
Addax: A fast, private, and accountable ad exchange infrastructure

Ke Zhong⋆ Yiping Ma⋆ Yifeng Mao⋆ Sebastian Angel⋆†
⋆University of Pennsylvania †Microsoft Research

Abstract. This paper proposes Addax, a fast, verifiable, and

private online ad exchange. When a user visits an ad-supported

site, Addax runs an auction similar to those of leading ex-

changes; Addax requests bids, selects the winner, collects

payment, and displays the ad to the user. A key distinction is

that bids in Addax’s auctions are kept private and the outcome

of the auction is publicly verifiable. Addax achieves these

properties by adding public verifiability to the affine aggregat-

able encodings in Prio (NSDI’17) and by building an auction

protocol out of them. Our implementation of Addax over WAN

with hundreds of bidders can run roughly half the auctions per

second as a non-private and non-verifiable exchange, while

delivering ads to users in under 600 ms with little additional

bandwidth requirements. This efficiency makes Addax the first

architecture capable of bringing transparency to this otherwise

opaque ecosystem.

1 Introduction

Ad exchanges such as DoubleClick and OpenX are key play-

ers in online advertising; their role is to auction ad space on

a publisher’s website in real time to advertisers. When a user

visits a publisher’s page, the user’s browser contacts a server

that triggers an auction on an exchange. The exchange gives

advertisers information about the publisher (e.g., URL, ad size

and type, category of site) and the user (e.g., demographic,

metadata for syncing cookies across sites) in real time, and

collects bids from interested parties. The exchange then runs

an auction (e.g., second-price auction), delivers to the user the

ads of the winning advertisers, and credits the publisher. Fi-

nally, technologies like header bidding [4] and Google’s open

bidding platform [30] allow publishers to auction users across

many exchanges (essentially an exchange of exchanges), in-

creasing competition and improving publishers’ revenue.

While ad networks and exchanges serve as the financial

backbone of the free web, their centralized nature means that:

(1) they are privy to sensitive information, including user’s

browsing habits and the preferences and valuations of advertis-

ers; and (2) they are opaque and hard to audit. The former has

received considerable attention [39, 45, 56, 71, 77, 89, 91]; the

lack of auditing mechanisms and the knowledge of advertisers’

valuations is becoming a serious sociotechnical issue. A recent

antitrust lawsuit alleges that Google used insider knowledge

of past bids submitted by advertisers to gain unfair advantages

whenever its subsidiaries participated in auctions [63]. Further,

it is alleged that Google convinced Facebook to not participate

in header biddingÐa technology considered an ªexistential

threatº to Google’s business [28, 81, 84]. According to dis-

closed reports, in return for Facebook choosing to participate

instead in Google’s open bidding platform, ªGoogle provided

Facebook with special information and speed advantages to

help [Facebook’s exchange] succeed in the auction [over other

bidders]Ðeven including a guaranteed win rateº [84].

Regardless of the merits of these cases, the key issueÐand

the crux of this paperÐis that there are no ways for exchanges

to prove to their customers and to regulators that they are not

abusing their position. To address this, we present Addax, an

online advertising architecture that achieves 4 goals:

• Auction integrity. Auctions should be publicly verifiable to

allow the ad exchange to prove that it is not biasing auctions

towards particular bidders or lying about their outcome.

• Auction privacy. The bids of losing bidders should be hid-

den from all partiesÐeven the exchange itself! This ensures

that the exchange cannot abuse or share this information.

• High performance. Addax should handle the stringent per-

formance requirements of the ad ecosystem.

• Better tracking. Addax should work with recent tracking

efforts such as Google’s Topics API [16] and Microsoft’s

PARAKEET [13] that allow targeted ads but collect less

information about individuals.

Overview. In Addax, browsers track users’ histories with ex-

isting privacy-preserving client-side techniques [57, 58, 80,

89], and kickstart verifiable and private auctions whenever

the user navigates to an ad-supported site. Auctions in Addax

proceed in three steps. First, the browser invites relevant bid-

ders (e.g., demand-side platforms) by finding their information

(e.g., URL of their ad server) on a database. In existing header

bidding platforms [2] such databases are currently maintained

by publishers; Addax preserves this model, but we addition-

ally experiment with a more decentralized approach where

the database is maintained in a public append-only log and

discuss how to reduce the cost of lookups in this model (§7).

As part of the invitation, the browser supplies to bidders infor-

mation about the site being visited and a variable amount of

user information based on the user’s configuration of Addax

(ranging from fully targeted to generic ads).

Second, bidders submit encrypted bids to the publisher and

one or more auxiliary servers. The auxiliary server helps the

publisher run a new lightweight secure auction computation

over the encrypted bids (§4). The role of an auxiliary server

could be taken up by today’s exchanges or it can be a separate

entity propped up by the industry at large. Under the anytrust

model [88] (either the publisher or any of the auxiliary servers

is honest), the secure auction computation returns the winning

bidder’s identity and bid, and the auction’s sale price, but no

other information.

1

Last, Addax produces an audit trail that is uploaded to a

public log and that allows any auditor to verify that the auction

was conducted with integrity (§5). At the conclusion of the

auction, the browser fetches the ad from the winning bidder

(or a content distribution network) and the publisher learns

which bidder and how much to bill for the ad impression.

Technical contributions. To maintain good performance,

Addax cannot use expensive cryptography (e.g., homomor-

phic encryption, multiparty computation) in order to achieve

the integrity and privacy goals. Indeed, our evaluation of such

baselines confirms that they are far too inefficient to meet

online advertising’s low latency and communication require-

ments (§9). Instead, Addax makes three contributions:

Secure auction protocol. Addax introduces a new auc-

tion protocol based on Prio’s affine-aggregatable encodings

(AFE) [51]. Addax’s auction is simple and lightweight and al-

lows two or more parties to run the auction over secret-shared

bids without revealing anything beyond the auction’s outcome.

Verifiable AFEs (V-AFEs). Addax extends Prio’s AFEs to

provide public verifiability for outputs (Prio has mechanisms

to verify inputs). Addax then uses V-AFEs to allow anyone

(e.g., an auditor) to confirm that an auction was conducted

correctly without learning any of the input bids.

Integration with Algorand and Chrome. Addax implements

mechanisms to interact quickly with the public log (we use

Algorand [3, 55]) and smart contracts to manage the registra-

tion of advertisers and the collection of audit materials. Addax

also leverages Chrome native messaging to launch auctions.

Our implementation of Addax can complete auctions over

WAN with twice the average number of bidders reported in

production ad exchanges [92] in 440±580 ms (for first and

second-price auctions), and requires only 1.2 MB of commu-

nication between the publisher and the auxiliary server (§9.2).

This is fast enough for ads to be loaded asynchronously with-

out affecting page load time for the overwhelming majority

of websites today [1, 7, 20, 87]. In terms of throughput, Ad-

dax can handle around 250±360 auctions per second per core

(for second and first-price auctions), which is roughly 40%

of what our non-private and unverified baseline can achieve.

Creating the audit trail requires additional computation on the

part of bidders but adds negligible overhead to users’ browsers

and publishers. In contrast, the same auction implemented in

existing state-of-the-art cryptographic frameworks (MPC and

FHE) requires over 4 GB of communication and over 100 sec.

Limitations. Ad exchanges do more than just run auctions

and deliver ads. They vet advertisers to ensure users do not re-

ceive malware; mitigate fraud; and provide powerful analytics.

Addax does not yet address these complementary and critical

aspects, but Section 11 discusses concrete directions to incor-

porate such features into Addax’s architecture. Finally, Addax

can achieve better performance (optionally) at the expense of

revealing the existence of winning ties (§4.4).

2 Background and goals

Ad exchanges are platforms that auction impressions (the dis-

play of a text, image, or video ad) on a publisher’s website

or mobile application in real time. Exchanges support highly

targeted advertising whereby bidders (advertisers or their rep-

resentatives, called demand-side platforms) get a chance to

evaluate the publisher and the user to whom the ad will be

shown to decide how much they would be willing to pay (if

at all). This type of programmatic real-time bidding (RTB)

advertising accounts for over a third of all digital ad spend-

ing today [22, 27]. Some of the largest ad exchanges include

DoubleClick, PubMatic, OpenX, and Facebook.

To participate in an ad exchange, a publisher inserts a supply-

side platform’s (SSP) iframe or JavaScript snippet into their

page. An SSP is a service that sells the publisher’s ads on an

exchange (publishers can also run their own SSP). When a

user’s browser fetches the publisher’s site and executes the

provided JavaScript, it sends an HTTP GET request to the

SSP supplying the user’s cookie, and awaiting for an ad to

be returned. At this point, the SSP can identify the user and

publisher, and start an RTB auction. During this process, the

exchange invites dozens of potentially interested bidders to

bid on the user [92], supplying them with demographic in-

formation, and relevant details about the publisher and the

ad space (size, type, location within the page). To facilitate

the valuation of the user, exchanges and bidders synchronize

cookies [19, 23] to allow bidders to learn the identity of the

user in their respective platforms (if applicable). Based on

this information, bidders return a bid in CPM (cost per 1000

impressions), which ranges from cents to tens of dollars [32].

Upon receiving all bids, the exchange runs an auction where

it selects the winning bidder and charges them the auction’s

sale price based on the type of auction. Two common types are

first-price (winner pays what they bid) and second-price [83]

(winner pays second highest bid) auctions. Finally, the ex-

change notifies the SSP with the result of the auction, who

then responds to the user’s GET requests with the information

that the browser needs to retrieve the ads (images, videos, etc.)

from a storage server.

2.1 Header bidding

Header bidding [4] is a recent advertising paradigm where the

publisher (or its SSP) works with multiple exchanges to sell its

ad slot in real time. It is called ªheader biddingº because the

publisher supplies JavaScript code that runs in the <header>

part of the page (which loads as soon as the page starts open-

ing in the user’s browser), and this code triggers the process

of contacting the exchanges. The exchanges then internally

run their own auctions (first or second-price) and send back

the winning bids to the browser. The browser then sends the

winning bids to the publisher (or its SSP), which runs another

auction (typically first-price), selects the highest bid as the

winner, and forwards the winner’s ad tag to the user’s browser.

Google’s Open Bidding platform is similar [30].

2

2.2 Concerns with existing exchanges

We highlight three areas of concern with existing ad exchanges.

First, there is no visibility into the auction process. VEX [35]

argues that this opens the door to a variety of issuesÐincluding

those that are mentioned by the antitrust lawsuits [28, 63, 84].

Second, exchanges observe all submitted bids in the clear.

These bids represent how valuable different users and publish-

ers are to bidders, which reveals information about bidder’s

trading algorithms, finances, and future plans. Last, users lack

agency and have no say over which types of ads they receive or

what information is shared with bidders. One might imagine a

different world in which users can express an opinion on the

types of ads they consume (e.g., no ads for kids toys to avoid

children exploitation), and what information about themselves

they reveal in order to receive targeted ads.

2.3 Goals

Addax aims to address many of the shortcomings of existing

ad exchanges by giving agency to users, privacy to bidders,

and transparency to all. Addax is compatible with both tradi-

tional exchanges and with the header bidding model (including

Google’s open bidding platform). We detail these goals next.

Integrity of the auction. All parties should be able to ver-

ify that Addax’s auctions are conducted correctly, as per the

auction type (first-price, second-price, etc.).

Privacy for losing bids. Addax should hide the bids of all of

the losing bidders from everyone, even the auctioneers. One

exception is that in second-price auctions, the second highest

bid (which is technically a losing bid) becomes the sale price

and cannot be hidden.

Privacy among bidders. Bidders should not need to learn

each others’ identities or interact with one another in order to

participate in an auction. Existing exchanges do not reveal this

information, and neither should Addax.

High performance. Addax must ensure that auctions com-

plete quickly, as ads need to be displayed within hundreds of

milliseconds in order to preserve a good user experience and

follow existing RTB requirements [10, 11].

User agency. Addax’s focus is on making the auction process

accountable without exposing bidders’ information. Addax

should also allow users to have a say on which kinds of ads

they wish to receive. Ideally, Addax would also improve user

privacy, but this is not a goal of this work. Instead, we ask that

Addax make things no worse than they are today for users,

and that it be compatible with other works that aim to reduce

user tracking (such as Topics [16]). Appendix G expands on

this compatibility aspect.

2.4 Potential solutions (baselines)

Given Addax’s desire for privacy and verifiability, one might

ask whether existing tools such as homomorphic encryption

or multiparty computation fit the bill. This is not the case.

Homomorphic encryption (HE). HE libraries [24±26, 61]

allow the computation of additions and multiplications over en-

crypted data without access to plaintext values. Computing an

auction, however, requires comparisons (such as ªless thanº)

which are expensive to express with arithmetic operations as

they typically require decomposing values into bits and en-

crypting bits separately [25, 50]. Even recent optimizations are

expensive [41, 48, 64]. As we show in our evaluation (§9.2)

an auction with 96 bidders using the state-of-the-art TFHE

library [49, 50] takes 181 seconds. Finally, HE lacks integrity:

an auctioneer is free to compute an incorrect auction. Recent

work on composing verifiable computation with HE can ad-

dress this, but at orders-of-magnitude cost increase [40, 54].

Secure multi-party computation (MPC). MPC frame-

works [31, 65, 85] allow mutually distrusting parties to com-

pute a function over secret inputs without revealing anything

beyond the function’s outcome. It might seem natural to en-

code the auction as an MPC among the bidders but this is

impractical when there are many bidders. An alternative is to

use a delegated MPC setting whereby two parties (publisher

and auxiliary server in our setting) run the MPC on behalf of

others; bidders could send secret shares of their bids to these

two parties. However, this delegated setting lacks integrity:

either party is free to supply bogus shares to the MPC to cause

the auction’s output to be undetectably incorrect. As we show

in Section 9.2, addressing this introduces prohibitive costs.

Trusted execution environments (TEEs). Another possibil-

ity is to use trusted hardware. Besides side channel [43, 46,

68, 90] and integrity attacks [72, 82], TEEs alone cannot solve

this problem. Appendix F discusses this in depth.

3 Addax Overview

Addax is a platform where the exchange’s duties are split

among different parties. Figure 1 gives a high-level description.

Addax consists of: (i) publishers who run their own SSP and

who wish to show ads to fund their services, (ii) the client’s

browser, (iii) auxiliary servers who help to run auctions, (iv)

bidders (demand-side platforms, advertisers, other exchanges,

etc.) who bid on ad slots, and (v) an append-only log (e.g.,

blockchain, BFT consortium) for persisting an audit trail. We

discuss what happens when a user visits a page below, and

give details in the sections that follow. We defer a discussion

of how bidders join Addax and what information they supply

to Section 7 and Appendix E.

Steps ➀±➁: Client visits a publisher. When a client visits

a publisher, it receives the page content, along with a unique

auction id and a list of valid ad categories that the publisher

supports. Addax uses the 392 categories from the Internet Ad-

vertising Bureau’s (IAB) contextual taxonomy [10], which

include things like ªHumorº, ªNutritionº, etc. This meta-

data is embedded within the header of the page, as in header

bidding (§2.1). An Addax-enabled browser, hereafter named

ªbrowserº, parses the web page and extracts this metadata.

3

Step ➂: Advertising filtering. Addax adopts a client-based

tracking approach inspired by Privad [58], Adnostic [80], and

Google’s recent FLoC proposal [89]. Briefly, the browser

tracks which sites the user visits over time and generates a pro-

file of the user’s interests, which it stores locally in a SQLite

database similar to how cookies are stored. After parsing a

page’s ad spot metadata, the browser combines the user’s pro-

file, the ad spot’s categories supplied by the publisher, and

disallowed categories previously flagged by the user through a

local configuration (e.g., to prevent categories that target chil-

dren). Based on the refined information, the browser fetches

bidders’ details from a bidder database. Addax supports two

types of databases: an embedded database supplied by the

publisher during Step ➁; and a public database where bidder

information is maintained on the public log (blockchain). The

former is how header bidding works today while the latter

option is more decentralized and gives users more agency over

the ads they receive. We defer the details to Section 7.

