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Abstract

Humans exhibit a remarkable ability to learn relational
concepts from a small number of examples. On the Synthetic
Visual Reasoning Test (SVRT), a collection of 23 problems
that require learning relational concepts, people typically
discover the relational rules from a handful of examples. An
important question is what learning mechanisms underlie the
human ability to acquire relational concepts so quickly.
Previous work has demonstrated that comparison of examples
via analogical mapping underlies rapid relational concept
acquisition. Here, we examine whether learners switch to
learning strategies that do not involve comparison when
cognitive load is high. We conducted two experiments that
varied the display format and problem order for the SVRT.
When problems are presented in an easy-to-hard order, people
learn more efficiently when prior examples are displayed in
spatially segregated sets, consistent with the use of analogical
mapping as a learning strategy. However, when the problems
are presented in a random order, the advantage of spatially
segregated displays is eliminated. We propose that when hard
problems are encountered early in a problem sequence,
analogical mapping becomes too demanding, causing people to
fall back on a less efficient learning strategy that does not
require the comparison of multiple examples.

Keywords: relations; concepts; learning; analogical
comparison; mapping; abstraction
Introduction

The rapidity of human concept learning is particularly
apparent for concepts that are primarily defined by relations
between entities, rather than solely by attributes of individual
entities. Many everyday concepts are defined by relational
structures connecting entities (Gentner & Kurtz, 2005;
Asmuth & Gentner, 2017; Goldwater & Schalk, 2016). For
example, a “barrier” is something that prevents the
achievement of some goal. Different instances of relational
concepts can be highly variable in their attributes (e.g., a
barrier could be a roadblock or poverty). Learning such
concepts requires identifying shared relational structures
connecting objects, rather than focusing solely on features of
individual objects (Corral, Kurtz, & Jones, 2018).

A relatively simple laboratory task that involves learning
relational concepts is the Synthetic Visual Reasoning Test
(SVRT). This task (see Figure 1) consists of a set of 23
categorization problems, for each of which the goal is to
correctly sort novel images into those that fit a particular
category versus those that do not (Fleuret et al., 2011).
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Figure 1: Examples of SVRT problems #11 and #6,
respectively the easiest and hardest problems based on
human performance from Fleuret et al. (2011). Top: positive
examples of the categories. Bottom: negative examples of
the categories.

Categories in SVRT problems are defined by visuospatial
relations between shapes (e.g., inside-of, larger-than).
Although SVRT images are perceptually simple, the spatial
relations underlying a category can be subtle. Humans can
nonetheless solve many SVRT problems from a handful of
examples, whereas models that solved the ImageNet
challenge (Krizhevsky, Sutskever, & Hinton, 2017) require
several hundreds of thousands of SVRT training examples,
and for some problems, fail to generalize to a similar task
(Kim, Ricci, & Serre, 2018; Messina et al., 2021).

The deep learning models that have been applied to the
SVRT are trained in an end-to-end fashion from pixel-level
inputs of images; no prior knowledge of visual features or
relations is assumed. But for simple geometric forms of the
sort used in the SVRT, people likely come equipped with
basic representational elements, including both features of
objects (e.g., size, shape) and basic visuospatial relations.
Several models developed in cognitive science, each
equipped with such building blocks, suggest ways in which
people might learn SVRT concepts from relatively few
examples. Here we will consider three general approaches.

The first and perhaps simplest possibility is that people
may adopt a learning mechanism based on accumulation of
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Figure 2: Left: sorted display in which previous instances are separated into positive vs. negative examples (blue or red frame).
Right: shuffled display in which previous instances are intermixed in a randomized presentation order.

information about the statistical associations between
features of objects and category labels, in combination with
hypothesized rules and storage of individual exemplars (e.g.,
Erickson & Kruschke, 1998; Nosofsky & Palmeri, 1998).
Although such statistical learning models have not been
directly applied to the SVRT, they have been used to
successfully predict human data on the acquisition of
concepts defined by simple visual forms. It seems reasonable
that a visual relation, such as 4 has same shape as B, could
serve as the basis of a rule to predict category membership
based on statistical associations.

