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Abstract

Explicit similarity judgments tend to emphasize relational
information more than do difference judgments. We propose
and test the hypothesis that this asymmetry arises because
human reasoners represent the relation different as the
negation of the relation same, so that processing difference is
more cognitively demanding than processing similarity. For
both verbal comparisons between word pairs, and visual
comparisons between sets of geometric shapes, we asked
participants to select which of two options was either more
similar to or more different from a standard. On unambiguous
trials, one option was unambiguously more similar to the
standard; on ambiguous trials, one option was more featurally
similar to the standard, whereas the other was more
relationally similar. Given the higher cognitive complexity of
assessing relational similarity, we predicted that detecting
relational difference would be particularly demanding. We
found that participants (1) had more difficulty accurately
detecting relational difference than they did relational
similarity on unambiguous trials, and (2) tended to emphasize
relational information more when judging similarity than
when judging difference on ambiguous trials. The latter
finding was captured by a computational model of
comparison that weights relational information more heavily
for similarity than for difference judgments. Our results
provide convergent evidence for a representational
asymmetry between the relations same and different.

Keywords: comparison, similarity, relational reasoning

Introduction

A naive construal of similarity and difference is that one is
the inverse of the other: As things become more similar, they
become less different. Cognitive scientists, however, have
demonstrated that human reasoners sometimes process the
two relations in a way that violates this inverse relation.
Specifically, people tend to use divergent information when
judging what makes things similar than when judging what
makes things different (Bassok & Medin, 1997; Medin et al.,
1990; Simmons & Estes, 2008; Tversky, 1977). For example,
Medin et al. (1990) asked participants to select which of two
options was more visually similar to or more different from a
standard. Across trials, one option was relationally more
similar to the standard and the other was more featurally
similar. Participants tended to select the relationally similar
option as both more similar and more different from the

standard. Bassok and Medin (1997) found the same
asymmetry using verbal stimuli. Broadly, these findings
indicate that people tend to consider relations more heavily
when judging similarity than when judging difference.
However, the reason for this asymmetry remains unclear.

One attempt to explain this phenomenon invokes structure
mapping theory (Gentner, 1983). Under this hypothesis,
assessments of similarity and difference involve the same
comparison process of structural alignment, in which
representations of entity features and their structural relations
are placed into one-to-one correspondence (Gentner &
Markman, 1994; Markman, 1996; Markman & Gentner,
1993; Sagi et al., 2012). The asymmetry observed by Medin
et al. (1990) is hypothesized to arise from an asymmetry in
the relevant output of this comparison process. Whereas all
commonalities contribute to similarity judgments,
differences are split into alignable differences (i.e., those
filling corresponding roles within a shared relational
structure) and nonalignable differences (i.e., those not based
on corresponding roles). For example, in a comparison
between a car and a bicycle, wheel number would be an
alignable difference (i.e., 4 vs. 2), whereas window number
would be a nonalignable difference because this feature is
only applicable to cars and not bicycles.

Proponents of this explanation noted that the featurally-
similar option in the study by Medin et al. (1990) did not
involve a salient relation, so that any relational difference
between it and the standard did not constitute an alignable
difference, and was therefore ignored in difference
comparisons. However, later work found that both alignable
and nonalignable differences contribute to judgments of
difference; indeed, the latter actually exerted a greater
influence than the former (Estes & Hasson, 2004). This result
appears to undermine the core assumption required to explain
asymmetries in similarity and difference judgments in terms
of structure mapping theory.

As an alternative explanation, we propose that this
asymmetry emerges from a representational asymmetry
between the relations same and different. Whereas assessing
similarity involves a relatively straightforward comparison of
degree of sameness, assessing difference involves a more
complex comparison of not-sameness, in a form of negation
processing. This analysis has been used to explain the well-
established developmental lag between children’s
understanding of the concepts same vs. different (Hochmann,
2021; Hochmann et al., 2016, 2018). In general, processing
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of negation tends to place additional cognitive load on human
reasoning. For example, determining the truth of a
proposition including a negated expression (e.g., “star isn’t
above the plus”) takes longer than a matched positive
expression (e.g., “star is below the plus”) (Carpenter & Just,
1975; Clark & Chase, 1972). Introducing extra negation into
sentences makes them more difficult to interpret (e.g.,
“Because he often worked for hours at a time, no one
believed that he was not capable of sustained effort”)
(Sherman, 1976). Previous research has shown that
processing negation often involves multiple steps, including
processing the affirmative components of negated phrases
before processing the entire phrase (Hasson & Glucksberg,
2006). Although the complexity of negation is most
pronounced when an explicit negative such as not is used,
processing difficulty is also increased for expressions that
incorporate implicit negation (e.g., words such as few, little,
or deny; Clark, 1976).