Steps ➃±➅: Private, decentralized, and verifiable auction.

The browser invites the k bidders from step ➂ to an auction.

To do so, it provides them with an auction id (unique identifier

supplied by the publisher), information about the user, and

information to contact the publisher and the auxiliary server.

Bidders decide whether to join the auction; if so, they respond

to the auxiliary server and publisher with their required ma-

terials. The auxiliary server and the publisher collaboratively

run the auction and select the auction’s winner, and the auc-

tion’s sale price. Asynchronously, and off the critical path, all

participants upload to the public append-only log materials

needed for public auditing (§5).

Step ➆: Notify winner and display the ad. After the auction

concludes, the publisher and auxiliary server learn the outcome

(but nothing else). The publisher notifies the winner and asks it

for an ad tag and payment (e.g., a signed IOU). The publisher

then forwards the ad tag to the browser so that it can fetch and

display the ad on the designated ad spot.

Verification. Auditors can use the information on the public

log to verify the auction’s outcome. By default, they only learn

whether the auction was correct and the number of bidders

that participated. In case that verification fails, Addax helps

narrow down which parties were faulty (§5.3).

3.1 Assumptions and threat model

Addax assumes an append-only log (blockchain, BFT, etc.)

and an anytrust model [88] where either the publisher or the

auxiliary server is honest. The parties may act as follows.

Bidders. Bidders who are invited to the auction can submit

bogus bids and cryptographic material. We model bidders

as covert adversaries [36] who can deviate from the protocol

arbitrarily as long as their malicious actions cannot be detected.

If detected, bidders can incur financial or legal penalties, and

can be banned by publishers. Addax assumes at least 2 non-

colluding losing bidders (otherwise information about losing

Client’s browserPublisher

Advertisers

Blockchain & Indexers
create, update, delete

Auxiliary server

FIGURE 1ÐIn Addax, the exchange’s functionality is divided among

the publisher, browser, an auxiliary server and a blockchain.

bids can be inferred from the outcome).

Publishers and auxiliary servers. Publishers may wish to

increase their revenue by lying about the auction’s outcome

(e.g., forcing the winner to pay a fee higher than the second

highest bid), learn the bids of losing bidders, or force users

to view certain ads. Auxiliary servers may wish to bias the

auction’s result to help particular bidders. We model both

parties as covert adversaries since detectable misbehavior can

tarnish their reputation or incur legal penalties.

3.2 Security properties

Addax’s auction protocol provides the following properties.

Completeness. If all parties are honest and the auction’s out-

come is correct (e.g., the winner is the highest bidder and the

sale price is the second highest bid), then Addax’s verification

protocol passes with high probability.

Soundness. If a bidder, the publisher, or an auxiliary server

misbehaves, Addax’s verification fails with high probability.

Privacy. Addax’s auction and verification hides all bids ex-

cept the highest bid and the sale price.

4 Private ad auction

This section describes Addax’s private ad auction. We begin

by describing our building blocks.

4.1 Affine-aggregatable encodings (AFE)

Prio [51] shows how one can take two or more data values

and encode each of them as a vector of λ bits such that adding

up the vectors and running a decoding function on the sum is

equivalent to computing some boolean function f (e.g., OR,

AND, XOR) on the original data values; λ is a parameter that

controls the probability of the result being correct. Prio calls

this and other similar transformations an Affine-Aggregatable

Encoding (AFE). Addax uses the ªORº boolean function to

compute auctions, so it could use Prio’s AFE. However, we

4

3

bid
bit vector

1

bid

bit vector
2

bid

vector share 1 vector share 2

Auxiliary server’s shares Publisher’s shares

sum vector sum vector of share 1 sum vector of share 2

3

MAX
decode

encode

encode

encode

sum

split

split

split

sum sharessum shares

3 04 2

00

3 00

1 01 2

03

4

41

1 24

4 32 2

21

2

14

2 31

4 22 0

32

2

2 40 22 40 04 11

Bidder

Bidder

AFE vectors

1 0

0 0

1 0

1 0

sumBitwise OR
Bidder

bit vectors

!

1 1

1 0

1 0

1 1

FIGURE 2ÐExample of (a) the MAX algorithm using AFE, and (b) the private MAX algorithm using AFE shares. In this example, ℓ = 4

(which affects the range of bids) and we use AFE in Z5 (which affects the probability of obtaining the correct result).

depart slightly from Prio by encoding data values into a single

element in Zp (the set of integers modulo a large prime p)

rather than λ-sized bit vectors. This encoding is more expen-

sive than Prio’s (since λ < log p), but it allows Addax to add

public verifiability, as we discuss in Section 5.1. Below we

give our AFE for the ªORº function over bit values.

Encode OR. Given a bit x ∈ {0, 1}, its AFE is:

Encode-OR(x) =

{

0 ∈ Zp if x = 0

a random element ∈ Zp if x = 1

Compute OR. Given a set of n AFE values {v1, . . . , vn},
which encode n bits {x1, . . . , xn} with the above Encode-OR

procedure, one can compute the OR of the n bits as:

v = v1 + · · ·+ vn ∈ Zp

Decode OR. Given the sum AFE value v, one can correctly

recover the result of the OR operation over the underlying n

bits with probability of at least 1− 1/p as follows.

Decode-OR(v) =

{

0 if v = 0

1 otherwise

To see why Decode-OR returns the correct value with prob-

ability 1− 1/p, we consider two cases. First, when all n input

bits are 0. In this case, all AFE values are zeros so v is guaran-

teed to be zero; Decode-OR always outputs the correct value

of 0. Second, when at least one of the n input bits is 1. In this

case, since the value is independent and uniformly random,

the probability that the sum in Zp is zero is 1/p.

4.2 Computing the MAX function with AFE

Following the approach in Prio, we show how to extend the

above AFE to support MAX, which Addax uses to find the

highest bid in an auction. This construction provides neither

privacy nor verifiability; we add these later.

Suppose all input values are integers in the range [0, ℓ]. Each

input x is first represented in unary. That is, as a bit vector β
of length ℓ (β1,β2, . . . ,βℓ) where βi = 1 if and only if i ≤ x.

Observe that if we perform a bitwise OR on the unary bit

vectors of all inputs, the result will be a unary bit vector where

the index of the last ª1º represents the maximum value across

all inputs. This is the idea behind the AFE of MAX.

Encode MAX. Given a value x ∈ [0, ℓ], its AFE is a vector of

ℓ values, where each value is an element in Zp. The encoding

happens in two steps: (1) represent x as a bit vector β of length

ℓ in unary format; and (2) for each bit βi, encode βi with the

Encode-OR of Section 4.1. The result is a vector M with ℓ
values, where M[i] is the AFE value of bit βi.

Compute MAX. Given n AFE vectors {M1, . . . , Mn} that

encode the values {x1, . . . , xn} as above, MAX is computed

by adding the n vectors: M = M1 + · · ·+ Mn.

Decode MAX. Given the sum vector M, one can recover

the MAX of the underlying n values in two steps. First, use

Decode-OR (§4.1) on each of the ℓ entries of M. The result is

a bit vector β of length ℓ in unary format. Second, output the

highest index j for which βj is 1. This value is the correct MAX

among the n inputs if Decode-OR outputs the correct OR for

all ℓ bits. This event occurs with probability ≥ (1− 1/p)
ℓ
.

Figure 2(a) gives an example of these procedures with three

inputs. Below we describe how to add privacy by secret sharing

the AFE vectors among multiple parties.

4.3 Private and decentralized MAX

Observe that computing the MAX of n values (x1, . . . , xn)

using AFE vectors (M1, . . . , Mn) requires only additions. We

can split each vector Mi into two shares (M1
i and M2

i) that add

up to the original (Mi = M1
i + M2

i) as depicted in Figure 2(b).

Each share is made up of uniform random elements in Zp, and

reveals no information about Mi without the other share.

Suppose that two non-colluding parties, Alice and Bob, are

5

tasked with computing the MAX of n values given n AFE

vector shares. Alice receives {M1
1 , . . . , M1

n} and Bob receives

{M2
1 , . . . , M2

n}. Each party sums up their n shares to get two

sum vector shares: M1 for Alice and M2 for Bob. Finally,

both parties exchange their sum vector shares. Observe that

by adding M1 and M2, the parties can recover the sum vector

M = M1 +M2 = M1 + · · ·+Mn as shown in Figure 2(a), and

then use Decode-MAX to recover the max value.

4.4 Private and decentralized auction

We use the private MAX of Section 4.3 to compute an auc-

tion where the auctioneer’s duty is split between the auxiliary

server and the publisher. This protocol provides privacy but

not integrity (i.e., malicious actions can lead to an incorrect

outcome); we add verifiability in Section 5. A bid is given by

the position of the last ª1º in a unary vector (e.g., [1,1,1,0]

and [0,0,1,0] both represent 3, though the latter is ill-formed).

We assume a maximum bid ℓ, and everyone bids within [0, ℓ].

Step 1: Set up shared secret. Before the auction starts, the

publisher and the auxiliary server commit to a random se-

cret to be used later as an unbiased source of randomness.

Concretely, when the client visits the publisher, the publisher

contacts the auxiliary server, notifies it of an incoming auction,

and supplies to it a commitment to a uniform random secret,

secretp. The auxiliary server replies with its own commitment

to a uniform random secret, secreta. They keep these secrets

hidden until Step 4.

Step 2: Encode and split bids. The browser sends an invita-

tion to selected bidders with the auction’s id. If a bidder wishes

to participate, they encode their bid using the Encode-MAX

procedure (§4.2), split the resulting vector into two additive

shares as discussed in Section 4.3, and generate a fresh signing

and verification key pair. The verification key acts as the bid-

der’s bidder id in the auction. The bidder then sends share M1

to the auxiliary server and share M2 to the publisher, supplying

both with the bidder id. Bidders who fail to submit their shares

before a timeout are kept out of the auction.

Step 3: Find the highest bid. Before computing the auction,

the auxiliary server sends to the publisher all the bidder ids

that it received, the publisher matches them with the ids that it

received, and responds to the auxiliary server with the intersec-

tion. The publisher and the auxiliary server then use the vector

shares of bidders in the intersection in the MAX protocol of

Section 4.3. If Decode-MAX produces an invalid unary vec-

tor such as [1,0,1,0], the auction is aborted; when parties are

honest, abort happens with negligible probability (§4.2). At

the end, both parties learn the highest bid, b∗, but nothing else.

To avoid parties adapting their sum vector share in response

to the other’s sum vector share, parties first exchange com-

mitments of their sum vector share; the honest party aborts if

misbehavior is detected.

Lemma 1. Let b1, . . . , bj be the bids from j honest bidders,

and let M1, . . . , Mj be the AFE vectors resulting from running

Encode-MAX on the bids. Similarly, let Mj+1, . . . , Mj+k be

AFE vectors that MAX-encode bids from k malicious bidders

(these AFE vectors can represent invalid unary vectors like

[1,0,1,0]). Decode-MAX on the sum of these j+k AFE vectors

outputs, with high probability, either an invalid value (invalid

unary representation) or a value ≥ max(b1, . . . , bj).

Lemma 2. Let M1 and M2 be sum vector shares held by the

auxiliary server and publisher, respectively. During Decode-

MAX, if the auxiliary server uses a different sum vector share

M′1 without having seen M2 first or the publisher uses a differ-

ent sum vector share M′2 without having seen M1 first, then

the output of Decode-MAX is, with high probability, either an

invalid value (invalid unary representation) or ℓ.

Appendix A gives proofs for both lemmas. Together they im-

ply that malicious actions by participants lead to the resulting

highest bid being invalid or at worst larger than the real highest

bid. Either outcome leaks no information about honest losing

bidders’ bids to the attacker (our privacy goal). Furthermore,

malicious actions are detected by Addax’s verification.

Step 4: Find the winner. The publisher and the auxiliary

server find the winner (the bidder id of the party who submit-

ted b∗) interactively. First, both parties decommit to the secrets

they generated in Step 1, check the decommitment, and XOR

the secrets together to obtain secret = secreta ⊕ secretp. Since

at least one party is honest, secret is uniformly random and

independent of the bidder ids generated by the bidders; the

parties use secret as the seed to a pseudorandom generator

(PRG). Both parties locally use the PRG to pick the same ran-

dom bidder w from the set of participating bidder ids, which

avoids biasing the auction towards a particular bidder in the

case of ties (the PRG is for fairness not for privacy). The

auxiliary server sends the b∗-th value of its share of bidder

w’s vector, M1
w[b

∗], to the publisher and the publisher sends

M2
w[b

∗]. Both parties then locally sum the two shares to obtain

Mw[b
∗] = M1

w[b
∗] + M2

w[b
∗]. Applying Decode-OR to Mw[b

∗]
yields βb∗ , which is the bit of bidder w at position b∗ in the

unary vector (§4.2). If βb∗ is 0, bidder w is not the winner

(since its bid must be lower than b∗). Note that learning βb∗

reveals no additional information. The publisher and the auxil-

iary server continue to pick a random bidder id w until the bit

βb∗ of w is 1 (n/2 tries in expectation). In such a case, w is the

winner. Finally, the auxiliary server and publisher ask w if its

bid is b∗. Bidder w replies only if it receives the same query

from both parties. If w’s bid is not b∗, it sends abort to both

parties and the auction is aborted. If there are ties (i.e., multi-

ple bidders submitted b∗), this procedure returns a uniformly

chosen one. The ids of other tied bidders remain hidden.

Lemma 3. In Step 4, if the auxiliary server sends to the pub-

lisher an AFE share that is different than what it received from

the candidate winner w (i.e., different from M1
w[b

∗]) or the

publisher sends to the auxiliary server an AFE share that is

different than what it received from w, then the auction aborts

6

or w is declared the winner with high probability. In the latter

case, w is either the real winner or a malicious bidder.

Appendix A proves this lemma. It basically means that a

malicious publisher or auxiliary server can only ever make

a colluding bidder the winner; they cannot cause a winner

(if chosen by the PRG) to lose, nor can they make an honest

losing bidder the winner (and hence learn its bid).

Step 5: Compute the sale price. The above four steps are

sufficient to compute first-price auctions (the most common

type) where the winner is the highest bidder and the sale price

is its bid. To support second-price auctions (sometimes used

by exchanges), the auxiliary server and publisher subtract the

winning bidder’s vector share from the sum vector share (e.g.,

the auxiliary server subtracts M1
w from M1). They then rerun

Step 3 to obtain the second highest bid.

Lemma 4. If either the auxiliary server or the publisher mis-

behaves in Step 5, or a malicious bidder is declared the winner

in Step 4, then the computed sale price is, with high proba-

bility, either: (1) the highest bid among all bidders; (2) the

second highest bid among all bidders; or (3) ℓ.

Appendix A has the proof of this lemma, which again hides

the losing bids (besides the second-highest). Furthermore, any

misbehavior is eventually detected during an audit.

5 Adding public verifiability

For an auditor to verify the outcome of an auction, the auditor

needs to check that (1) the highest bid b∗ selected in Step 3

of the auction is correct; (2) that the bit βb∗ of the winning

bidder is 1 in Step 4; and (3) that the value computed in Step

5 was set as the auction’s sale price. We start by making the

output of AFEs publicly verifiable, and then discuss how an

auditor can perform the above checks.