A second possible approach that can achieve rapid concept
learning is program synthesis (combined with Bayesian
inference), in which representations of concepts are similar
to computer programs that can each reproduce a concept to
varying degrees of success. By iteratively combining and
rearranging a few basic functions, (assumed to be available
prior to the concept learning task), the program synthesis
approach can generate a whole space of possible concept
representations (Ellis, Solar-Lezama, & Tenenbaum, 2015).
After narrowing this space via Bayesian inference, program
synthesis can—with sometimes as little as one example—
recreate handwritten characters (Lake, Salakhutdinov, &
Tenenbaum, 2015), causal structures (Lake & Piantadosi,
2019), and visuospatial concepts including those used in the
SVRT (Ellis et al., 2015).

A third possible approach, which focuses most directly on
relational representation, involves learning concepts by
analogical mapping. Analogical mapping—the process of
identifying relational correspondences between examples—
is most often considered as a mechanism for transferring
knowledge from one domain to another. However, mapping
can also serve as a mechanism for induction, as comparison
can induce an abstraction of shared relational structures that
guides subsequent transfer (Gick & Holyoak, 1983). A
number of computational models have used analogical
mapping as a guide for visual concept induction (e.g.,
McLure, Friedman, & Forbus, 2010; see Forbus, Ferguson,
Lovett, & Gentner, 2017). At least one learning model based
on analogical mapping has been applied to the SVRT
problems (Shurkova & Doumas, 2022).

A crucial distinction between analogical mapping and both
the statistical approach and program synthesis is that
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mapping depends on explicit comparison of one example to
another, whereas the other two approaches operate by
processing each individual example sequentially. There is
evidence that humans learn to discriminate different visual
categories by selectively attending to features of a concept
that are indicative or diagnostic of category membership
(Rehder & Hoffman, 2005; Zaki & Salmi, 2019). Analogical
mapping between positive examples of a category (within-
category comparisons) can focus attention on shared
relations, whereas mapping a positive example to a negative
“near miss” that lacks a single critical relation (between-
category comparisons) can similarly focus attention to a
relation necessary for category membership (Winston, 1975).

Of course, neither the statistical approach nor program
synthesis strictly prohibit comparison-based learning. In fact,
for at least one model of the statistical approach, a limited
form of comparison is assumed (SAT-M; Carvalho &
Goldstone, 2022). A key finding in work on concept learning
is that selective attention is a product of discovering
similarities or differences between recently seen examples,
depending on the order in which they are presented (Carvalho
& Goldstone, 2014; Zaki & Salmi, 2019). In interleaved
orderings, unique differences between categories become
salient to the observer, facilitating discovery of category
boundaries, whereas blocked orderings highlight same-
category  similarities and reveal category-specific
information (Carvalho & Goldstone, 2014, 2017). To account
for these learning differences between sequence types, the
model proposed by Carvalho and Goldstone (2022)
differentially weights the encoding strengths of an example’s
features based on similarities and differences to features of
the preceding example.

In analogical mapping, in contrast, two presented examples
are compared via the formation of one-to-one relational
correspondences that reveal shared structure. In mapping
models, relations assume a distinct representational status
from their arguments, traditionally in the form of role-filler
bindings (e,g., Falkenhainer, Forbus, & Gentner, 1989;
Hummel & Holyoak, 1997). Models of statistical learning
typically do not separate relational from non-relational
information when obtaining features of concepts, resulting in
the use of relationally-entangled representations of concepts.
Such entangled features are often expressed as a



multidimensional vector, which makes comparison of
relations implicit in an overall calculation of distance.

Although analogical mapping can foster acquisition of
relational categories (Halford, Bain, Maybery, & Andrews,
1998; Halford & Busby, 2007; Christie & Genter, 2010;
Kurtz, Boukrina, & Gentner, 2013; Jung & Hummel, 2015),
there is also evidence that the mapping process places a
considerable burden on working memory and related
executive processes (e.g., Waltz, Lau, Grewal, & Holyoak,
2000; Philips, Takeda, & Sugimoto, 2007). It is possible that
people have multiple strategies for learning relational
categories and will be more likely to use analogical mapping
when the learning situation imposes less cognitive load.
However, it remains unclear whether people can learn
relational categories using alternative strategies that do not
involve explicit comparison of relational structure (Corral et
al., 2018; Goldwater, Don, Krusche, & Livesey, 2018). In
addition, it is unclear whether people can switch learning
strategies in response to changes in cognitive load during the
course of learning.

