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Abstract. Magnetic Resonance Imaging (MRI) acceleration techniques
using k-space sub-sampling (KS) can greatly improve the efficiency of
MRI-based stroke diagnosis. Although Deep Neural Networks (DNN)
have shown great potential on stroke lesion recognition tasks when the
MR images are reconstructed from the full k-space, they are vulnera-
ble to the lower quality MR images generated by KS. In this paper, we
propose a Distributionally Robust Learning (DRL) approach to improve
the performance of stroke recognition DNN models when the MR images
are reconstructed from the sub-sampled k-space. For Convolutional Neu-
ral Network (CNN) and Vision Transformer (ViT)-based models, our
methods improve the stroke classification AUROC and AUPRC by up
to 11.91% and 9.32% on the KS-perturbed brain MR images, respec-
tively, compared against Empirical Risk Minimization (ERM) and other
baseline defensive methods. We further show that DRL models can suc-
cessfully recognize the stroke cases from highly perturbed MR images
where clinicians may fail, which provides a solution for improved diag-
nosis in an accelerated MRI setting.

Keywords: Stroke diagnosis - MRI acceleration - Distributionally ro-
bust optimization - Deep learning.

1 Introduction

Magnetic Resonance Imaging (MRI) has been extensively applied to clinical di-
agnosis [16]. Compared with Computed Tomography (CT), a brain MRI is more
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sensitive for multiple stroke types [3], therefore considered as the gold standard
for stroke diagnosis. Nevertheless, the long acquisition time for a brain MRI (20
to 30 minutes) imposes challenges, especially in cases of acute stroke where rapid
diagnosis is essential and patient movement during this distressing period of time
commonly limits evaluation. As a result, MRI acceleration techniques have been
developed to achieve more rapid diagnosis, increasing resource availability while
reducing costs [14, 18]. A k-space sub-sampling (KS) approach serves as a simple
MRI acceleration solution [20], compared with other hardware-based accelera-
tion methods. However, the signal loss by KS leads to blurry reconstructed MR
images that are less than ideal for a reliable clinical diagnosis.

Artificial Intelligence (AI) plays an increasingly important role in MRI-based
diagnosis, for both MR image reconstruction and clinical decision making. Deep
Neural Networks (DNN) were trained to reconstruct the MR images from the
sub-sampled k-space [10, 13], which provides a better reconstruction than the In-
verse Fast Fourier Transform (IFFT). Nevertheless, detailed information in the
brain may still be lost in the reconstructed MR images due to the signal sparsity
in the k-space. On the other hand, traditional Convolutional Neural Network
(CNN) [15] and the latest Vision Transformer (ViT)-based [6] predictive mod-
els have shown impressive prediction accuracy on stroke diagnosis tasks, such as
slice classification and lesion segmentation [11,7]. However, these DNNs trained
on clean images through Empirical Risk Minimization (ERM) are vulnerable to
perturbations in the input images [2]. Whatever the reconstruction method used,
even the slightest perturbation in accelerated MR images can lead to a wrong
stroke prediction from the AI models. Therefore, building robust DNN models
to handle the perturbed MR image input is important for MRI acceleration.

In this paper, we introduce a Distributionally Robust Learning (DRL )-based
approach [4] into the deep MR image classifier training, in order to improve the
model robustness to the image perturbation resulting from the signal sparsity in
accelerated MRI. Compared with ERM, DRL is an optimization method mini-
mizing the worst-case loss over an ambiguity set, therefore, can tolerate outliers
in the data [5]. We implemented DRL to different linear layers in deep CNN/ViT
classifiers, and applied a randomized training approach to improve the training
efficiency. Our results show that on a real-world dataset, DRL can significantly
improve the stroke classification performance of ERM and other baseline defen-
sive training methods, when the signal sparsity and noise in accelerated MRI are
generated by the Cartesian Undersampling (CU) method [20] and White Gaus-
sian Noise (WGN). We further show that in highly perturbed MR images where
the ERM model and even clinicians cannot give a reliable diagnosis, our DRL
model can still correctly recognize stroke, which establishes that our method can
assist accelerated MRI diagnosis.
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2 Methodology