5.1 Verifiable and private AFEs

We make AFEs verifiable with a procedure that takes the

result of the AFE computationÐthe sum vector vÐand com-

mitments to the inputs, and outputs whether v is correct.

The key idea of our verification procedure is to observe that

by their very nature, AFEs encode inputs in such a way that

the desired functions (OR, MAX, etc.) can be computed with

only additions. Hence, if one uses an additively homomorphic

commitment scheme on the input AFE values, it is possible to

check the result of the AFE computation without learning the

inputs by adding the commitments and confirming whether

the result is also a valid commitment of the output. We explain

this process for the ªORº AFE of Section 4.1.

Encode V-OR. Given a bit x ∈ {0, 1}, its verifiable AFE is a

tuple v consisting of 2 elements in Zp defined as follows. The

first element in v is given by Encode-OR (§4.1). The second

element in v is a non-zero uniform random element in Zp.

Commit V-AFE. Given a V-AFE tuple v ∈ Z
2
p encoding bit

x with Encode V-OR, we use the Pedersen commitment [74]

defined over a multiplicative group G of prime order p with

generators {g, h}.1 The commitment is c = gv[0] · hv[1].

This commitment perfectly hides the V-AFE tuple (an ad-

versary cannot learn the tuple from the commitment); it binds

the tuple (a committer cannot claim to have committed to a

different tuple) if the discrete log problem is hard in G. It is

also additively homomorphic: given a commitment c1 ∈ G to

a tuple v1 ∈ Z
2
p and a commitment c2 ∈ G to a tuple v2 ∈ Z

2
p,

c3 = c1 · c2 is a valid commitment to the tuple v1 + v2.

Compute and Decode. Given a set of n V-AFE tuples

{v1, . . . , vn}, which encode n bits {x1, . . . , xn} with the above

Encode V-OR procedure, compute the OR of the n bits by

adding the V-AFE tuples component-wise: v = v1 + · · ·+ vn.

Decode V-OR calls Decode-OR on the first element in v.

Verify V-OR. Given the V-AFE sum tuple v which encodes

the result of the Compute V-OR procedure over n V-AFE tu-

ples {v1, . . . , vn}, and given a set of commitments {c1, . . . , cn}
to these tuples generated with the Commit V-AFE procedure,

one can verify v by checking if gv[0] · hv[1] ?
=

∏n

j=1 cj. Verify

V-OR outputs ªokº if the check passes, and ªfailº otherwise.

The above approach generalizes to other functions (e.g.,

MAX) that require more complex encodings (e.g., vectors)

since those encodings are just sets of AFE values. For example,

a V-AFE vector is simply a vector of V-AFE tuples, and the

commitment is a vector of Pedersen commitmentsÐone for

each tuple in the V-AFE vector. The approach can also be com-

bined with secret sharing (§4.3) to hide the inputs from non-

colluding parties. Specifically, the input providers (e.g., bid-

ders in our case) generate their V-AFE vectors {M1, . . . , Mn}
and compute the corresponding commitments {c1, . . . , cn},
which are made available on a public log. Then, the input

providers generate secret shares for their V-AFE vectors and

give these shares to the computing parties as described in Sec-

tion 4.3. Finally, the computing parties combine their sum

vector shares into the V-AFE vector M and verify each entry

with Verify V-OR and the commitments.

5.2 Verifiable, private, and decentralized auction

We now discuss how to extend the protocol of Section 4.4 with

the V-AFE construction of Section 5.1 to obtain verifiability

of the auction’s outcome in addition to privacy.

Recall that in Step 2 of the auction protocol (§4.4), a bidder

i encodes its bid using Encode-MAX (§4.2) which produces

an AFE vector Mi, where each entry in Mi is an Encode-

OR (§4.1) of each bit of bidder i’s unary-formatted bid. In our

verifiable auction, the bidder instead uses the Encode V-OR

procedure (§5.1), so Mi is made up of ℓ V-AFE tuples. Bidder i

also creates, for each entry of Mi, a commitment using Commit

1As an (insecure) example, the set {1, 3, 4, 5, 9} in Z11 forms a multiplicative

group with 5 elements (its order is p = 5). A generator for this group is 3

since repeated multiplications of 3 with itself generates every element.

7

V-AFE (§5.1). Let Ci denote the corresponding vector of ℓ
commitments for Mi. Bidder i then splits Mi (§4.3), and sends

to the auctioneers a collision-resistant hash of Ci and the AFE

vector shares (M1
i or M2

i , depending on the party).

Asynchronously, bidder i uploads to the public log (§7) its

bidder id, Ci, and a signature of Ci that validates with the

bidder id (recall that bidder ids are verification keys). The

other steps of the auction proceed as before. At the end of the

auction, the publisher and the auxiliary server upload an audit

trail to the public log containing: (1) the auction’s outcome,

consisting of the bidder id of the winner w, the highest bid

b∗, and the auction’s sale price; (2) their share of the sum

vector computed in Step 3 and 5 of the auction protocol; (3)

the b∗-th entry of the V-AFE vector share of each candidate

winner chosen in Step 4 and the seed for the PRG used; and

(4) the hashes (to commitments) they received from bidders.

Deferred public verification. After the auction completes,

an auditor can choose to verify that the auction was done

correctly as follows. The auditor accesses the auction’s audit

trail from the public log, and verifies that the uploaded hashes

match the commitments, and all signatures on the commit-

ments are valid. To verify the highest bid in Step 3, the auditor

aggregates the sum vector shares in the audit trail to obtain

M. Then, the auditor computes the highest bid b∗ by calling

Decode-MAX on M (§4.2). Finally, the auditor runs, for all

j ∈ [1, ℓ], Verify V-OR (§5.1) using as input the j-th entry of

M (acting as the V-AFE sum value), and the j-th entry of every

commitment vector submitted by the n bidders (i.e., for all

i ∈ [1, n], Ci[j]), as the commitment set. If all checks pass, then

Step 3 was correct. The auditor performs the same actions for

Step 5 to verify the second highest bid.

To verify Step 4, the auditor checks, for each of the can-

didate winners x, whether gMx[b
∗][0] · hMx[b

∗][1] ?
= Cx[b

∗]. The

auditor also checks that the Decode-OR of Mw[b
∗] is 1 (i.e.,

the actual winner’s bit at position b∗ is indeed a 1), and the

Decode-OR of Mx[b
∗] for all other candidate winners x is 0.

Then, the auditor uses the PRG and the seed in the audit trail

to check that the bidder ids of the set of candidate winners are

correct and that w was the last bidder id sampled.

Theorem 1. Addax’s auction protocol with deferred verifica-

tion achieves completeness, soundness, and privacy.

We give the full definitions and proofs in Appendix B. Note

that detection is different from finding the party at fault.

5.3 Assigning blame

An auction may be aborted during the online phase, or deferred

verification may fail. In these cases, Addax can narrow down

the set of faulty parties. As parties participate in many auctions

(recall that exchanges process billions of auctions per day),

one could develop detection algorithms that flag those who

are present in an unusually high number of aborted or failed

auctions. We discuss this in more detail in Appendix D.

6 Optimizations

This section discusses two optimizations. The first adds inter-

action between the bidders and the auctioneers to dramatically

cut costs. The second reduces interaction between the auction-

eers, which lowers latency, but leaks the existence of ties.

6.1 Less communication with an interactive MAX

A major drawback of the proposed private auction protocol

is that the computation and communication complexity of

computing MAX using AFE vectors and their correspond-

ing shares is O(ℓ), where ℓ is the highest possible bid (§4.2).

Meanwhile, bids range from cents to tens of dollars; a realistic

deployment would need ℓ ≥ 1,000, which is too costly. In

this section we show how to modify the auction protocol to

add r rounds of interaction between bidders and the auction-

eers (publisher and auxiliary server) in exchange for reducing

computation and communication complexity to O(r · ℓ1/r).

High-level idea. In Figure 2, bidders first represent their bids

as a unary bit vector, and then use Encode-OR on each bit to

create vector M. This vector is then split into shares M1 and

M2. The auctioneers aggregate their shares locally and then

exchange their sum vector shares to construct the sum vector

M. This vector is then decoded into a unary bit vector that

contains the result of max. Observe that if the bidders were to

use Encode-OR only on the last two bits of their bit vectors

(the gray and light gray cells), they would obtain the last 2

entries of M, which would then be split into the last two entries

of M1 and M2, and would become the last 2 entries of the sum

vector shares, and finally of M. Decoding these two entries of

M results in the last two bits of the final unary bit vector (in

the example these bits are 1 and 0). The fact that the last bit

is 0 means that the max value must be < ℓ. The fact that the

penultimate bit is 1 means that the max value must be ≥ ℓ− 1.

Hence, encoding and sharing only a subset of bidders’ unary

bit vectors is enough to compute the max value. Of course, in

this example we knew ahead of time which two elements to

pick to get a tight upper and lower bound on the max. In our

protocol, the auctioneers do r rounds of k-ary search (k = ℓ1/r)

to find the consecutive positions at which the final unary bit

vector changes from a 1 to a 0, which yields the max.

Protocol. Using the notation of Section 4.3, each bidder i

sends ⌈ℓ1/r⌉ entries of the AFE vector shares M1 and M2 to the

auctioneers in each round. The entries sent in each round are

evenly distributed between the current lower and upper bounds

on the maximum bid (initially set to 1 and ℓ, respectively).

For each of the chosen entries j, the auxiliary server runs the

Compute-OR procedure (§4.1) by aggregating the shares it

receives from each bidder i: M1[j] =
∑

i M1
i [j]. Likewise, the

publisher computes M2[j] =
∑

i M2
i [j]. The publisher and the

auxiliary server then exchange their sum shares for each entry

j, allowing the reconstruction of M[j] = M1[j]+M2[j]. Calling

Decode-OR (§4.1) on M[j] returns whether bit βj in the unary

vector is 1 or 0. If βj is 1, the highest bid b∗ ≥ j. Else, b∗ < j.

8

This establishes a new lower and upper bound on b∗ with

respect to the exchanged entries. After r rounds, the number of

entries sent by each bidder to each auctioneer is ≤ r · ⌈ℓ1/r⌉.
In this protocol, bidders transmit a subset of the entries that

they send to the auctioneers in the non-interactive variant, and

hence they reveal less information. But there is one down-

side: bidders or an auctioneer can adaptively send inconsistent

shares in response to partial information (e.g., knowledge that

the max is in a given range). This could affect the auction’s

integrity. Addressing this issue requires extending the protocol

with two extra safeguards: (1) an asynchronous step to find

the sale price bidder which is similar to Step 4 in Section 4.4;

and (2) generating a zero-knowledge proof that the sale price

bidder’s AFE vectors are valid without leaking the original

AFE vector. Appendix C describes these steps in detail and

proves the following two lemmas.

Lemma 5. If either the auxiliary server or the publisher mis-

behaves, or malicious bidders issue inconsistent AFE shares,

the above interactive protocol leaks no more information about

losing bidders’ bids than the non-interactive variant.

Lemma 6. If either the auxiliary server or the publisher mis-

behaves, or malicious bidders issue inconsistent AFE shares,

the above protocol (with the extra safeguards) ensures that

malicious actions are detected during an audit.

6.2 Lower latency by leaking the existence of ties

Of all the steps in the auction protocol, finding the winner

(§4.4, Step 4) is the most expensive since each interaction

between the publisher and the auxiliary server occurs over

WAN. This step consists of two parts: (1) pick a random can-

didate winner w, and (2) exchange the b∗-th entry of w’s AFE

vector shares to determine whether w indeed had the highest

bidÐtrying again otherwise. The iterated nature of this algo-

rithm aims to find one of the highest bidders at random (as

soon as a highest bidder w is found, the auctioneers halt). One

can eliminate this cost if one is willing to leak the number of

ties. The protocol is simple: the publisher and auxiliary server

exchange the b∗-th entry of the vector shares of all bidders. In

the absence of ties, after decoding, only one bidder will have a

1 and all others will have a 0. If there are ties, multiple bidders

will have a 1 at position b∗, and the auctioneers use the PRG

to break the tie. Addax adopts this tradeoff.

We note that the added leakage is actually minor given that

in the interactive protocol (Step 4), one learns that it took k

tries to find the winner. In an auction with no ties, k would

be n/2 in expectation, so the value of k already leaks some

information about the number of potential ties that may exist.

7 Search and filtering

In Addax, bidders register to participate in auctions by storing

their information (e.g., ad categories, domain of their bidding

service) on a public tamper-proof log, and auction participants

also use this log to create an audit trail (§5.2). Our implemen-

tation uses the Algorand blockchain [3] to maintain the log,

though we could have used a BFT consortium or a trusted

party (if one exists). Addax also needs a way to search the

blockchain. This is typically done by downloading the en-

tire blockchain and locally searching for the desired objects.

Of course, this is onerous for browsers, as no user would

ever maintain a copy of the blockchain just to receive ads.

Instead, our implementation uses the Purestake indexer [14].

The downside is that one must trust this indexer. One way to

remove this assumption is to use a verifiable search engine for

blockchains [69].

Even with the Purestake indexer, querying data is slow: it

takes seconds to get a response. Therefore, Addax keeps a

copy of the log in untrusted cache servers; Addax then queries

Purestake asynchronously to verify the cache servers’ results.

Querying cache servers takes only a few milliseconds.

In the rest of this section we describe how browsers do local

filtering and fetch advertisers’ data. We discuss how browsers

interact with the Algorand blockchain in Appendix E.

7.1 Filtering and inviting advertisers

Upon visiting a page with ads and obtaining a list of allowed

categories from the publisher, the browser queries the cache

server to get bidders who match these categories. The browser

caches bidder information and only sends ªif-modified-sinceº

requests to the cache server to reduce communication. Bor-

rowing ideas from Privad [58] and Adnostic [80], the browser

assigns a preference score for each of the returned bidders.

The browser then picks the top k bidders and invites them

to join the auction, supplying them with information about

the publisher and the user. Depending on the configuration of

Addax, the user information can be empty (for generic ads),

include a group or topic id (as in FLoC [89] and Topics [16]),

or include cookies and demographic information. Since the

publisher’s revenue depends on bids, and bidder valuations are

based on user information, different publishers can require dif-

ferent levels of information disclosure to access their content.

This is similar to how publishers detect ad blocking software

and request that users disable it.

8 Implementation

Addax consists of 2.2K lines of C++ and 400 lines of Python

and PyTeal [15] for Algorand smart contracts. Addax’s client-

side tracking is done outside the browser and interacts with

Chrome via native messaging [9]. We use OpenSSL 3.0.0 [12]

for basic cryptographic operations (e.g., BN_rand as the PRG).

Addax’s Pedersen commitment (§5.1) is defined over elliptic

curve secp192r1, as is the Schnorr signature scheme [78]

that bidders use to sign their log entries. Elements in V-AFE

vectors are defined over the 192-bit field used in secp192r1.

Baselines. To contextualize our contributions, we implement

baselines using state-of-the-art homomorphic encryption (HE)

and secure two-party computation (2PC) frameworks:

9

• CKKS on SEAL [25, 47]: HE for arithmetic operations.

• TFHE [49, 50]: HE for boolean operations.

• MASCOT on MP-SPDZ [65, 66]: Arithmetic 2PC.

• ag2pc on EMP toolkit [85, 86]: Boolean 2PC.

Homomorphic encryption. The publisher generates cryp-

tographic keys and sends the public key to bidders. Bidders

send bids encrypted with the public key to the auxiliary server,

who runs the auction over ciphertexts and supplies the result

to the publisher for decryption with the secret key. For SEAL

we implement and measure the maxId algorithm by Cheon

et al. [48] which is the best known way to find the ciphertext

with the max value. While this is a subset of running an auc-

tion, this one step is already more expensive than Addax’s full

auction protocol. For TFHE we implement the whole auction.