The SVRT is a promising testbed for probing these
questions, as the standard method for administering the 23
learning problems includes a procedure that seems likely to
aid in comparing examples. As illustrated in Figure 2 left, the
display used by Fleuret et al. (2011) maintained a visual
record of all the examples previously presented, with positive
and negative examples sorted into two spatially segregated
groups that appear below the example presented on the
current trial. This sorted display format likely encourages
analogical comparisons between positive examples (which
appear together) to extract common relational structures,
similar to blocked sequences which encourage within-
category comparison (Corral et al., 2018). However, like
interleaved sequences, sorted displays may also support
comparisons between positive and negative examples to
differentiate the relational structures involved in each
category (which although spatially separated, are each
grouped to make systematic comparisons relatively easy).
Thus, sorted displays may facilitate a systematic combination
of within- and between-category comparisons.

To determine whether the display format may in fact
impact learning on the SVRT, we performed two experiments
in which the cumulative record of previous examples was
either sorted (as in the original study) or shuffled, with
examples recorded in the same random order as that in which
they had been presented. If people use analogical mapping to
learn the concepts, acquisition should be more efficient when
examples are sorted rather than shuffled. Both experiments
test the hypothesis that sorted displays facilitate rapid
learning, while Experiment 2 varies another procedural
factor—the order of the 23 problems with respect to their
difficulty—that seems likely to influence cognitive load.
When the learning situation imposes greater cognitive load
by introducing difficult problems toward the start of the
experiment, participants may forgo analogical mapping as a
learning strategy, in which case the advantage of sorted
displays may disappear.
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Experiment 1

To discriminate between analogical mapping and learning
mechanisms that do not involve comparison, we modified the
original SVRT paradigm. For each individual SVRT
problem, participants were presented with a series of trials in
which positive and negative examples of the to-be-learned
category were presented, one at a time in random order. On
each trial, participants classified the novel instance into one
of two categories defined by negative and positive examples,
after which they received feedback.

Crucially, as participants viewed each novel instance, they
also continued to see all the instances shown on previous
trials. In Experiment 1, we displayed these instances in one
of two spatial organizations. In a sorted display (Figure 2
left), the examples are segregated into two sets, with positive
examples on the left and negative examples on the right (the
same display type used in the original study by Fleuret et al.,
2011). In a shuffled display (Figure 2 right), the examples
appear in the same random order in which they had been
presented. In both displays each example was shown with a
colored border (blue or red) that distinguished positive from
negative instances.

Although the information provided by the sorted display
was redundant given the color coding, it seems likely the
spatial grouping makes it easier to perform systematic
analogical mappings between examples from either the same
category (within a spatially-defined set) or from different
categories (across sets). When the display is instead shuffled,
with all previous instances randomly intermixed on the
screen, comparisons are expected to be more difficult and less
systematic. Shuffled displays do enhance between-category
comparisons which reveal category differences, but such
differences are meaningful only against the backdrop of a
common relational structure (i.e., alignable differences);
discovering a common relational structure is more likely
facilitated by sorted displays. The analogical mapping
hypothesis, therefore, predicts that sorted displays will lead
to faster concept learning. In contrast, approaches that do not
involve comparison predict that the two displays will lead to
equivalent learning rates.

Previous work has established that the 23 different SVRT
problems vary in overall difficulty (Fleuret et al., 2011).
Based on human results reported for individual problems, we
divided the problems into two subsets, using a natural break
based on overall difficulty, to form a set of 13 easy and 10
hard problems. In accord with evidence that in general an
“easy-to-hard” ordering of problems supports more efficient
overall learning (Pashler & Mozer, 2013), the easy subset of
problems was presented before the hard subset.

