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Abstract. Address dynamics are changes in IP address occupation as
users come and go, ISPs renumber them for privacy or for routing main-
tenance. Address dynamics affect address reputation services, IP geolo-
cation, network measurement, and outage detection, with implications of
Internet governance, e-commerce, and science. While prior work has iden-
tified diurnal trends in address use, we show the effectiveness of Multi-
Seasonal-Trend using Loess (MSTL) decomposition to identify both daily
and weekly trends. We use ISP-wide dynamics to develop IAS, a new al-
gorithm that is the first to automatically detect ISP maintenance events
that move users in the address space. We show that 20% of such events
result in /24 IPv4 address blocks that become unused for days or more,
and correcting nearly 41k false outages per quarter. Our analysis pro-
vides a new understanding about ISP address use: while only about 2.8%
of ASes (1,730) are diurnal, some diurnal ASes show more than 20%
changes each day. It also shows greater fragmentation in IPv4 address
use compared to IPv6.

1 Introduction

Millions of devices connect to the Internet everyday, but some come and go. Many
ISPs dynamically assign devices to public IP addresses. While some users have IP
addresses that are stable for weeks, ISPs often reassign users for many reasons:
to promote privacy, to prevent servers on “home” networks, and to shift users
away from routers scheduled for maintenance. IP policies vary: some renumber
users every day [33, 17, 23, 20, 28], some show large diurnal changes [26].

Understanding ISP address dynamics is important in Internet policy, net-
work measurement, and security. In Internet policy, ISPs need to make business-
critical decisions that include purchasing carrier-grade NAT equipment versus
acquiring more address space, or evaluating the costs of carefully reusing limited
IPv4 space versus transitioning to IPv6. Regulators like national or Regional In-
ternet Registries (RIRs) must consider address dynamics when crafting policies
about transferring limited IPv4 address space and tracking IPv4 and IPv6 rout-
ing table sizes. For network measurement and security, dynamics affect services
like IP address reputation [24, 7], IP geolocation [15], and generating IPv4 [8] and



IPv6 hitlists [9, 11, 18, 5, 10, 34]. Stable addresses also simplify attack targeting,
traffic fingerprinting, and have implications for privacy and anonymity.

The topic of address dynamics has been explored previously. Some have
shown the stagnation of the total number of active IPv4 addresses and iden-
tified address block activity patterns [28]. Others have tracked address changes
for a subset of addresses and analyzed lease durations [20, 21], studied diurnal
patterns where blocks stay active during the day, but remain inactive during
the night [26], and built a statistical model from few ISPs to provide address
churn estimation [17]. While important, all prior work focuses on behavior inside
specific address blocks, not ISP-wide.

Address dynamics also affect the accuracy of outage detection. Diurnal changes
can misinterpret nighttime quiet as outages [26] and must be considered in pas-
sive data [12]. CDN-based outage detection showed that ISP-level user move-
ment, often correlated with scheduled router maintenance, can produce false
outages [27]. Although CDN-measurements were more robust to ISP-level events
than prior work, they did not quantify how often maintenance events happen,
nor suggest how to address this problem in other systems. Finally, recent work
showed that tracking changes in address use can detect changes in human be-
havior, such as shifts to working from home [31]. The goal of this paper is to
explore how these related outcomes—diurnal effects, maintenance detection, and
tracking overall user changes—all benefit from an improved understanding of ad-
dress dynamics. We then use this understanding to build more accurate models
of address activity, improving these existing services.

The primary contribution of this paper is to develop ISP Availability Sensing
(IAS, §3.4), a new algorithm that identifies maintenance events in the ISP, al-
lowing us to recognize that apparent outages are actually users being reassigned.
This algorithm uses ISP Diurnal Detrending (IDD, §3.3), to separate daily and
weekly patterns from underlying trends and residual, both of which are impor-
tant in detection algorithms. Our second contribution is to validate IAS using
data from ISPs with known maintenance patterns and data from RIPE Atlas
(§4.1). Although such events have been previously identified, IAS and this vali-
dation are the first to automate their detection. Our final contribution is to use
IAS and IDD for three new observations: we quantify how many ISPs are diurnal
(§5.4), how many maintenance events occur (§5.1), and how IPv6 shows more
consistent address usage than IPv4 (§5.2).

All of the data used and created in this paper is available at no cost [32].
While our primary datasets date from 2017 to 2020, when data from 6 Trinocular
sites was available, we confirm key results hold in 2022 (§5.4). Evidence of diurnal
behavior in networks has been shown over nearly a decade of observations (from
[26] to [31]), so we expect our algorithms and our qualitative observations to
apply today. Our work poses no ethical concerns (§A): although we use data on
individual IP addresses, we have no way of associating them with individuals.
Our work was IRB reviewed and identified as non-human subjects research (USC
IRB IIR00001648).







blocks). Trinocular sends between 1 and 16 ICMP echo-requests to each block
every 11 minutes, each to a different address. Addresses rotate in a fixed order
unique to each block, so a single Trinocular site will scan all planned addresses
in 48 hours or less.