Neither baseline provides integrity.

Multiparty computation. Advertisers commit to their bids

and send them to the publisher and auxiliary server alongside

additive shares of their bids and the commitment randomness.

Inside the MPC, the auxiliary server and publisher reconstruct

the bids and the commitment randomness from their shares,

check that the commitments match, and the bids are the com-

mitted values, and then run the auction using the bids. For

commitments we use H(rand||bid) and assume H is a random

oracle. We use hash functions already implemented and opti-

mized for these frameworks (e.g., SHA3, SHA256, MiMC).

9 Evaluation

This section studies the following questions:

1. What are the costs of Addax’s auction for each party?

2. How does Addax’s auction compare with alternatives?

3. What is the resource overhead of deploying Addax over a

non-private and unverifiable exchange?

4. How expensive is the verification procedure?

Appendix E.3 discusses the cost of interacting with the log.

Evaluation environment. We run our experiments across

AWS data centers to account for Addax’s decentralized nature.

The publisher is in US East (Ohio) on a c5.2xlarge instance,

the auxiliary server in US West (OR) on a c5.2xlarge instance,

and bidders in US West (CA) on c5.12xlarge instances. We

use standard Ubuntu 20.04 for all of them. PureStake exposes

a REST API and runs on servers in Ontario, CA, and OR.

Method and metrics. Our key metrics are the end-to-end

latency, total network communication, and throughput of the

auction procedure. This includes the events after the browser

fetches the page from the publisher and initiates the auction,

but before the browser fetches and displays the ad on the user’s

screen. In short, we measure the overhead of Addax over the

status quo of using a centralized non-private ad exchange.

We report the mean over 20 trials and one standard deviation.

We focus on second-price auctions in this evaluation, as they

are the more complex type of auction. If Addax is used for

first-price auctions, the costs are 30% lower: auctions with

Size (MB) Generation (ms)

AFE vector shares 0.48 87.55

Materials (non-interactive) 0.25 537.9

Materials (interactive) 1.705 1,802.0

Non-interactive 2-round 4-round

Communication (MB) 0.48 0.0144 0.0034

FIGURE 3ÐSize of AFE vector shares and other materials (e.g.,

commitments), their generation time, and the total communication

between a bidder and one auctioneer under different Addax variants.

96 bidders complete within 440 ms, and Addax can sustain a

throughput of 360 auctions per second per core.

Parameters. Prior reports [92] suggest that the typical num-

ber of bidders (usually demand-side platforms) in an auction

is under 30. We experiment with up to 96 bidders, but Addax

could handle more with little extra latency since most of the

latency comes from round trips between the two servers and

is not impacted by the number of bidders. We set ℓ = 10,000,

which supports bid ranges consistent with those observed in

practice [93]. This results in a probability of computing the

wrong MAX of ≈ 1− (1− 1
2192)

10,000, which is negligible.

Our baseline implementations are generous: we use 13-bits

for bids (4/5 of our bid range) and do not measure the time to

receive shares or ciphertexts from bidders for any of them.

9.1 Microbenchmarks: Addax’s auction protocol

To answer our first research question we microbenchmark the

operations of each of the auction participants.

Bidder’s cost. Before the auction starts, bidders encode their

bids, commit to the encodings, and send their shares to the auc-

tioneers. Figure 3 depicts the time required to generate an AFE

vector, and the verification materials in both the non-interactive

protocol (§5) and the interactive variant (§6.1) using 8 CPU

threads. For the latter we include the cost of the safeguards

detailed in Appendix C.2. As shown in the figure, generating

these materials is more expensive than the time budgeted for

an auction. However, AFE vectors are made up of random

elements; the only dependence on bids is whether to use a

uniform element or a zero (§4.1). As a result, all materials

can be precomputed and kept aside. Furthermore, their genera-

tion is parallelizable: we get a 5.83× speedup with 6× more

cores. We expect bidders to be able to maintain their desired

throughput, albeit at a higher cost ($) than they incur today.

When the auction starts and the bidder decides on its bid, it

can draw from the set of pre-generated materials to construct

bid-specific AFE vector shares, commitments, and proofs.

With pre-generated materials, bidders respond in 10 ms.

Local auction computation. To determine the costs to the

auxiliary server and the publisher we run a microbenchmark

where both auctioneers run on the same machine, are given all

materials (e.g., AFE shares), and compute the auction without

the effects of network latency. Figure 4a shows the time for

10

24 48 96
Number of bidders in auction

1

10

102

103

A
uc

tio
n

Ti
m

e
(m

s)

Non-interactive
Interactive - 2 round
Interactive - 4 round

(a)

24 48 96
Number of bidders in auction

0.01

0.1

1

10

102
103

C
om

m
un

ic
at

io
n

C
os

t (
M

B
)

Non-interactive
Interactive - 2 round

Interactive - 4 round

(b)

�� �� 	�
����������������������������

�

�

�

�

�
���
��
��
��
��
��
�
��
��
� ���������������

��������������������

��������������������

(c)

FIGURE 4ÐCost of running and verifying an auction across Addax’s variants. Figure (a) depicts the processing time incurred by each

auctioneer; (b) depicts the communication costs for each auctioneer; and (c) depicts the costs to an auditor.

24 48 96
Number of bidders in auction

0.1

1

10

102

103

Ti
m

e
(s

)

SEAL
TFHE

MASCOT
ag2pc

Addax - 2-round
Addax - 4-round

24 48 96
Number of bidders in auction

0.01

0.1

1
10
102
103
104
105

C
om

m
un

ic
at

io
n

(M
B

)

FIGURE 5ÐEnd-to-end latency and communication costs for an

auction in Addax and several baselines over WAN.

different Addax variants. Compared to the non-interactive

protocol, Addax with 4 rounds (§6.1) requires fewer operations

since it acts on a tiny subset of the entries of the AFE vector,

and reduces computation time for a 96 bidder auction from

102 ms to 2.8 ms. Interactivity also reduces communication

costs for effectively the same reason (acts on fewer entries). As

we show in Figure 4b, the size of the AFE shares exchanged

between bidders and each auctioneer in the non-interactive

variant of Addax with 96 bidders is 47.68 MB, whereas it is

0.28 MB with 4-rounds and 1.23 MB with 2-rounds.

9.2 End-to-end performance

The above microbenchmarks give an idea of the computation

and communication costs that are expected when running auc-

tions with Addax. However, the metric that actually matters is

end-to-end latency over WAN. Figure 5 shows the computa-

tion and communication costs of Addax’s end-to-end protocol

over a WAN deployment, from the time that the publisher

starts the auction, to the time the winner is notified. This figure

500 1000 1500 2000 2500
Throughput (auctions/sec)

1

10

102

La
te

nc
y

(m
s)

Addax (2-round) - 50p
Addax (2-round) - 99p
Addax (4-round) - 50p
Addax (4-round) - 99p
Baseline (non-private) - 50p
Baseline (non-private) - 99p

FIGURE 6ÐMedian and 99-percentile response time and server

throughput for Addax and a non-private baseline for an auction with

96 bidders. Each data point represents the latency and the throughput

achieved at a given load (low and to the right is better).

also shows the baselines described in Section 8.

In terms of auction latency, Addax’s 2-round variant is by

far the most efficient option, often by orders of magnitude

compared to the baselines. Addax’s 2-round variant beats the

4-round variant due to fewer WAN RTTs at a slight increase

in the amount of communication. At 96 bidders, the browser

receives an ad tag from Addax in 579 ms; behind the scenes,

the auctioneers exchange 1.23 MB of data to compute the

auction. Of this time, the servers only spend 5 ms computing;

the rest is network latency. Thus, having more bidders will not

meaningfully increase the end-to-end latency of Addax.

For comparison, studies [1, 7, 20, 87] show that page load-

ing times today take several seconds, so we expect Addax to

run auctions asynchronously as the page loads without signifi-

cantly impacting the user experience.

9.3 Costs over a non-private unverifiable baseline

To understand the additional computational resources required

to deploy Addax, we compare its throughput on a c5.2xlarge

instance (4-core VM) to a baseline that simply finds the highest

and second highest bids (the only non-trivial computation

is establishing a TLS session between the browser and the

publisher). We run an open-loop workload with varying load

and with all inputs already in-memory, so we do not measure

network latency. Figure 6 gives the results.

Addax’s 2-round and 4-round variant achieve 8.1× and

11

Non-interactive 2-round 4-round

Auctioneers 1.932 0.056 0.025

Bidders 0.250 0.250 0.250

Winner 0.250 0.730 0.730

Sale price bidder 0.250 1.705 1.705

FIGURE 7ÐTotal size (MB) of the audit information that parties

must upload to the public log in an auction of 96 bidders.

2.7× lower throughput than the baseline. As Addax requires

two servers, this translates to 16.2× and 5.4× more computa-

tion resources to maintain the same throughput as the baseline.

This suggests that Addax could process the high volume of auc-

tions that exchanges process today while providing integrity

and privacy guaranteesÐalbeit at a premium cost.

9.4 Cost of verification

In this section we evaluate the cost for auction participants to

supply the necessary materials to leave an audit trail, and for

an auditor to validate the correctness of an auction.

Leaving an audit trail. After the auction finishes, partici-

pants upload their audit materials (§5.2±§5.3) to Algorand.

This takes around 0.8 sec. Figure 7 gives the size of the ma-

terials that each party uploads for a 96-bidder auction. In the

interactive variants, the winner uploads its full AFE vector,

and the sale price bidder uploads its full AFE vector with a

random mask and proofs as described in Appendix C.5.

Verification time. Verification requires downloading the ma-

terials from Algorand, checking the hash of commitments,

and checking the recovered AFE sum vectors and bit encod-

ings (§5.2). Auditors also need to validate that AFE vectors

from the winner and sale price bidder are valid (§C.2). Fig-

ure 4c depicts the time of verification. In the non-interactive

variant, deserializing commitments and verifying the two sum

vectors takes most of the time. In contrast, in the interactive

variants the expensive step is validating the winner and sale

price bidders’ AFE vectors. To verify a 96-bidder auction, the

non-interactive variant requires 4.27 sec, while the 2-round

and 4-round variants take 1.66 sec and 1.49 sec, respectively.

10 Related work

This section describes other efforts that relate to Addax.

Advertising. There is a rich literature in privacy preserving

ads [35, 44, 52, 57±59, 75, 76, 80], but none focuses on private

and verifiable auctions. VEX [35] provides verifiability but

the auctioneer learns all bids. Privad [58, 59], Adnostic [80],

FloC [89], Topics [16], and others [37, 57, 76] reduce the

collection of user information, but auctions are still conducted

by a party that learns all bids and cannot be audited.

Private and verifiable auctions. In other domains, there is

work on private or verifiable auctions. Parkes et al. [73] pro-

vide auction integrity but the auctioneer learns all bids, unlike

Addax. Other works [62, 67] provide privacy but not integrity.

Finally, there are several multiparty protocols [38, 42] where

the bidders jointly compute the auction. This is worse than

our MPC baseline in Section 8 in that here bidders actively

participate in the protocol rather than merely generating shares.

This does not scale to more than a handful of bidders.

11 Discussion

Addax departs from the status quo by introducing accountabil-

ity to an opaque ecosystem. While this is a disruptive change,

there are two things on Addax’s favor. First, the ad-tech indus-

try already uses browsers to kickstart auctions and invite bid-

ders [4] and newer proposals like Google’s FLEDGE [33] push

even more functionality to browsers include client-side track-

ing. Second, Addax is incrementally deployable: an Addax-

enabled browser can send an HTTP X-header indicating its

support of the protocol, and interested publishers can respond

with Addax-based ad spots while continuing to offer tradi-

tional ads to other users. Furthermore, we think many missing

features can be implemented in Addax.

Content curation. A key role of exchanges is to prevent

malvertising (the use of ads to spread malware) or ads that

can damage the publisher’s brand. On the one hand, content

curation is hard even in centralized environments: reports of

malicious actors leveraging ad networks to distribute malware

are common [8]. On the other hand, since advertisers publish

their information on Addax’s public log, one could imagine

requiring advertisers to upload their ads as well. Then, just like

existing services scan blockchains for anomalous transactions,

they can scan Addax’s log to detect and flag malicious ads.

Fraud prevention. Many existing mechanisms to prevent

publisher fraud (e.g., using clickbots to increase revenue) [79]

still work in our setting. For example, bidders can still observe

anomalous changes in ad traffic from a publisher, and can

perform randomized auditing with bluff ads [60] (uninviting

ads unlikely to be clicked by real users). Other techniques

that collect hard-to-fake signals from a device with the aim of

detecting bots [18, 21] could also be used, but more work is

needed to port them to our context.

Conversions. Analytics are also critical to the ad ecosystem.

Currently, advertisers and publishers rely on third-party cook-

ies to track when a user performs an action after viewing an ad

(a ªconversionº). A recent proposal [94] shows how this can be

done without cookies and without learning the user’s identity;

this approach is compatible with Addax’s architecture.

Trust-performance tradeoff. Our description of Addax uses

2 parties but the protocols naturally generalize to k auxiliary

servers; if either the publisher or any of the k auxiliary servers

is honest, Addax provides its guarantees. Of course, as the

number of parties increases the costs also increase. This trade-

off can be taken into account at deployment time.

12

Acknowledgments

We thank the OSDI and NSDI reviewers, and our shepherd,

Bryan Ford, for their thoughtful comments that improved

this paper. This work was funded in part by NSF grant CNS-

2045861 and DARPA contract HR0011-17-C0047.

References

[1] About pagespeed insights. https://developers.google.

com/speed/docs/insights/v5/about.

[2] Adtelligent’s header bidding platform. https:

//adtelligent.com/header-bidding-platform/.

[3] Algorand. https://www.algorand.com/.

[4] The beginner’s guide to header bidding.

https://adprofs.co/beginners-guide-to-header-

bidding/.

[5] Google Has a New Plan to Kill Cookies. People Are Still Mad.

https://www.wired.co.uk/article/google-floc-

cookies-chrome-topics.

[6] Google’s Topics API: Rebranding FLoC Without Addressing

Key Privacy Issues. https://brave.com/web-standards-

at-brave/7-googles-topics-api/.

[7] Here’s what we learned about page speed.

https://backlinko.com/page-speed-stats.

[8] Malvertising: What is it and how to avoid it.

https://us.norton.com/internetsecurity-malware-

malvertising.html.

[9] Native messaging.

https://developer.chrome.com/docs/apps/nativeMessaging/.

[10] Openrtb protocol buffer 2.5.0.

https://developers.google.com/authorized-

buyers/rtb/downloads/openrtb-proto.

[11] OpenRTB (real time bidding).

https://www.iab.com/guidelines/real-time-

bidding-rtb-project/.

[12] OpenSSL. https://www.openssl.org.

[13] Parakeet. https://github.com/WICG/privacy-

preserving-ads/blob/main/Parakeet.md.

[14] Purestake. https://www.purestake.com/.

[15] Pyteal: Algorand smart contracts in python.

https://github.com/algorand/pyteal.

[16] The Topics API.

https://developer.chrome.com/docs/privacy-

sandbox/topics/.

[17] This is how Google plans to track you now.

https://www.slashgear.com/this-is-how-google-

plans-to-track-you-now-25708910/.

[18] What is recaptcha?

https://www.google.com/recaptcha/about/.

[19] Cookie synching.

https://www.admonsters.com/cookie-synching/,

2010.

[20] Find out how you stack up to new industry benchmarks for

mobile page speed.

https://think.storage.googleapis.com/docs/

mobile-page-speed-new-industry-benchmarks.pdf,

2017.

