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Abstract. This paper proposes Addax, a fast, verifiable, and
private online ad exchange. When a user visits an ad-supported
site, Addax runs an auction similar to those of leading ex-
changes; Addax requests bids, selects the winner, collects
payment, and displays the ad to the user. A key distinction is
that bids in Addax’s auctions are kept private and the outcome
of the auction is publicly verifiable. Addax achieves these
properties by adding public verifiability to the affine aggregat-
able encodings in Prio (NSDI’17) and by building an auction
protocol out of them. Our implementation of Addax over WAN
with hundreds of bidders can run roughly half the auctions per
second as a non-private and non-verifiable exchange, while
delivering ads to users in under 600 ms with little additional
bandwidth requirements. This efficiency makes Addax the first
architecture capable of bringing transparency to this otherwise
opaque ecosystem.

1 Introduction

Ad exchanges such as DoubleClick and OpenX are key play-
ers in online advertising; their role is to auction ad space on
a publisher’s website in real time to advertisers. When a user
visits a publisher’s page, the user’s browser contacts a server
that triggers an auction on an exchange. The exchange gives
advertisers information about the publisher (e.g., URL, ad size
and type, category of site) and the user (e.g., demographic,
metadata for syncing cookies across sites) in real time, and
collects bids from interested parties. The exchange then runs
an auction (e.g., second-price auction), delivers to the user the
ads of the winning advertisers, and credits the publisher. Fi-
nally, technologies like header bidding [4] and Google’s open
bidding platform [30] allow publishers to auction users across
many exchanges (essentially an exchange of exchanges), in-
creasing competition and improving publishers’ revenue.
While ad networks and exchanges serve as the financial
backbone of the free web, their centralized nature means that:
(1) they are privy to sensitive information, including user’s
browsing habits and the preferences and valuations of advertis-
ers; and (2) they are opaque and hard to audit. The former has
received considerable attention [39, 45, 56, 71, 77, 89, 91]; the
lack of auditing mechanisms and the knowledge of advertisers’
valuations is becoming a serious sociotechnical issue. A recent
antitrust lawsuit alleges that Google used insider knowledge
of past bids submitted by advertisers to gain unfair advantages
whenever its subsidiaries participated in auctions [63]. Further,
it is alleged that Google convinced Facebook to not participate
in header bidding—a technology considered an “existential
threat” to Google’s business [28, 81, 84]. According to dis-
closed reports, in return for Facebook choosing to participate
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instead in Google’s open bidding platform, “Google provided
Facebook with special information and speed advantages to
help [Facebook’s exchange] succeed in the auction [over other
bidders]—even including a guaranteed win rate” [84].

Regardless of the merits of these cases, the key issue—and
the crux of this paper—is that there are no ways for exchanges
to prove to their customers and to regulators that they are not
abusing their position. To address this, we present Addax, an
online advertising architecture that achieves 4 goals:

* Auction integrity. Auctions should be publicly verifiable to
allow the ad exchange to prove that it is not biasing auctions
towards particular bidders or lying about their outcome.

* Auction privacy. The bids of losing bidders should be hid-
den from all parties—even the exchange itself! This ensures
that the exchange cannot abuse or share this information.

* High performance. Addax should handle the stringent per-
formance requirements of the ad ecosystem.

* Better tracking. Addax should work with recent tracking
efforts such as Google’s Topics API [16] and Microsoft’s
PARAKEET [13] that allow targeted ads but collect less
information about individuals.

Overview. In Addax, browsers track users’ histories with ex-
isting privacy-preserving client-side techniques [57, 58, 80,
89], and kickstart verifiable and private auctions whenever
the user navigates to an ad-supported site. Auctions in Addax
proceed in three steps. First, the browser invites relevant bid-
ders (e.g., demand-side platforms) by finding their information
(e.g., URL of their ad server) on a database. In existing header
bidding platforms [2] such databases are currently maintained
by publishers; Addax preserves this model, but we addition-
ally experiment with a more decentralized approach where
the database is maintained in a public append-only log and
discuss how to reduce the cost of lookups in this model (§7).
As part of the invitation, the browser supplies to bidders infor-
mation about the site being visited and a variable amount of
user information based on the user’s configuration of Addax
(ranging from fully targeted to generic ads).

Second, bidders submit encrypted bids to the publisher and
one or more auxiliary servers. The auxiliary server helps the
publisher run a new lightweight secure auction computation
over the encrypted bids (§4). The role of an auxiliary server
could be taken up by today’s exchanges or it can be a separate
entity propped up by the industry at large. Under the anytrust
model [88] (either the publisher or any of the auxiliary servers
is honest), the secure auction computation returns the winning
bidder’s identity and bid, and the auction’s sale price, but no
other information.



Last, Addax produces an audit trail that is uploaded to a
public log and that allows any auditor to verify that the auction
was conducted with integrity (§5). At the conclusion of the
auction, the browser fetches the ad from the winning bidder
(or a content distribution network) and the publisher learns
which bidder and how much to bill for the ad impression.

Technical contributions. To maintain good performance,
Addax cannot use expensive cryptography (e.g., homomor-
phic encryption, multiparty computation) in order to achieve
the integrity and privacy goals. Indeed, our evaluation of such
baselines confirms that they are far too inefficient to meet
online advertising’s low latency and communication require-
ments (§9). Instead, Addax makes three contributions:

Secure auction protocol. Addax introduces a new auc-
tion protocol based on Prio’s affine-aggregatable encodings
(AFE) [51]. Addax’s auction is simple and lightweight and al-
lows two or more parties to run the auction over secret-shared
bids without revealing anything beyond the auction’s outcome.

Verifiable AFEs (V-AFEs). Addax extends Prio’s AFEs to
provide public verifiability for outputs (Prio has mechanisms
to verify inputs). Addax then uses V-AFEs to allow anyone
(e.g., an auditor) to confirm that an auction was conducted
correctly without learning any of the input bids.

Integration with Algorand and Chrome. Addax implements
mechanisms to interact quickly with the public log (we use
Algorand [3, 55]) and smart contracts to manage the registra-
tion of advertisers and the collection of audit materials. Addax
also leverages Chrome native messaging to launch auctions.

Our implementation of Addax can complete auctions over
WAN with twice the average number of bidders reported in
production ad exchanges [92] in 440-580 ms (for first and
second-price auctions), and requires only 1.2 MB of commu-
nication between the publisher and the auxiliary server (§9.2).
This is fast enough for ads to be loaded asynchronously with-
out affecting page load time for the overwhelming majority
of websites today [1, 7, 20, 87]. In terms of throughput, Ad-
dax can handle around 250-360 auctions per second per core
(for second and first-price auctions), which is roughly 40%
of what our non-private and unverified baseline can achieve.
Creating the audit trail requires additional computation on the
part of bidders but adds negligible overhead to users’ browsers
and publishers. In contrast, the same auction implemented in
existing state-of-the-art cryptographic frameworks (MPC and
FHE) requires over 4 GB of communication and over 100 sec.

Limitations. Ad exchanges do more than just run auctions
and deliver ads. They vet advertisers to ensure users do not re-
ceive malware; mitigate fraud; and provide powerful analytics.
Addax does not yet address these complementary and critical
aspects, but Section 11 discusses concrete directions to incor-
porate such features into Addax’s architecture. Finally, Addax
can achieve better performance (optionally) at the expense of
revealing the existence of winning ties (§4.4).

2 Background and goals

Ad exchanges are platforms that auction impressions (the dis-
play of a text, image, or video ad) on a publisher’s website
or mobile application in real time. Exchanges support highly
targeted advertising whereby bidders (advertisers or their rep-
resentatives, called demand-side platforms) get a chance to
evaluate the publisher and the user to whom the ad will be
shown to decide how much they would be willing to pay (if
at all). This type of programmatic real-time bidding (RTB)
advertising accounts for over a third of all digital ad spend-
ing today [22, 27]. Some of the largest ad exchanges include
DoubleClick, PubMatic, OpenX, and Facebook.

To participate in an ad exchange, a publisher inserts a supply-
side platform’s (SSP) iframe or JavaScript snippet into their
page. An SSP is a service that sells the publisher’s ads on an
exchange (publishers can also run their own SSP). When a
user’s browser fetches the publisher’s site and executes the
provided JavaScript, it sends an HTTP GET request to the
SSP supplying the user’s cookie, and awaiting for an ad to
be returned. At this point, the SSP can identify the user and
publisher, and start an RTB auction. During this process, the
exchange invites dozens of potentially interested bidders to
bid on the user [92], supplying them with demographic in-
formation, and relevant details about the publisher and the
ad space (size, type, location within the page). To facilitate
the valuation of the user, exchanges and bidders synchronize
cookies [19, 23] to allow bidders to learn the identity of the
user in their respective platforms (if applicable). Based on
this information, bidders return a bid in CPM (cost per 1000
impressions), which ranges from cents to tens of dollars [32].

Upon receiving all bids, the exchange runs an auction where
it selects the winning bidder and charges them the auction’s
sale price based on the type of auction. Two common types are
first-price (winner pays what they bid) and second-price [83]
(winner pays second highest bid) auctions. Finally, the ex-
change notifies the SSP with the result of the auction, who
then responds to the user’s GET requests with the information
that the browser needs to retrieve the ads (images, videos, etc.)
from a storage server.

2.1 Header bidding

Header bidding [4] is a recent advertising paradigm where the
publisher (or its SSP) works with multiple exchanges to sell its
ad slot in real time. It is called “header bidding” because the
publisher supplies JavaScript code that runs in the <header>
part of the page (which loads as soon as the page starts open-
ing in the user’s browser), and this code triggers the process
of contacting the exchanges. The exchanges then internally
run their own auctions (first or second-price) and send back
the winning bids to the browser. The browser then sends the
winning bids to the publisher (or its SSP), which runs another
auction (typically first-price), selects the highest bid as the
winner, and forwards the winner’s ad tag to the user’s browser.
Google’s Open Bidding platform is similar [30].



2.2 Concerns with existing exchanges

We highlight three areas of concern with existing ad exchanges.
First, there is no visibility into the auction process. VEX [35]
argues that this opens the door to a variety of issues—including
those that are mentioned by the antitrust lawsuits [28, 63, 84].
Second, exchanges observe all submitted bids in the clear.
These bids represent how valuable different users and publish-
ers are to bidders, which reveals information about bidder’s
trading algorithms, finances, and future plans. Last, users lack
agency and have no say over which types of ads they receive or
what information is shared with bidders. One might imagine a
different world in which users can express an opinion on the
types of ads they consume (e.g., no ads for kids toys to avoid
children exploitation), and what information about themselves
they reveal in order to receive targeted ads.

2.3 Goals

Addax aims to address many of the shortcomings of existing
ad exchanges by giving agency to users, privacy to bidders,
and transparency to all. Addax is compatible with both tradi-
tional exchanges and with the header bidding model (including
Google’s open bidding platform). We detail these goals next.

Integrity of the auction. All parties should be able to ver-
ify that Addax’s auctions are conducted correctly, as per the
auction type (first-price, second-price, etc.).

Privacy for losing bids. Addax should hide the bids of all of
the losing bidders from everyone, even the auctioneers. One
exception is that in second-price auctions, the second highest
bid (which is technically a losing bid) becomes the sale price
and cannot be hidden.

Privacy among bidders. Bidders should not need to learn
each others’ identities or interact with one another in order to
participate in an auction. Existing exchanges do not reveal this
information, and neither should Addax.

High performance. Addax must ensure that auctions com-
plete quickly, as ads need to be displayed within hundreds of
milliseconds in order to preserve a good user experience and
follow existing RTB requirements [10, 11].

User agency. Addax’s focus is on making the auction process
accountable without exposing bidders’ information. Addax
should also allow users to have a say on which kinds of ads
they wish to receive. Ideally, Addax would also improve user
privacy, but this is not a goal of this work. Instead, we ask that
Addax make things no worse than they are today for users,
and that it be compatible with other works that aim to reduce
user tracking (such as Topics [16]). Appendix G expands on
this compatibility aspect.

2.4 Potential solutions (baselines)

Given Addax’s desire for privacy and verifiability, one might
ask whether existing tools such as homomorphic encryption
or multiparty computation fit the bill. This is not the case.

Homomorphic encryption (HE). HE libraries [24-26, 61]
allow the computation of additions and multiplications over en-
crypted data without access to plaintext values. Computing an
auction, however, requires comparisons (such as “less than”)
which are expensive to express with arithmetic operations as
they typically require decomposing values into bits and en-
crypting bits separately [25, 50]. Even recent optimizations are
expensive [41, 48, 64]. As we show in our evaluation (§9.2)
an auction with 96 bidders using the state-of-the-art TFHE
library [49, 50] takes 181 seconds. Finally, HE lacks integrity:
an auctioneer is free to compute an incorrect auction. Recent
work on composing verifiable computation with HE can ad-
dress this, but at orders-of-magnitude cost increase [40, 54].