Human reasoners can compare entities on the basis of both
features of individual entities, and also relations between
entities and their component parts. Importantly, processing
and comparing relational information is more cognitively
demanding than processing featural information (Bunge et
al., 2005; Green et al., 2010; Halford et al., 1998; Kroger et
al., 2002, 2004; Waltz et al., 2000). It follows that
incorporating relational information will be particularly
demanding when the task also involves negation. As a
consequence, difference judgments—which involve implicit
negation—are less likely to be sensitive to relational
information.

We tested this hypothesis for both verbal comparisons
between word pairs and visual comparisons between sets of
geometric shapes. For both types of stimuli, we measured
participants’ sensitivity to featural and relational information
in a 2-alternative forced-choice task, in which participants
selected which of two options was more similar to or more
different from a standard. In order to directly examine the
relative difficulty of similarity and difference judgments, we
included unambiguous comparisons, in which one option was
unambiguously more similar to a standard than the other
based either on features or on relations. Participants
completed two kinds of unambiguous comparisons: On
featural trials, failure to select the similar option would
reflect a difficulty in using featural similarity in comparison,
whereas failure to select the similar option on relational trials
would reflect a difficulty in using relational similarity. We
expected that relational trials would be more cognitively
demanding, and hence prove more difficult for participants
judging difference as compared to similarity. On the other
hand, since featural trials could be successfully completed
without any relation processing, performance for difference
versus similarity judgments was expected to be more equal.
We also included ambiguous comparisons, for which either
of the options might be selected depending on whether
features or relations are emphasized (Bassok & Medin, 1997;
Medin et al., 1990). We predicted that when judging

difference as compared to similarity, participants would tend
to base their choices on features rather than relations.

Experiment

Method

Participants Participants were 184 undergraduates (Mg =
20.70, SD,g. = 3.73, range = [18, 51]) at the University of
California, Los Angeles (UCLA). Our sample consisted of
128 female, 51 male participants, and 3 nonbinary; 2
participants did not report their gender. All participants
completed our tasks online to obtain partial course credit in a
psychology class. The study was approved by the
Institutional Review Board at UCLA.

O QO
* A *x Kk

Figure 1: Example trials of the verbal comparison (left) and
visual comparison (right) tasks. In both examples, the left
bottom option is more featurally similar to but more
relationally different from the standard at the top, whereas the
right option is more featurally different from but more
relationally similar to the standard.

thorn : rose

shrub : bush

finger : hand

Comparison tasks All participants completed two
comparison tasks: a verbal task featuring word-pair stimuli
and a visual task featuring geometric shape stimuli. On each
trial, participants were presented with a standard at the top of
the screen and two options on either side at the bottom of the
screen. Figure 1 shows an example trial of the verbal task on
the left and the visual task on the right. Some participants
were instructed to select which option was more similar to
the standard across both tasks, whereas other participants
were asked to select which was more different from the
standard across both tasks.

Each comparison task consisted of 24 trials, presented in a
random order. Of these, 6 unambiguous trials included one
option that was unambiguously more similar to the standard
than the other. Correct responding on half of the
unambiguous trials was more reliant on detecting the relative
featural similarity of the two options, and so we refer to these
as featural trials. The other 3 unambiguous trials were
relational trials. On these, correct responding was more
reliant on detecting the relative relational similarity of the two
options.

The remaining 18 trials consisted of one option that was
more featurally similar to but relationally different from the
standard (FS/RD; e.g., the left option of both trials depicted
in Figure 1) than the other option, which was more featurally
different from but relationally similar to the standard (FD/RS;
e.g., the right options of both trials in Figure 1). We refer to
these trials as ambiguous trials because they were constructed
so that selecting either option was valid, depending on a
participant’s criteria for judging similarity or difference. We
used these trials to compare participants’ preferential
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weighting of featural or relational information in their
similarity and difference judgments. Selecting the FS/RD
option as more similar indicates a preferential weighting of
featural information, whereas selecting it as more different
indicates a preferential weighting of relational information,
and vice versa for selecting the FD/RS option.