[21] Fighting fraud using partially blind signatures.

https://engineering.fb.com/2019/10/16/security/

partially-blind-signatures/, 2019.

[22] Iab internet advertising revenue report.

https://www.iab.com/wp-

content/uploads/2019/05/Full-Year-2018-IAB-

Internet-Advertising-Revenue-Report.pdf, 2019.

[23] Cookie matching.

https://developers.google.com/authorized-

buyers/rtb/cookie-guide, 2020.

[24] Lattigo v2.1.1. Online:

http://github.com/ldsec/lattigo, Dec. 2020.

[25] Microsoft SEAL (release 3.6).

https://github.com/Microsoft/SEAL, Nov. 2020.

[26] PALISADE Lattice Cryptography Library (release 1.10.6).

https://palisade-crypto.org/, Dec. 2020.

[27] Private marketplace ad spending to surpass open exchange in

2020. https://www.emarketer.com/content/private-

marketplace-ad-spending-to-surpass-open-

exchange-in-2020, 2020.

[28] Antitrust battle latest: Google, facebook ’colluded’ to smash

apple’s privacy protections.

https://www.theregister.com/2021/10/22/google_

facebook_antitrust_complaint/, 2021.

[29] Azure attestation client library for .net - version 1.0.0.

https://docs.microsoft.com/en-us/dotnet/api/

overview/azure/security.attestation-readme, 2021.

[30] Bring more bids to the auction with open bidding.

https://admanager.google.com/home/resources/

feature-brief-open-bidding/, 2021.

[31] SCALE and MAMBA.

https://github.com/KULeuven-COSIC/SCALE-MAMBA,

2021.

[32] The comprehensive guide to online advertising costs.

https://www.wordstream.com/blog/ws/2017/07/05/

online-advertising-costs, 2022.

[33] Fledge api.

https://developer.chrome.com/docs/privacy-

sandbox/fledge/, 2022.

[34] E. Anderson, M. Chase, F. B. Durak, E. Ghosh, K. Laine, and

C. Weng. Aggregate measurement via oblivious shuffling,

2021. https://ia.cr/2021/1490.

[35] S. Angel and M. Walfish. Verifiable auctions for online ad

exchanges. In Proceedings of the ACM SIGCOMM Conference,

2013.

[36] Y. Aumann and Y. Lindell. Security against covert adversaries:

Efficient protocols for realistic adversaries. Journal of

Cryptology, 23(2), 2010.

[37] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad:

Provably secure and practical online behavioral advertising. In

Proceedings of the IEEE Symposium on Security and Privacy

(S&P), 2012.

[38] S. Bag, F. Hao, S. F. Shahandashti, and I. G. Ray. Seal:

Sealed-bid auction without auctioneers. IEEE Transactions on

Information Forensics and Security, 15, 2020.

[39] M. A. Bashir and C. Wilson. Diffusion of User Tracking Data

in the Online Advertising Ecosystem. In Proceedings of the

Privacy Enhancing Technologies Symposium (PETS), 2018.

[40] A. Bois, I. Cascudo, D. Fiore, and D. Kim. Flexible and

efficient verifiable computation on encrypted data. Cryptology

13

ePrint Archive, Report 2020/1526, 2020.

[41] F. Bourse, O. Sanders, and J. Traoré. Improved secure integer

comparison via homomorphic encryption. In Topics in

Cryptology ± CT-RSA 2020, 2020.

[42] F. Brandt. A verifiable, bidder-resolved auction protocol. In

Proceedings of the 5th International Workshop on Deception,

Fraud and Trust in Agent Societies, 2002.

[43] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,

F. Piessens, M. Silberstein, T. Wenisch, Y. Yarom, and

R. Strackx. Foreshadow: Extracting the keys to the intel sgx

kingdom with transient out-of-order execution. In Proceedings

of the USENIX Security Symposium, 2018.

[44] J. Cartlidge, N. P. Smart, and Y. Talibi Alaoui. Mpc joins the

dark side. In International Symposium on Information,

Computer, and Communications Security, 2019.

[45] F. Chanchary and S. Chiasson. User perceptions of sharing,

advertising, and tracking. In Symposium On Usable Privacy

and Security (SOUPS), 2015.

[46] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai.

Sgxpectre attacks: Leaking enclave secrets via speculative

execution. In Proceedings of the IEEE Symposium on Security

and Privacy (S&P), 2019.

[47] J. H. Cheon, A. Kim, M. Kim, and Y. Song. Homomorphic

encryption for arithmetic of approximate numbers. In

International Conference on the Theory and Application of

Cryptology and Information Security (ASIACRYPT), 2017.

[48] J. H. Cheon, D. Kim, D. Kim, H. H. Lee, and K. Lee.

Numerical method for comparison on homomorphically

encrypted numbers. In International Conference on the Theory

and Application of Cryptology and Information Security

(ASIACRYPT), 2019.

[49] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.

TFHE: Fast fully homomorphic encryption library, August

2016. https://tfhe.github.io/tfhe/.

[50] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène.

TFHE: Fast fully homomorphic encryption over the torus.

Journal of Cryptology, 33, 2020.

[51] H. Corrigan-Gibbs and D. Boneh. Prio: Private, robust, and

scalable computation of aggregate statistics. In Proceedings of

the USENIX Symposium on Networked Systems Design and

Implementation (NSDI), 2017.

[52] E. Deng, H. Zhang, P. Wu, F. Guo, Z. Liu, H. Zhu, and Z. Cao.

Pri-rtb: Privacy-preserving real-time bidding for securing

mobile advertisement in ubiquitous computing. In Information

Sciences, 2019.

[53] A. Fiat and A. Shamir. How to prove yourself: Practical

solutions to identification and signature problems. In Advances

in Cryptology Ð CRYPTO’ 86, 1987.

[54] D. Fiore, A. Nitulescu, and D. Pointcheval. Boosting verifiable

computation on encrypted data. In Proceedings of the

International Conference on Practice and Theory in Public Key

Cryptography (PKC), 2020.

[55] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich.

Algorand: Scaling byzantine agreements for cryptocurrencies.

In Proceedings of the ACM Symposium on Operating Systems

Principles (SOSP), 2017.

[56] A. Goldfarb and C. E. Tucker. Privacy regulation and online

advertising. Management Science, 2010.

[57] M. Green, W. Ladd, and I. Miers. A protocol for privately

reporting ad impressions at scale. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS),

2016.

[58] S. Guha, B. Cheng, and P. Francis. Privad: Practical privacy in

online advertising. In Proceedings of the USENIX Symposium

on Networked Systems Design and Implementation (NSDI),

2011.

[59] S. Guha, A. Reznichenko, K. Tang, H. Haddadi, and P. Francis.

Serving ads from localhost for performance, privacy, and profit.

In Proceedings of the ACM Workshop on Hot Topics in

Networks (HotNets), 2009.

[60] H. Haddadi. Fighting online click-fraud using bluff ads. ACM

SIGCOMM Computer Communication Review, 40(2), 2010.

[61] S. Halevi and V. Shoup. Design and implementation of helib: a

homomorphic encryption library. Cryptology ePrint Archive,

Report 2020/1481, 2020.

[62] M. Harkavy, J. D. Tygar, and H. Kikuchi. Electronic auctions

with private bids. In 3rd USENIX Workshop on Electronic

Commerce (EC 98), 1998.

[63] J. Horwitz and K. Hagey. Google’s secret ‘project bernanke’

revealed in texas antitrust case.

https://www.wsj.com/articles/googles-secret-

project-bernanke-revealed-in-texas-antitrust-

case-11618097760, Apr. 2021.

[64] I. Iliashenko and V. Zucca. Faster homomorphic comparison

operations for BGV and BFV. Cryptology ePrint Archive,

Report 2021/315, 2021.

[65] M. Keller. MP-SPDZ: A versatile framework for multi-party

computation. Cryptology ePrint Archive, Report 2020/521,

2020.

[66] M. Keller, E. Orsini, and P. Scholl. Mascot: Faster malicious

arithmetic secure computation with oblivious transfer. In

Proceedings of the ACM Conference on Computer and

Communications Security (CCS), 2016.

[67] H. Kikuchi, S. Hotta, K. Abe, and S. Nakanishi. Distributed

auction servers resolving winner and winning bid without

revealing privacy of bids. In Proceedings of the Seventh

International Conference on Parallel and Distributed Systems:

Workshops, 2000.

[68] S. Lee, M. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado.

Inferring fine-grained control flow inside SGX enclaves with

branch shadowing. In Proceedings of the USENIX Security

Symposium, 2017.

[69] M. Li, T. Zhang, J. Zhu, C. Tan, Y. Xia, S. Angel, and H. Chen.

Bringing decentralized search to decentralized services. In

Proceedings of the USENIX Symposium on Operating Systems

Design and Implementation (OSDI), 2021.

[70] Y. Lindell. How to simulate it - a tutorial on the simulation

proof technique. Cryptology ePrint Archive, Report 2016/046,

2016. https://ia.cr/2016/046.

[71] J. R. Mayer and J. C. Mitchell. Third-party web tracking:

Policy and technology. In Proceedings of the IEEE Symposium

on Security and Privacy (S&P), 2012.

[72] K. Murdock, D. Oswald, F. D. Garcia, J. Van Bulck, D. Gruss,

and F. Piessens. Plundervolt: Software-based fault injection

attacks against intel sgx. In Proceedings of the 41st IEEE

Symposium on Security and Privacy (S&P’20), 2020.

[73] D. C. Parkes, M. O. Rabin, S. M. Shieber, and C. Thorpe.

Practical secrecy-preserving, verifiably correct and trustworthy

14

auctions. Electronic Commerce Research and Applications,

2008.

[74] T. P. Pedersen. Non-interactive and information-theoretic

secure verifiable secret sharing. In Proceedings of the

International Cryptology Conference (CRYPTO), 1991.

[75] G. Pestana, I. Querejeta-Azurmendi, P. Papadopoulos, and

B. Livshits. Themis: Decentralized and trustless ad platform

with reporting integrity.

https://arxiv.org/abs/2007.05556v2, 2020.

[76] A. Reznichenko, S. Guha, and P. Francis. Auctions in

do-not-track compliant internet advertising. In Proceedings of

the ACM Conference on Computer and Communications

Security (CCS), 2011.

[77] F. Roesner, T. Kohno, and D. Wetherall. Detecting and

defending against third-party tracking on the web. In

Proceedings of the USENIX Symposium on Networked Systems

Design and Implementation (NSDI), 2012.

[78] C. P. Schnorr. Efficient identification and signatures for smart

cards. In Proceedings of the International Cryptology

Conference (CRYPTO), 1989.

[79] B. Stone-Gross, R. Stevens, R. Kemmerer, C. Kruegel,

G. Vigna, and A. Zarras. Understanding fraudulent activities in

online ad exchanges. In Proceedings of the ACM SIGCOMM

Conference on Internet Measurement (IMC), 2011.

[80] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and

S. Barocas. Adnostic: Privacy preserving targeted advertising.

In Proceedings of the Network and Distributed System Security

Symposium (NDSS), 2010.

[81] R. Tracy and J. Horwitz. Inside the Google-Facebook ad deal

at the heart of a price-fixing lawsuit.

https://www.wsj.com/articles/inside-the-google-

facebook-ad-deal-at-the-heart-of-a-price-

fixing-lawsuit-11609254758, Dec. 2020.

[82] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,

D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:

Hijacking Transient Execution through Microarchitectural

Load Value Injection. In Proceedings of the IEEE Symposium

on Security and Privacy (S&P), 2020.

[83] W. Vickrey. Counterspeculation, auctions, and competitive

sealed tenders. The Journal of Finance, 1961.

[84] D. Wakabayashi and T. Hsu. Behind a secret deal between

Google and Facebook.

https://www.nytimes.com/2021/01/17/technology/

google-facebook-ad-deal-antitrust.html, Jan. 2021.

[85] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit:

Efficient MultiParty computation toolkit.

https://github.com/emp-toolkit, 2016.

[86] X. Wang, S. Ranellucci, and J. Katz. Authenticated garbling

and efficient maliciously secure two-party computation. In

Proceedings of the ACM Conference on Computer and

Communications Security (CCS), 2017.

[87] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and

D. Wetherall. Demystifying page load performance with wprof.

In Proceedings of the USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2013.

[88] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson.

Scalable anonymous group communication in the anytrust

model. In Proceedings of the European Workshop on System

Security (EUROSEC), Apr. 2012.

[89] Y. Xiao and J. Karlin. Federated learning of cohorts.

https://wicg.github.io/floc/, 2021.

[90] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks:

Deterministic side channels for untrusted operating systems. In

Proceedings of the IEEE Symposium on Security and Privacy

(S&P), 2015.

[91] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and Z. Chen.

How much can behavioral targeting help online advertising? In

International World Wide Web Conference (WWW), 2009.

[92] S. Yuan, J. Wang, B. Chen, P. Mason, and S. Seljan. An

empirical study of reserve price optimisation in real-time

bidding. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining, 2014.

[93] W. Zhang, S. Yuan, J. Wang, and X. Shen. Real-time bidding

benchmarking with iPinYou dataset.

https://arxiv.org/abs/1407.7073, 2015.

[94] K. Zhong, Y. Ma, and S. Angel. Ibex: Privacy-preserving ad

conversion tracking and bidding. In Proceedings of the ACM

Conference on Computer and Communications Security (CCS),

2022.

A Proofs for lemmas

Proof of Lemma 1. Let h be the maximum bid among all

honest bidders. The event claimed in Lemma 1 is equiva-

lent to one of two cases: (1) Decode-MAX outputs a valid

unary bit vector whose value is larger than or equal to h; or

(2) Decode-MAX outputs an invalid unary bit vector. Con-

sider the opposite event where Decode-MAX outputs a valid

unary bit vector whose value is smaller than h. We denote

the probability of this event as Pr(opposite). Pr(opposite) ≤
Pr(Decode-OR outputs 0 at position h) ≤ 1/p. Therefore, the

probability that the output of Step 3 is greater than or equal to

h or is an invalid unary bit vector is 1−Pr(opposite) ≥ 1−1/p.

In our construction p is a large prime, and hence 1− 1/p ≈ 1.

Proof of Lemma 2. Let two parties hold additive shares for

a given AFE value that was produced by Encode-OR. Let

one of the parties be honest and the other malicious. Without

seeing the share held by the honest party, the probability of

the malicious party generating a share that results in Decode-

OR outputting 0 is 1/p: the malicious party would have to

correctly guess the exact value needed to make the two shares

add up to 0, and shares are uniformly random values in Zp.

Thus, the probability of a malicious party generating AFE

shares which lead to Decode-OR outputting 1 is 1− 1/p.

We use Pr(b) to denote the probability that Decode-MAX

outputs b, and Pr(invalid) to denote the probability that

Decode-MAX outputs an invalid bit vector. Decode-MAX out-

puts b means that the decoded bit vector is [1, . . . , 1
︸ ︷︷ ︸

b

, 0, . . . , 0
︸ ︷︷ ︸

ℓ−b

].

Thus, Pr(b) = (1/p)ℓ−b · (1− 1/p)b.

15

Pr(0) + . . .+ Pr(ℓ− 1) < (1/p)ℓ + . . .+ (1/p)1

=

1
p
− (1

p
)ℓ+1

1− 1
p

<
1

p− 1

Pr(ℓ) + Pr(Invalid) = 1− (Pr(0) + . . .+ Pr(ℓ− 1))

≥ 1−
1

p− 1

In our construction p is a large prime, so 1− 1
p−1
≈ 1.