2.1 Distributionally robust learning

We will use the DRL framework under a multi-class classification setting de-
veloped by [4] in a DNN-based stroke diagnosis application. We provide a brief
overview of the DRL model. Assume that there are K classes, and our goal is
to classify an example with an input feature x € R? to one of the K classes
with a one-hot class label y € {0,1}¥. Logistic regression solves this problem
by minimizing the following expected true risk

infg E¥” [hB (x,¥)], (1)

where B £ [wy - - - Wg] is the coefficient matrix, P* is the true distribution of the
data (x,y), ha(x,y) 2 log 17eB> — y'B’x is the loss function to be minimized,
and EF” denotes the expectation under the distribution P*. Since P* is usually
unknown, Problem (1) cannot be solved directly. The ERM approach tackles
this by replacing the expected true risk by a sample averaged risk. Given N
realizations of (x,y), ERM minimizes the following empirical risk

infg & SN he(xi, yi). (2)

ERM can produce unreliable solutions when the samples are contaminated by
noise or drawn from an outlying distribution. To obtain robust estimators that
can hedge against noise in the training data and generalize well out-of-sample,
[4] proposed the DRL framework under the Wasserstein metric. Specifically, it
minimizes the worst-case expected loss over a set of probability distributions

infg supge o, E@[hB (%, )], (3)

where {2 contains a set of probability distributions that are close to the empir-
ical distribution Py measured by the Wasserstein metric, 2 2 {Q € P(2) :
W1(Q, Py) < €}, where Z is the set of possible values for (x,y), P(Z) is the
space of all probability distributions supported on Z, € is a pre-specified radius
of the ambiguity set (2, Py is the empirical distribution that assigns an equal
probability 1/N to each observed sample (x;,y;), and W1(Q, ]fDN) is the order-1
Wasserstein distance between Q and Py defined as

Wi (Q, Py) 2 minHeP(ZxZ){ngZ l(z1,22) H(dzl7d22)}7

where IT is the joint distribution of z; £ (x1,y1) and zo = (X2,y2) with
marginals Q and Py, respectively, and [ is a distance metric on the data space.
An equivalent reformulation (4) of (3) was developed by [4] when I(z;,25) =
[W1/2(x; — x3)||2 + M|ly1 — y2l|2, where W is a positive semidefinite weight
matrix to account for any transformation on the input feature x and can be
estimated from data using metric learning (see Sec. 2.2) and with M — oo:

infe Y00, e (xi,yi) + 2!/2[W1/2B] o, (4)
where ||[W~1/2B||5 is the induced fo-norm of W~1/2B.
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2.2 DRL for deep stroke diagnosis networks

We apply DRL to ViT and CNN-based MR image stroke classification models,
in order to enhance their robustness against image perturbations in accelerated
MRI. We apply the DRL reformulation (4) to the last layer B, and certain inter-
mediate linear layers in a deep MR image classifier. For a ViT model (cf. Fig. 1),
we apply DRL to the patch projection layer P and the final linear classification
layer B, in order to predict if an MR image slice is normal (label 0) or depicts
a stroke lesion (label 1). To speed up the training process, during each epoch,
we randomly pick one layer L to train while keeping all other layers frozen. A
validation set V is used to tune the hyperparameters (e.g., regularization coeffi-
cients). To account for the non-linear transformation of the raw image resulted
from all layers before L, we solve the following Linear Matriz Inequality (LMI)
problem [4] to estimate a weight matrix W:

min 3 2||w1/2<¢<”< )= oV (x)3

Wi=0 x, €D t=

T
sty 2 8 IW2(5) (%:) — & (%))II3 > e, (5)
T

»y W26 (x;) — o1 (3)) 13 > <,

E\H
vM

where X; is the perturbed version of an MR image slice x;, D the training set,
S 2 {(i,5)|xi,xj € D,y; # y;j}, |S| denotes the cardinality of the set S, ¢ is

the input to L and qs‘;) is the t-th hidden state (i.e., the vector representation
for each instance in the sequence, output by and fed into different layers in ViT)
in the sequence ¢; of length T', and c is a fixed parameter. " = 1 if L refers
to the B layer. The intuition of (5) is that in the transformed feature space,
distance between the clean and perturbed version of a slice will be minimized,
while slices from different classes (normal and stroke) are sufficiently far away.
For a CNN model, we only applied DRL to the final linear layer B.

