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Abstract 

Explicit similarity judgments tend to emphasize relational 
information more than do difference judgments. We propose 
and test the hypothesis that this asymmetry arises because 
human reasoners represent the relation different as the 
negation of the relation same, so that processing difference is 
more cognitively demanding than processing similarity. For 
both verbal comparisons between word pairs, and visual 
comparisons between sets of geometric shapes, we asked 
participants to select which of two options was either more 
similar to or more different from a standard. On unambiguous 
trials, one option was unambiguously more similar to the 
standard; on ambiguous trials, one option was more featurally 
similar to the standard, whereas the other was more 
relationally similar. Given the higher cognitive complexity of 
assessing relational similarity, we predicted that detecting 
relational difference would be particularly demanding. We 
found that participants (1) had more difficulty accurately 
detecting relational difference than they did relational 
similarity on unambiguous trials, and (2) tended to emphasize 
relational information more when judging similarity than 
when judging difference on ambiguous trials. The latter 
finding was captured by a computational model of 
comparison that weights relational information more heavily 
for similarity than for difference judgments. Our results 
provide convergent evidence for a representational 
asymmetry between the relations same and different.  
Keywords: comparison, similarity, relational reasoning 

Introduction 
A naïve construal of similarity and difference is that one is 
the inverse of the other: As things become more similar, they 
become less different. Cognitive scientists, however, have 
demonstrated that human reasoners sometimes process the 
two relations in a way that violates this inverse relation. 
Specifically, people tend to use divergent information when 
judging what makes things similar than when judging what 
makes things different (Bassok & Medin, 1997; Medin et al., 
1990; Simmons & Estes, 2008; Tversky, 1977).  For example, 
Medin et al. (1990) asked participants to select which of two 
options was more visually similar to or more different from a 
standard. Across trials, one option was relationally more 
similar to the standard and the other was more featurally 
similar. Participants tended to select the relationally similar 
option as both more similar and more different from the 

standard. Bassok and Medin (1997) found the same 
asymmetry using verbal stimuli. Broadly, these findings 
indicate that people tend to consider relations more heavily 
when judging similarity than when judging difference. 
However, the reason for this asymmetry remains unclear. 

One attempt to explain this phenomenon invokes structure 
mapping theory (Gentner, 1983). Under this hypothesis, 
assessments of similarity and difference involve the same 
comparison process of structural alignment, in which 
representations of entity features and their structural relations 
are placed into one-to-one correspondence (Gentner & 
Markman, 1994; Markman, 1996; Markman & Gentner, 
1993; Sagi et al., 2012). The asymmetry observed by Medin 
et al. (1990) is hypothesized to arise from an asymmetry in 
the relevant output of this comparison process. Whereas all 
commonalities contribute to similarity judgments, 
differences are split into alignable differences (i.e., those 
filling corresponding roles within a shared relational 
structure) and nonalignable differences (i.e., those not based 
on corresponding roles). For example, in a comparison 
between a car and a bicycle, wheel number would be an 
alignable difference (i.e., 4 vs. 2), whereas window number 
would be a nonalignable difference because this feature is 
only applicable to cars and not bicycles. 

Proponents of this explanation noted that the featurally-
similar option in the study by Medin et al. (1990) did not 
involve a salient relation, so that any relational difference 
between it and the standard did not constitute an alignable 
difference, and was therefore ignored in difference 
comparisons. However, later work found that both alignable 
and nonalignable differences contribute to judgments of 
difference; indeed, the latter actually exerted a greater 
influence than the former (Estes & Hasson, 2004). This result 
appears to undermine the core assumption required to explain 
asymmetries in similarity and difference judgments in terms 
of structure mapping theory. 