Proof of Lemma 3. From Lemma 2 (and its proof), if a mali-

cious party uses a bogus share for one of the bits, Decode-OR

outputs 1 with probability ≥ 1 − 1/p. Thus, if a malicious

publisher or auxiliary server ever sends a bogus AFE share,

Decode-OR would output 1 with high probability, leading to

that candidate w becoming the winner. The auxiliary server

and publisher then need to get acknowledgment from bidder

w on whether its bid bw is b∗. If w is honest and bw ̸= b∗, the

auction aborts. If w is honest and bw = b∗, w is the real winner,

as b∗ is greater than or equal to the real highest bid among all

honest bidders with high probability. If w is malicious, it could

abort or can choose to be the winner at its own discretion. If

the latter, it must pay the second-highest bid (sale price).

Proof of Lemma 4. We consider two cases: (1) bidder w is

honest and the real winner (highest bidder); (2) bidder w is a

malicious bidder and not the highest bidder. We denote b as

the computed sale price in Step 5.

For case (1), if the two auctioneers do not misbehave and use

the correct inputs from bidders to compute Step 5, then b is the

real sale price (i.e., the second highest bid) among all bidders.

If a malicious auctioneer (auxiliary server or publisher) sends

a sum vector share that is not computed correctly from bidders’

inputs (i.e., the malicious auctioneer sends a sum vector share

that is not
∑N

i=1 M1
i −M1

w) in Step 5 when computing the sale

price, b would be ℓ with high probability (Lemma 2).

For case (2), if the two auctioneers do not misbehave and

use the correct inputs from bidders to compute Step 5, Step

5 finds the highest bid among all bidders excluding bidder w.

Thus, b equals the highest bid among all bidders. If a malicious

auctioneer sends an incorrect sum vector share (not computed

correctly from the inputs of all bidders) in Step 5, then b is ℓ
with high probability (Lemma 2).

B Proof for Addax’s security properties

This section proves that Addax meets its security properties,

which include auction completeness, soundness, and privacy.

Completeness. When all parties are honest, Addax’s com-

pleteness relies on the probability of Decode-MAX being

successful when it is used to find the highest bid and the sale

price. Further, it relies on the probability of Decode-OR being

successful when finding the id of the winner and the second

highest bidder (recall this happens interactively by calling

Decode-OR on a particular entry in the AFE sum vector of

a candidate winner). In the worst case, Decode-OR might be

run on up to n candidate winners (2n− 1 times for candidate

winners and sale price bidders in the interactive variant). The

probability of success is ≥ (1− 1/p)
2ℓ
· (1− 1/p)

n
, and is

≥ (1− 1/p)
2ℓ
· (1− 1/p)

2n−1
in the interactive variant.

Soundness. There are three scenarios which result in an in-

correct outcome: (1) publisher and auxiliary server are honest

and some bidders are malicious; (2) either the publisher or the

auxiliary server is malicious and all bidders are honest; (3)

either the publisher or the auxiliary server is malicious and

some bidders are malicious and colluding with the malicious

auctioneer.

When bidders are malicious, they can: (A1) encode bids

into an invalid unary bit vector (e.g., [1,0,0,1]), then generate

AFE shares for such invalid unary bit vector and submit them

to the publisher and auxiliary server; (A2) provide inconsistent

commitments which are not commitments to the AFE it gener-

ates or provide inconsistent hash values of their commitments;

(A3) claim to be the winner even when they are not. When

one of two computing servers is malicious, it could: (B1) send

incorrect sum vectors for the highest bid or sale price; (B2)

send incorrect AFE shares when finding the winner or the

bidder of the sale price.

All malicious behaviors above except (A1) would lead to

failure of verification using commitments with high probability

due to Pedersen commitments being computationally binding

and the hash function being collision resistant. Specifically,

after all bidders send a hash of their commitments, they are

bound to their AFE vectors. When the random seed used to

find the winner and sale price bidder is fixed, the winner and

the sale price bidder (in the interactive variant) are also bound.

This effectively fixes the outcome of the auction.

(A1) may still pass verification but the outcome of the

auction will still be correct since we do not explicitly check

whether inputs from all bidders are valid or not. In the non-

interactive auction protocol, Addax can treat the highest index

with bit one of the decoded bit vector as the bid of the bidder

(e.g., [1,0,1,0] corresponds to bid 3). Thus, an invalid AFE

vector does not affect the outcome of the auction. And we only

need to check the case of (A1) in the interactive variant. If a

bidder who submitted an invalid AFE vector does not become

the winner or the bidder of the sale price, then they do not

affect the auction’s outcome. Thus, auditors need only check

whether the winner and bidder of the sale price provided valid

AFE vectors. We discuss how to do this in Appendix C.

Privacy. We will prove Addax’s privacy guarantees using a

simulation proof [70]. A simulation proof is done by first defin-

ing an ideal functionalityF . One can think of it as the function

that one would run if one had access to a trusted third party.

This ideal functionality will provide some output that is avail-

16

able to everyone, but it will keep all inputs and internal values

secret. We want to show that a protocol is as good as the ideal

functionality in terms of what information it leaks: anything

that an adversary can learn from interacting and observing

the output of Addax, the adversary can learn from interacting

and observing the output of the ideal functionality. To prove

this, we build a simulator Sim that interacts with the ideal

functionality F and obtains only the outputs that F provides

without having access to the inputs of the honest parties. If

the simulator can produce a view (a transcript of all messages

sent and received by all parties) that is computationally indis-

tinguishable from the view produced by the execution of the

original protocol, we say that the protocol is as secure as the

ideal functionality.

To show the security of Addax, we first define a variant that

we call Addax-V. This variant differs from the original Addax

in that instead of deferring all verification to after the protocol

finishes, Addax-V verifies the outcome of each computation

step (i.e., the highest bid, the winner, and the sale price) im-

mediately after the step completes. If at any step verification

fails, the protocol stops without moving forward. Note that

we could deploy Addax-V itself, but it would be inefficient;

Addax instead moves the verification to the asynchronous step

so that it is not part of the critical path of real-time ad auctions.

We will show that Addax-V is as secure as the ideal function-

ality F ; then we will prove that the original Addax protocol

with deferred verification is as secure as Addax-V.

Below we give Addax-V’s protocol. For simplicity, we

omit the exchange of hash values between P1 and P2 before

sending messages, and whenever Decode-MAX outputs an

invalid bit vector, it is assumed that P1 or P2 aborts. We also

assume that the two auctioneers find the winner (or bidder

of sale price) sequentially starting from the first bidder and

stopping when the winner (or bidder of sale price) is found.

Addax-V’s auction protocol

Step 1 (Bidders encode and send AFE shares):

• Each bidder i among the n bidders encodes its bid

as a V-AFE vector Mi, splits it into additive shares

M1
i and M2

i , and generates commitments Ci (§5.1).

• Bidder i sends M1
i to P1 and M2

i to P2, and Ci to

both P1 and P2.

Step 2 (Compute highest bid):

• P1 sets s1 =
∑n

i=1 M1
i ; P2 sets s2 =

∑n

i=1 M2
i .

• P1 and P2 exchange s1 and s2, compute S = s1 + s2,

and run Decode-MAX on S to get b∗.

• P1 and P2 use commitments to verify whether b∗ is

correct (§5.2) and abort if it fails.

Step 3 (Find winner):

For i = 1 to n, P1 and P2 repeat the following:

• P1 sends M1
i [b

∗] to P2, and P2 sends M2
i [b

∗] to P1.

• P1 and P2 set βi = Decode-OR(M1
i [b

∗] + M2
i [b

∗]).

• If βi is 1, then i is the winner (set w = i); else

continue. If i = n and βi = 0, then P1 and P2 abort.

• P1 and P2 ask bidder w if its bid is b∗. If w says no,

P1 and P2 abort. Else, P1 and P2 use commitments

to validate w is correct (§5.2) and abort if it fails.

Step 4 (Compute sale price):

• P1 sends m1 =
∑n

i=1 M1
i −M1

w to P2, and P2 sends

m2 =
∑n

i=1 M2
i −M2

w to P1.

• P1 and P2 compute sp = Decode-MAX(m1 + m2).

• P1 and P2 use commitments to verify whether sp is

correct (§5.2) and abort if it fails.

Note that whenever there is a party that sends abort, the

protocol terminates and all parties are notified. The detailed

process of termination works as follows.

If an auctioneer (either P1 or P2) wants to send abort, it

directly sends abort to all bidders and another auctioneer. If a

bidder wants to send abort when asked whether b∗ is its bid, it

replies ªnoº and sends abort to the two auctioneers. The two

auctioneers then forward the abort message to all the bidders.

Now we define an ideal functionality that captures the

privacy properties of Addax-V’s protocol. Let n = h+k be the

total number of bidders, where the first h bidders are honest

(non-adversarial) and the last k bidders are malicious (actual

position is irrelevant). The two auctioneers are denoted as P1

and P2. Without loss of generality, we assume an adversary

that corrupts P1 and k bidders. The ideal functionality is:

Ideal functionality F of Addax-V’s auction protocol

Inputs: h bids b1, . . . , bh from h honest bidders and a

cheat message (an integer from 1 to 4) from P1.

Outputs: (b∗, w, sp) are computed as:

• b∗ = max(b1, . . . , bh).

• w, such that bw = b∗ while b1 ̸= b∗, . . . , bw−1 ̸=
b∗ (i.e., w is the first bidder whose bid is b∗).

• sp = max(b1, . . . , bw−1, bw+1, . . . , bh) (i.e., the

maximum bid excluding bw).

F conditionally outputs the above computed values

depending on the value of cheat.

• When cheat is 1: F outputs b∗ to P1 and nothing

to P2.

• When cheat is 2: F outputs (b∗, w) to P1 and b∗ to

P2.

• When cheat is 3: F outputs (b∗, w, sp) to P1 and

(b∗, w) to P2.

• When cheat is 4: F outputs (b∗, w, sp) to both P1

and P2.

Note that the ideal functionalityF also provides an interface

17

to take an abort message as input which allows terminating

the execution of a protocol by the simulator.

Now we see how the ideal functionality F captures the

privacy properties of Addax-V’s protocol. In the real world

execution of Addax-V’s protocol, there are five different cases:

(1) verification in Step 2 fails; (2) verification in Step 2 passes,

verification in Step 3 fails, and P1 does not learn the real

winner; (3) verification in Step 2 passes, verification in Step

3 fails, and P1 learns the real winner; (4) verification in Step

2 and 3 passes but verification in Step 4 fails; and (5) all

verification passes.

When cheat message to F is set to 1, the outputs of F
capture cases (1) and (2) above. And when cheat is set to other

values, the outputs of F capture the remaining three cases,

respectively. Thus, the outputs of F capture all different cases

of real world execution of Addax-V.

Lemma 7. The Addax-V auction protocol securely imple-

ments ideal functionality F under the assumption that the

commitment scheme is binding and hiding and that p is large

enough to ensure that Decode-OR and Decode-MAX produce

incorrect outputs with negligible probability.

Proof. We now build a simulator Sim that interacts with the

ideal functionality F which at most leaks the highest bid b∗,

the winning bidder’s index w, and the sale price sp. Note that

the simulator below simulates all the five different cases (when

the protocol aborts in different steps) of real world execution

in Addax-V. We useA to denote the adversary who can corrupt

P1 and k malicious bidders. Note that P1 and P2 are symmetric

and do the same computation in the protocol. Thus, the proof

below also applies to an adversary who corrupts P2.

Simulator Sim

Step 1 (Generate random V-AFE vectors):

• F gives its output to Sim. This output depends on

which of the five cases of the real world execution

we are simulating (based on the cheat message).

• For the h honest bidders, Sim assigns a bid to each

of them in such a way that one of the bids is b∗

and all other bidders’ bids are set as smaller than

or equal b∗.

• If w is included in the output of F , the honest

bidder w’s bid is the one that is set to b∗.

• If sp is included in the output of F , a random

honest bidder’s bid (excluding w) is set to sp and

all other bids are set as smaller than or equal to sp.

• Sim encodes the h honest bidders’ bids into h V-

AFE vectors and generates commitments (§5). It

then splits the V-AFE vectors into additive shares,

and sends one of the V-AFE shares and the com-

mitment of each honest bidder to A.

• A generates V-AFE shares and commitments for

the k malicious bidders. It sends one of the V-AFE

shares and the commitment of each of the k mali-

cious bidders to Sim.

• At this point, A has shares M′1
1, . . . , M′1

n and Sim

has shares M′2
1, . . . , M′2

n. They both get commit-

ments C′

1, . . . , C′

n.

Step 2 (Compute highest bid):

• Sim computes s′2 =
∑n

i=1 M′2
i , and sends it to A.

• A sends a V-AFE vector s′1 (s′1 should be
∑n

i=1 M′1
i if it follows the protocol, or some vector

generated based on its cheating strategy) to Sim.

• Sim computes b′
∗

= Decode-MAX(s′1 + s′2).

• If b′∗ ̸= b∗, Sim sends abort.

Step 3 (Find winner):

For i = 1 to n, Sim and A repeat:

• Sim sends M′2
i [b

′∗] toA, andA sends vi (vi should

be M′1
i [b

′∗] if it follows the protocol, or a vector

generated based on its cheating strategy) to Sim.

• Sim computes β′

i = Decode-OR(M′2
i [b

′∗] + vi).

• If β′

i = 1, then w′ = i; else continue to the next

round. If i = n and β′

i = 0, Sim sends abort to A.

• After finding w′, if bidder w′ is malicious, Sim

asks A whether the bid of w′ is b′
∗

. If A replies

with no, Sim sends abort.

• If bidder w′ is an honest bidder and w′ ̸= w, Sim

sends abort to A.

• If w′ ̸= w, Sim sends abort to A.

Step 4 (Compute sale price):

• Sim sends m′

2 =
∑n

i=1 M′2
i − M′2

w′ to A, and A

sends m′

1 (m′

1 should be
∑n

i=1 M′1
i − M′1

w′ if it

follows the protocol, or a V-AFE vector generated

based on its cheating strategy) to Sim.

• Sim computes sp′ = Decode-Max(m′

1 + m′

2).

• If sp′ ̸= sp, Sim sends abort.

Note that whenever Decode-MAX outputs an invalid bit

vector, we assume that Sim sends abort. When Sim wants to

send abort, it notifies A and the ideal functionality F , and

F forwards abort and outputs to all honest parties. When A
wants to abort, it sends abort to Sim, Sim forwards abort to

the ideal functionality F , and F forwards abort and outputs to

all honest parties. In the simulation, as long as each party re-

ceives one abort message, it terminates. Finally, for simplicity

wheneverA and Sim exchange messages (e.g., V-AFE shares),

Sim asks A to send first.

Analyzing the views. When cheat is set to 3 or 4 in the

ideal world (ideal functionality), which corresponds to the

real world (Addax-V) protocol proceeds to the step of com-

puting the sale price, A learns the entire view in both worlds.

The view of A in the ideal world is: {
∑n

i=1 M′2
i , w′, b′∗, sp′,

M′2
w′ , M′2

1[b
′∗], . . .M′2

w′ [b′∗], M′1
1, . . . , M′1

n, C′

1, . . . , C′

n}. In

18

the real world (Addax-V), A’s view includes: {
∑n

i=1 M2
i , w,

b∗, sp, M2
w, M2

1 [b
∗], . . .M2

w[b
∗], M1

1 , . . . , M1
n , C1, . . . , Cn}.