Method

Participants 64 undergraduates from the University of
California, Los Angeles (UCLA) participated for course
credit (46 female, 18 male; mean age = 20.1). Sample sizes
were equal for the two display conditions (32 each).



Materials, Design, and Procedure The SVRT is a collection
of 23 concept learning problems, each of which consists of
two categories: one defined by common spatial relations and
the other defined by negative examples that do not instantiate
those relations. Participants were not informed that one of the
categories is defined by negative examples. They were
instructed to categorize novel instances into either category
A (always the positive examples) or category B (always the
negative examples) by pressing “f” or “” on the keyboard,
respectively. Participants received a maximum of 34 novel
instances per problem (17 positive, 17 negative).

On each trial, a novel instance, chosen randomly from
either category, was presented on the screen. After a
categorization decision was made (without speed pressure),
feedback was presented for 1s (“Correct!” or “Incorrect!”).
The current instance then moved to the bottom of the screen,
with a smaller image size of 0.64 the original width,
surrounded by a colored frame to distinguish categories (blue
for category A, red for category B). In a sorted display, the
novel instance appeared either on the left (positive examples)
or right (negative examples), separated by a white line. In a
shuffled display, previously encountered instances
accumulated in order from left to right. In both conditions, no
more than 10 previously encountered instances accumulated
in each row; if necessary, a second row was added below the
first. Previous instances were juxtaposed right next to each
other to maximize the size of each image.

Half the participants were randomly assigned to a sorted
display, whereas the other half were assigned to a shuffled
display. All participants first solved the set of 13 easy
problems, randomized in order, and then the 10 hard
problems, also randomized in order. (Participants were not
told the order of the problems.) Presentation of examples for
each problem continued until the participant reached a
criterion of 7 correct in a row, or until a maximum of 34
instances had been shown. If the problem was a failure
(criterion not reached), then trials to criterion was set to the
maximum value of 34. Otherwise, trials to criterion was set
to the total number of trials in the problem minus 7, so that
the 7 correct in a row did not count toward trials to criterion.

Results and Discussion

For each problem, two dependent variables were measured:
trials to criterion (the number of trials before achieving a
criterion of 7 correct in a row), and proportion of failures
(criterion not achieved within the maximum allotment of 34

learning trials). For data analyses, mean trials to criterion was
obtained by averaging each participant’s trials to criterion
separately for easy and hard problems. For the failure
measure, we first summed each participant’s number of
failures to obtain a total number of failures for easy problems
and a total number of failures for hard problems. We then
normalized both sums by dividing each by the total number
of problems (13 for easy, 10 for hard). Finally, we averaged
across participants’ mean trials to criterion and proportion of
failures, separately for easy and hard problems and for each
display condition. Note that lower trials to criterion and lower
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Figure 3: Learning performance in Experiment 1. Lower
trials to criterion and lower proportion of failures indicate
better learning performance. Sorted displays yielded better
learning performance than shuffled displays, with lower trials
to criterion and a smaller proportion of failures. Error bars
represent 95% confidence intervals of the mean. Trials to
criterion do not include the 7 correct in a row to achieve
criterion.

proportion of failures indicate better learning performance.
The resulting means for each dependent measure and
condition are depicted in Figure 3.

We used trials to criterion and proportion of failures as
dependent measures in two separate mixed-factors ANOVAs
with a between-subjects factor (sorted vs. shuffled) and a
within-subjects factor (easy vs. hard problems). These
analyses revealed a main effect of display type: for the sorted
displays, trials to criterion was lower (M = 8.61; F(1, 62) =
7.92, p <0.01) with a lower proportion of failures (M =0.11;
F(1,62)="7.92, p <0.01) than for shuffled displays (trials to
criterion: M = 12.21; proportion of failures: M = 0.23). As
expected, there was also a main effect of easy/hard difficulty:
compared to easy problems (trials to criterion: M = 7.07;
proportion of failures: M = 0.095), hard problems led to
higher trials to criterion (M = 13.75; F(1, 62) = 154.89, p <
0.001) and higher proportion of failures (M = 0.24; F(1, 62)
= 58.05, p < 0.001). The interaction between sorted/shuffled
display and easy/hard problems was not significant for either
trials to criterion (F(1, 62) = 1.77, p = 0.19) or proportion of
failures (F(1, 62) = 1.97, p = 0.17).