Secure multi-party computation (MPC). MPC frame-
works [31, 65, 85] allow mutually distrusting parties to com-
pute a function over secret inputs without revealing anything
beyond the function’s outcome. It might seem natural to en-
code the auction as an MPC among the bidders but this is
impractical when there are many bidders. An alternative is to
use a delegated MPC setting whereby two parties (publisher
and auxiliary server in our setting) run the MPC on behalf of
others; bidders could send secret shares of their bids to these
two parties. However, this delegated setting lacks integrity:
either party is free to supply bogus shares to the MPC to cause
the auction’s output to be undetectably incorrect. As we show
in Section 9.2, addressing this introduces prohibitive costs.

Trusted execution environments (TEEs). Another possibil-
ity is to use trusted hardware. Besides side channel [43, 46,
68, 90] and integrity attacks [72, 82], TEEs alone cannot solve
this problem. Appendix F discusses this in depth.

3 Addax Overview

Addax is a platform where the exchange’s duties are split
among different parties. Figure 1 gives a high-level description.
Addax consists of: (i) publishers who run their own SSP and
who wish to show ads to fund their services, (ii) the client’s
browser, (iii) auxiliary servers who help to run auctions, (iv)
bidders (demand-side platforms, advertisers, other exchanges,
etc.) who bid on ad slots, and (v) an append-only log (e.g.,
blockchain, BFT consortium) for persisting an audit trail. We
discuss what happens when a user visits a page below, and
give details in the sections that follow. We defer a discussion
of how bidders join Addax and what information they supply
to Section 7 and Appendix E.

Steps @®-®@: Client visits a publisher. When a client visits
a publisher, it receives the page content, along with a unique
auction id and a list of valid ad categories that the publisher
supports. Addax uses the 392 categories from the Internet Ad-
vertising Bureau’s (IAB) contextual taxonomy [10], which
include things like “Humor”, “Nutrition”, etc. This meta-
data is embedded within the header of the page, as in header
bidding (§2.1). An Addax-enabled browser, hereafter named
“browser”, parses the web page and extracts this metadata.



Step ®: Advertising filtering. Addax adopts a client-based
tracking approach inspired by Privad [58], Adnostic [80], and
Google’s recent FLoC proposal [89]. Briefly, the browser
tracks which sites the user visits over time and generates a pro-
file of the user’s interests, which it stores locally in a SQLite
database similar to how cookies are stored. After parsing a
page’s ad spot metadata, the browser combines the user’s pro-
file, the ad spot’s categories supplied by the publisher, and
disallowed categories previously flagged by the user through a
local configuration (e.g., to prevent categories that target chil-
dren). Based on the refined information, the browser fetches
bidders’ details from a bidder database. Addax supports two
types of databases: an embedded database supplied by the
publisher during Step @; and a public database where bidder
information is maintained on the public log (blockchain). The
former is how header bidding works today while the latter
option is more decentralized and gives users more agency over
the ads they receive. We defer the details to Section 7.

Steps ®—®: Private, decentralized, and verifiable auction.
The browser invites the k bidders from step ® to an auction.
To do so, it provides them with an auction id (unique identifier
supplied by the publisher), information about the user, and
information to contact the publisher and the auxiliary server.
Bidders decide whether to join the auction; if so, they respond
to the auxiliary server and publisher with their required ma-
terials. The auxiliary server and the publisher collaboratively
run the auction and select the auction’s winner, and the auc-
tion’s sale price. Asynchronously, and off the critical path, all
participants upload to the public append-only log materials
needed for public auditing (§5).

Step @: Notify winner and display the ad. After the auction
concludes, the publisher and auxiliary server learn the outcome
(but nothing else). The publisher notifies the winner and asks it
for an ad tag and payment (e.g., a signed IOU). The publisher
then forwards the ad tag to the browser so that it can fetch and
display the ad on the designated ad spot.

Verification. Auditors can use the information on the public
log to verify the auction’s outcome. By default, they only learn
whether the auction was correct and the number of bidders
that participated. In case that verification fails, Addax helps
narrow down which parties were faulty (§5.3).

3.1 Assumptions and threat model

Addax assumes an append-only log (blockchain, BFT, etc.)
and an anytrust model [88] where either the publisher or the
auxiliary server is honest. The parties may act as follows.

Bidders. Bidders who are invited to the auction can submit
bogus bids and cryptographic material. We model bidders
as covert adversaries [36] who can deviate from the protocol
arbitrarily as long as their malicious actions cannot be detected.
If detected, bidders can incur financial or legal penalties, and
can be banned by publishers. Addax assumes at least 2 non-
colluding losing bidders (otherwise information about losing
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FIGURE 1—In Addax, the exchange’s functionality is divided among
the publisher, browser, an auxiliary server and a blockchain.

bids can be inferred from the outcome).

Publishers and auxiliary servers. Publishers may wish to
increase their revenue by lying about the auction’s outcome
(e.g., forcing the winner to pay a fee higher than the second
highest bid), learn the bids of losing bidders, or force users
to view certain ads. Auxiliary servers may wish to bias the
auction’s result to help particular bidders. We model both
parties as covert adversaries since detectable misbehavior can
tarnish their reputation or incur legal penalties.

3.2 Security properties
Addax’s auction protocol provides the following properties.

Completeness. If all parties are honest and the auction’s out-
come is correct (e.g., the winner is the highest bidder and the
sale price is the second highest bid), then Addax’s verification
protocol passes with high probability.

Soundness. If a bidder, the publisher, or an auxiliary server
misbehaves, Addax’s verification fails with high probability.

Privacy. Addax’s auction and verification hides all bids ex-
cept the highest bid and the sale price.

4 Private ad auction

This section describes Addax’s private ad auction. We begin
by describing our building blocks.

4.1 Affine-aggregatable encodings (AFE)

Prio [51] shows how one can take two or more data values
and encode each of them as a vector of \ bits such that adding
up the vectors and running a decoding function on the sum is
equivalent to computing some boolean function f (e.g., OR,
AND, XOR) on the original data values; X is a parameter that
controls the probability of the result being correct. Prio calls
this and other similar transformations an Affine-Aggregatable
Encoding (AFE). Addax uses the “OR” boolean function to
compute auctions, so it could use Prio’s AFE. However, we
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FIGURE 2—Example of (a) the MAX algorithm using AFE, and (b) the private MAX algorithm using AFE shares. In this example, ¢ = 4
(which affects the range of bids) and we use AFE in Zs (which affects the probability of obtaining the correct result).

depart slightly from Prio by encoding data values into a single
element in Z, (the set of integers modulo a large prime p)
rather than A-sized bit vectors. This encoding is more expen-
sive than Prio’s (since A < log p), but it allows Addax to add
public verifiability, as we discuss in Section 5.1. Below we
give our AFE for the “OR” function over bit values.

Encode OR. Given a bit x € {0, 1}, its AFE is:

ifx=0
ifx=1
Compute OR. Given a set of n AFE values {vi,...,v,},

which encode n bits {xi, ..., x,} with the above Encode-OR
procedure, one can compute the OR of the n bits as:

0€Z,

Encode-OR(x) =
arandom element € Z,

V=Vvi+---+v, €%

Decode OR. Given the sum AFE value v, one can correctly
recover the result of the OR operation over the underlying n
bits with probability of at least 1 — 1/p as follows.

Decode-OR(v) = {0 itv=0
1 otherwise
To see why Decode-OR returns the correct value with prob-
ability 1 — 1/p, we consider two cases. First, when all n input
bits are 0. In this case, all AFE values are zeros so v is guaran-
teed to be zero; Decode-OR always outputs the correct value
of 0. Second, when at least one of the n input bits is 1. In this
case, since the value is independent and uniformly random,
the probability that the sum in Z, is zero is 1/p.

4.2 Computing the MAX function with AFE

Following the approach in Prio, we show how to extend the
above AFE to support MAX, which Addax uses to find the
highest bid in an auction. This construction provides neither
privacy nor verifiability; we add these later.

Suppose all input values are integers in the range [0, ¢]. Each
input x is first represented in unary. That is, as a bit vector 3
of length ¢ (81, B2, . . ., B¢) where 3; = 1 if and only if i < x.
Observe that if we perform a bitwise OR on the unary bit
vectors of all inputs, the result will be a unary bit vector where
the index of the last “1” represents the maximum value across
all inputs. This is the idea behind the AFE of MAX.

Encode MAX. Given a value x € [0, ¢], its AFE is a vector of
£ values, where each value is an element in Z,. The encoding
happens in two steps: (1) represent x as a bit vector 3 of length
£ in unary format; and (2) for each bit 3;, encode 5; with the
Encode-OR of Section 4.1. The result is a vector M with ¢
values, where M([i] is the AFE value of bit ;.

Compute MAX. Given n AFE vectors {M,,...,M,} that
encode the values {x,...,x,} as above, MAX is computed
by adding the n vectors: M = M| + - - - + M,,.

Decode MAX. Given the sum vector M, one can recover
the MAX of the underlying n values in two steps. First, use
Decode-OR (§4.1) on each of the ¢ entries of M. The result is
a bit vector 3 of length ¢ in unary format. Second, output the
highest index j for which 3; is 1. This value is the correct MAX
among the n inputs if Decode-OR outputs the correct OR for
all £ bits. This event occurs with probability > (1 — 1/p)".

Figure 2(a) gives an example of these procedures with three
inputs. Below we describe how to add privacy by secret sharing
the AFE vectors among multiple parties.

4.3 Private and decentralized MAX

Observe that computing the MAX of n values (xi,...,x,)
using AFE vectors (M, ..., M,) requires only additions. We
can split each vector M; into two shares (M} and M?) that add
up to the original (M; = M} + M?) as depicted in Figure 2(b).
Each share is made up of uniform random elements in Z,, and
reveals no information about M; without the other share.
Suppose that two non-colluding parties, Alice and Bob, are



tasked with computing the MAX of n values given n AFE
vector shares. Alice receives {M!,...,M!} and Bob receives
{M3,...,M?2}. Bach party sums up their n shares to get two
sum vector shares: M! for Alice and M? for Bob. Finally,
both parties exchange their sum vector shares. Observe that
by adding M' and M?, the parties can recover the sum vector
M = M' 4+ M? = M, + - - - + M, as shown in Figure 2(a), and
then use Decode-MAX to recover the max value.

4.4 Private and decentralized auction

We use the private MAX of Section 4.3 to compute an auc-
tion where the auctioneer’s duty is split between the auxiliary
server and the publisher. This protocol provides privacy but
not integrity (i.e., malicious actions can lead to an incorrect
outcome); we add verifiability in Section 5. A bid is given by
the position of the last “1” in a unary vector (e.g., [1,1,1,0]
and [0,0,1,0] both represent 3, though the latter is ill-formed).
We assume a maximum bid ¢, and everyone bids within [0, £].

Step 1: Set up shared secret. Before the auction starts, the
publisher and the auxiliary server commit to a random se-
cret to be used later as an unbiased source of randomness.
Concretely, when the client visits the publisher, the publisher
contacts the auxiliary server, notifies it of an incoming auction,
and supplies to it a commitment to a uniform random secret,
secret,,. The auxiliary server replies with its own commitment
to a uniform random secret, secret,. They keep these secrets
hidden until Step 4.

Step 2: Encode and split bids. The browser sends an invita-
tion to selected bidders with the auction’s id. If a bidder wishes
to participate, they encode their bid using the Encode-MAX
procedure (§4.2), split the resulting vector into two additive
shares as discussed in Section 4.3, and generate a fresh signing
and verification key pair. The verification key acts as the bid-
der’s bidder id in the auction. The bidder then sends share M'
to the auxiliary server and share M? to the publisher, supplying
both with the bidder id. Bidders who fail to submit their shares
before a timeout are kept out of the auction.

Step 3: Find the highest bid. Before computing the auction,
the auxiliary server sends to the publisher all the bidder ids
that it received, the publisher matches them with the ids that it
received, and responds to the auxiliary server with the intersec-
tion. The publisher and the auxiliary server then use the vector
shares of bidders in the intersection in the MAX protocol of
Section 4.3. If Decode-MAX produces an invalid unary vec-
tor such as [1,0,1,0], the auction is aborted; when parties are
honest, abort happens with negligible probability (§4.2). At
the end, both parties learn the highest bid, b*, but nothing else.
To avoid parties adapting their sum vector share in response
to the other’s sum vector share, parties first exchange com-
mitments of their sum vector share; the honest party aborts if
misbehavior is detected.