For the verbal task, featural similarity was determined by
the semantic similarity among the individual words in each
word pair. The left panel of Figure 1 shows an example of an
ambiguous trial of the verbal task. The individual words
composing the standard (thorn and rose) and those
composing the right option (shrub and bush) all refer to
concepts related to garden plants, and thus are more
semantically similar than the words composing the left option
(finger and hand), which are generally less semantically
similar to those in the standard.

Relational similarity was determined by the semantic
relation instantiated by each word pair. Returning to the left
panel of Figure 1, the standard (thorn:rose) and the left option
(finger:hand) both instantiate the semantic relation part-of,
and are thus more relationally similar to each other than the
standard is to the right option (shrub:bush), which most
saliently instantiates an instance-of relation (which does not
match the relation in the standard). In addition to part-of and
instance-of relations, verbal comparison trials included
antonym (e.g., love:hate), synonym (e.g., big:large), category
coordinate (e.g., broom:mop), and  located-in (e.g.,
grill:patio) relations.

For the visual comparison task, featural similarity was
determined by a shared salient visual feature among
individual objects, either shape (as with the left option in the
right panel of Figure 1) or shading. Relational similarity was
determined by the visual relation instantiated by each set of
shapes. Most of the visual comparison trials were comparable
to the one presented in the right panel of Figure 1, where the
standard and the FD/RS option (right) instantiated the same
relation and each consisted of repetitions of different shapes,
while the FS/RD option (left) violated the standard’s same
relation but instantiated a same-shading relation and shared
one object of the same shape as the standard. Other visual
relations featured in this task included symmetry, consisting
of two identical objects reflected about a vertical axis; 4BA
sequences consisting of three objects, of which the first and
last were identical to each other; ABC sequences consisting
of three unique objects; and AABB sequences consisting of
two repetitions of different objects. We acknowledge that
some FS/RD options in the visual comparison task may not
have been interpreted as instantiating a relation, so
performance on this test does not constitute as strong a test of
the structure mapping theory as does the verbal comparison
task.

Ravens Progressive Matrices Following the verbal
comparison task, all participants completed an abridged, 12-
problem version of the Ravens Advanced Progressive
Matrices (RPM) (Arthur et al., 1999). On each problem in
this task, participants are presented with a 3x3 array of simple
geometric objects, with the object in the bottom-right corner

of the array missing, and they are asked to select which one
of 8 options best completes the pattern instantiated by the
incomplete array. Carpenter et al. (1990) showed that
individual differences in performance on these visual
reasoning problems predict differences in the ability to
induce abstract relations between objects and to maintain a
hierarchy of problem goals and subgoals in working memory.
We used this test as a measure of individual differences in
general reasoning ability. Since our key manipulation of
comparison type (similarity vs. difference) was between-
subjects, we included RPM score as a covariate in analyses,
in order to compare performance on similarity versus
difference judgments after controlling for any individual
differences in general reasoning ability.

Procedure All participants completed a verbal comparison
task and a visual comparison task in a counterbalanced order,
and then completed the Ravens Progressive Matrices.

Results

Performance on unambiguous trials Performance on
unambiguous trials across conditions is depicted in Figure 2.
Overall, participants performed well on unambiguous trials.
Those making similarity judgments (n = 98) frequently
selected the more similar option for both the verbal task (Min
= .80, SDgyn = .17) and the visual task (M, = .86, SDgim =
.14). Those making difference judgments (n = 86) frequently
selected the more different option across both tasks (verbal:
Mdmf= .77, Sde"= .21; ViSllal: Mdiz?: .77, SDdiff= .22). We
refer to the above responses as ‘accurate’. Of particular
interest was the relative accuracy with which similarity and
difference participants completed relational trials.

verbal | | visual I
1.00 e
—E —E

§ 0.75 B Comparison type
e .
3 0.50 |:| difference
2 0.251 . similarity

0.004 - - : .

featural  relational featural  relational
Trial type

Figure 2: Human accuracy on unambiguous trials of verbal
(left) and visual (right) comparison tasks, broken down
according to trial type (featural vs. relational) and comparison
type (difference vs. similarity). Error bars reflect + standard
error of the mean, and horizontal line reflects chance
performance.