When cheat is set to 1, A’s view in ideal world only in-

cludes: {
∑n

i=1 M′2
i , b′∗, M′1

1, . . . , M′1
n, C′

1, . . . , C′

n}. In the

real world, the corresponding view of A includes: {
∑n

i=1 M2
i ,

b∗, M1
1 , . . . , M1

n , C1, . . . , Cn}.
When cheat is set to 2, A’s view in ideal world

only includes: {
∑n

i=1 M′2
i , w′, b′∗, M′2

1[b
′∗], . . .M′2

w′ [b′
∗

],

M′1
1, . . . , M′1

n, C′

1, . . . , C′

n}. In the real world, the correspond-

ing view of A includes: {
∑n

i=1 M2
i , w, b∗, M2

1 [b
∗], . . .M2

w[b
∗],

M1
1 , . . . , M1

n , C1, . . . , Cn}.
V-AFE shares are uniformly random elements in Zp, and

commitments to V-AFE vectors are hiding, thus they have the

same distribution. For w, b∗, sp and w′, b′∗, sp′, their distribu-

tions are also identical. Mw and M′

w′ are both generated by

encoding bid b∗ into V-AFE vectors, thus having the same

distribution.
∑n

i=1 Mi−Mw and
∑n

i=1 M′

i−M′

w′ are both gen-

erated following the requirement that the highest bid among

all remaining bidders (excluding bidder w and bidder w′) is sp,

thus having the same distribution. M′

1[b
′∗], . . . , M′

w′
−1[b

′∗]
and M1[b

∗], . . . , Mw−1[b
∗] are zeros. These say that in the sim-

ulation, bidder 1 to bidder w′ − 1 are not the winner, and in

the real world protocol, bidder 1 to bidder w− 1 are not the

winner. M′

w′ [b′
∗

] and Mw[b
∗] are encodings of bit 1.

As a result of the above exhaustive case analysis, both the

real world view and the ideal world view are identically dis-

tributed. Consequently, an adversary for Addax-V learns noth-

ing beyond what is revealed by the ideal functionality.

Lemma 8. Addax’s protocol does not leak more information

to the adversary than the variant Addax-V.

Proof. The only difference between the variant and the orig-

inal protocol is that in the original protocol, the adversary

learns the entire view of {
∑n

i=1 M2
i , w, M2

w, M2
1 [b

∗], . . .M2
w[b

∗],
M1

1 , . . . , M1
n , C1, . . . , Cn}, while in Addax-V, it stops after

aborts in Step 2 or 3, and only learns a partial view.

In the original protocol, the malicious auctioneer always

learns the correct highest bid regardless of how it behaves, as

the honest auctioneer always sends the correct sum of AFE

shares. From Lemma 3, if an incorrect bidder is claimed as the

winner and the protocol does not abort after finding winner,

the incorrect winner w′ must be malicious. And in the original

protocol, the auctioneers would proceed to compute the sale

price with the incorrect winner w′. In this case, the AFE vector

of the malicious bidder, M′

w′ , is revealed to the auctioneers

and auditors.

In Step 4, when computing the sale price, the adversary

receives
∑n

i=1 M′2
i −M′2

w′ from the honest party P2. Adversary

knows M′2
w′ since it’s from a malicious bidder, and

∑n

i=1 M′2
i

is already learned in Step 2 to compute the highest bid. Thus,

in the original protocol, when the protocol proceeds to Step 4

with an incorrect winner w′, it can only learn the same amount

of information as what it learned in Step 2 (Lemma 4).

Now we can conclude that the original protocol does not

leak more information about honest bidders’ bids compared to

the Addax-V variant, where verification is not deferred.

C Safeguarding interactive Addax

In the non-interactive protocol, the underlying value of a bit

encoding is defined as the rightmost position among all the

non-zero values. For instance, both [1,1,1,0] and [1,0,1,0]

are the encodings of value 3. The above encoding neither

brings issues for privacy nor integrity, but under the interactive

variant, this encoding does not work. See an example below.

Suppose a malicious bidder submits an invalid AFE vector

which yields an invalid bit vector [1,1,0,1], and all other bid-

ders submit [1,0,0,0]. When finding the winner interactively,

two auctioneers will first check the first and the third positions.

Since the corresponding results are 1 and 0, the next position

to be checked should lie in between the first and the third en-

try, which, in this example, is the second position. As a result,

the highest bid found is 2, which means the bidder wins the

auction with bid 2.

Therefore, in the interactive variant, Addax checks whether

the AFE vectors of the winner and the bidder of the sale price

correspond to valid unary bit encodings. To this end, we add

the following two extra steps: (1) an asynchronous procedure

for finding sale price bidder (we need this to find whose bit

encoding to validate); and (2) proving that a bidder’s AFE

vector is valid without leaking its original AFE vector (we

need this to avoid leaking the third-highest bid). Note that in

the interactive variant of the first-price auction, we also need

to prove the winner’s AFE vector is valid while hiding its

original value so the second-highest bid is not leaked.

C.1 Asynchronous: find sale price bidder

The invalid encoding as above impacts the outcome of an

auction (if it is not aborted) if the malicious bidder is the

winner or the bidder of sale price (if the malicious bidder is

neither of these, it has no effect). Therefore, Addax requires

validating the AFE vector of the sale price bidder. To this end,

Addax has to find its bidder id, though not the real identity. We

make the tradeoff of leaking such bidder id in order to keep

the completion of the auction within hundreds of milliseconds

with this extra asynchronous step.

Specifically, the auxiliary server and publisher first find

its bidder id by running Step 4 of Section 4.4 on all AFE

vectors except the winning one. This is done after the auction

is complete and off the latency-critical path (hence why we

say this is an asynchronous step). Verifiers can check, ex post

facto, whether the AFE encodings of the second-highest bidder

were valid or not. Similarly to Lemma 3, the bidder found in

this step is either the real bidder of the sale price or a malicious

bidder.

19

C.2 Checking the validity of a V-AFE vector

Insecure strawman. To check the validity of V-AFE vectors

we can let the vectors be revealed in the clear and check the

validity by ensuring they are in the right unary bit form, and

are consistent with the Pedersen commitments. However, if

we do this for the second-highest bidder’s V-AFE vector, this

would result in leaking the third-highest bidÐsubstracting the

V-AFE vectors of the winner and sale price bidder from the

overall sum vector (M) reveals the sum of V-AFE vectors of

the remaining bidders, thus leaking their maximum bid. We

provide the following construction to check validity of the

V-AFE vector of the sale price bidder without leakage.

Secure check for AFE validity. In a nutshell, the idea is that

in Step 1 of the auction protocol (§ 4.4), bidders additionally

generate a V-AFE vector vr with a random mask r for their

original V-AFE vector v, such that we can still check the

validity of v by utilizing vr.

Specifically, the bidder first generates the random mask r,

which is a vector of ℓ random non-zero elements in Zp and vr

is the element-wise product between the two {r1·v1, . . . , rℓ·vℓ}.
Since ri · vi = 0 if and only if vi = 0 (for 1 ≤ i ≤ ℓ), therefore,

as long as vr is decoded to be a valid bit vector, so is v.

When generating commitments for V-AFE vector v, a bid-

der also generates commitments to vr and a proof that the

underlying messages in the above two commitments indeed

differ by a multiplicative factor r. Concretely, the bidder uses a

Sigma protocol [78], which is type of very simple and efficient

zero-knowledge proof (with the Fiat-Shamir heuristic [53] it

is made into a non-interactive proof) to prove that, for each el-

ement cri in the commitments of vr and ci in commitments of

v, there exists a non-zero ri which satisfies cri = ci
ri . We give

details about the above zero-knowledge proof in Appendix C.4.

Appendix C.3 proves the binding and hiding properties of the

commitment to vr (which is slightly different than standard

Perdersen commitments).

During verification, the sale price bidder reveals only its

vr, and an auditors: (1) verify whether vr is consistent with

its commitment; (2) check that the decoded result of vr is a

valid AFE encoding; (3) verify the zero-knowledge proof with

respect to the commitments of v and vr.

A key optimization to this process is as follows. Observe

that in the interactive variant the two auctioneers only compute

the sum vector of partial entries (e.g., they may only use the

first 100 entries to compute based on the lower/upper bounds

derived). Thus, the sale price bidder need only hide its original

AFE vector for those entries (by using the above vr and zero-

knowledge proofs for those entries); the sale price bidder can

actually reveal its original AFE encoding for the other entries

without need for proofs. The result is that auditors need only

check the zero-knowledge proofs for the partial entries used

to compute the sale price.

Remark. First, the above approach only hides non-zero val-

ues in v, (i.e., it leaks whether a value in v is zero or not). This

is because for entries with zero values in the V-AFE vector

of sale price bidder, those entries in the sum vector are also

zeros, as the sum vector computed in Step 5 (§4.4) decodes to

the bid of the sale price bidder. Thus, learning those entries

with zero values does not leak the bids of any other bidders.

Second, an adversary may use zeros in the random mask r

to flip non-zero values into zero, which might turn an invalid

AFE vector into a valid one. To check that a bidder did not use

zero as random mask, for each tuple vri in vr, we check that

the second element of vri is not zero.

C.3 Commitment to a V-AFE tuple with random mask

Given a V-AFE tuple v = (a, b), its tuple with a random mask

r is vr = (r · a, r · b). The commitment is as follows. Let

G be a group of prime order p and let {g, h} be two random

generators {g, h} of G. The commitment is gr·a · hr·b.

The reason why the above is slightly different than standard

Pedersen commitments is that the randomness (the exponent

of h in Pedersen) is sampled uniformly at random and indepen-

dent of the exponent of g, whereas here there is a relationship

between the exponent of g (which is r · a) and the exponent of

h (which is r · b).

Lemma 9. Let c = gr·a · hr·b be a commitment to vr =
(r · a, r · b). Then c perfectly hides vr, and computationally

binds vr if the discrete logarithm problem is hard in G.

Perfect hiding. The commitment perfectly hides both r and a.

Let x ∈ Zp be an element such that g = hx (this is well defined

since h is a generator and hence there exists an x such that

hx = g). Given r, a, b, for any a′ there exist r′ and b′ such that

gr·a · hr·b = gr′·a′ · hr′·b′ . And r′, b′ satisfy that r′ = x·r·a+r·b
x·a′+b′

.

Thus, the commitment hides a. Using a similar proof, we can

show that the commitment also hides r.

Binding. We now prove that for a message m = r · a, the

commitment gr·a ·hr·b binds m. Specifically, our goal is to show

that, if an adversary can find a different message m′ = r′ · a′

and some randomness b′ such that gr·a · hr·b = gr′·a′ · hr′·b′ ,

then it can break discrete log for the instance (g, h = gx). Note

here we only assume m′ ̸= m, and it does not mean r′ ̸= r or

a′ ̸= a.

Suppose the adversary finds such r′, a′, b′ as above, which

implies r ·a+ r ·b ·x = r′ ·a′+ r′ ·b′ ·x where h = gx for some

x (i.e., r ·a− r′ ·a′ = (r′ ·b′− r ·b) ·x). If r′ ·b′ = r ·b, then the

above equation means r ·a = r′ ·a′, which contradicts with our

assumption that m′ ̸= m. If r′ · b′ ̸= r · b, then the adversary

can compute x = (r′ · b′− r · b)−1(r · a− r′ · a′), which means

now the adversary solves discrete log for instance (g, h = gx).

C.4 Zero-knowledge proof of commitment relation

The prover, which is the bidder in our case, wants to prove that

the there exists a secret element r ∈ Zp such that commitments

cr and c satisfy cr = cr. Figure 8 gives the pseudocode for how

the prover generates the non-interactive proof π. The prover

first samples a random element r′ from Zp, and computes u =

20

Prover(c, r, cr = cr) Verifier(c, cr = cr,π = (u, v, z))

r′
R
← Zp v

?
= H(c, cr, u)

u← cr′ cz ?
= u · crv

v← H(c, cr, u)
z← r′ + v · r

output π = (u, v, z)

FIGURE 8ÐNon-interactive zero-knowledge proof of knowledge of

secret r using the Fiat-Shamir Heuristic. H is a random oracle and its

range is Zp (heuristically instantiated with a secure hash function).

cr′ . The prover then computes H(c, cr, u) as the challenge v.

H is modeled as a random oracle but heuristically instantiated

with a collision-resistant hash function. Finally, the prover

computes z = r′ + v · r. The prover sends π = (u, v, z) to the

verifier, and the verifier checks π as described in Figure 8.

C.5 Proofs of lemmas 5 and 6

Below we prove the Lemmas for the interactive variant of Ad-

dax which leverages the safeguards described in this section.

Proof of Lemma 5. The non-interactive protocol and interac-

tive variant differ in the following two places: (1) in interactive

variant, computing MAX only uses partial entries; (2) in inter-

active variant, Addax checks validity of winner and sale price

bidder’s AFE vectors with additional verification materials

(Appendix C.2).

For (1), in the non-interactive protocol, adversary learns the

entire sum vector M, while in the interactive variant, it only

learns r · ⌈ℓ1/r⌉ entries of M (§6.1). It therefore leaks no more

information about bids than the non-interactive protocol.

For (2), in the interactive protocol, the winner w reveals its

full AFE vector, and the sale price bidder needs to provide

materials as in Appendix C.2. In the non-interactive protocol,

w’s full AFE vector can already be inferred from Step 3 (which

computes M) and Step 5 (which computes M−Mw), so this

leaks no additional information. And additional materials pro-

vided in the interactive variant leak no more information of

bids than the sale price as detailed in Appendix C.2.

Proof of Lemma 6. Integrity is ensured in the non-interactive

protocol as per Theorem 1. The only difference in the interac-

tive variant is that if either the winner or the sale price bidder

submits an invalid AFE vector, it can lead to the k-ary search

in the interactive protocol to converge to an incorrect value.

As we discuss in Appendix C, Addax adds checks to ensure

that the AFE vectors of the winner and sale price bidder are

both correct, and hence the k-ary search converges to the same

value as in the non-interactive protocol.

D Subsets of faulty parties

An auction may be aborted during the online phase, or deferred

verification may fail due to a lack of enough materials on

the public log (e.g., commitments, sum shares), or due to

inconsistent materials such as the bidder sending invalid shares

to auctioneers, or an auctioneer claiming it received one value

when a bidder submitted another. Figure 9 gives pseudocode

for how Addax narrows down the parties at fault. Below is a

text explanation for the pseudocode.

Auction aborts. An auction may abort for two reasons: (1)

Decode-MAX outputs an invalid bit vector; or (2) the chosen

winner or sale price bidder claims that their bids do not equal

the found highest bid or sale price. For case (1), if verifica-

tion on the decoded sum vectors passes, then it implies that

some bidders provided invalid AFE vectors. Addax assigns

blame to all participating bidders as potentially malicious. If

verification of the sum vectors fails, Addax assigns blame to

all bidders, the publisher, and the auxiliary server. For case

(2), auditors check the shares revealed by the publisher and

auxiliary server, and check whether they are consistent with

the corresponding commitments. If they are not consistent,

Addax assigns blame to the specific bidder (winner or second

highest bidder), publisher, and auxiliary server. If it is consis-

tent, and that entry decoded to 0, Addax assigns blame to the

auxiliary server and the publisher; if the entry decoded to 1,

Addax assigns blame only to the corresponding bidder.

Lack of materials. Participants may not upload all required

materials to the public log, which prevents auditors from veri-

fying the auction. Bidders are bound to their bidder ids which

should be uploaded by the publisher and auxiliary server. An

auditor can easily tell who did not upload the required materi-

als and assign blame to that set of participants.

Inconsistent views between publisher and auxiliary server.

The publisher and auxiliary server may provide an inconsistent

view for messages they send and receive. For example, the

publisher may claim that it receives sum vector M from the

auxiliary server, while the auxiliary server claims that it sends

M′ to the publisher. In this case, Addax assigns blame to

both publisher and auxiliary server. If publisher and auxiliary

server upload different views of hash values of certain bidder,

Addax assigns blame to the publisher, auxiliary server, and

the specific bidder, as the bidder may send inconsistent hash

values on purpose.