We chose two approaches to generate the perturbation in accelerated MRI.
Cartesian Undersampling (CU) perturbation [20] keeps only the central and
a few randomly-sampled parts of the k-space; the corresponding reconstructed
MR image only keeps the main structural information in the brain and intro-
duces misalignments. A smaller central fraction f used in k-space indicates a
larger perturbation. Noise might be introduced during the signal transmission,
so we add White Gaussian Noise (WGN) as another type of perturbation, where
the standard deviation ¢ is regarded as the perturbation intensity. To show
the strength of DRL, in addition to ERM, we also apply Brute-force Adversar-
ial Training (BAT) 2] and Projected Gradient Descent (PGD) [12] as baseline
methods. Among all of the current defensive training methods which improve
the model robustness against perturbations, BAT and PGD are representative.
BAT adds noisy samples into the training set, therefore is simple and widely
used. PGD is known to be robust to a wide range of image perturbations, and
is considered a state-of-the-art method.
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Fig.1: Adding DRL into different layers in ViT.

3 Experiments

3.1 Experimental materials and settings

Our dataset included MRI brain scans from 226 patients performed at an urban
tertiary referral academic medical center that is a comprehensive stroke center.
Clinical scans of adult patients aged 18-89 years with recent (acute or subacute)
strokes were identified between 1/1/2013 and 1/1/2021 for inclusion in this study
via a search of the Philips Performance Bridge. Scans meeting this criteria were
downloaded and simultaneously anonymized to preserve patient anonymity and
prevent disclosure of protected health information as part of this IRB exempt
study. No patient demographic information was retained for the scans, as it was
considered to represent an unnecessary risk for accidental release of protected
health information. The diffusion weighted images with a gradient of B=1000
were utilized for the analysis (see the Supplement? for information about the
MRI scanner and parameter settings). Each MR image contains multiple slices,
and every slice was annotated as normal or stroke by a board-certified neuro-
radiologist with a subspecialty certification. Annotation of the strokes was per-
formed on the diffusion weighted images using ITK-SNAP (ver. 3.80) [19], and
all included MRI examinations were reviewed by the neuroradiologist during the
annotation process to ensure that the images were of diagnostic quality with-
out significant motion degradation or other artifacts. To avoid the dependency
among the slices from the same subject, we applied a 2-d acquisition during
the MR imaging, and implemented a slice-level MR image preprocessing. While
the whole dataset includes 4,883 (74.7%) normal slices and 1,650 (25.3%) stroke
slices, we further randomly split them into training/validation/test sets using the
ratio 80%/10%/10%. For the training set, we implemented data augmentation
strategies by rotating or flipping each slice. Finally, the training/validation/test
set contains 31,356/653/654 slices, correspondingly.

4 Supplement and source code are available at https://github.com/noc-lab/drl_
mri.
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Original Reconstruction

We implemented DRL to
both CNN and ViT mod-
els. For the CNN model, we
used a ResNet-18 [9] architec-
ture, while for the ViT model,
we first pre-trained a 4-layer
ViT using a self-supervised
pre-training method called Fig 2: MAE pre-trained models reconstruct the
Masked Autoencoder (MAE) masked MR images. This example uses a T2-
[8], using the T1/T2-weighted eighted image.
brain MR images in the IXI
dataset [1]. MAE pre-training first randomly masks 75% of the image patches
in an MRI slice input, and then uses a ViT encoder-decoder architecture to
reconstruct the masked MRI patches, in order to learn the dependency among
different locations in the brain. After 400 pre-training epochs, an overall satis-
fying reconstruction result can be observed in Fig. 2.

To evaluate the binary classification performance of different models, we use
the Area Under the Receiver Operating Characteristic (AUROC) curve as our
main metric. As our dataset is unbalanced, we also considered the Area Under
Precision-Recall Curve (AUPRC). We ran the experiments 3 times using different
random seeds. The training of our DNNs were implemented on 3 NVIDIA RTX
A6000 (48GB VRAM) GPUs, and each DRL training epoch can be completed
within 0.03 GPU hours. We used a learning rate of 1 x 10~° and batchsize of 128
for DRL training, while no weight decay was applied. To solve the LMI problem
in (5), we used SDPT3 v4.0 [17] as the solver. We set the CU perturbation with
the acceleration factor of 4, 6, 8, 12 with the central fraction of 8%, 6%, 4% and
2% in k-space respectively, and the remaining parts were chosen randomly in
the peripheral region accordingly.