We used the glmer function from version 1.1.26 of the
LME4 R package (Bates et al., 2015) in R version 4.1.1 (R.
Core Team, 2021) to fit a logistic mixed-effects model to
performance on unambiguous trials. We defined a full model
including participant and comparison problem as random
intercept effects; comparison task (verbal vs. visual),
comparison type (similarity vs. difference) and trial type
(featural vs. relational), as well as an interaction between the
last two as fixed effects. As discussed previously, we
included RPM score as a covariate, along with task order
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(verbal first vs. visual first) and trial number. The latter two
variables respectively account for any impact of task order
and any potential improvement in performance across trials
within each task.

We used likelihood-ratio tests to compare this full model
to reduced models that omitted a term of interest but that was
otherwise equivalent to the full model. First, we tested
whether performance generally differed across verbal and
visual tasks. To do so, we fit a reduced model to the data that
lacked the comparison task term but that was otherwise
equivalent to the full model. We used a likelihood ratio test
to compare the full model to the reduced model and found
that removing the comparison task term did not increase
model prediction error, AAIC = -1.40, * (1) = .65, p = .420.
This result indicates that the verbal and visual tasks did not
differ in their overall difficulty.

Next, we tested our main hypothesis that relational trials
would be more difficult for participants judging difference
than for those judging similarity. In order to do to so we
compared our full model to a reduced model that lacked the
Jjudgment type x trial type interaction term (but that retained
the individual terms for judgment type and trial type).
Dropping the interaction term did increase model prediction
error, AAIC = 10.7, y* (2) = 14.66, p < .001, indicating that
performance differences between participants making
similarity judgments and difference judgments varied across
featural and relational trials. To examine this interaction
further, we used the emmeans and pairs functions from
version 1.8.4 of the emmeans R package (Lenth, 2023) to
compare the relevant estimated marginal means of our full
model. Across verbal and visual tasks, similarity participants
(M = .81, SD = .18) outperformed difference participants (M
=.69, SE = .22) on relational trials, z=4.81, p <.001, but not
on featural trials, z = .04, p = .966 (similarity: M = .84, SD =
.14; difference: M = .84, SD = .20). This result supports our
hypothesis that difference judgments involve more
cognitively demanding comparisons than similarity
judgments, which particularly impact relational trials.
Notably this difference in performance persisted even after
we accounted for individual differences in reasoning ability
by including RPM score as a covariate in our full model. A
likelihood ratio test comparing the full model and a reduced
model that lacked the RPM score term showed that removing
that term indeed increased model prediction error, AAIC =
13.5, x> (1) = 15.56, p < .001. Thus, even though general
reasoning ability influenced performance on unambiguous
trials, comparison type impacted performance specifically on
relational trials, over and above individual differences in this
ability.

Relational responding on ambiguous trials

Next, we examined ambiguous trials to estimate participants’
preferential weighting of featural and relational information
in ambiguous comparisons for which the two kinds of
information are pitted against each other. Overall,
participants selected the FD/RS option more often regardless
of whether they were judging similarity (M = .61, SD = .29)
or difference (M = .62, SD = .26). Notably, selecting this

option implies different criteria based on comparison type:
Selecting FD/RS as more similar implies an emphasis on
relational similarity, whereas selecting that option as more
different implies an emphasis on featural difference. In order
to assess participant responses across comparison types
(similarity vs. difference), we grouped responses according
to whether they indicated an emphasis on relational
information. We thus compared responses in which similarity
participants selected the FD/RS option and in which
difference participants selected the FS/RD option, and refer
to these as relational responses.

As with unambiguous trials, we fit logistic mixed-effects
models to predict relational responses on ambiguous trials.
We defined a full model including participant and
comparison problem as random intercept effects; comparison
task (verbal vs. visual), comparison type (similarity Vvs.
difference) as fixed effects; and RPM score, task order
(verbal first vs. visual first), and trial number as covariates.

As was done for unambiguous trials, we used likelihood-
ratio tests to compare this full model to reduced models that
omitted a term of interest but that was otherwise equivalent
to the full model. First, we compared the full model to a
reduced model omitting the comparison task term. We found
that dropping this term did not reduce model prediction error,
AAIC=-2.0, x* (1)=.01, p = .930. This result again indicates
that relational responding did not differ across verbal and
visual comparison tasks.