As an alternative explanation, we propose that this 
asymmetry emerges from a representational asymmetry 
between the relations same and different. Whereas assessing 
similarity involves a relatively straightforward comparison of 
degree of sameness, assessing difference involves a more 
complex comparison of not-sameness, in a form of negation 
processing. This analysis has been used to explain the well-
established developmental lag between children’s 
understanding of the concepts same vs. different  (Hochmann, 
2021; Hochmann et al., 2016, 2018). In general, processing 
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of negation tends to place additional cognitive load on human 
reasoning. For example, determining the truth of a 
proposition including a negated expression (e.g., “star isn’t 
above the plus”) takes longer than a matched positive 
expression (e.g., “star is below the plus”) (Carpenter & Just, 
1975; Clark & Chase, 1972). Introducing extra negation into 
sentences makes them more difficult to interpret (e.g., 
“Because he often worked for hours at a time, no one 
believed that he was not capable of sustained effort”) 
(Sherman, 1976). Previous research has shown that 
processing negation often involves multiple steps, including 
processing the affirmative components of negated phrases 
before processing the entire phrase (Hasson & Glucksberg, 
2006). Although the complexity of negation is most 
pronounced when an explicit negative such as not is used, 
processing difficulty is also increased for expressions that 
incorporate implicit negation (e.g., words such as few, little, 
or deny; Clark, 1976). 

Human reasoners can compare entities on the basis of both 
features of individual entities, and also relations between 
entities and their component parts. Importantly, processing 
and comparing relational information is more cognitively 
demanding than processing featural information (Bunge et 
al., 2005; Green et al., 2010; Halford et al., 1998; Kroger et 
al., 2002, 2004; Waltz et al., 2000). It follows that 
incorporating relational information will be particularly 
demanding when the task also involves negation. As a 
consequence, difference judgments—which involve implicit 
negation—are less likely to be sensitive to relational 
information. 

We tested this hypothesis for both verbal comparisons 
between word pairs and visual comparisons between sets of 
geometric shapes. For both types of stimuli, we measured 
participants’ sensitivity to featural and relational information 
in a 2-alternative forced-choice task, in which participants 
selected which of two options was more similar to or more 
different from a standard. In order to directly examine the 
relative difficulty of similarity and difference judgments, we 
included unambiguous comparisons, in which one option was 
unambiguously more similar to a standard than the other 
based either on features or on relations. Participants 
completed two kinds of unambiguous comparisons: On 
featural trials, failure to select the similar option would 
reflect a difficulty in using featural similarity in comparison, 
whereas failure to select the similar option on relational trials 
would reflect a difficulty in using relational similarity. We 
expected that relational trials would be more cognitively 
demanding, and hence prove more difficult for participants 
judging difference as compared to similarity. On the other 
hand, since featural trials could be successfully completed 
without any relation processing, performance for difference 
versus similarity judgments was expected to be more equal.  
We also included ambiguous comparisons, for which either 
of the options might be selected depending on whether 
features or relations are emphasized (Bassok & Medin, 1997; 
Medin et al., 1990). We predicted that when judging 

difference as compared to similarity, participants would tend 
to base their choices on features rather than relations. 

Experiment 

Method 
Participants Participants were 184 undergraduates (Mage = 
20.70, SDage = 3.73, range = [18, 51]) at the University of 
California, Los Angeles (UCLA). Our sample consisted of 
128 female, 51 male participants, and 3 nonbinary; 2 
participants did not report their gender. All participants 
completed our tasks online to obtain partial course credit in a 
psychology class. The study was approved by the 
Institutional Review Board at UCLA. 
 

 
Figure 1: Example trials of the verbal comparison (left) and 
visual comparison (right) tasks. In both examples, the left 
bottom option is more featurally similar to but more 
relationally different from the standard at the top, whereas the 
right option is more featurally different from but more 
relationally similar to the standard. 
 
Comparison tasks All participants completed two 
comparison tasks: a verbal task featuring word-pair stimuli 
and a visual task featuring geometric shape stimuli. On each 
trial, participants were presented with a standard at the top of 
the screen and two options on either side at the bottom of the 
screen. Figure 1 shows an example trial of the verbal task on 
the left and the visual task on the right. Some participants 
were instructed to select which option was more similar to 
the standard across both tasks, whereas other participants 
were asked to select which was more different from the 
standard across both tasks. 

