain behavior
during curing. Moreover, these tests legitimize the application of 3D-DIC to monitor
cure-induced in-situ dimensional changes.

CONCLUSIONS

This work proposed an innovative approach to measure chemical shrinkage with
three-dimensional digital image correlation (3D-DIC) through the application of a
spray-painted speckle pattern directly to the resin surface. Full-field strain was
captured during curing for thermosetting resin system EPON 862/TETA under a
post-gelation case and a pre-gelation case. Cure kinetics parameters were obtained
with DSC to predict degree of cure. Post-gelation linear cure strain contours
showed excellent in-plane agreement. The precision of out-of-plane 3D-DIC strain
measurements was estimated to be a factor of two across the post- and pre-gelation



test cases. Pre-gelation linear strain contours showed a larger variance in-plane
strains due to the mechanical constraints imposed on the resin during curing which
emphasize the demand for computational methods to accurately predict cure-induced
strain evolution in thermoset PMCs. In conclusion, 3D-DIC presents itself as
a powerful optical solution to measure post-gelation volumetric shrinkage and
observe pre-gelation in-situ strain behavior during curing, enabled by the novel
implementation of a spray-painted stochastic pattern.
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