Next, we compared relational response rates for similarity
judgments and difference judgments, to test our main
prediction that participants will preferentially weight
relational information more when judging similarity than
when judging difference. Indeed, dropping the comparison
type term from the full model did increase prediction error,
AAIC = 33.3, * (1) = 35.31, p < .001, which confirms our
main prediction that relational response rates were affected
by comparison type on ambiguous trials. As on unambiguous
trials, this effect on ambiguous trials held even after we
accounted for individual differences in reasoning ability by
including RPM score as a covariate in our full model.
Omitting RPM score from the full model also increased
model prediction error, AAIC = 2.6, y* (1) = 4.60, p = .032.
Even though individual differences in reasoning ability
predicted relational responding on ambiguous trials, our
manipulation of comparison type impacted responses over
and above these individual differences.

This result disconfirms the hypothesis that both similarity
and difference judgments are based on the same inputs to a
structural alignment process, as is assumed by structure
mapping theory (Gentner, 1983; Gentner & Markman, 1994;
Markman & Gentner, 1993; Sagi et al., 2012). According to
that theory, similarity judgments are based on all
commonalities, whereas differences are sensitive to alignable
but not nonalignable differences. In the present study,
however, all relational differences on the verbal task (and
possibly the visual task) were alignable, so structure mapping
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theory erroneously predicts symmetric responding across
similarity and difference judgments.

verbal | I visual |

o =
=]
=1

|

o
5
[=]

o
)
32

o
o
o

Relational response rate
1

similarity difference similarity

Comparison type

difference

Figure 3: Relational response rate on ambiguous trials in
verbal (left) and visual (right) comparison tasks, broken down
according to comparison type (difference vs. similarity).
Unfilled circles each reflect an individual participant’s
response rates, dark lines reflect mean response rates, box
boundaries reflect + standard error of the mean, and
horizontal line corresponds to indiscriminate selection of
relational versus featural options.

Computational modeling

In order to formally characterize the human comparison
process on ambiguous trials, we attempted to predict
responses of individual participants on the verbal comparison
task using a computational model. This model includes a
weighting mechanism that controls the relative contribution
of relational and featural information to a comparison
judgment. We predicted that this weighting mechanism
would create the observed asymmetry by altering the
emphasis on relational information between similarity and
difference judgments. Moreover, the computational model
operates entirely on semantic representations of words and
relations generated by machine learning, avoiding any hand-
coding or reliance on experimenters’ intuitions. Unlike
computational implementations of structure mapping theory,
the present model captures the eduction of relations (Lu et
al., 2019; Spearman, 1923): generation of relations from
nonrelational inputs. The same basic framework could be
applied to visual judgments, given an appropriate front-end
to create representations of visual stimuli.

Model specification and approach

Recall that the comparison task dissociated featural and
relational information, and that the verbal task involved
comparisons between word pairs (e.g., love:hate and
spouse:partner). We operationalized featural information as
individual word meanings (e.g., love, hate, wide, and narrow)
and relational information as semantic relations holding
between paired words (e.g., antonym-of, synonym-of). Our
computational model incorporates semantic representations
of both individual words and relations between them.

In order to represent individual word meanings, we used
pre-trained Word2vec word embeddings (Mikolov et al.,
2013), which represent word meanings as high-dimensional
vectors of length 300. These vectors constitute the hidden
layer of activation within a neural network trained to predict
patterns of text in sequence as they appear in a large corpus

consisting of Google News articles (about 100 billion words).
Such word embeddings provide psychological models of
semantic memory in that they preserve the similarity
structure of individual word meanings in a psychologically
realistic way. These embeddings have been used to
successfully model a number of cognitive processes beyond
similarity judgments, including human memory search,
categorization, and decision making (Bhatia & Aka, 2022;
Glinther et al., 2019).

To compute lexical similarity, the meaning of a word pair
is represented by a simple aggregate of the semantic vectors
of the two individual words. We use 4 to denote the first word
in a word pair and B to represent the second word in a word
pair. We compute the featural similarity between two word
pairs i and j as the cosine similarity between concatenated
word vectors constituting 7, [fy,, f5,], and those constituting

j’ [fAj!fBj]:
Simfeatij =1-cos ([fAi'fBi]' [fA]’fB]]) (1)