Each comparison task consisted of 24 trials, presented in a 
random order. Of these, 6 unambiguous trials included one 
option that was unambiguously more similar to the standard 
than the other. Correct responding on half of the 
unambiguous trials was more reliant on detecting the relative 
featural similarity of the two options, and so we  refer to these 
as featural trials. The other 3 unambiguous trials were 
relational trials. On these, correct responding was more 
reliant on detecting the relative relational similarity of the two 
options. 

The remaining 18 trials consisted of one option that was 
more featurally similar to but relationally different from the 
standard (FS/RD; e.g., the left option of both trials depicted 
in Figure 1) than the other option, which was more featurally 
different from but relationally similar to the standard (FD/RS; 
e.g., the right options of both trials in Figure 1). We refer to 
these trials as ambiguous trials because they were constructed 
so that selecting either option was valid, depending on a 
participant’s criteria for judging similarity or difference. We 
used these trials to compare participants’ preferential 
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weighting of featural or relational information in their 
similarity and difference judgments. Selecting the FS/RD 
option as more similar indicates a preferential weighting of 
featural information, whereas selecting it as more different 
indicates a preferential weighting of relational information, 
and vice versa for selecting the FD/RS option. 

For the verbal task, featural similarity was determined by 
the semantic similarity among the individual words in each 
word pair. The left panel of Figure 1 shows an example of an 
ambiguous trial of the verbal task. The individual words 
composing the standard (thorn and rose) and those 
composing the right option (shrub and bush) all refer to 
concepts related to garden plants, and thus are more 
semantically similar than the words composing the left option 
(finger and hand), which are generally less semantically 
similar to those in the standard. 

Relational similarity was determined by the semantic 
relation instantiated by each word pair. Returning to the left 
panel of Figure 1, the standard (thorn:rose) and the left option 
(finger:hand) both instantiate the semantic relation part-of, 
and are thus more relationally similar to each other than the 
standard is to the right option (shrub:bush), which most 
saliently instantiates an instance-of relation (which does not 
match the relation in the standard). In addition to part-of and 
instance-of relations, verbal comparison trials included 
antonym (e.g., love:hate), synonym (e.g., big:large), category 
coordinate (e.g., broom:mop), and  located-in (e.g., 
grill:patio) relations. 

For the visual comparison task, featural similarity was 
determined by a shared salient visual feature among 
individual objects, either shape (as with the left option in the 
right panel of Figure 1) or shading. Relational similarity was 
determined by the visual relation instantiated by each set of 
shapes. Most of the visual comparison trials were comparable 
to the one presented in the right panel of Figure 1, where the 
standard and the FD/RS option (right) instantiated the same 
relation and each consisted of repetitions of different shapes, 
while the FS/RD option (left) violated the standard’s same 
relation but instantiated a same-shading relation and shared 
one object of the same shape as the standard. Other visual 
relations featured in this task included symmetry, consisting 
of two identical objects reflected about a vertical axis; ABA 
sequences consisting of three objects, of which the first and 
last were identical to each other; ABC sequences consisting 
of three unique objects; and AABB sequences consisting of 
two repetitions of different objects. We acknowledge that 
some FS/RD options in the visual comparison task may not 
have been interpreted as instantiating a relation, so 
performance on this test does not constitute as strong a test of 
the structure mapping theory as does the verbal comparison 
task. 
Ravens Progressive Matrices Following the verbal 
comparison task, all participants completed an abridged, 12-
problem version of the Ravens Advanced Progressive 
Matrices (RPM) (Arthur et al., 1999). On each problem in 
this task, participants are presented with a 3x3 array of simple 
geometric objects, with the object in the bottom-right corner 

of the array missing, and they are asked to select which one 
of 8 options best completes the pattern instantiated by the 
incomplete array. Carpenter et al. (1990) showed that 
individual differences in performance on these visual 
reasoning problems predict differences in the ability to 
induce abstract relations between objects and to maintain a 
hierarchy of problem goals and subgoals in working memory. 
We used this test as a measure of individual differences in 
general reasoning ability. Since our key manipulation of 
comparison type (similarity vs. difference) was between-
subjects, we included RPM score as a covariate in analyses, 
in order to compare performance on similarity versus 
difference judgments after controlling for any individual 
differences in general reasoning ability. 
Procedure All participants completed a verbal comparison 
task and a visual comparison task in a counterbalanced order, 
and then completed the Ravens Progressive Matrices. 