An interaction effect based on magnitudes of scores may
not reflect whether the advantage of sorted displays is
different between easy and hard problems, since a difference
of a few trials/failures reflects a smaller learning disparity for
harder problems. Accordingly, we normalized the sorted
condition by the scores on the shuffled display, so that for
each problem the mean scores of the sorted condition were
divided by the corresponding mean score of the shuffled
condition. An independent samples t-test revealed no
difference in standardized trials to criterion of sorted displays
between easy problems (M = 0.65) and hard problems (M =
0.71; #21) = 0.78, p = 0.45), and no difference in



standardized proportion of failures of sorted displays
between easy problems (M = 0.30) and hard problems (M =
0.46; 1(21)=1.29, p = 0.21).

Consistent with a comparison-based learning strategy,
learning in Experiment 1 was faster and more successful
given sorted rather than shuffled spatial displays of
accumulated examples. This pattern supports the hypothesis
that analogical mapping mediates human relational concept
learning on the SVRT.

Experiment 2

Experiment 1 used an easy-to-hard ordering of the SVRT
problems. It seems probable that this type of ordering may
aid learning overall, because on the easy early trials people
will be led to focus on individual relations (e.g., same versus
different shapes) that will later be relevant on harder
problems involving greater visual complexity (Pashler &
Mozer, 2013).

To assess the generality of the influence of spatial
organization on learning that we observed in Experiment 1,
in Experiment 2 we explicitly varied the order in which the
23 SVRT problems were administered. The ordering was
either fixed from easiest to hardest problem based on the data
reported by Fleuret et al. (2011), or fully randomized for each
participant. We predicted that the easy-to-hard ordering
would lead to more efficient learning overall. Moreover, it is
possible that when the order is randomized, so that people
often encounter hard problems early, analogical mapping
may be discouraged due to early failures on problems for
which the mapping is complex. If so, it is possible that the
spatial organization of the accumulated examples will have
less impact when problem order is randomized, because
people will be less likely to use analogical mapping as their
primary learning strategy.

Method

Participants 125 UCLA undergraduates participated for
course credit (94 female, 26 male, 4 nonbinary, 1 declined to
answer; mean age = 20.2). Sample sizes for each of the four
between-subjects conditions were: sorted/easy-to-hard (n =
32), shuffled/easy-to-hard (n = 33), sorted/randomized (n =
29), shuffled/ randomized (n = 31).

Materials, Design, and Procedure The methodology was
nearly identical to that of Experiment 1, except participants
received either a fixed easy-to-hard ordering of problems, or
else a fully randomized sequence. Participants were not told
the order of the problems they would encounter.

Results and Discussion

Data were scored in the same way as in Experiment 1 (see
Figure 4). ANOVAs with two between-subjects factors
(sorted vs. shuffled; easy-to-hard vs. random order) revealed
a two-way interaction between displays (sorted/shuffled) and
problem order (easy-to-hard/randomized) for both dependent
measures: trials to criterion (F(1, 121) =4.67, p = 0.033) and
proportion of failures (F(1, 121) = 4.62, p = 0.034).

803

259 0.64
B Shuffled
Sorted
0.54
201

(=
B
1

154

o
w
1

10

Proportion of failures

Mean trials to criterion
o
[a¥]
1

0.14

0- 0.0-

Easy-to-hard Randomized Easy-to-hard Randomized

Figure 4: Learning performance in Experiment 2. The
influence of problem order interacted with sorted/shuftled
display type. Error bars represent 95% confidence intervals
of the mean.

Participants showed better learning performance for the easy-
to-hard order (trials to criterion: M = 11.19; proportion of
failures: M = 0.19) than randomized order (trials to criterion:
M = 13.78; proportion of failures: M = 0.28), with a main
effect of problem order for both trials to criterion (F(1, 121)
= 5.83, p = 0.017) and proportion of failures (F(1, 121) =
6.61, p=0.011). However, there was no main effect of sorted
versus shuffled displays (trials to criterion: F(1, 121) = 0.38,
p = 0.54; proportion of failures: F(1, 121) = 0.85, p = 0.36).