Lemma 1. Let by, ..., b; be the bids from j honest bidders,
and let My, . .., M; be the AFE vectors resulting from running

Encode-MAX on the bids. Similarly, let My, ..., M be
AFE vectors that MAX-encode bids from k malicious bidders
(these AFE vectors can represent invalid unary vectors like
[1,0,1,0]). Decode-MAX on the sum of these j+k AFE vectors
outputs, with high probability, either an invalid value (invalid
unary representation) or a value > max(by, ..., b;).

Lemma 2. Let M' and M? be sum vector shares held by the
auxiliary server and publisher, respectively. During Decode-
MAX, if the auxiliary server uses a different sum vector share
M'" without having seen M? first or the publisher uses a differ-
ent sum vector share M’ without having seen M ! first, then
the output of Decode-MAX is, with high probability, either an
invalid value (invalid unary representation) or /.

Appendix A gives proofs for both lemmas. Together they im-
ply that malicious actions by participants lead to the resulting
highest bid being invalid or at worst larger than the real highest
bid. Either outcome leaks no information about honest losing
bidders’ bids to the attacker (our privacy goal). Furthermore,
malicious actions are detected by Addax’s verification.

Step 4: Find the winner. The publisher and the auxiliary
server find the winner (the bidder id of the party who submit-
ted b*) interactively. First, both parties decommit to the secrets
they generated in Step 1, check the decommitment, and XOR
the secrets together to obtain secret = secret, @ secret,,. Since
at least one party is honest, secret is uniformly random and
independent of the bidder ids generated by the bidders; the
parties use secret as the seed to a pseudorandom generator
(PRG). Both parties locally use the PRG to pick the same ran-
dom bidder w from the set of participating bidder ids, which
avoids biasing the auction towards a particular bidder in the
case of ties (the PRG is for fairness not for privacy). The
auxiliary server sends the b*-th value of its share of bidder
w’s vector, M [b*], to the publisher and the publisher sends
M?2[b*]. Both parties then locally sum the two shares to obtain
M, [b*] = M. [b*] + M2 [b*]. Applying Decode-OR to M,,[b*]
yields S+, which is the bit of bidder w at position b* in the
unary vector (§4.2). If ;- is 0, bidder w is not the winner
(since its bid must be lower than b*). Note that learning [+
reveals no additional information. The publisher and the auxil-
iary server continue to pick a random bidder id w until the bit
Bp+ of wis 1 (n/2 tries in expectation). In such a case, w is the
winner. Finally, the auxiliary server and publisher ask w if its
bid is b*. Bidder w replies only if it receives the same query
from both parties. If w’s bid is not b*, it sends abort to both
parties and the auction is aborted. If there are ties (i.e., multi-
ple bidders submitted b*), this procedure returns a uniformly
chosen one. The ids of other tied bidders remain hidden.

Lemma 3. In Step 4, if the auxiliary server sends to the pub-
lisher an AFE share that is different than what it received from
the candidate winner w (i.e., different from M} [b*]) or the
publisher sends to the auxiliary server an AFE share that is
different than what it received from w, then the auction aborts



or w is declared the winner with high probability. In the latter
case, w is either the real winner or a malicious bidder.

Appendix A proves this lemma. It basically means that a
malicious publisher or auxiliary server can only ever make
a colluding bidder the winner; they cannot cause a winner
(if chosen by the PRG) to lose, nor can they make an honest
losing bidder the winner (and hence learn its bid).

Step 5: Compute the sale price. The above four steps are
sufficient to compute first-price auctions (the most common
type) where the winner is the highest bidder and the sale price
is its bid. To support second-price auctions (sometimes used
by exchanges), the auxiliary server and publisher subtract the
winning bidder’s vector share from the sum vector share (e.g.,
the auxiliary server subtracts M} from M'). They then rerun
Step 3 to obtain the second highest bid.

Lemma 4. If either the auxiliary server or the publisher mis-
behaves in Step 5, or a malicious bidder is declared the winner
in Step 4, then the computed sale price is, with high proba-
bility, either: (1) the highest bid among all bidders; (2) the
second highest bid among all bidders; or (3) /.

Appendix A has the proof of this lemma, which again hides
the losing bids (besides the second-highest). Furthermore, any
misbehavior is eventually detected during an audit.

S Adding public verifiability

For an auditor to verify the outcome of an auction, the auditor
needs to check that (1) the highest bid b* selected in Step 3
of the auction is correct; (2) that the bit 8+ of the winning
bidder is 1 in Step 4; and (3) that the value computed in Step
5 was set as the auction’s sale price. We start by making the
output of AFEs publicly verifiable, and then discuss how an
auditor can perform the above checks.

5.1 Verifiable and private AFEs

We make AFEs verifiable with a procedure that takes the
result of the AFE computation—the sum vector v—and com-
mitments to the inputs, and outputs whether v is correct.

The key idea of our verification procedure is to observe that
by their very nature, AFEs encode inputs in such a way that
the desired functions (OR, MAX, etc.) can be computed with
only additions. Hence, if one uses an additively homomorphic
commitment scheme on the input AFE values, it is possible to
check the result of the AFE computation without learning the
inputs by adding the commitments and confirming whether
the result is also a valid commitment of the output. We explain
this process for the “OR” AFE of Section 4.1.

Encode V-OR. Given a bitx € {0, 1}, its verifiable AFE is a
tuple v consisting of 2 elements in Z, defined as follows. The
first element in v is given by Encode-OR (§4.1). The second
element in v is a non-zero uniform random element in Z,,.

Commit V-AFE. Given a V-AFE tuple v € Zﬁ encoding bit
x with Encode V-OR, we use the Pedersen commitment [74]
defined over a multiplicative group G of prime order p with
generators {g, h}.! The commitment is ¢ = g"l . p*l1],

This commitment perfectly hides the V-AFE tuple (an ad-
versary cannot learn the tuple from the commitment); it binds
the tuple (a committer cannot claim to have committed to a
different tuple) if the discrete log problem is hard in G. It is
also additively homomorphic: given a commitment ¢; € G to
atuple v, € ZIZ, and a commitment ¢, € G to a tuple v, € 72,
¢3 = c| - 3 is a valid commitment to the tuple v; + v;.

Compute and Decode. Given a set of n V-AFE tuples
{v1,...,vn}, which encode n bits {xi,...,x,} with the above
Encode V-OR procedure, compute the OR of the n bits by
adding the V-AFE tuples component-wise: v = v| + - - - + v,,.
Decode V-OR calls Decode-OR on the first element in v.

Verify V-OR. Given the V-AFE sum tuple v which encodes
the result of the Compute V-OR procedure over n V-AFE tu-
ples {vi,...,v,}, and given a set of commitments {cy,...,c,}
to these tuples generated with the Commit V-AFE procedure,
one can verify v by checking if g*%! . p¥111 < H;l:1 ¢;j. Verify
V-OR outputs “ok” if the check passes, and “fail” otherwise.

The above approach generalizes to other functions (e.g.,
MAX) that require more complex encodings (e.g., vectors)
since those encodings are just sets of AFE values. For example,
a V-AFE vector is simply a vector of V-AFE tuples, and the
commitment is a vector of Pedersen commitments—one for
each tuple in the V-AFE vector. The approach can also be com-
bined with secret sharing (§4.3) to hide the inputs from non-
colluding parties. Specifically, the input providers (e.g., bid-
ders in our case) generate their V-AFE vectors {M, ..., M,}
and compute the corresponding commitments {cy,...,c,},
which are made available on a public log. Then, the input
providers generate secret shares for their V-AFE vectors and
give these shares to the computing parties as described in Sec-
tion 4.3. Finally, the computing parties combine their sum
vector shares into the V-AFE vector M and verify each entry
with Verify V-OR and the commitments.

5.2 Verifiable, private, and decentralized auction

We now discuss how to extend the protocol of Section 4.4 with
the V-AFE construction of Section 5.1 to obtain verifiability
of the auction’s outcome in addition to privacy.

Recall that in Step 2 of the auction protocol (§4.4), a bidder
i encodes its bid using Encode-MAX (§4.2) which produces
an AFE vector M;, where each entry in M; is an Encode-
OR (§4.1) of each bit of bidder i’s unary-formatted bid. In our
verifiable auction, the bidder instead uses the Encode V-OR
procedure (§5.1), so M; is made up of £ V-AFE tuples. Bidder i
also creates, for each entry of M;, a commitment using Commit

! As an (insecure) example, the set {1,3,4,5,9} in Z;; forms a multiplicative
group with 5 elements (its order is p = 5). A generator for this group is 3
since repeated multiplications of 3 with itself generates every element.



V-AFE (§5.1). Let C; denote the corresponding vector of ¢
commitments for M;. Bidder i then splits M; (§4.3), and sends
to the auctioneers a collision-resistant hash of C; and the AFE
vector shares (M} or M?, depending on the party).
Asynchronously, bidder i uploads to the public log (§7) its
bidder id, C;, and a signature of C; that validates with the
bidder id (recall that bidder ids are verification keys). The
other steps of the auction proceed as before. At the end of the
auction, the publisher and the auxiliary server upload an audit
trail to the public log containing: (1) the auction’s outcome,
consisting of the bidder id of the winner w, the highest bid
b*, and the auction’s sale price; (2) their share of the sum
vector computed in Step 3 and 5 of the auction protocol; (3)
the b*-th entry of the V-AFE vector share of each candidate
winner chosen in Step 4 and the seed for the PRG used; and
(4) the hashes (to commitments) they received from bidders.

Deferred public verification. After the auction completes,
an auditor can choose to verify that the auction was done
correctly as follows. The auditor accesses the auction’s audit
trail from the public log, and verifies that the uploaded hashes
match the commitments, and all signatures on the commit-
ments are valid. To verify the highest bid in Step 3, the auditor
aggregates the sum vector shares in the audit trail to obtain
M. Then, the auditor computes the highest bid b* by calling
Decode-MAX on M (§4.2). Finally, the auditor runs, for all
j € [1, 4], Verify V-OR (§5.1) using as input the j-th entry of
M (acting as the V-AFE sum value), and the j-th entry of every
commitment vector submitted by the n bidders (i.e., for all
i € [1,n], Ci[j]), as the commitment set. If all checks pass, then
Step 3 was correct. The auditor performs the same actions for
Step 5 to verify the second highest bid.

To verify Step 4, the auditor checks, for each of the can-
didate winners x, whether g"<®110] . p:6101 2 €\ [p*]. The
auditor also checks that the Decode-OR of M,,[b*] is 1 (i.e.,
the actual winner’s bit at position b* is indeed a 1), and the
Decode-OR of M, [b*] for all other candidate winners x is 0.
Then, the auditor uses the PRG and the seed in the audit trail
to check that the bidder ids of the set of candidate winners are
correct and that w was the last bidder id sampled.

Theorem 1. Addax’s auction protocol with deferred verifica-
tion achieves completeness, soundness, and privacy.

We give the full definitions and proofs in Appendix B. Note
that detection is different from finding the party at fault.

5.3 Assigning blame

An auction may be aborted during the online phase, or deferred
verification may fail. In these cases, Addax can narrow down
the set of faulty parties. As parties participate in many auctions
(recall that exchanges process billions of auctions per day),
one could develop detection algorithms that flag those who
are present in an unusually high number of aborted or failed
auctions. We discuss this in more detail in Appendix D.

6 Optimizations

This section discusses two optimizations. The first adds inter-
action between the bidders and the auctioneers to dramatically
cut costs. The second reduces interaction between the auction-
eers, which lowers latency, but leaks the existence of ties.

6.1 Less communication with an interactive MAX

A major drawback of the proposed private auction protocol
is that the computation and communication complexity of
computing MAX using AFE vectors and their correspond-
ing shares is O(¢), where ¢ is the highest possible bid (§4.2).
Meanwhile, bids range from cents to tens of dollars; a realistic
deployment would need ¢ > 1,000, which is too costly. In
this section we show how to modify the auction protocol to
add r rounds of interaction between bidders and the auction-
eers (publisher and auxiliary server) in exchange for reducing
computation and communication complexity to O(r - £1/7).

High-level idea. In Figure 2, bidders first represent their bids
as a unary bit vector, and then use Encode-OR on each bit to
create vector M. This vector is then split into shares M' and
M?. The auctioneers aggregate their shares locally and then
exchange their sum vector shares to construct the sum vector
M. This vector is then decoded into a unary bit vector that
contains the result of max. Observe that if the bidders were to
use Encode-OR only on the last two bits of their bit vectors
(the gray and light gray cells), they would obtain the last 2
entries of M, which would then be split into the last two entries
of M' and M2, and would become the last 2 entries of the sum
vector shares, and finally of M. Decoding these two entries of
M results in the last two bits of the final unary bit vector (in
the example these bits are 1 and 0). The fact that the last bit
is 0 means that the max value must be < ¢. The fact that the
penultimate bit is 1 means that the max value must be > ¢ — 1.
Hence, encoding and sharing only a subset of bidders’ unary
bit vectors is enough to compute the max value. Of course, in
this example we knew ahead of time which two elements to
pick to get a tight upper and lower bound on the max. In our
protocol, the auctioneers do r rounds of k-ary search (k = ¢'/")
to find the consecutive positions at which the final unary bit
vector changes from a 1 to a 0, which yields the max.