To compute relational similarity, we used representations
generated by Bayesian  Analogy with  Relational
Transformations (BART), a learning model that has been
used to predict human analogy performance and graded
judgments of relational similarity (Ichien, Lu, & Holyoak,
2022; Lu, Chen, & Holyoak, 2012; Lu et al., 2019). BART
assumes that specific semantic relations between words are
coded as distributed representations over a set of abstract
relations. The BART model takes pairs of Word2vec vectors
as input, and then uses supervised learning with both positive
and negative examples to acquire representations of
individual semantic relations. After learning from datasets
(Jurgens et al., 2012; Popov et al., 2017), BART can take
inputs of any pair of words to calculate a relation vector
consisting of the posterior probability that the word pair
instantiates each of the learned relations. The posterior
probabilities calculated for all learned relations form a 270-
dimensional relation vector, in which each dimension codes
how likely a word pair instantiates a particular relation. The
relational similarity between word pairs i and j is computed
as the cosine similarity of the corresponding relation vectors:

Simyey; = 1 —cos (BART (fa, fz,), BART (fa f3))).  (2)
Having characterized both featural and relational
similarity, we now combine these components simply as a
weighted sum in a computational model of comparison:
sim;; = a(simrelij) +(1- a)simfeatij 3)

diffij = _a(Simrelij) -(1- a)Simfeati]-s 4)
where a is a free parameter that reflects the degree to which
a comparison weights relational information. We refer to a as
the relation-weight parameter. Note that both similarity and
difference judgments are based on a computation of
similarity: difference judgments simply negate the output of
that computation.

Modeling results

We used the model to generate trial-level predictions for each
participant. We fit the relation-weight parameter to each
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participant’s data by maximizing the accuracy with which the
model predicted a given participant’s responses on the verbal
comparison task (i.e., model prediction accuracy). If multiple
values of the relation-weight parameter predicted a
participant’s data equally well, we took the mean of those
parameter values. Overall, the fit model predicted participant
responses just as well across similarity judgments (Myc. =
.64; SD 4. = .09) and difference judgments (Mc. = .64; SD 4cc
= .08). The value of the fit relation-weight parameter
predicted the rate with which similarity participants selected
FD/RS options (Spearman’s p = .82, p < .002), and the rate
with which difference participants selected FS/RD options
(Spearman’s p = .73, p <.001).

Figure 4 shows the distribution of the parameter, broken-
down according to comparison type. A Mann-Whitney U test
confirmed what is clear from visual inspection: Fit relation-
weight parameters were reliably greater for similarity
participants than for difference participants, W = 2540.5, p <
.001. This result confirms our prediction that the value of the
relation-weight parameter would be greater when fit to
participants making similarity judgments than when fit to
those making difference judgments. Hence, this result further
supports our main claim: similarity judgments prompt greater
reliance on relational information than do difference
judgments. Moreover, these simulations support the validity
of our manipulation of featural and relational similarity.
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Figure 4: Relation-weight parameter values fit to individual
participant data, broken down according to comparison type.

General Discussion

For both visual and verbal comparisons, we showed that (1)
human reasoners have greater difficulty processing relational
difference than they do relational similarity, and (2) they tend
to weight relational information more heavily when judging
similarity than when judging difference. With respect to this
latter finding, it is important to note that all word-pair stimuli
in the verbal comparison task instantiated some binary
semantic relation (either part-of or category coordinate), and
so mismatching relations (e.g., between hoof-horse and
goat:cow) constituted alignable differences. Structure
mapping theory therefore erroneously predicts that such
mismatching relations would contribute to difference

judgments just as much as would mismatching features
(Gentner & Markman, 1994; Markman, 1996). Participants
should have thus selected all options with the same
frequency, regardless of whether they were judging similarity
or difference. Contrary to this prediction, we obtained an
asymmetry in similarity and difference judgments even
though all relational differences in our verbal stimulus set
were alignable.

We acknowledge that we did not directly test whether
nonalignable differences contribute to difference judgments.
However, when Estes and Hasson (2004) did precisely this—
comparing the influence of alignable and nonalignable
differences—they showed not only that nonalignable
differences impacted both similarity and difference
judgments but also that they had a greater (not lesser) impact
than did alignable differences.

We were able to account for the asymmetry obtained in our
experiment with verbal materials with a computational model
of comparison based on machine-generated vector
representations for both words and their semantic relations.
When fit to human data at the level of individual participants,
this model weighted relational information more heavily
when fit to similarity judgments than when fit to difference
judgments. Overall, this set of findings provides convergent
evidence for the claim that assessments of difference are
more cognitively demanding than assessments of sameness
(Hochmann, 2021; Hochmann et al., 2016, 2018). This
dissociation may ultimately be rooted in a representational
asymmetry in the relations same and different, such that
people process different as a negation of same.
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