Results 
Performance on unambiguous trials Performance on 
unambiguous trials across conditions is depicted in Figure 2. 
Overall, participants performed well on unambiguous trials. 
Those making similarity judgments (n = 98) frequently 
selected the more similar option for both the verbal task (Msim 
= .80, SDsim = .17) and the visual task (Msim = .86, SDsim = 
.14). Those making difference judgments (n = 86) frequently 
selected the more different option across both tasks (verbal: 
Mdiff = .77, SDdiff = .21; visual: Mdiff = .77, SDdiff = .22). We 
refer to the above responses as ‘accurate’. Of particular 
interest was the relative accuracy with which similarity and 
difference participants completed relational trials.  
 

 
Figure 2: Human accuracy on unambiguous trials of verbal 
(left) and visual (right) comparison tasks, broken down 
according to trial type (featural vs. relational) and comparison 
type (difference vs. similarity). Error bars reflect ± standard 
error of the mean, and horizontal line reflects chance 
performance. 

 
We used the glmer function from version 1.1.26 of the 

LME4 R package (Bates et al., 2015) in R version 4.1.1 (R. 
Core Team, 2021) to fit a logistic mixed-effects model to 
performance on unambiguous trials. We defined a full model 
including participant and comparison problem as random 
intercept effects; comparison task (verbal vs. visual), 
comparison type (similarity vs. difference) and trial type 
(featural vs. relational), as well as an interaction between the 
last two as fixed effects. As discussed previously, we 
included RPM score as a covariate, along with task order 
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(verbal first vs. visual first) and trial number. The latter two 
variables respectively account for any impact of task order 
and any potential improvement in performance across trials 
within each task. 

We used likelihood-ratio tests to compare this full model 
to reduced models that omitted a term of interest but that was 
otherwise equivalent to the full model. First, we tested 
whether performance generally differed across verbal and 
visual tasks. To do so, we fit a reduced model to the data that 
lacked the comparison task term but that was otherwise 
equivalent to the full model. We used a likelihood ratio test 
to compare the full model to the reduced model and found 
that removing the comparison task term did not increase 
model prediction error, ∆AIC = -1.40, χ2 (1) = .65, p = .420. 
This result indicates that the verbal and visual tasks did not 
differ in their overall difficulty. 

Next, we tested our main hypothesis that relational trials 
would be more difficult for participants judging difference 
than for those judging similarity. In order to do to so we 
compared our full model to a reduced model that lacked the 
judgment type x trial type interaction term (but that retained 
the individual terms for judgment type and trial type). 
Dropping the interaction term did increase model prediction 
error, ∆AIC = 10.7, χ2 (2) = 14.66, p < .001, indicating that 
performance differences between participants making 
similarity judgments and difference judgments varied across 
featural and relational trials. To examine this interaction 
further, we used the emmeans and pairs functions from 
version 1.8.4 of the emmeans R package (Lenth, 2023) to 
compare the relevant estimated marginal means of our full 
model. Across verbal and visual tasks, similarity participants 
(M = .81, SD = .18) outperformed difference participants (M 
= .69, SE = .22) on relational trials, z = 4.81, p < .001, but not 
on featural trials, z = .04, p = .966 (similarity: M = .84, SD = 
.14; difference: M = .84, SD = .20). This result supports our 
hypothesis that difference judgments involve more 
cognitively demanding comparisons than similarity 
judgments, which particularly impact relational trials. 
Notably this difference in performance persisted even after 
we accounted for individual differences in reasoning ability 
by including RPM score as a covariate in our full model. A 
likelihood ratio test comparing the full model and a reduced 
model that lacked the RPM score term showed that removing 
that term indeed increased model prediction error, ∆AIC = 
13.5, χ2 (1) = 15.56, p < .001. Thus, even though general 
reasoning ability influenced performance on unambiguous 
trials, comparison type impacted performance specifically on 
relational trials, over and above individual differences in this 
ability. 
Relational responding on ambiguous trials 
Next, we examined ambiguous trials to estimate participants’ 
preferential weighting of featural and relational information 
in ambiguous comparisons for which the two kinds of 
information are pitted against each other. Overall, 
participants selected the FD/RS option more often regardless 
of whether they were judging similarity (M = .61, SD = .29) 
or difference (M = .62, SD = .26). Notably, selecting this 