3.2 Results

We show the stroke classification AUROC in Fig. 3. When the k-space sub-
sampling fraction decreased and the signal became sparser, the performance
of both ViT and CNN models trained under ERM dropped significantly, from
around 95% to below 80%. DRL significantly improved the AUROC of the ERM-
based ViT model from 74.5% to 83.1% when the MR images were under ex-
treme CU perturbation, while only slightly influenced model performance on the
clean test set. For WGN, the largest improvement brought to ERM-based ViT
model was 16.9%. Although we only applied DRL to the last layer of the CNN
model, the improvement against ERM was still remarkable, up to 11.9%/4.9%
for CU/WGN. With BAT and PGD adversarial training, the corresponding ViT
or CNN models were also improved, though when DRL was combined with BAT
and PGD, the model robustness can be further enhanced. Table 1 shows the
maximum AUROC and AUPRC improvement that DRL can bring to different
baseline methods. For ViT and CNN models, the AUROC improvement w.r.t
BAT/PGD defensive methods is up to 23.9%/12.2%, respectively. Note that the
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perturbed MRI samples used to implement BAT were the same as those used
by DRL, which shows that DRL is a more effective way to exploit the infor-
mation in adversarial samples, compared to simply adding the blurry images
into the training set. For CU perturbation, our best combined model using DRL
improved the AUROC/AUPRC of the ERM model by up to 15%/12.5%, while
this improvement under WGN perturbation was up to 18.8%/36.2%.
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Fig. 3: AUROC of different methods using ViT and CNN models.

Under CU perturbation, we further show that our DRL model can recognize
stroke while clinicians may fail to. In Fig. 4, the stroke MRI slices from the test
sets are under different levels of CU perturbations. For both ERM- and DRL-
based ViT models, we maximized the F1 score of the stroke class on the training
set to calculate the optimal decision threshold for stroke prediction, in order to
balance the precision and recall. When the k-space signal becomes more sparse,
the reconstructed MRI slices get more blurry and the lesion areas become less
recognizable, even for human eyes. As a result, the ERM model fails to detect
stroke under high perturbation levels. Nevertheless, the DRL model can toler-
ate more intense CU perturbation and recognize stroke slices that may even be
misclassified by clinicians, which reveals its value in improving the diagnosis in
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Table 1: AUROC and AUPRC improvement of DRL over three baseline methods
using ViT/CNN models under CU and WGN perturbations on the test set.

ViT CNN
CU WGN CuU WGN
Mean Std. Mean Std. Mean Std. Mean Std.
AUROC 8.65% 0.00% 16.87% 0.04% 11.91% 0.18% 4.92% 0.24%
AUPRC 8.31% 0.02% 29.77% 0.10% 8.65% 0.15% 6.81% 0.79%
AUROC 4.29% 0.00% 23.90% 0.05% 11.26% 0.07% 1.42% 0.04%
AUPRC 4.37% 0.01% 39.75% 0.12% 9.32% 0.11% 3.59% 0.22%
AUROC 3.83% 0.01% 12.19% 0.05% 6.00% 0.14% 3.45% 0.28%
AUPRC 2.88% 0.02% 18.68% 0.06% 3.85% 0.21% 4.13% 0.77%

ERM-+DRL

BAT-+DRL

PGD+DRL

f=1 (original) f=0.08 f=0.06 f=0.04 f=0.02

ERM decision stroke stroke normal normal normal
DRL decision stroke stroke stroke stroke stroke

ERM decision stroke stroke normal normal normal
DRL decision stroke stroke stroke stroke stroke

ERM decision stroke stroke stroke normal normal
DRL decision stroke stroke stroke stroke normal

Fig. 4: Stroke slices where the ERM model and clinicians may fail when the CU
perturbation is large, while the DRL model succeeds. The red boxes indicate the
stroke lesion areas in the clean images.

an accelerated MRI mode. We verified the effectiveness of our approach on the
actual clinical scans acquired for clinical care and not just for research purposes,
suggesting that the methods and findings in the current study should be gen-
eralizable to routine clinical practice conditions and potentially other types of
clinical image-based diagnosis (e.g., brain tumor) as well. In addition, our DRL
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framework does not necessarily need to be used in isolation, rather it can also
be combined with other performance boosting methods in accelerated MRI to
further improve them, just like for BAT and PGD.

4 Conclusions

In this study, we implemented a DRL-based robust learning approach to im-
prove the robustness of deep image classifiers, in order to achieve more accurate
stroke classification from brain MR images reconstructed from a sub-sampled
k-space. Our work can potentially be applied to accelerate and improve time-
critical stroke diagnosis. Future work can apply DRL to more MRI diagnosis
tasks (e.g., lesion area segmentation), justifying its effectiveness on more types
of sub-sampling methods in MRI acceleration.
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