We accumulate individual observations from incremental Trinocular scans
to approximate current state following prior work [1, 31] and validation [31, 3].
Combining results from all six Trinocular sites cuts worst-case latency to eight
hours (each site scans independently with different and varying phases). We
update estimates incrementally each 11-minute round, so even this worst case
usually tracks diurnal changes. We apply 1-loss repair to recover from measure-
ment loss [25]. For efficiency, we aggregate results by the hour.

We add AS information from Routeviews [16] and combine reports for all
addresses in each AS. The result is Ci(a), a timeseries counting addresses for
each AS a at time i.

We currently treat each AS as independent. Although most large ISPs em-
ploy multiple ASes (for example, one each for Asian, American, and European
operations), in §5.2 we show that renumbering usually occurs within the same
AS, so this simplification does not change our primary results.

3.2 Diurnal ISP Detection

Given C(a), address counts for an AS (§3.1), our next step is to identify ASes
with a strong diurnal component. Following prior block-level diurnal analy-
sis [26], we take the Fast-Fourier Transform (FFT) of this timeseries, giving
a set of coefficients showing the strength and phase at all frequencies. We then
label that AS as diurnal if the energy in the frequency corresponding to a 24-hour
period is the largest of all other (non-zero frequency) components.

3.3 ISP Diurnal Detrending (IDD)

Since we know some ASes are strongly diurnal, we next decompose C(a) to
extract long-term trends, cyclic components, and any residual changes. Each
component is useful to identify usual events.

We apply MSTL [4] to extract four components, one for diurnal (daily)
behavior, one for weekly patterns, along with trend and residual components.
We find some networks have both diurnal and weekly patterns, while others are
only diurnal. We decompose C(a) in four components: trend (T ), diurnal (D),
weekly (W ), and residual (R) components.

Figure 2 shows trend decomposition of AS9829 during 2020q4 (three months).
The top graph shows the AS-wide timeseries C(a), ranging from 500k to 800k
active addresses. The next graph down T (a) shows the long-term trend. We can
see that this AS has a static user population over this quarter.

The third and fourth graphs show D(a) and W (a), how much regular change
there is each day and week. The strong diurnal pattern that we first identified at
the 24 h frequency in the FFT (§3.2) shows up in D(a) with swings that range
across 30% of responsive addresses (±100k). The weekly component (W (a))
show a weekend drop of about 50k addresses. Diurnal and weekly trends are
both visible in C(a), but easier to quantify after decomposition.



The residual in the final row, R(a), isolates any remaining changes. We use
this residual when detecting address dynamics in §5.1.

3.4 ISP Availability Sensing (IAS)

The ISP Availability Sensing algorithm (IAS) recognizes maintenance events by
comparing a global count of active users at AS-level against local changes in
portions of the network. Our insight is that the AS-wide count of active users
remains stable during maintenance, even though specific parts of the network
lose and add users. This stability distinguishes user movement from outages.

Detecting AS-wide Address Stability We first show that the AS’ active
addresses are roughly stable.

We define ∆i as the relative fraction of change of active addresses across an
AS at time interval i, using the residual and trend decomposition from §3.3:
∆i = Ri(a)/Ti(a).

When ∆i = 0 there is no change in number of active users. Of course we
expect some accident changes (∆i 6= 0) as individual hosts come and go in
real networks, or due to loss of probing packets or replies. These small changes
appear in the residual, R(a), in Figure 2. Finally, we identify large changes
(∆i ≥ 0.05) as outages, while smaller changes (0 < ∆i < 0.05) are more typical
jitter. We select a threshold large enough to avoid noise, but not so large as to
miss outages. As future work we hope to optimize this value by training against
external observations.

IAS assumes complete knowledge of each AS’ address space. However, ASes
bring new address space on-line to serve new customers, such space may not
immediately appear in C(a). We evaluate how frequently we miss users due to
unmonitored address space in §4.3.

Detecting network changes IAS’ second requirement is the presence of some
blocks changing. We enforce this requirement by identifying the number of blocks
that change state (become or cease being reachable) from outage detection. We
currently require δ = 4 blocks to change state, and study this choice in §4.2.
Larger values reduce the number of events (Figure 3). We select δ = 5 because it
is just past the knee of the curve, in a plateau 5 ≤ δ ≤ 9 (Table 1). Exploration
of an adaptive threshold to account for larger ASes is future work.

4 Validation

We validate IAS against external sources, and then examine design choices.