Protocol. Using the notation of Section 4.3, each bidder i
sends [¢'/"] entries of the AFE vector shares M' and M? to the
auctioneers in each round. The entries sent in each round are
evenly distributed between the current lower and upper bounds
on the maximum bid (initially set to 1 and /¢, respectively).
For each of the chosen entries j, the auxiliary server runs the
Compute-OR procedure (§4.1) by aggregating the shares it
receives from each bidder i: M'[j] = >°, M}[j]. Likewise, the
publisher computes M?[j] = >_. M?[j]. The publisher and the
auxiliary server then exchange their sum shares for each entry
j» allowing the reconstruction of M[j] = M'[j] + M?[j]. Calling
Decode-OR (§4.1) on M[j] returns whether bit 3; in the unary
vector is 1 or 0. If 3; is 1, the highest bid 5* > j. Else, b* < j.



This establishes a new lower and upper bound on »* with
respect to the exchanged entries. After  rounds, the number of
entries sent by each bidder to each auctioneer is < r- [¢!/"].

In this protocol, bidders transmit a subset of the entries that
they send to the auctioneers in the non-interactive variant, and
hence they reveal less information. But there is one down-
side: bidders or an auctioneer can adaptively send inconsistent
shares in response to partial information (e.g., knowledge that
the max is in a given range). This could affect the auction’s
integrity. Addressing this issue requires extending the protocol
with two extra safeguards: (1) an asynchronous step to find
the sale price bidder which is similar to Step 4 in Section 4.4;
and (2) generating a zero-knowledge proof that the sale price
bidder’s AFE vectors are valid without leaking the original
AFE vector. Appendix C describes these steps in detail and
proves the following two lemmas.

Lemma 5. If either the auxiliary server or the publisher mis-
behaves, or malicious bidders issue inconsistent AFE shares,
the above interactive protocol leaks no more information about
losing bidders’ bids than the non-interactive variant.

Lemma 6. If either the auxiliary server or the publisher mis-
behaves, or malicious bidders issue inconsistent AFE shares,
the above protocol (with the extra safeguards) ensures that
malicious actions are detected during an audit.

6.2 Lower latency by leaking the existence of ties

Of all the steps in the auction protocol, finding the winner
(§4.4, Step 4) is the most expensive since each interaction
between the publisher and the auxiliary server occurs over
WAN. This step consists of two parts: (1) pick a random can-
didate winner w, and (2) exchange the b*-th entry of w’s AFE
vector shares to determine whether w indeed had the highest
bid—trying again otherwise. The iterated nature of this algo-
rithm aims to find one of the highest bidders at random (as
soon as a highest bidder w is found, the auctioneers halt). One
can eliminate this cost if one is willing to leak the number of
ties. The protocol is simple: the publisher and auxiliary server
exchange the b*-th entry of the vector shares of all bidders. In
the absence of ties, after decoding, only one bidder will have a
1 and all others will have a 0. If there are ties, multiple bidders
will have a 1 at position b*, and the auctioneers use the PRG
to break the tie. Addax adopts this tradeoff.

We note that the added leakage is actually minor given that
in the interactive protocol (Step 4), one learns that it took k
tries to find the winner. In an auction with no ties, kK would
be n/2 in expectation, so the value of k already leaks some
information about the number of potential ties that may exist.

7 Search and filtering

In Addax, bidders register to participate in auctions by storing
their information (e.g., ad categories, domain of their bidding
service) on a public tamper-proof log, and auction participants

also use this log to create an audit trail (§5.2). Our implemen-
tation uses the Algorand blockchain [3] to maintain the log,
though we could have used a BFT consortium or a trusted
party (if one exists). Addax also needs a way to search the
blockchain. This is typically done by downloading the en-
tire blockchain and locally searching for the desired objects.
Of course, this is onerous for browsers, as no user would
ever maintain a copy of the blockchain just to receive ads.
Instead, our implementation uses the Purestake indexer [14].
The downside is that one must trust this indexer. One way to
remove this assumption is to use a verifiable search engine for
blockchains [69].

Even with the Purestake indexer, querying data is slow: it
takes seconds to get a response. Therefore, Addax keeps a
copy of the log in untrusted cache servers; Addax then queries
Purestake asynchronously to verify the cache servers’ results.
Querying cache servers takes only a few milliseconds.

In the rest of this section we describe how browsers do local
filtering and fetch advertisers’ data. We discuss how browsers
interact with the Algorand blockchain in Appendix E.

7.1 Filtering and inviting advertisers

Upon visiting a page with ads and obtaining a list of allowed
categories from the publisher, the browser queries the cache
server to get bidders who match these categories. The browser
caches bidder information and only sends “if-modified-since”
requests to the cache server to reduce communication. Bor-
rowing ideas from Privad [58] and Adnostic [80], the browser
assigns a preference score for each of the returned bidders.
The browser then picks the top k bidders and invites them
to join the auction, supplying them with information about
the publisher and the user. Depending on the configuration of
Addax, the user information can be empty (for generic ads),
include a group or topic id (as in FLoC [89] and Topics [16]),
or include cookies and demographic information. Since the
publisher’s revenue depends on bids, and bidder valuations are
based on user information, different publishers can require dif-
ferent levels of information disclosure to access their content.
This is similar to how publishers detect ad blocking software
and request that users disable it.

8 Implementation

Addax consists of 2.2K lines of C++ and 400 lines of Python
and PyTeal [15] for Algorand smart contracts. Addax’s client-
side tracking is done outside the browser and interacts with
Chrome via native messaging [9]. We use OpenSSL 3.0.0 [12]
for basic cryptographic operations (e.g., BN_rand as the PRG).
Addax’s Pedersen commitment (§5.1) is defined over elliptic
curve secpl192r1, as is the Schnorr signature scheme [78]
that bidders use to sign their log entries. Elements in V-AFE
vectors are defined over the 192-bit field used in secp192r1.

Baselines. To contextualize our contributions, we implement
baselines using state-of-the-art homomorphic encryption (HE)
and secure two-party computation (2PC) frameworks:



CKKS on SEAL [25, 47]: HE for arithmetic operations.
TFHE [49, 50]: HE for boolean operations.

MASCOT on MP-SPDZ [65, 66]: Arithmetic 2PC.

* ag2pc on EMP toolkit [85, 86]: Boolean 2PC.

Homomorphic encryption. The publisher generates cryp-
tographic keys and sends the public key to bidders. Bidders
send bids encrypted with the public key to the auxiliary server,
who runs the auction over ciphertexts and supplies the result
to the publisher for decryption with the secret key. For SEAL
we implement and measure the maxId algorithm by Cheon
et al. [48] which is the best known way to find the ciphertext
with the max value. While this is a subset of running an auc-
tion, this one step is already more expensive than Addax’s full
auction protocol. For TFHE we implement the whole auction.
Neither baseline provides integrity.

Multiparty computation. Advertisers commit to their bids
and send them to the publisher and auxiliary server alongside
additive shares of their bids and the commitment randomness.
Inside the MPC, the auxiliary server and publisher reconstruct
the bids and the commitment randomness from their shares,
check that the commitments match, and the bids are the com-
mitted values, and then run the auction using the bids. For
commitments we use H(rand||bid) and assume H is a random
oracle. We use hash functions already implemented and opti-
mized for these frameworks (e.g., SHA3, SHA256, MiMC).

9 Evaluation

This section studies the following questions:

1. What are the costs of Addax’s auction for each party?

2. How does Addax’s auction compare with alternatives?

3. What is the resource overhead of deploying Addax over a
non-private and unverifiable exchange?

4. How expensive is the verification procedure?

Appendix E.3 discusses the cost of interacting with the log.

Evaluation environment. We run our experiments across
AWS data centers to account for Addax’s decentralized nature.
The publisher is in US East (Ohio) on a c¢5.2xlarge instance,
the auxiliary server in US West (OR) on a c5.2xlarge instance,
and bidders in US West (CA) on c5.12xlarge instances. We
use standard Ubuntu 20.04 for all of them. PureStake exposes
a REST API and runs on servers in Ontario, CA, and OR.

Method and metrics. Our key metrics are the end-to-end
latency, total network communication, and throughput of the
auction procedure. This includes the events after the browser
fetches the page from the publisher and initiates the auction,
but before the browser fetches and displays the ad on the user’s
screen. In short, we measure the overhead of Addax over the
status quo of using a centralized non-private ad exchange.
We report the mean over 20 trials and one standard deviation.
We focus on second-price auctions in this evaluation, as they
are the more complex type of auction. If Addax is used for
first-price auctions, the costs are 30% lower: auctions with
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Size (MB) Generation (ms)

AFE vector shares 0.48 87.55
Materials (non-interactive) 0.25 537.9
Materials (interactive) 1.705 1,802.0
Non-interactive  2-round  4-round
Communication (MB) 0.48 0.0144 0.0034

FIGURE 3—Size of AFE vector shares and other materials (e.g.,
commitments), their generation time, and the total communication
between a bidder and one auctioneer under different Addax variants.

96 bidders complete within 440 ms, and Addax can sustain a
throughput of 360 auctions per second per core.

Parameters. Prior reports [92] suggest that the typical num-
ber of bidders (usually demand-side platforms) in an auction
is under 30. We experiment with up to 96 bidders, but Addax
could handle more with little extra latency since most of the
latency comes from round trips between the two servers and
is not impacted by the number of bidders. We set £ = 10,000,
which supports bid ranges consistent with those observed in
practice [93]. This results in a probability of computing the
wrong MAX of &~ 1 — (1 — 5%)'*%%°_which is negligible.
Our baseline implementations are generous: we use 13-bits
for bids (4/5 of our bid range) and do not measure the time to
receive shares or ciphertexts from bidders for any of them.

9.1 Microbenchmarks: Addax’s auction protocol

To answer our first research question we microbenchmark the
operations of each of the auction participants.

Bidder’s cost. Before the auction starts, bidders encode their
bids, commit to the encodings, and send their shares to the auc-
tioneers. Figure 3 depicts the time required to generate an AFE
vector, and the verification materials in both the non-interactive
protocol (§5) and the interactive variant (§6.1) using 8 CPU
threads. For the latter we include the cost of the safeguards
detailed in Appendix C.2. As shown in the figure, generating
these materials is more expensive than the time budgeted for
an auction. However, AFE vectors are made up of random
elements; the only dependence on bids is whether to use a
uniform element or a zero (§4.1). As a result, all materials
can be precomputed and kept aside. Furthermore, their genera-
tion is parallelizable: we get a 5.83 x speedup with 6x more
cores. We expect bidders to be able to maintain their desired
throughput, albeit at a higher cost ($) than they incur today.
When the auction starts and the bidder decides on its bid, it
can draw from the set of pre-generated materials to construct
bid-specific AFE vector shares, commitments, and proofs.
With pre-generated materials, bidders respond in 10 ms.

Local auction computation. To determine the costs to the
auxiliary server and the publisher we run a microbenchmark
where both auctioneers run on the same machine, are given all
materials (e.g., AFE shares), and compute the auction without
the effects of network latency. Figure 4a shows the time for
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FIGURE 5—End-to-end latency and communication costs for an
auction in Addax and several baselines over WAN.

different Addax variants. Compared to the non-interactive
protocol, Addax with 4 rounds (§6.1) requires fewer operations
since it acts on a tiny subset of the entries of the AFE vector,
and reduces computation time for a 96 bidder auction from
102 ms to 2.8 ms. Interactivity also reduces communication
costs for effectively the same reason (acts on fewer entries). As
we show in Figure 4b, the size of the AFE shares exchanged
between bidders and each auctioneer in the non-interactive
variant of Addax with 96 bidders is 47.68 MB, whereas it is
0.28 MB with 4-rounds and 1.23 MB with 2-rounds.

9.2 End-to-end performance

The above microbenchmarks give an idea of the computation
and communication costs that are expected when running auc-
tions with Addax. However, the metric that actually matters is
end-to-end latency over WAN. Figure 5 shows the computa-
tion and communication costs of Addax’s end-to-end protocol
over a WAN deployment, from the time that the publisher
starts the auction, to the time the winner is notified. This figure
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FIGURE 6—Median and 99-percentile response time and server
throughput for Addax and a non-private baseline for an auction with
96 bidders. Each data point represents the latency and the throughput
achieved at a given load (low and to the right is better).

also shows the baselines described in Section 8.