Tests of simple effects revealed that for participants who
received the easy-to-hard problem order, sorted displays led
to lower trials to criterion (M = 9.65) and reduced proportion
of failures (M = 0.14) relative to shuffled displays (trials to
criterion: M =12.69; F(1, 121) = 4.03, p = 0.047; proportion
of failures: M = 0.25; F(1, 121) = 4.92, p = 0.028). These
findings replicate the pattern observed in Experiment 1,
which also used easy-to-hard problem orders.

In contrast, when problem order was fully randomized, no
advantage was obtained for sorted (trials to criterion: M =
14.66; proportion of failures: M = 0.30) versus shuffled
displays (trials to criterion: M = 12.97; F(1, 121)=1.14,p =
0.29; proportion of failures: M = 0.26; F(1, 121)=0.72, p =
0.40). Thus, sorted displays facilitated learning only when
problems were presented in the easy-to-hard order.

General Discussion

The two experiments reported here investigated the impact of
alternative spatial displays of accumulated examples on
efficiency of visual concept learning in the SVRT. Analogical
mapping, unlike either a statistical learning approach or
program synthesis, predicts that efficiency will be higher
when displays sort positive and negative examples into
spatially segregated subsets, facilitating systematic
comparisons. An advantage of sorted over shuffled displays
was indeed found when problems were presented in an easy-
to-hard ordering (Experiment 1, and the comparable
condition in Experiment 2). However, when the problem



order was fully randomized so that hard problems were
possibly encountered early in the sequence (Experiment 2),
learning was less efficient overall and the sorting advantage
was eliminated.

The interaction we observed in Experiment 2 between
display organization and problem order is consistent with the
possibility that people have multiple potential strategies for
learning relational concepts. Analogical mapping, which is
known to create a high cognitive load, is more likely to be
recruited consistently when problems are ordered easy-to-
hard. In this situation, on easy early trials mapping is likely
to succeed in both solving the problem and in identifying
specific relations that will be relevant for later, more complex
problems. When mapping is used consistently, sorted
displays are useful in guiding systematic comparisons of
individual examples.

In contrast, when the problem order is fully randomized,
analogical mapping is likely to fail on some hard problems
that are presented early. The mapping strategy may then be
abandoned, in which case sorted displays no longer convey
an advantage. Rather than comparing examples, as required
for analogical mapping, people may elect to use a learning
strategy that focuses on individual examples. Previous work
has also found evidence that people can be oriented toward
different learning strategies for relation-based category
learning (Goldwater et al., 2018). Although the present study
does not identify what alternative strategy may have been
used when problem order was randomized, either a statistical
approach or program synthesis are viable possibilities. Future
work should explore these possibilities. Whatever the exact
nature of the alternative strategy, it reduces the overall
efficiency of learning relative to the mapping strategy.

Another useful direction for future research would be to
use eye-tracking methods to provide more detailed analyses
of how people perform comparisons with sorted versus
shuffled displays, as has been done in similar work on
interleaved and blocked sequences (Zaki et al., 2019).
Investigating the aspects of sorted and shuffled displays that
impact learning may clarify their relationship to the
seemingly-related distinction between interleaved and
blocked sequences of examples. Do sorted displays combine
the strengths of both sequence types by systematically
facilitating both within- and between-category comparisons?
Do people make frequent short-distance saccades within a
category of examples to first discover relational structure, and
then shift over to the other category to locate critical
differences? Do shuffled displays reduce comparison overall
by requiring longer-distance eye movements?

In sum, the current study provides preliminary evidence
that analogical mapping may underlie rapid relational
concept learning in humans, at least when problems are
presented in ways that foster systematic comparisons
between examples while minimizing cognitive load. Further
work is required to probe the learning mechanisms that allow
humans to learn concepts defined by visual relations from
modest amounts of training data.
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