4.1 IAS Detecting Known ISP Maintenance?

We next evaluate IAS’ ability to detect maintenance events using ground truth
from an ISP. Our first source of ground truth are ISPs that have public mainte-
nance windows; we use this case study to validate. Lumen Technologies (AS209,
at the time called CenturyLink) announces that midnight to 6 a.m. local time [14]
is a public maintenance window, and they report specific events [6]. We identify
Lumen address blocks from 18 peers in Routeviews [16].
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∆i ≤ 5% 42 15 9 4 (28) 11 4 7 8 6 5 42 (83) 153
∆i > 5% 1 0 0 0 (0) 0 0 0 0 0 0 10 (10) 11

with
IDD

∆i ≤ 5% 43 15 9 4 (28) 11 4 7 8 6 5 52 (93) 164
∆i > 5% 0 0 0 0 (0) 0 0 0 0 0 0 0 (0) 0

Table 1: Atlas VP address change events (≥ 4 VPs) compared against IAS
detection thresholds, 2020q4.

Validating IAS We first validate IAS with IDD, considering its two require-
ments: stable AS-level addresses (∆i ≤ 5%) and four or more blocks that move
(δi ≥ 4). We show our results in Table 1.

We first look at the bottom two rows of Table 1, labeled “with IDD”. The
fourth row shows no blocks change when ∆i > 5% because of the large threshold.
The third row shows 164 blocks where VPs move, of which 93 are found in
IAS and occur as part of a large movement (right, in green), while 43 move
by themselves (left, gray), and 28 move with 1 to 3 others (center, yellow).
We consider the 93 to be IAS successes. All will be found and recognized as
maintenance events.

The 43 in gray represent independent movements that are not large main-
tenance events, but may be routers at home rebooting to a new address. These
are not found by IAS, but are not necessarily maintenance events, so we count
them neither as true nor false positives.

Finally, the 28 marked yellow are likely maintenance events that IAS misses
as being too small. These are false negatives.

Not having all negative cases prevents us from computing recall and precision,
but we can show a True Positive rate of 0.77 (93/(28 + 93)). We conclude that
IAS works reasonably well, although there is room for improvement.

Validating IDD To validate the importance of IDD, we turn it off and compare
the results in the first two rows of Table 1 with the bottom two rows. IDD helps
filter out diurnal changes, making large shifts more common: compare the 10
cases with ∆i > 5% without IDD to zero cases with it. We also see that it helps
IAS: the TPR is 0.75 without IDD (83/(28 + 83)) compared to 0.77 with IDD.
We conclude that accounting for diurnal changes helps.

4.3 Does Unmonitored Space Harm IAS?

Measurement systems do not track the complete address space, discarding some
segments due to low response rate, or lack of any historic responses [2]. Users
reassigned to unmonitored space implies that IAS may erroneously infer outages
due to drops in the total active address count, IAS false negatives.

For 2020q4, we find that the majority of reassignments (51%) occur within
monitored addresses, and that most addresses (84%) stay in the same category.
IAS is not impeded by incomplete measurement (see §C).



IPv4 IPv6

Total VPs 12,855 100.0% 6,319 100.0%
Do not change IP 8,501 66.1% 4,730 74.9%
Change IP 4,354 33.9% 1,589 25.1%

Do not change routable prefix 973 7.6% 1,182 18.7%
Change routable prefix 3,381 26.3% 407 6.4%

Do not change AS 2,411 18.8% 75 1.1%
Change AS 970 7.5% 332 5.3%

Table 2: Active RIPE Atlas Vantage Points during 2020q4

4.4 Choice of Spatial Granularity

We next consider what spatial granularity to use when tracking address dynam-
ics. Our goal is that IAS can identify when users move. To do so, we must assess
how “far” a user moves: do they stay in the same routable prefix, or within the
same AS, or move between ASes. We compare address movement (a baseline)
against how often a device moves within a routable prefix or an AS.

Table 2 shows how often 12,855 RIPE Atlas VPs change their address,
routable prefix, or AS in 2020q4, for both IPv4 and IPv6. We see that the
majority of devices are stable, with 66.1% (v4) and 74.9% (v6) never changing
address and 7.6% and 18.7% staying in the same routable prefix. Of the remain-
ing that move, some change only once, but many change frequently, perhaps
because they are in ISPs that renumber their users regularly. We conclude that
most devices are very stable, but a few move frequently,

Surprisingly, we find about 7.5% (970 v4) and 5.3% (332 v6) change AS. As
changes are very rare, with a few (2%) changing once, perhaps because a user
changed their home ISP. The remaining 3% change frequently, perhaps because
they are mobile and regularly move between home and work.

We conclude that AS granularity is almost always suitable to capture most
movement and so IAS’ use of ASes is correct.