In terms of auction latency, Addax’s 2-round variant is by
far the most efficient option, often by orders of magnitude
compared to the baselines. Addax’s 2-round variant beats the
4-round variant due to fewer WAN RTTs at a slight increase
in the amount of communication. At 96 bidders, the browser
receives an ad tag from Addax in 579 ms; behind the scenes,
the auctioneers exchange 1.23 MB of data to compute the
auction. Of this time, the servers only spend 5 ms computing;
the rest is network latency. Thus, having more bidders will not
meaningfully increase the end-to-end latency of Addax.

For comparison, studies [1, 7, 20, 87] show that page load-
ing times today take several seconds, so we expect Addax to
run auctions asynchronously as the page loads without signifi-
cantly impacting the user experience.

9.3 Costs over a non-private unverifiable baseline

To understand the additional computational resources required
to deploy Addax, we compare its throughput on a c5.2xlarge
instance (4-core VM) to a baseline that simply finds the highest
and second highest bids (the only non-trivial computation
is establishing a TLS session between the browser and the
publisher). We run an open-loop workload with varying load
and with all inputs already in-memory, so we do not measure
network latency. Figure 6 gives the results.

Addax’s 2-round and 4-round variant achieve 8.1x and



Non-interactive 2-round 4-round
Auctioneers 1.932 0.056 0.025
Bidders 0.250 0.250 0.250
Winner 0.250 0.730 0.730
Sale price bidder 0.250 1.705 1.705

FIGURE 7—Total size (MB) of the audit information that parties
must upload to the public log in an auction of 96 bidders.

2.7x lower throughput than the baseline. As Addax requires
two servers, this translates to 16.2x and 5.4 x more computa-
tion resources to maintain the same throughput as the baseline.
This suggests that Addax could process the high volume of auc-
tions that exchanges process today while providing integrity
and privacy guarantees—albeit at a premium cost.

9.4 Cost of verification

In this section we evaluate the cost for auction participants to
supply the necessary materials to leave an audit trail, and for
an auditor to validate the correctness of an auction.

Leaving an audit trail. After the auction finishes, partici-
pants upload their audit materials (§5.2-§5.3) to Algorand.
This takes around 0.8 sec. Figure 7 gives the size of the ma-
terials that each party uploads for a 96-bidder auction. In the
interactive variants, the winner uploads its full AFE vector,
and the sale price bidder uploads its full AFE vector with a
random mask and proofs as described in Appendix C.5.

Verification time. Verification requires downloading the ma-
terials from Algorand, checking the hash of commitments,
and checking the recovered AFE sum vectors and bit encod-
ings (§5.2). Auditors also need to validate that AFE vectors
from the winner and sale price bidder are valid (§C.2). Fig-
ure 4c depicts the time of verification. In the non-interactive
variant, deserializing commitments and verifying the two sum
vectors takes most of the time. In contrast, in the interactive
variants the expensive step is validating the winner and sale
price bidders’ AFE vectors. To verify a 96-bidder auction, the
non-interactive variant requires 4.27 sec, while the 2-round
and 4-round variants take 1.66 sec and 1.49 sec, respectively.

10 Related work

This section describes other efforts that relate to Addax.

Advertising. There is a rich literature in privacy preserving
ads [35, 44,52, 57-59, 75, 76, 80], but none focuses on private
and verifiable auctions. VEX [35] provides verifiability but
the auctioneer learns all bids. Privad [58, 59], Adnostic [80],
FloC [89], Topics [16], and others [37, 57, 76] reduce the
collection of user information, but auctions are still conducted
by a party that learns all bids and cannot be audited.

Private and verifiable auctions. In other domains, there is
work on private or verifiable auctions. Parkes et al. [73] pro-
vide auction integrity but the auctioneer learns all bids, unlike
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Addax. Other works [62, 67] provide privacy but not integrity.
Finally, there are several multiparty protocols [38, 42] where
the bidders jointly compute the auction. This is worse than
our MPC baseline in Section 8 in that here bidders actively
participate in the protocol rather than merely generating shares.
This does not scale to more than a handful of bidders.

11 Discussion

Addax departs from the status quo by introducing accountabil-
ity to an opaque ecosystem. While this is a disruptive change,
there are two things on Addax’s favor. First, the ad-tech indus-
try already uses browsers to kickstart auctions and invite bid-
ders [4] and newer proposals like Google’s FLEDGE [33] push
even more functionality to browsers include client-side track-
ing. Second, Addax is incrementally deployable: an Addax-
enabled browser can send an HTTP X-header indicating its
support of the protocol, and interested publishers can respond
with Addax-based ad spots while continuing to offer tradi-
tional ads to other users. Furthermore, we think many missing
features can be implemented in Addax.

Content curation. A key role of exchanges is to prevent
malvertising (the use of ads to spread malware) or ads that
can damage the publisher’s brand. On the one hand, content
curation is hard even in centralized environments: reports of
malicious actors leveraging ad networks to distribute malware
are common [8]. On the other hand, since advertisers publish
their information on Addax’s public log, one could imagine
requiring advertisers to upload their ads as well. Then, just like
existing services scan blockchains for anomalous transactions,
they can scan Addax’s log to detect and flag malicious ads.

Fraud prevention. Many existing mechanisms to prevent
publisher fraud (e.g., using clickbots to increase revenue) [79]
still work in our setting. For example, bidders can still observe
anomalous changes in ad traffic from a publisher, and can
perform randomized auditing with bluff ads [60] (uninviting
ads unlikely to be clicked by real users). Other techniques
that collect hard-to-fake signals from a device with the aim of
detecting bots [18, 21] could also be used, but more work is
needed to port them to our context.

Conversions. Analytics are also critical to the ad ecosystem.
Currently, advertisers and publishers rely on third-party cook-
ies to track when a user performs an action after viewing an ad
(a “conversion”). A recent proposal [94] shows how this can be
done without cookies and without learning the user’s identity;
this approach is compatible with Addax’s architecture.

Trust-performance tradeoff. Our description of Addax uses
2 parties but the protocols naturally generalize to k auxiliary
servers; if either the publisher or any of the k auxiliary servers
is honest, Addax provides its guarantees. Of course, as the
number of parties increases the costs also increase. This trade-
off can be taken into account at deployment time.
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A Proofs for lemmas

Proof of Lemma 1. Let /& be the maximum bid among all
honest bidders. The event claimed in Lemma 1 is equiva-
lent to one of two cases: (1) Decode-MAX outputs a valid
unary bit vector whose value is larger than or equal to /; or
(2) Decode-MAX outputs an invalid unary bit vector. Con-
sider the opposite event where Decode-MAX outputs a valid
unary bit vector whose value is smaller than 4. We denote
the probability of this event as Pr(opposite). Pr(opposite) <
Pr(Decode-OR outputs O at position #) < 1/p. Therefore, the
probability that the output of Step 3 is greater than or equal to
hor is an invalid unary bit vector is 1 —Pr(opposite) > 1—1/p.
In our construction p is a large prime, and hence 1 — 1/p =~ 1.

Proof of Lemma 2. Let two parties hold additive shares for
a given AFE value that was produced by Encode-OR. Let
one of the parties be honest and the other malicious. Without
seeing the share held by the honest party, the probability of
the malicious party generating a share that results in Decode-
OR outputting 0 is 1/p: the malicious party would have to
correctly guess the exact value needed to make the two shares
add up to 0, and shares are uniformly random values in Z,.
Thus, the probability of a malicious party generating AFE
shares which lead to Decode-OR outputting 1is 1 — 1/p.
We use Pr(b) to denote the probability that Decode-MAX
outputs b, and Pr(invalid) to denote the probability that
Decode-MAX outputs an invalid bit vector. Decode-MAX out-

puts b means that the decoded bit vector is [1,...,1,0,...,0].
b 0—b

Thus, Pr(b) = (1/p)¢=t - (1 — 1/p)".
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Proof of Lemma 3. From Lemma 2 (and its proof), if a mali-
cious party uses a bogus share for one of the bits, Decode-OR
outputs 1 with probability > 1 — 1/p. Thus, if a malicious
publisher or auxiliary server ever sends a bogus AFE share,
Decode-OR would output 1 with high probability, leading to
that candidate w becoming the winner. The auxiliary server
and publisher then need to get acknowledgment from bidder
w on whether its bid b,, is b*. If w is honest and b,, # b*, the
auction aborts. If w is honest and b,, = b*, w is the real winner,
as b* is greater than or equal to the real highest bid among all
honest bidders with high probability. If w is malicious, it could
abort or can choose to be the winner at its own discretion. If
the latter, it must pay the second-highest bid (sale price).

In our construction p is a large prime, so 1 —

Proof of Lemma 4. We consider two cases: (1) bidder w is
honest and the real winner (highest bidder); (2) bidder w is a
malicious bidder and not the highest bidder. We denote b as
the computed sale price in Step 5.

For case (1), if the two auctioneers do not misbehave and use
the correct inputs from bidders to compute Step 5, then b is the
real sale price (i.e., the second highest bid) among all bidders.
If a malicious auctioneer (auxiliary server or publisher) sends
a sum vector share that is not computed correctly from bidders’
inputs (i.e., the malicious auctioneer sends a sum vector share
that is not va:l M} — M) in Step 5 when computing the sale
price, b would be ¢ with high probability (Lemma 2).

For case (2), if the two auctioneers do not misbehave and
use the correct inputs from bidders to compute Step 5, Step
5 finds the highest bid among all bidders excluding bidder w.
Thus, b equals the highest bid among all bidders. If a malicious
auctioneer sends an incorrect sum vector share (not computed
correctly from the inputs of all bidders) in Step 5, then b is ¢
with high probability (Lemma 2).

B Proof for Addax’s security properties

This section proves that Addax meets its security properties,
which include auction completeness, soundness, and privacy.

Completeness. When all parties are honest, Addax’s com-
pleteness relies on the probability of Decode-MAX being
successful when it is used to find the highest bid and the sale
price. Further, it relies on the probability of Decode-OR being
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successful when finding the id of the winner and the second
highest bidder (recall this happens interactively by calling
Decode-OR on a particular entry in the AFE sum vector of
a candidate winner). In the worst case, Decode-OR might be
run on up to n candidate winners (2n — 1 times for candidate
winners and sale price bidders in the interactive variant). The
probability of success is > (1 — l/p)% -(1=1/p)", and is
> (1—1/p)* - (1 —1/p)* " in the interactive variant.

Soundness. There are three scenarios which result in an in-
correct outcome: (1) publisher and auxiliary server are honest
and some bidders are malicious; (2) either the publisher or the
auxiliary server is malicious and all bidders are honest; (3)
either the publisher or the auxiliary server is malicious and
some bidders are malicious and colluding with the malicious
auctioneer.

When bidders are malicious, they can: (A1) encode bids
into an invalid unary bit vector (e.g., [1,0,0,1]), then generate
AFE shares for such invalid unary bit vector and submit them
to the publisher and auxiliary server; (A2) provide inconsistent
commitments which are not commitments to the AFE it gener-
ates or provide inconsistent hash values of their commitments;
(A3) claim to be the winner even when they are not. When
one of two computing servers is malicious, it could: (B1) send
incorrect sum vectors for the highest bid or sale price; (B2)
send incorrect AFE shares when finding the winner or the
bidder of the sale price.

All malicious behaviors above except (A1) would lead to
failure of verification using commitments with high probability
due to Pedersen commitments being computationally binding
and the hash function being collision resistant. Specifically,
after all bidders send a hash of their commitments, they are
bound to their AFE vectors. When the random seed used to
find the winner and sale price bidder is fixed, the winner and
the sale price bidder (in the interactive variant) are also bound.
This effectively fixes the outcome of the auction.

(A1) may still pass verification but the outcome of the
auction will still be correct since we do not explicitly check
whether inputs from all bidders are valid or not. In the non-
interactive auction protocol, Addax can treat the highest index
with bit one of the decoded bit vector as the bid of the bidder
(e.g., [1,0,1,0] corresponds to bid 3). Thus, an invalid AFE
vector does not affect the outcome of the auction. And we only
need to check the case of (A1) in the interactive variant. If a
bidder who submitted an invalid AFE vector does not become
the winner or the bidder of the sale price, then they do not
affect the auction’s outcome. Thus, auditors need only check
whether the winner and bidder of the sale price provided valid
AFE vectors. We discuss how to do this in Appendix C.