Inconsistency between hash values and commitments. Au-

ditors may find that hash values of commitments uploaded

by publisher and auxiliary server are inconsistent with that

uploaded by the bidder. Addax assigns the blame to that partic-

ular bidder (since publisher and auxiliary server are assumed

to not collude).

Inconsistent AFE sum vectors or bit encodings. Verifica-

tion on sum vectors or revealed bit encodings to find the win-

ner may fail. If verification on sum vectors fails, Addax assigns

blame to publisher, auxiliary server and all bidders. If verifi-

cation on specific bidder’s bit encoding fails, Addax assigns

blame to publisher, auxiliary server and the specific bidder.

Invalid AFE vector. The winner needs to upload its full AFE

vector and the bidder of sale price needs to upload its full AFE

21

1: function ASSIGNBLAME(materials, abort, auctioneers, bidders)

2: # Check if abort happens

3: if abort ̸= null then

4: if abort.decodeMax == true then

5: if verifySumvec(materials) == true then

6: blame(bidders)
7: else

8: blame(auctioneers, bidders)

9: else if abort.findBidder == true then

10: if verifyBit(materials.bidders[abortId]) == false then

11: blame(auctioneers, bidders[abortId])
12: else

13: if decode(materials.bidders[abortId].bitEncoding) == 0 then

14: blame(auctioneers)
15: else

16: blame(bidders[abortId])

17: # Check all materials are not missing

18: for auc in auctioneers do

19: if materials.auc == null then

20: blame(auc)

21: for b in bidders do

22: if materials.b == null then

23: blame(b)

24: # Check inconsistency between auctioneers

25: if inconsistent(materials.auctioneers.sumvec) then

26: blame(auctioneers)

27: for b in bidders do

28: if inconsistent(materials.auctioneers.hash[b]) then

29: blame(auctioneers, b)

30: # Check inconsistency between hash and commitments

31: for b in bidders do

32: if inconsistent(materials.b.hash, materials.b.commitment) then

33: blame(b)

34: # Verify sum vectors and bit encodings

35: if verifySumvec(materials) == false then

36: blame(auctioneers, bidders)

37: for b in bidders do

38: if verifyBitEncoding(b.materials) == false then

39: blame(auctioneers, b)

40: # Validate AFE vector of winner and sale price bidder

41: if validate(materials.bidder.AFE) == false then

42: blame(bidder)

FIGURE 9ÐPseudocode of how to assign blames in Addax, see texts

for more details.

vector with random mask (§C.2), the commitments and non-

interactive zero-knowledge proofs. An auditor needs to check

the winner’s AFE vector decodes to be a valid bit vector. Also,

an auditor must check whether the AFE vector with random

mask is consistent with the supplied commitments, whether

it decodes to be a valid bit vector, and verify the proofs. If

the check fails, Addax assigns blame to the specific bidder. If

the check passes, even if verification on the sum vectors fails,

Addax explicitly knows that these two bidders are honest, and

can avoid assigning blame to them. Addax will then protect

their identities.

D.1 Narrow down faulty bidders when both auctioneers

are honest

There are some cases (e.g., line 8 in Figure 9) where Addax

can only assign blame to all of the bidders due to the fact that

a malicious auctioneer could collude with bidders. However,

if both auctioneers were honest (how one would establish

this is orthogonal, though likely hard), Addax can identify

the specific bidders who provided inconsistent AFE vectors

and commitments. To detect such faulty bidders, each of the

two auctioneers computes the commitment over its local V-

AFE vector share of a bidder and reveals the commitment.

They then verify whether multiplying these two commitments

from both auctioneers yields the commitment submitted by

the bidder. If not, then Addax can blame the bidder.

E Interacting with the public log

E.1 A brief primer on Algorand

Accounts and Transactions. An account in Algorand con-

sists of a key pair. Transactions include payment, key registra-

tion, and asset transferring. Each transaction is created by one

account and must be signed with its corresponding secret key.

Smart contracts and application calls. Smart contracts are

programs that run on the blockchain with user-defined func-

tionality. Each smart contract is specified with a unique ID.

Application calls are transactions used to invoke functions

in smart contracts like RPC calls. To interact with a smart

contract, an account needs to join the smart contract first. The

opt-in call allows one account to join one smart contract

instance while a close-out call allows one account to leave.

Addax maintains one smart contract per ad category which in-

cludes all advertisers’ information in that category. When one

advertiser belongs to multiple categories, it joins all related

smart contracts. There is no upper bound on the number of

accounts that can join one smart contract in Algorand. Bidders

invoke application calls defined in the running smart contract

to insert, update, or delete their own information.

Indexer. Indexers are special nodes which provide RESTful

interfaces to search for transactions or states of certain apps

by answering SQL-like queries. For example, it can answer

queries to search for all transactions that happened during

a certain period in one smart contract instance with a query

like: SELECT * from transactions WHERE appID = {ID of App}

AND after-time = {start} AND before-time = {end};

E.2 Workflow of a deployed smart contract

There are two kinds of smart contracts in Algorand, stateful

ones which have their own storage and stateless ones which

do not. Storage in smart contracts consists of several key-

value pairs which can be read and written. There is global

storage which maintains the state of the smart contract instance

and local storage. All opted-in accounts have their own local

storage. All storage can be read by anyone and updated via

application calls. Application calls for writing local storage

can only be invoked by its owner account.

Addax maintains one stateful smart contract per ad category

which includes all advertisers in that category. When one

advertiser belongs to multiple categories, it joins all related

22

1: function INIT(N)

2: gs.counter ← 0

3: function CREATE(info)

4: ls.id ← gs.counter

5: gs.counter ← gs.counter + 1

6: ls.info← info

7: function UPDATE(newInfo)

8: ls.info← newInfo

9: function DELETE

10: delete(ls.info, ls.id)

FIGURE 10ÐPseudocode of smart contract, gs is global state, ls is

local storage of each advertiser. Init function is called when smart

contract is initialized. Create, Update, Delete functions are called by

advertisers.

smart contracts. Figure 10 shows the functionalities provided

by the deployed smart contracts in Addax. Each smart contract

is created by an INIT function to initialize an incremental

counter starting from zero in global storage. Advertisers can

invoke CREATE, UPDATE and DELETE functions. CREATE is the

opt-in application call in Addax that opts an advertiser into

the smart contract of its category and write information into

the invoker’s local storage. Local information of advertisers

can include brand name, all categories the advertiser belongs

to, domain and port of ad server, protocols and serialization

formats supported, etc. The UPDATE call is invoked by opted-

in advertisers to update their local information. Advertiser

invokes DELETE to clear all information stored in local storage

and leave this smart contract instance.

E.3 Costs of interacting with public log

In this section, we answer the question of costs for interact-

ing with the public log and for querying the indexer. We use

the PureStake indexer which provides a REST API that one

can use to upload and retrieve information from the Algo-

rand blockchain. PureStake has servers all over the world as

they contract with Cloudfront. In our experiments, requests to

PureStake that originate from AWS US East (Ohio) contact

servers in Ontario. Requests that originate from the AWS US

West (California) contact servers in California. Requests that

originate from AWS US West (Oregon) contact servers in Ore-

gon. PureStake then takes care of broadcasting the transaction

to the Algorand peer-to-peer network.

The size of advertisers’ information (§E.1) uploaded to

Algorand to participate in Addax is 960 bytes. We experiment

with a modest number of advertisers. The reason that we do

not have tens of thousands of advertisers is that creating a new

advertiser requires creating an Algorand account (new email

address, password, account verification, etc.) which is time-

consuming. Nevertheless, we semi-automate this painstaking

process and generate 1,000 accounts.

Time for advertisers’ operations. In Figure 11, we evalu-

ate the time of advertisers’ operations (invoking CREATE,

UPDATE or DELETE application call) on the Algorand

blockchain. We vary whether advertisers belong to one or mul-

tiple categories, and also vary the distribution of the number

of opted-in advertisers for a given category. Figure 11a shows

the results of an advertiser interacting with Algorand where

the advertiser belongs to a single category while varying the

number of advertisers registered for that category. Figure 11b

shows the results when the advertiser belongs to multiple cat-

egories, all of which have 500 advertisers registered. Finally,

Figure 11c shows the results when the advertiser belongs to six

different categories, while each category contains a different

number of advertisers. In Scenario 1, each category contains

100 advertisers. In Scenario 2±4, the numbers of advertisers in

each category are [50, 100, 100, 100, 100, 150], [50, 50, 50,

100, 150, 200], and [50, 50, 50, 100, 100, 250].

As can be seen, the time for these three operations remains

nearly constant when the number of opted-in advertisers in

one category grows. It takes about 8±8.5 seconds for invoking

one application call to one category (i.e., one smart contract

instance). Most of the overhead (about 7 seconds) comes from

advertisers waiting for confirmation from the blockchain that

this operation has finished successfully. Advertisers can di-

rectly invoke application calls and leave without having to

wait for confirmation. Indeed, this is what the browser does

when uploading its audit materials as described in the Leaving

an audit trail paragraph of Section 9.4.

The costs of these operations grow linearly with the number

of categories to which an advertiser belongs, regardless of the

number of opted-in advertisers in each category.

Time for querying the indexer. We also evaluate the costs

for querying the indexer for updates during certain period of

time under different scenarios. The time for querying the in-

dexer is also the time to verify the query results from cache

servers. Figure 12a shows the time to query indexer for updates

of multiple categories. Each category contains 500 advertisers.

We simulate 20% updates in each category, namely 100 trans-

actions happened during the period we search for. Figure 12b

shows the time to query the indexer for updates of one cate-

gory with 1,000 advertisers but with different percentages of

updates during the period of search.

We find that querying one category generally takes about 0.8

seconds, and this number would grow slightly if the number

of total updates (i.e., transactions) grows. This is due to the

fact that as the total number of updates grows, the data fetched

from the indexer grows as well. Also, the time to query the

indexer for updates of multiple categories grows linearly with

the number of categories queried. This is because to query N

categories, the querier needs to send N requests to the indexer.

F What about TEE-based solutions

In principle, one might be able to design a solution that lever-

ages TEEs to provide privacy and public verifiability for online

ad auctions. However, this is not a trivial task, since TEEs:

23

��� ��� ��� ����

������������������
����������

0

2

4

6

8

10

��
�
��
��
� ���
��

���
��
	�����

(a)

� � � � ��
��������������������

0

20

40

60

80

100

��
�
��
��
�

	�����

�����

�����

(b)

	
�������� 	
�������� 	
�������� 	
��������
�

0

20

40

60

�
�
��
��
� ������

������
������

(c)

FIGURE 11ÐTime for advertisers’ operations on the Algorand blockchain under different settings (see text).

� � 	 � ��
��������������������

���

���

���

��

�
�
��
��
�

�������������������

(a)

��� ���
�� ���
���������������������

���

��	

���

��	

�
�
��
��
�

�������������������

(b)

FIGURE 12ÐTime to query indexer for updates in certain period

under different scenarios.

• Require the release of code that runs inside the enclave.

This includes the auction protocol, the encryption/decryp-

tion code to recover plaintext bids, and signing code for

creating a proof that can be publicly audited.

• Require careful auditing or formal verification of all the

code running inside the enclave to ensure the exchange

operator (who is running the TEE) did not inject backdoors

or other vulnerabilities that can obviate the TEE.

• Intel SGX in particular requires trusting an Intel cloud

server during remote attestation (cloud services like Azure’s

Attestation Service [29] can also be used). In either case,

trusting such servers might not be that different of an as-

sumption than the anytrust model in Addax.

• Require additional mechanisms to prevent replay attacks.

For example, suppose an operator runs an auction, invites

10 bidders, and passes as input their 10 encrypted bids to

TEE (TEE internally has a key to decrypt bids). The TEE

then outputs the winner and sale price in the clear. The

operator could then run the same auction again but passing

only a subset of the bids (these are all valid encrypted bids

under a key known to the TEE). The TEE then outputs a

winner and sale price in the clear, so the attacker could

quickly discover all bids. In contrast, replay is not possible

in Addax since the auction is either completed so both

auctioneers forward the result to the publisher, or aborted

so at least one honest auctioneer forwards an abort result to

the publisher (and the publisher displays a generic ad).

G Compatible user privacy features

One of Addax’s goals is to have a flexibile enough design

to be compatible with various efforts that aim to improve

user-privacy (these efforts are orthogonal but they are also

complementary to Addax).

Bidding on groups rather than individuals. User activities

are tracked as advertisers need to gather enough information

about different users’ browsing and purchasing preferences.

The information is used by advertisers to decide how to bid

for a user. Addax’s design is compatible with Google’s recent

Topics proposal [16] which locally groups users into groups.

In particular, Topics enhances the browser to keep track of

the user’s interest and assigns to the user a Topic identifier.

Once this identifier exist, Addax can send this identifier to the

selected bidders instead of sending them more demographic

information (§7). An advertiser would then decide how to bid

for each group of users without learning information about

the individual user for which it is bidding. The obvious caveat

here is that the current Topics proposal is not perfect and there

have been various privacy concerns voiced [5, 6, 17].

Measuring conversions without learning individual’s data.

Measuring the effectiveness of an ad after the auction is es-

sential for advertisers. However, the current way of measuring

conversions leaks users’ sensitive information about which

websites are visited. There is a recent effort [34] that provides

a mechanism to measure the return on investment (ROI) and

conversions without requiring the advertiser to learn infor-

mation about a specific user. At the end of the measurement,

advertisers see a differentially private histogram of all users’

conversions, which is sufficient for them to determine the ef-

fectiveness of their campaigns. In Addax, after the auction

finishes, advertisers could apply this approach to privately

gather data about conversions for analysis while being more

sensible to users’ privacy concerns. This mechanism is com-

patible with Addax as it occurs after the auction completes.

24

	1 Introduction
	2 Background and goals
	2.1 Header bidding
	2.2 Concerns with existing exchanges
	2.3 Goals
	2.4 Potential solutions (baselines)

	3 Addax Overview
	3.1 Assumptions and threat model
	3.2 Security properties

	4 Private ad auction
	4.1 Affine-aggregatable encodings (AFE)
	4.2 Computing the MAX function with AFE
	4.3 Private and decentralized MAX
	4.4 Private and decentralized auction

	5 Adding public verifiability
	5.1 Verifiable and private AFEs
	5.2 Verifiable, private, and decentralized auction
	5.3 Assigning blame

	6 Optimizations
	6.1 Less communication with an interactive MAX
	6.2 Lower latency by leaking the existence of ties

	7 Search and filtering
	7.1 Filtering and inviting advertisers

	8 Implementation
	9 Evaluation
	9.1 Microbenchmarks: Addax's auction protocol
	9.2 End-to-end performance
	9.3 Costs over a non-private unverifiable baseline
	9.4 Cost of verification

	10 Related work
	11 Discussion
	A Proofs for lemmas
	B Proof for Addax's security properties
	C Safeguarding interactive Addax
	C.1 Asynchronous: find sale price bidder
	C.2 Checking the validity of a V-AFE vector
	C.3 Commitment to a V-AFE tuple with random mask
	C.4 Zero-knowledge proof of commitment relation
	C.5 Proofs of lemmas 5 and 6

	D Subsets of faulty parties
	D.1 Narrow down faulty bidders when both auctioneers are honest

	E Interacting with the public log
	E.1 A brief primer on Algorand
	E.2 Workflow of a deployed smart contract
	E.3 Costs of interacting with public log

	F What about TEE-based solutions
	G Compatible user privacy features