5 Evaluation

We now study ISP address dynamics across the Internet with IDD and IAS. We
evaluate the addressing efficiency, improvements to outage detection, quantify
diurnalness, and compare IPv4 and IPv6 management practices.

5.1 Quantifying ISP Address Dynamics

Several groups have looked at different aspects of address dynamics [26, 17, 28,
20, 27, 21, 31]. While prior work identified ISP maintenance as a type of network
disruption [28], they did not quantify how often such events occur. We examine
maintenance and diurnal events over a quarter using IAS.

We use IAS to identify maintenance events across all 63k ASes active in
2020q4. Figure 3 shows the cumulative distribution of number of maintenance
events for 6.5% of ASes with at least one event in this period. We compare results
for different detection thresholds, that is, the number of Trinocular blocks going









address space. This stability is typical of ISPs with customers using always-on
home gateways. Stable address usage is why IAS can detect maintenance events.

When comparing routable prefixes to ASes, we see that routable prefixes are
more often mostly diurnal (comparing the two lines in Figure 8b). Although most
prefixes are fairly stable (69% change by only 10% of their active addresses), some
(about 20%) have a very large daily swing (15% of addresses or more). Finally,
because routable prefixes are necessarily smaller than ASes, they see a smaller
absolute size of diurnal change (compare the lines in Figure 8a).

This trend suggests that routable prefixes are a useful size to study diurnal-
ness, and it supports suggestion for its study in §5.4.

6 Related Work

Other work has considered maintenance events in relation to outages. Richter
et al. used internal information from clients to demonstrate that address reas-
signment cause false outages, defining disruptions to include both true and false
outages [27]. Guillot et al. proposed Chocolatine to detect outages at AS level
and geographical areas using Internet background radiation [12]. These works
do not show how to differentiate true outages from maintenance events, nor per-
form a quantitative analysis of maintenance events. Recently Padmanabhan et
al. showed that some events span parts of multiple blocks [22], a result consistent
with our goal of studying whole ISPs.

Other groups have studied address changes and usage. Some have examined
the duration hosts keep the same address [13, 20, 21], estimated Internet-wide
address churn [17], and address utilization [28]. However, these techniques either
do not scale to the entire address space, are estimations, or require CDN access,
while we do Internet-wide, third-party detection and identify ISP renumbering.

Address counting was first used in outage detection with CDN data [27],
then darknet analysis [12]. We previously described address accumulation with
Trinocular [1, 31]. We use this signal to detect ISP maintenance.

Previous work has considered seasonal patterns. Quan et al. detected diurnal
patterns using FFT at block level [26]; Chocolatine used SARIMA in ISP-wide
detection to factor out seasonal trends [12]. Unlike prior work, we show the
importance of multi-seasonal trends to account for both daily and weekend ef-
fects, and show that we can distinguish maintenance events from outages at the
/24-granularity.

7 Conclusions

AS-wide diurnal changes and maintenance are part of our Internet ecosystem,
yet they challenge outage detection systems. Our new IAS algorithms, with IDD,
can often recover from such dynamics. We showed that IAS is effective and can
correct 41k false outages per quarter.
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FROM / TO active non-trackable inactive
active 66,892 51% 3,487 3% 5,086 4%
non-trackable 3,392 3% 30,101 22% 1,251 1%
inactive 4,915 4% 1,303 1% 14,602 11%

Table 4: Atlas VP address changes in Trinocular (un)monitored address space.

false negatives. To evaluate if unmonitored space interferes with IAS, we count
the number of times known VPs move to and from our underlying measurement
system’s unmonitored address space. We expect most of VPs to move within
monitored addresses, as unmonitored space has been historically unresponsive
implying low usage.

Trinocular strives to probe as much as it can (the active addresses), Trinocu-
lar excludes addresses for two reasons, inactive addresses used to reply to pings
but have not in two years, and non-trackable blocks have less than three respon-
sive addresses.

As with §4.2, we use RIPE Atlas VPs as ground truth, since they track their
current IP addresses. Table 4 counts how many addresses Atlas VPs have in each
of the three Trinocular categories (active, inactive, non-trackable).

As expected, the majority of reassignments (51%) occur within monitored
addresses (the top, left, green cell). In addition, most addresses (84%) stay in
the same category (the diagonal).

A few addresses (7% in the yellow, left column) become active as they move
in to measurable space, and about an equal number move out (the 7% in the red,
top row). Finally, a surprisingly large 35% are never tracked (the gray region).
Since the IAS goal is identify steady or changing addresses, never tracked blocks
do not matter. The number that becomes and cease to be active is small (7%
each) and about equal in size, so they should not skew IAS. We therefore conclude
IAS is not impeded by incomplete measurement.
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