option implies different criteria based on comparison type: 
Selecting FD/RS as more similar implies an emphasis on 
relational similarity, whereas selecting that option as more 
different implies an emphasis on featural difference. In order 
to assess participant responses across comparison types 
(similarity vs. difference), we grouped responses according 
to whether they indicated an emphasis on relational 
information. We thus compared responses in which similarity 
participants selected the FD/RS option and in which 
difference participants selected the FS/RD option, and refer 
to these as relational responses. 

As with unambiguous trials, we fit logistic mixed-effects 
models to predict relational responses on ambiguous trials. 
We defined a full model including participant and 
comparison problem as random intercept effects; comparison 
task (verbal vs. visual), comparison type (similarity vs. 
difference) as fixed effects; and RPM score, task order 
(verbal first vs. visual first), and trial number as covariates. 

As was done for unambiguous trials, we used likelihood-
ratio tests to compare this full model to reduced models that 
omitted a term of interest but that was otherwise equivalent 
to the full model. First, we compared the full model to a 
reduced model omitting the comparison task term. We found 
that dropping this term did not reduce model prediction error, 
∆AIC = -2.0, χ2 (1) = .01, p = .930. This result again indicates 
that relational responding did not differ across verbal and 
visual comparison tasks. 

Next, we compared relational response rates for similarity 
judgments and difference judgments, to test our main 
prediction that participants will preferentially weight 
relational information more when judging similarity than 
when judging difference. Indeed, dropping the comparison 
type term from the full model did increase prediction error, 
∆AIC = 33.3, χ2 (1) = 35.31, p < .001, which confirms our 
main prediction that relational response rates were affected 
by comparison type on ambiguous trials. As on unambiguous 
trials, this effect on ambiguous trials held even after we 
accounted for individual differences in reasoning ability by 
including RPM score as a covariate in our full model. 
Omitting RPM score from the full model also increased 
model prediction error, ∆AIC = 2.6, χ2 (1) = 4.60, p = .032. 
Even though individual differences in reasoning ability 
predicted relational responding on ambiguous trials, our 
manipulation of comparison type impacted responses over 
and above these individual differences. 

This result disconfirms the hypothesis that both similarity 
and difference judgments are based on the same inputs to a 
structural alignment process, as is assumed by structure 
mapping theory (Gentner, 1983; Gentner & Markman, 1994; 
Markman & Gentner, 1993; Sagi et al., 2012). According to 
that theory, similarity judgments are based on all 
commonalities, whereas differences are sensitive to alignable 
but not nonalignable differences. In the present study, 
however, all relational differences on the verbal task (and 
possibly the visual task) were alignable, so structure mapping 
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theory erroneously predicts symmetric responding across 
similarity and difference judgments. 

 

 
Figure 3: Relational response rate on ambiguous trials in 
verbal (left) and visual (right) comparison tasks, broken down 
according to comparison type (difference vs. similarity). 
Unfilled circles each reflect an individual participant’s 
response rates, dark lines reflect mean response rates, box 
boundaries reflect ± standard error of the mean, and 
horizontal line corresponds to indiscriminate selection of 
relational versus featural options. 