Privacy. We will prove Addax’s privacy guarantees using a
simulation proof [70]. A simulation proof is done by first defin-
ing an ideal functionality . One can think of it as the function
that one would run if one had access to a trusted third party.
This ideal functionality will provide some output that is avail-



able to everyone, but it will keep all inputs and internal values
secret. We want to show that a protocol is as good as the ideal
functionality in terms of what information it leaks: anything
that an adversary can learn from interacting and observing
the output of Addax, the adversary can learn from interacting
and observing the output of the ideal functionality. To prove
this, we build a simulator Sim that interacts with the ideal
functionality F and obtains only the outputs that F provides
without having access to the inputs of the honest parties. If
the simulator can produce a view (a transcript of all messages
sent and received by all parties) that is computationally indis-
tinguishable from the view produced by the execution of the
original protocol, we say that the protocol is as secure as the
ideal functionality.

To show the security of Addax, we first define a variant that
we call Addax-V. This variant differs from the original Addax
in that instead of deferring all verification to after the protocol
finishes, Addax-V verifies the outcome of each computation
step (i.e., the highest bid, the winner, and the sale price) im-
mediately after the step completes. If at any step verification
fails, the protocol stops without moving forward. Note that
we could deploy Addax-V itself, but it would be inefficient;
Addax instead moves the verification to the asynchronous step
so that it is not part of the critical path of real-time ad auctions.

We will show that Addax-V is as secure as the ideal function-
ality F; then we will prove that the original Addax protocol
with deferred verification is as secure as Addax-V.

Below we give Addax-V’s protocol. For simplicity, we
omit the exchange of hash values between P; and P, before
sending messages, and whenever Decode-MAX outputs an
invalid bit vector, it is assumed that P; or P, aborts. We also
assume that the two auctioneers find the winner (or bidder
of sale price) sequentially starting from the first bidder and
stopping when the winner (or bidder of sale price) is found.

Addax-V’s auction protocol

Step 1 (Bidders encode and send AFE shares):
 Each bidder i among the n bidders encodes its bid
as a V-AFE vector M;, splits it into additive shares
M i‘ and M,-z, and generates commitments C; (§5.1).
* Bidder i sends M/ to Py and M? to P,, and C; to
both P; and P5.
Step 2 (Compute highest bid):
s Pysetss; = . Ml Pysetss; =1 M7
e P; and P, exchange s, and s,, compute S = s + 5,
and run Decode-MAX on S to get b*.
e P; and P, use commitments to verify whether b* is
correct (§5.2) and abort if it fails.
Step 3 (Find winner):
For i = 1 to n, P, and P, repeat the following:
e Py sends M}[b*] to P, and P, sends M?[b*] to P;.
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s Py and P, set 3; = Decode-OR(M] [b*] + M?[b*]).

e If 5; is 1, then i is the winner (set w = i); else
continue. If i = n and f3; = 0, then P; and P, abort.

* P; and P, ask bidder w if its bid is b*. If w says no,
P, and P, abort. Else, P; and P, use commitments
to validate w is correct (§5.2) and abort if it fails.

Step 4 (Compute sale price):

 Pysendsmy =Y., M} — M}, to P, and P, sends
my = Z?:l ]\412 = Ma, to P;.

* P; and P, compute sp = Decode-MAX (m; + my).

* P; and P, use commitments to verify whether sp is
correct (§5.2) and abort if it fails.

Note that whenever there is a party that sends abort, the
protocol terminates and all parties are notified. The detailed
process of termination works as follows.

If an auctioneer (either P, or P,) wants to send abort, it
directly sends abort to all bidders and another auctioneer. If a
bidder wants to send abort when asked whether b* is its bid, it
replies “no” and sends abort to the two auctioneers. The two
auctioneers then forward the abort message to all the bidders.

Now we define an ideal functionality that captures the
privacy properties of Addax-V’s protocol. Let n = h+k be the
total number of bidders, where the first 4 bidders are honest
(non-adversarial) and the last k£ bidders are malicious (actual
position is irrelevant). The two auctioneers are denoted as P
and P,. Without loss of generality, we assume an adversary
that corrupts P; and k bidders. The ideal functionality is:

Ideal functionality F of Addax-V’s auction protocol

Inputs: 4 bids by, . . ., b, from h honest bidders and a
cheat message (an integer from 1 to 4) from P;.
Outputs: (b*,w, sp) are computed as:
e b* =max(by,...,bp).
* w, such that b,, = b* while by # b*,...,b,_| #
b* (i.e., w is the first bidder whose bid is b*).
* sp max(by,...,by_1,byt1,...,by) (ie., the
maximum bid excluding b,,).

F conditionally outputs the above computed values
depending on the value of cheat.
* When cheat is 1: F outputs b* to P; and nothing
to P5.
» When cheat is 2: F outputs (b*, w) to Py and b* to
Ps.
* When cheat is 3: F outputs (b*,w, sp) to P, and
(b*, W) to Ps.
* When cheat is 4: F outputs (b*, w, sp) to both P;
and P,.

Note that the ideal functionality F also provides an interface



to take an abort message as input which allows terminating
the execution of a protocol by the simulator.

Now we see how the ideal functionality F captures the
privacy properties of Addax-V’s protocol. In the real world
execution of Addax-V’s protocol, there are five different cases:
(1) verification in Step 2 fails; (2) verification in Step 2 passes,
verification in Step 3 fails, and P; does not learn the real
winner; (3) verification in Step 2 passes, verification in Step
3 fails, and P; learns the real winner; (4) verification in Step
2 and 3 passes but verification in Step 4 fails; and (5) all
verification passes.

When cheat message to F is set to 1, the outputs of F
capture cases (1) and (2) above. And when cheat is set to other
values, the outputs of F capture the remaining three cases,
respectively. Thus, the outputs of F capture all different cases
of real world execution of Addax-V.

Lemma 7. The Addax-V auction protocol securely imple-
ments ideal functionality F under the assumption that the
commitment scheme is binding and hiding and that p is large
enough to ensure that Decode-OR and Decode-MAX produce
incorrect outputs with negligible probability.

Proof. We now build a simulator Sim that interacts with the
ideal functionality F which at most leaks the highest bid b*,
the winning bidder’s index w, and the sale price sp. Note that
the simulator below simulates all the five different cases (when
the protocol aborts in different steps) of real world execution
in Addax-V. We use A to denote the adversary who can corrupt
Py and k malicious bidders. Note that P; and P, are symmetric
and do the same computation in the protocol. Thus, the proof
below also applies to an adversary who corrupts P;.

Simulator Sim

Step 1 (Generate random V-AFE vectors):

» F gives its output to Sim. This output depends on
which of the five cases of the real world execution
we are simulating (based on the cheat message).

* For the & honest bidders, Sim assigns a bid to each
of them in such a way that one of the bids is b*
and all other bidders’ bids are set as smaller than
or equal b*.

e If w is included in the output of F, the honest
bidder w’s bid is the one that is set to b*.

* If sp is included in the output of F, a random
honest bidder’s bid (excluding w) is set to sp and
all other bids are set as smaller than or equal to sp.

* Sim encodes the & honest bidders’ bids into & V-
AFE vectors and generates commitments (§5). It
then splits the V-AFE vectors into additive shares,
and sends one of the V-AFE shares and the com-
mitment of each honest bidder to A.

» A generates V-AFE shares and commitments for
the k malicious bidders. It sends one of the V-AFE
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shares and the commitment of each of the k mali-
cious bidders to Sim.

* At this point, A has shares Mt ,M’,l1 and Sim
has shares M’ % oM ﬁ They both get commit-
ments C'y,...,C,.

Step 2 (Compute highest bid):

* Sim computes s> = >, M’?, and sends it to A.

* A sends a V-AFE vector s'; (s’; should be
S M ll if it follows the protocol, or some vector
generated based on its cheating strategy) to Sim.

e Sim computes b'* = Decode-MAX(s"; + 5'5).

o If b’ +# b*, Sim sends abort.

Step 3 (Find winner):
For i = 1 to n, Sim and A repeat:

« Simsends M;[b'*] to A, and A sends v; (v; should
be M’} [b'*] if it follows the protocol, or a vector
generated based on its cheating strategy) to Sim.

* Sim computes 3/ = Decode-OR(M'}[b"*] + v;).

o If B/ = 1, then w’' = i; else continue to the next
round. If i = n and 3/ = 0, Sim sends abort to A.

* After finding w’, if bidder w' is malicious, Sim
asks A whether the bid of w’ is '*. If A replies
with no, Sim sends abort.

* If bidder w' is an honest bidder and w’ # w, Sim
sends abort to A.

o If w' # w, Sim sends abort to A.

Step 4 (Compute sale price):

« Simsends m'y = Y0 M’} —M'%, to A, and A
sends m’, (m', should be Y0 M’} — M’} if it
follows the protocol, or a V-AFE vector generated
based on its cheating strategy) to Sim.

* Sim computes sp’ = Decode-Max(m’| + m’5).

o If sp’ # sp, Sim sends abort.

Note that whenever Decode-MAX outputs an invalid bit
vector, we assume that Sim sends abort. When Sim wants to
send abort, it notifies A and the ideal functionality F, and
F forwards abort and outputs to all honest parties. When A
wants to abort, it sends abort to Sim, Sim forwards abort to
the ideal functionality F, and F forwards abort and outputs to
all honest parties. In the simulation, as long as each party re-
ceives one abort message, it terminates. Finally, for simplicity
whenever A and Sim exchange messages (e.g., V-AFE shares),
Sim asks A to send first.

Analyzing the views. When cheat is set to 3 or 4 in the
ideal world (ideal functionality), which corresponds to the
real world (Addax-V) protocol proceeds to the step of com-
puting the sale price, A learns the entire view in both worlds.
The view of A in the ideal world is: {>__, M’?, w, b, sp’,
M2 M’%[b’*}, .. .M’i,,[b’*], M’}, e ,M’,I,, C',....C",}. In
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the real world (Addax-V), A’s view includes: {} ", M?, w,
b*, sp, M2, M3[b*],.. . M2[b*), M],..., M}, C,...,C,}.

When cheat is set to 1, A’s view in ideal world only in-
cludes: {>°7_, M’?, b, M’{, .. ,M’,11, C'y,...,C",}. In the
real world, the corresponding view of A includes: {>_, M?,
b*,Mi,....M},Cy,...,C,}.

When cheat is set to 2, A’s view in ideal world
only includes: {30 M'7, w', b'*, M'{[b'"*],...M"2,[b'"),
M’%, o ,M’,ll, C'1,...,C",}. In the real world, the correspond-
ing view of A includes: {>"7_, M, w, b*, M3 [b*],... M2 [b*],
M, ... .M}, C,...,Cp}.

V-AFE shares are uniformly random elements in Z,, and
commitments to V-AFE vectors are hiding, thus they have the
same distribution. For w, b*, sp and w’, b’", sp’, their distribu-
tions are also identical. M,, and M’ are both generated by
encoding bid »* into V-AFE vectors, thus having the same
distribution. Y M;—M,, and Y ., M';—M’,, are both gen-
erated following the requirement that the highest bid among
all remaining bidders (excluding bidder w and bidder w') is sp,
thus having the same distribution. M’{[b"*], ..., M’ _[b""]
and M, [b*], ..., M,,_1[b*] are zeros. These say that in the sim-
ulation, bidder 1 to bidder w’ — 1 are not the winner, and in
the real world protocol, bidder 1 to bidder w — 1 are not the
winner. M’/ [b"*] and M,,[b*] are encodings of bit 1.

As aresult of the above exhaustive case analysis, both the
real world view and the ideal world view are identically dis-
tributed. Consequently, an adversary for Addax-V learns noth-
ing beyond what is revealed by the ideal functionality. O

Lemma 8. Addax’s protocol does not leak more information
to the adversary than the variant Addax-V.

Proof. The only difference between the variant and the orig-
inal protocol is that in the original protocol, the adversary
learns the entire view of {> | M?, w, M2, M}[b*],... M2 [b*],
Mi,....M}, Cy,...,C,}, while in Addax-V, it stops after
aborts in Step 2 or 3, and only learns a partial view.

In the original protocol, the malicious auctioneer always
learns the correct highest bid regardless of how it behaves, as
the honest auctioneer always sends the correct sum of AFE
shares. From Lemma 3, if an incorrect bidder is claimed as the
winner and the protocol does not abort after finding winner,
the incorrect winner w’ must be malicious. And in the original
protocol, the auctioneers would proceed to compute the sale
price with the incorrect winner w'. In this case, the AFE vector
of the malicious bidder, M’,,, is revealed to the auctioneers
and auditors.