Computational modeling 
In order to formally characterize the human comparison 
process on ambiguous trials, we attempted to predict 
responses of individual participants on the verbal comparison 
task using a computational model. This model includes a 
weighting mechanism that controls the relative contribution 
of relational and featural information to a comparison 
judgment. We predicted that this weighting mechanism 
would create the observed asymmetry by altering the 
emphasis on relational information between similarity and 
difference judgments. Moreover, the computational model 
operates entirely on semantic representations of words and 
relations generated by machine learning, avoiding any hand-
coding or reliance on experimenters’ intuitions. Unlike 
computational implementations of structure mapping theory, 
the present model captures the eduction of relations (Lu et 
al., 2019; Spearman, 1923): generation of relations from 
nonrelational inputs. The same basic framework could be 
applied to visual judgments, given an appropriate front-end 
to create representations of visual stimuli. 

Model specification and approach 
Recall that the comparison task dissociated featural and 
relational information, and that the verbal task involved 
comparisons between word pairs (e.g., love:hate and 
spouse:partner). We operationalized featural information as 
individual word meanings (e.g., love, hate, wide, and narrow) 
and relational information as semantic relations holding 
between paired words (e.g., antonym-of, synonym-of). Our 
computational model incorporates semantic representations 
of both individual words and relations between them. 

In order to represent individual word meanings, we used 
pre-trained Word2vec word embeddings (Mikolov et al., 
2013), which represent word meanings as high-dimensional 
vectors of length 300. These vectors constitute the hidden 
layer of activation within a neural network trained to predict 
patterns of text in sequence as they appear in a large corpus 

consisting of Google News articles (about 100 billion words). 
Such word embeddings provide psychological models of 
semantic memory in that they preserve the similarity 
structure of individual word meanings in a psychologically 
realistic way. These embeddings have been used to 
successfully model a number of cognitive processes beyond 
similarity judgments, including human memory search, 
categorization, and decision making (Bhatia & Aka, 2022; 
Günther et al., 2019). 

To compute lexical similarity, the meaning of a word pair 
is represented by a simple aggregate of the semantic vectors 
of the two individual words. We use A to denote the first word 
in a word pair and B to represent the second word in a word 
pair. We compute the featural similarity between two word 
pairs 𝑖 and 𝑗 as the cosine similarity between concatenated 
word vectors constituting I, [𝑓𝐴𝑖

, 𝑓𝐵𝑖
], and those constituting 

j, [𝑓𝐴𝑗
, 𝑓𝐵𝑗

]: 

𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗
= 1 − 𝑐𝑜𝑠 ([𝑓𝐴𝑖

, 𝑓𝐵𝑖
], [𝑓𝐴𝑗

, 𝑓𝐵𝑗
]).  (1) 

To compute relational similarity, we used representations 
generated by Bayesian Analogy with Relational 
Transformations (BART), a learning model that has been 
used to predict human analogy performance and graded 
judgments of relational similarity (Ichien, Lu, & Holyoak, 
2022; Lu, Chen, & Holyoak, 2012; Lu et al., 2019). BART 
assumes that specific semantic relations between words are 
coded as distributed representations over a set of abstract 
relations. The BART model takes pairs of Word2vec vectors 
as input, and then uses supervised learning with both positive 
and negative examples to acquire representations of 
individual semantic relations. After learning from datasets 
(Jurgens et al., 2012; Popov et al., 2017), BART can take 
inputs of any pair of words to calculate a relation vector 
consisting of the posterior probability that the word pair 
instantiates each of the learned relations. The posterior 
probabilities calculated for all learned relations form a 270-
dimensional relation vector, in which each dimension codes 
how likely a word pair instantiates a particular relation. The 
relational similarity between word pairs 𝑖 and 𝑗 is computed 
as the cosine similarity of the corresponding relation vectors: 

𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗
= 1 − 𝑐𝑜𝑠 (𝐵𝐴𝑅𝑇(𝑓𝐴𝑖

, 𝑓𝐵𝑖
), 𝐵𝐴𝑅𝑇(𝑓𝐴𝑗

, 𝑓𝐵𝑗
)). (2) 

Having characterized both featural and relational 
similarity, we now combine these components simply as a 
weighted sum in a computational model of comparison: 

𝑠𝑖𝑚𝑖𝑗 = 𝛼(𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗
) + (1 − 𝛼)𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗

  (3) 
𝑑𝑖𝑓𝑓𝑖𝑗 = −𝛼(𝑠𝑖𝑚𝑟𝑒𝑙𝑖𝑗

) − (1 − 𝛼)𝑠𝑖𝑚𝑓𝑒𝑎𝑡𝑖𝑗
, (4) 

where α is a free parameter that reflects the degree to which 
a comparison weights relational information. We refer to α as 
the relation-weight parameter. Note that both similarity and 
difference judgments are based on a computation of 
similarity: difference judgments simply negate the output of 
that computation. 