In Step 4, when computing the sale price, the adversary
receives » ., M’ >_M"., from the honest party P,. Adversary
knows M'2, since it’s from a malicious bidder, and M :
is already learned in Step 2 to compute the highest bid. Thus,
in the original protocol, when the protocol proceeds to Step 4
with an incorrect winner w’, it can only learn the same amount
of information as what it learned in Step 2 (Lemma 4).
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Now we can conclude that the original protocol does not
leak more information about honest bidders’ bids compared to
the Addax-V variant, where verification is not deferred. [

C Safeguarding interactive Addax

In the non-interactive protocol, the underlying value of a bit
encoding is defined as the rightmost position among all the
non-zero values. For instance, both [1,1,1,0] and [1,0,1,0]
are the encodings of value 3. The above encoding neither
brings issues for privacy nor integrity, but under the interactive
variant, this encoding does not work. See an example below.

Suppose a malicious bidder submits an invalid AFE vector
which yields an invalid bit vector [1,1,0,1], and all other bid-
ders submit [1,0,0,0]. When finding the winner interactively,
two auctioneers will first check the first and the third positions.
Since the corresponding results are 1 and 0, the next position
to be checked should lie in between the first and the third en-
try, which, in this example, is the second position. As a result,
the highest bid found is 2, which means the bidder wins the
auction with bid 2.

Therefore, in the interactive variant, Addax checks whether
the AFE vectors of the winner and the bidder of the sale price
correspond to valid unary bit encodings. To this end, we add
the following two extra steps: (1) an asynchronous procedure
for finding sale price bidder (we need this to find whose bit
encoding to validate); and (2) proving that a bidder’s AFE
vector is valid without leaking its original AFE vector (we
need this to avoid leaking the third-highest bid). Note that in
the interactive variant of the first-price auction, we also need
to prove the winner’s AFE vector is valid while hiding its
original value so the second-highest bid is not leaked.

C.1 Asynchronous: find sale price bidder

The invalid encoding as above impacts the outcome of an
auction (if it is not aborted) if the malicious bidder is the
winner or the bidder of sale price ( if the malicious bidder is
neither of these, it has no effect). Therefore, Addax requires
validating the AFE vector of the sale price bidder. To this end,
Addax has to find its bidder id, though not the real identity. We
make the tradeoff of leaking such bidder id in order to keep
the completion of the auction within hundreds of milliseconds
with this extra asynchronous step.

Specifically, the auxiliary server and publisher first find
its bidder id by running Step 4 of Section 4.4 on all AFE
vectors except the winning one. This is done after the auction
is complete and off the latency-critical path (hence why we
say this is an asynchronous step). Verifiers can check, ex post
facto, whether the AFE encodings of the second-highest bidder
were valid or not. Similarly to Lemma 3, the bidder found in
this step is either the real bidder of the sale price or a malicious
bidder.



C.2 Checking the validity of a V-AFE vector

Insecure strawman. To check the validity of V-AFE vectors
we can let the vectors be revealed in the clear and check the
validity by ensuring they are in the right unary bit form, and
are consistent with the Pedersen commitments. However, if
we do this for the second-highest bidder’s V-AFE vector, this
would result in leaking the third-highest bid—substracting the
V-AFE vectors of the winner and sale price bidder from the
overall sum vector (M) reveals the sum of V-AFE vectors of
the remaining bidders, thus leaking their maximum bid. We
provide the following construction to check validity of the
V-AFE vector of the sale price bidder without leakage.

Secure check for AFE validity. In a nutshell, the idea is that
in Step 1 of the auction protocol (§ 4.4), bidders additionally
generate a V-AFE vector vr with a random mask r for their
original V-AFE vector v, such that we can still check the
validity of v by utilizing vr.

Specifically, the bidder first generates the random mask r,
which is a vector of £ random non-zero elements in Z, and vr
is the element-wise product between the two {r;-vy, ..., re-ve}.
Since r; - v; = 0 if and only if v; = 0 (for 1 < i < ¢), therefore,
as long as vr is decoded to be a valid bit vector, so is v.

When generating commitments for V-AFE vector v, a bid-
der also generates commitments to vr and a proof that the
underlying messages in the above two commitments indeed
differ by a multiplicative factor r. Concretely, the bidder uses a
Sigma protocol [ 78], which is type of very simple and efficient
zero-knowledge proof (with the Fiat-Shamir heuristic [53] it
is made into a non-interactive proof) to prove that, for each el-
ement cr; in the commitments of vr and ¢; in commitments of
v, there exists a non-zero r; which satisfies cr; = ¢;"". We give
details about the above zero-knowledge proof in Appendix C.4.
Appendix C.3 proves the binding and hiding properties of the
commitment to vr (which is slightly different than standard
Perdersen commitments).

During verification, the sale price bidder reveals only its
vr, and an auditors: (1) verify whether vr is consistent with
its commitment; (2) check that the decoded result of vr is a
valid AFE encoding; (3) verify the zero-knowledge proof with
respect to the commitments of v and vr.

A key optimization to this process is as follows. Observe
that in the interactive variant the two auctioneers only compute
the sum vector of partial entries (e.g., they may only use the
first 100 entries to compute based on the lower/upper bounds
derived). Thus, the sale price bidder need only hide its original
AFE vector for those entries (by using the above vr and zero-
knowledge proofs for those entries); the sale price bidder can
actually reveal its original AFE encoding for the other entries
without need for proofs. The result is that auditors need only
check the zero-knowledge proofs for the partial entries used
to compute the sale price.

Remark. First, the above approach only hides non-zero val-
ues in v, (i.e., it leaks whether a value in v is zero or not). This
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is because for entries with zero values in the V-AFE vector
of sale price bidder, those entries in the sum vector are also
zeros, as the sum vector computed in Step 5 (§4.4) decodes to
the bid of the sale price bidder. Thus, learning those entries
with zero values does not leak the bids of any other bidders.

Second, an adversary may use zeros in the random mask r
to flip non-zero values into zero, which might turn an invalid
AFE vector into a valid one. To check that a bidder did not use
zero as random mask, for each tuple vr; in vr, we check that
the second element of vr; is not zero.

C.3 Commitment to a V-AFE tuple with random mask

Given a V-AFE tuple v = (a, D), its tuple with a random mask
risvr = (r-a,r - b). The commitment is as follows. Let
G be a group of prime order p and let {g, 1} be two random
generators {g, h} of G. The commitment is g"“ - A",

The reason why the above is slightly different than standard
Pedersen commitments is that the randomness (the exponent
of h in Pedersen) is sampled uniformly at random and indepen-
dent of the exponent of g, whereas here there is a relationship
between the exponent of g (which is » - @) and the exponent of
h (which is r - b).

Lemma 9. Let ¢ = g™ - i"” be a commitment to vrr =
(r-a,r-b). Then c¢ perfectly hides vr, and computationally
binds vr if the discrete logarithm problem is hard in G.

Perfect hiding. The commitment perfectly hides both r and a.
Let x € Z, be an element such that g = * (this is well defined
since & is a generator and hence there exists an x such that
h* = g). Given r, a, b, for any a’ there exist ' and b’ such that
gt =g 'Y And ¥, b satisfy that ¥/ = Lrateb,
Thus, the commitment hides a. Using a similar proof, we can
show that the commitment also hides r.

Binding. We now prove that for a message m = r - a, the
commitment g - h"? binds m. Specifically, our goal is to show
that, if an adversary can find a different message m’ = v - a’
and some randomness b’ such that g"* - i'*? = g’/'“, '
then it can break discrete log for the instance (g, = g*). Note
here we only assume m’ # m, and it does not mean r’ # r or
a #a.

Suppose the adversary finds such 7/, d’, b’ as above, which
impliesr-a+r-b-x=7r"-a’ +r'-b'-x where h = g* for some
x@e,r-a—r-a =("-b'—r-b)-x).Ifr-b' =r-b, then the
above equation means r-a = r’ -a’, which contradicts with our
assumption that m’ # m. If ¥ - b’ # r - b, then the adversary
can compute x = (' -b' —r-b) " (r-a—r-a’), which means
now the adversary solves discrete log for instance (g,h = g*).

C.4 Zero-knowledge proof of commitment relation

The prover, which is the bidder in our case, wants to prove that
the there exists a secret element r € Z, such that commitments
cr and c satisfy cr = ¢’. Figure 8 gives the pseudocode for how
the prover generates the non-interactive proof 7. The prover
first samples a random element 7’ from Z,, and computes u =



Prover(c,r,cr = ¢") Verifier(c,cr = ¢, m = (u,v,2))

&z, v = H(c,cr,u)

u ¢ EEuer
v < H(c,cr,u)
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output 7 = (u,v,7)

FIGURE 8—Non-interactive zero-knowledge proof of knowledge of
secret r using the Fiat-Shamir Heuristic. H is a random oracle and its
range is Z, (heuristically instantiated with a secure hash function).

¢ . The prover then computes H(c, cr, u) as the challenge v.
H is modeled as a random oracle but heuristically instantiated
with a collision-resistant hash function. Finally, the prover
computes z = r' + v - r. The prover sends ™ = (u, v, z) to the
verifier, and the verifier checks 7 as described in Figure 8.

C.5 Proofs of lemmas 5 and 6

Below we prove the Lemmas for the interactive variant of Ad-
dax which leverages the safeguards described in this section.

Proof of Lemma 5. The non-interactive protocol and interac-
tive variant differ in the following two places: (1) in interactive
variant, computing MAX only uses partial entries; (2) in inter-
active variant, Addax checks validity of winner and sale price
bidder’s AFE vectors with additional verification materials
(Appendix C.2).

For (1), in the non-interactive protocol, adversary learns the
entire sum vector M, while in the interactive variant, it only
learns r - [£'/"] entries of M (§6.1). It therefore leaks no more
information about bids than the non-interactive protocol.

For (2), in the interactive protocol, the winner w reveals its
full AFE vector, and the sale price bidder needs to provide
materials as in Appendix C.2. In the non-interactive protocol,
w’s full AFE vector can already be inferred from Step 3 (which
computes M) and Step 5 (which computes M — M,,), so this
leaks no additional information. And additional materials pro-
vided in the interactive variant leak no more information of
bids than the sale price as detailed in Appendix C.2.

Proof of Lemma 6. Integrity is ensured in the non-interactive
protocol as per Theorem 1. The only difference in the interac-
tive variant is that if either the winner or the sale price bidder
submits an invalid AFE vector, it can lead to the k-ary search
in the interactive protocol to converge to an incorrect value.
As we discuss in Appendix C, Addax adds checks to ensure
that the AFE vectors of the winner and sale price bidder are
both correct, and hence the k-ary search converges to the same
value as in the non-interactive protocol.

D Subsets of faulty parties

An auction may be aborted during the online phase, or deferred
verification may fail due to a lack of enough materials on
the public log (e.g., commitments, sum shares), or due to
inconsistent materials such as the bidder sending invalid shares

21

to auctioneers, or an auctioneer claiming it received one value
when a bidder submitted another. Figure 9 gives pseudocode
for how Addax narrows down the parties at fault. Below is a
text explanation for the pseudocode.

Auction aborts. An auction may abort for two reasons: (1)
Decode-MAX outputs an invalid bit vector; or (2) the chosen
winner or sale price bidder claims that their bids do not equal
the found highest bid or sale price. For case (1), if verifica-
tion on the decoded sum vectors passes, then it implies that
some bidders provided invalid AFE vectors. Addax assigns
blame to all participating bidders as potentially malicious. If
verification of the sum vectors fails, Addax assigns blame to
all bidders, the publisher, and the auxiliary server. For case
(2), auditors check the shares revealed by the publisher and
auxiliary server, and check whether they are consistent with
the corresponding commitments. If they are not consistent,
Addax assigns blame to the specific bidder (winner or second
highest bidder), publisher, and auxiliary server. If it is consis-
tent, and that entry decoded to 0, Addax assigns blame to the
auxiliary server and the publisher; if the entry decoded to 1,
Addax assigns blame only to the corresponding bidder.

Lack of materials. Participants may not upload all required
materials to the public log, which prevents auditors from veri-
fying the auction. Bidders are bound to their bidder ids which
should be uploaded by the publisher and auxiliary server. An
auditor can easily tell who did not upload the required materi-
als and assign blame to that set of participants.

Inconsistent views between publisher and auxiliary server.
The publisher and auxiliary server may provide an inconsistent
view for messages they send and receive. For example, the
publisher may claim that it receives sum vector M from the
auxiliary server, while the auxiliary server claims that it sends
M’ to the publisher. In this case, Addax assigns blame to
both publisher and auxiliary server. If publisher and auxiliary
server upload different views of hash values of certain bidder,
Addax assigns blame to the publisher, auxiliary server, and
the specific bidder, as the bidder may send inconsistent hash
values on purpose.

Inconsistency between hash values and commitments. Au-
ditors may find that hash values of commitments uploaded
by publisher and auxiliary server are inconsistent with that
uploaded by the bidder. Addax assigns the blame to that partic-
ular bidder (since publisher and auxiliary server are assumed
to not collude).

Inconsistent AFE sum vectors or bit encodings. Verifica-
tion on sum vectors or revealed bit encodings to find the win-
ner may fail. If verification on sum vectors fails, Addax assigns
blame to publisher, auxiliary server and all bidders. If verifi-
cation on specific bidder’s bit encoding fails, Addax assigns
blame to publisher, auxiliary server and the specific bidder.

Invalid AFE vector. The winner needs to upload its full AFE
vector and the bidder of sale price needs to upload its full AFE



1: function ASSIGNBLAME(materials, abort, auctioneers, bidders)
2:  # Check if abort happens

3:  if abort # null then

4: if abort.decodeMax == true then

5: if verifySumvec(materials) == true then

6: blame(bidders)

7: else

8: blame(auctioneers, bidders)

9: else if abort.findBidder == true then
10: if verifyBit(materials.bidders|abortld]) == false then
11: blame(auctioneers, bidders|abortld))
12: else
13: if decode(materials.bidders|abortld).bitEncoding) == 0 then
14: blame(auctioneers)
15: else
16: blame(bidders[abortld])

17:  # Check all materials are not missing
18:  for auc in auctioneers do

19: if materials.auc == null then
20: blame(auc)

21:  for b in bidders do

22: if materials.b == null then
23: blame(b)

24:  # Check inconsistency between auctioneers

25:  if inconsistent(materials.auctioneers.sumvec) then
26: blame(auctioneers)

27:  for b in bidders do

28: if inconsistent(materials.auctioneers.hash[b]) then
29: blame(auctioneers, b)

30:  # Check inconsistency between hash and commitments
31:  for b in bidders do

32: if inconsistent(materials.b.hash, materials.b.commitment) then
33: blame(b)

34:  # Verify sum vectors and bit encodings

35:  if verifySumvec(materials) == false then

36: blame(auctioneers, bidders)

37:  for b in bidders do

38: if verifyBitEncoding(b.materials) == false then

39: blame(auctioneers, b)

40:  # Validate AFE vector of winner and sale price bidder
41:  if validate(materials.bidder AFE) == false then
42: blame(bidder)

FIGURE 9—Pseudocode of how to assign blames in Addax, see texts
for more details.

vector with random mask (§C.2), the commitments and non-
interactive zero-knowledge proofs. An auditor needs to check
the winner’s AFE vector decodes to be a valid bit vector. Also,
an auditor must check whether the AFE vector with random
mask is consistent with the supplied commitments, whether
it decodes to be a valid bit vector, and verify the proofs. If
the check fails, Addax assigns blame to the specific bidder. If
the check passes, even if verification on the sum vectors fails,
Addax explicitly knows that these two bidders are honest, and
can avoid assigning blame to them. Addax will then protect
their identities.

D.1 Narrow down faulty bidders when both auctioneers
are honest

There are some cases (e.g., line 8 in Figure 9) where Addax
can only assign blame to all of the bidders due to the fact that

a malicious auctioneer could collude with bidders. However,
if both auctioneers were honest (how one would establish
this is orthogonal, though likely hard), Addax can identify
the specific bidders who provided inconsistent AFE vectors
and commitments. To detect such faulty bidders, each of the
two auctioneers computes the commitment over its local V-
AFE vector share of a bidder and reveals the commitment.
They then verify whether multiplying these two commitments
from both auctioneers yields the commitment submitted by
the bidder. If not, then Addax can blame the bidder.

E Interacting with the public log
E.1 A brief primer on Algorand

Accounts and Transactions. An account in Algorand con-
sists of a key pair. Transactions include payment, key registra-
tion, and asset transferring. Each transaction is created by one
account and must be signed with its corresponding secret key.

Smart contracts and application calls. Smart contracts are
programs that run on the blockchain with user-defined func-
tionality. Each smart contract is specified with a unique ID.
Application calls are transactions used to invoke functions
in smart contracts like RPC calls. To interact with a smart
contract, an account needs to join the smart contract first. The
opt-in call allows one account to join one smart contract
instance while a close-out call allows one account to leave.
Addax maintains one smart contract per ad category which in-
cludes all advertisers’ information in that category. When one
advertiser belongs to multiple categories, it joins all related
smart contracts. There is no upper bound on the number of
accounts that can join one smart contract in Algorand. Bidders
invoke application calls defined in the running smart contract
to insert, update, or delete their own information.

Indexer. Indexers are special nodes which provide RESTful
interfaces to search for transactions or states of certain apps
by answering SQL-like queries. For example, it can answer
queries to search for all transactions that happened during
a certain period in one smart contract instance with a query
like: SELECT # from transactions WHERE appID = {ID of App}
AND after-time = {start} AND before-time = {end};

E.2 Workflow of a deployed smart contract

There are two kinds of smart contracts in Algorand, stateful
ones which have their own storage and stateless ones which
do not. Storage in smart contracts consists of several key-
value pairs which can be read and written. There is global
storage which maintains the state of the smart contract instance
and local storage. All opted-in accounts have their own local
storage. All storage can be read by anyone and updated via
application calls. Application calls for writing local storage
can only be invoked by its owner account.

Addax maintains one stateful smart contract per ad category
which includes all advertisers in that category. When one
advertiser belongs to multiple categories, it joins all related



: function INIT(N)

gs.counter < 0

: function CREATE(info)

Is.id < gs.counter
gs.counter <— gs.counter + 1
Is.info < info

: function UPDATE(newInfo)
Is.info < newlnfo

: function DELETE

0:  delete(ls.info, Is.id)

1
2
3
4
S:
6
7
8
9

—

FIGURE 10—Pseudocode of smart contract, gs is global state, Is is
local storage of each advertiser. Init function is called when smart
contract is initialized. Create, Update, Delete functions are called by
advertisers.

smart contracts. Figure 10 shows the functionalities provided
by the deployed smart contracts in Addax. Each smart contract
is created by an INIT function to initialize an incremental
counter starting from zero in global storage. Advertisers can
invoke CREATE, UPDATE and DELETE functions. CREATE is the
opt-in application call in Addax that opts an advertiser into
the smart contract of its category and write information into
the invoker’s local storage. Local information of advertisers
can include brand name, all categories the advertiser belongs
to, domain and port of ad server, protocols and serialization
formats supported, etc. The UPDATE call is invoked by opted-
in advertisers to update their local information. Advertiser
invokes DELETE to clear all information stored in local storage
and leave this smart contract instance.

E.3 Costs of interacting with public log

In this section, we answer the question of costs for interact-
ing with the public log and for querying the indexer. We use
the PureStake indexer which provides a REST API that one
can use to upload and retrieve information from the Algo-
rand blockchain. PureStake has servers all over the world as
they contract with Cloudfront. In our experiments, requests to
PureStake that originate from AWS US East (Ohio) contact
servers in Ontario. Requests that originate from the AWS US
West (California) contact servers in California. Requests that
originate from AWS US West (Oregon) contact servers in Ore-
gon. PureStake then takes care of broadcasting the transaction
to the Algorand peer-to-peer network.

The size of advertisers’ information (§E.1) uploaded to
Algorand to participate in Addax is 960 bytes. We experiment
with a modest number of advertisers. The reason that we do
not have tens of thousands of advertisers is that creating a new
advertiser requires creating an Algorand account (new email
address, password, account verification, etc.) which is time-
consuming. Nevertheless, we semi-automate this painstaking
process and generate 1,000 accounts.

Time for advertisers’ operations. In Figure 11, we evalu-
ate the time of advertisers’ operations (invoking CREATE,
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UPDATE or DELETE application call) on the Algorand
blockchain. We vary whether advertisers belong to one or mul-
tiple categories, and also vary the distribution of the number
of opted-in advertisers for a given category. Figure 11a shows
the results of an advertiser interacting with Algorand where
the advertiser belongs to a single category while varying the
number of advertisers registered for that category. Figure 11b
shows the results when the advertiser belongs to multiple cat-
egories, all of which have 500 advertisers registered. Finally,
Figure 11c shows the results when the advertiser belongs to six
different categories, while each category contains a different
number of advertisers. In Scenario 1, each category contains
100 advertisers. In Scenario 2—4, the numbers of advertisers in
each category are [50, 100, 100, 100, 100, 150], [50, 50, 50,
100, 150, 200], and [50, 50, 50, 100, 100, 250].

As can be seen, the time for these three operations remains
nearly constant when the number of opted-in advertisers in
one category grows. It takes about 8—8.5 seconds for invoking
one application call to one category (i.e., one smart contract
instance). Most of the overhead (about 7 seconds) comes from
advertisers waiting for confirmation from the blockchain that
this operation has finished successfully. Advertisers can di-
rectly invoke application calls and leave without having to
wait for confirmation. Indeed, this is what the browser does
when uploading its audit materials as described in the Leaving
an audit trail paragraph of Section 9.4.

The costs of these operations grow linearly with the number
of categories to which an advertiser belongs, regardless of the
number of opted-in advertisers in each category.

Time for querying the indexer. We also evaluate the costs
for querying the indexer for updates during certain period of
time under different scenarios. The time for querying the in-
dexer is also the time to verify the query results from cache
servers. Figure 12a shows the time to query indexer for updates
of multiple categories. Each category contains 500 advertisers.
We simulate 20% updates in each category, namely 100 trans-
actions happened during the period we search for. Figure 12b
shows the time to query the indexer for updates of one cate-
gory with 1,000 advertisers but with different percentages of
updates during the period of search.

We find that querying one category generally takes about 0.8
seconds, and this number would grow slightly if the number
of total updates (i.e., transactions) grows. This is due to the
fact that as the total number of updates grows, the data fetched
from the indexer grows as well. Also, the time to query the
indexer for updates of multiple categories grows linearly with
the number of categories queried. This is because to query N
categories, the querier needs to send N requests to the indexer.

F What about TEE-based solutions

In principle, one might be able to design a solution that lever-
ages TEE:s to provide privacy and public verifiability for online
ad auctions. However, this is not a trivial task, since TEEs:
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FIGURE 12—Time to query indexer for updates in certain period
under different scenarios.

Require the release of code that runs inside the enclave.
This includes the auction protocol, the encryption/decryp-
tion code to recover plaintext bids, and signing code for
creating a proof that can be publicly audited.

Require careful auditing or formal verification of all the
code running inside the enclave to ensure the exchange
operator (who is running the TEE) did not inject backdoors
or other vulnerabilities that can obviate the TEE.

Intel SGX in particular requires trusting an Intel cloud
server during remote attestation (cloud services like Azure’s
Attestation Service [29] can also be used). In either case,
trusting such servers might not be that different of an as-
sumption than the anytrust model in Addax.

Require additional mechanisms to prevent replay attacks.
For example, suppose an operator runs an auction, invites
10 bidders, and passes as input their 10 encrypted bids to
TEE (TEE internally has a key to decrypt bids). The TEE
then outputs the winner and sale price in the clear. The
operator could then run the same auction again but passing
only a subset of the bids (these are all valid encrypted bids
under a key known to the TEE). The TEE then outputs a
winner and sale price in the clear, so the attacker could
quickly discover all bids. In contrast, replay is not possible
in Addax since the auction is either completed so both
auctioneers forward the result to the publisher, or aborted
so at least one honest auctioneer forwards an abort result to
the publisher (and the publisher displays a generic ad).

G Compatible user privacy features

One of Addax’s goals is to have a flexibile enough design
to be compatible with various efforts that aim to improve
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In particular, Topics enhances the browser to keep track of
the user’s interest and assigns to the user a Topic identifier.
Once this identifier exist, Addax can send this identifier to the
selected bidders instead of sending them more demographic
information (§7). An advertiser would then decide how to bid
for each group of users without learning information about
the individual user for which it is bidding. The obvious caveat
here is that the current Topics proposal is not perfect and there
have been various privacy concerns voiced [5, 6, 17].

Measuring conversions without learning individual’s data.
Measuring the effectiveness of an ad after the auction is es-
sential for advertisers. However, the current way of measuring
conversions leaks users’ sensitive information about which
websites are visited. There is a recent effort [34] that provides
a mechanism to measure the return on investment (ROI) and
conversions without requiring the advertiser to learn infor-
mation about a specific user. At the end of the measurement,
advertisers see a differentially private histogram of all users’
conversions, which is sufficient for them to determine the ef-
fectiveness of their campaigns. In Addax, after the auction
finishes, advertisers could apply this approach to privately
gather data about conversions for analysis while being more
sensible to users’ privacy concerns. This mechanism is com-
patible with Addax as it occurs affer the auction completes.
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