Modeling results 
We used the model to generate trial-level predictions for each 
participant. We fit the relation-weight parameter to each 
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participant’s data by maximizing the accuracy with which the 
model predicted a given participant’s responses on the verbal 
comparison task (i.e., model prediction accuracy). If multiple 
values of the relation-weight parameter predicted a 
participant’s data equally well, we took the mean of those 
parameter values. Overall, the fit model predicted participant 
responses just as well across similarity judgments (MAcc = 
.64; SDAcc = .09) and difference judgments (MAcc = .64; SDAcc 
= .08). The value of the fit relation-weight parameter 
predicted the rate with which similarity participants selected 
FD/RS options (Spearman’s ρ = .82, p < .002), and the rate 
with which difference participants selected FS/RD options 
(Spearman’s ρ = .73, p < .001). 

Figure 4 shows the distribution of the parameter, broken-
down according to comparison type. A Mann-Whitney U test 
confirmed what is clear from visual inspection: Fit relation-
weight parameters were reliably greater for similarity 
participants than for difference participants, W = 2540.5, p < 
.001. This result confirms our prediction that the value of the 
relation-weight parameter would be greater when fit to 
participants making similarity judgments than when fit to 
those making difference judgments. Hence, this result further 
supports our main claim: similarity judgments prompt greater 
reliance on relational information than do difference 
judgments. Moreover, these simulations support the validity 
of our manipulation of featural and relational similarity. 

 

 
Figure 4: Relation-weight parameter values fit to individual 
participant data, broken down according to comparison type. 

General Discussion 
For both visual and verbal comparisons, we showed that (1) 
human reasoners have greater difficulty processing relational 
difference than they do relational similarity, and (2) they tend 
to weight relational information more heavily when judging 
similarity than when judging difference. With respect to this 
latter finding, it is important to note that all word-pair stimuli 
in the verbal comparison task instantiated some binary 
semantic relation (either part-of or category coordinate), and 
so mismatching relations (e.g., between hoof:horse and 
goat:cow) constituted alignable differences. Structure 
mapping theory therefore erroneously predicts that such 
mismatching relations would contribute to difference 

judgments just as much as would mismatching features 
(Gentner & Markman, 1994; Markman, 1996). Participants 
should have thus selected all options with the same 
frequency, regardless of whether they were judging similarity 
or difference. Contrary to this prediction, we obtained an 
asymmetry in similarity and difference judgments even 
though all relational differences in our verbal stimulus set 
were alignable. 

We acknowledge that we did not directly test whether 
nonalignable differences contribute to difference judgments.  
However, when Estes and Hasson (2004) did precisely this— 
comparing the influence of alignable and nonalignable 
differences—they showed not only that nonalignable 
differences impacted both similarity and difference 
judgments but also that they had a greater (not lesser) impact 
than did alignable differences. 
 We were able to account for the asymmetry obtained in our 
experiment with verbal materials with a computational model 
of comparison based on machine-generated vector 
representations for both words and their semantic relations. 
When fit to human data at the level of individual participants, 
this model weighted relational information more heavily 
when fit to similarity judgments than when fit to difference 
judgments. Overall, this set of findings provides convergent 
evidence for the claim that assessments of difference are 
more cognitively demanding than assessments of sameness 
(Hochmann, 2021; Hochmann et al., 2016, 2018). This 
dissociation may ultimately be rooted in a representational 
asymmetry in the relations same and different, such that 
people process different as a negation of same. 
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