Round-Optimal Black-Box MPC
in the Plain Model

Yuval Ishai!, Dakshita Khurana?, Amit Sahai®, and Akshayaram Srinivasan*

L Technion
2 UIUC
3 UucLA
4 Tata Institute of Fundamental Research

Abstract. We give the first construction of a (fully) black-box round-
optimal secure multiparty computation protocol in the plain model. Our
protocol makes black-box use of a sub-exponentially secure two-message
statistical sender private oblivious transfer (SSP-OT), which in turn can
be based on (sub-exponential variants of) most of the standard crypto-
graphic assumptions known to imply public-key cryptography.

1 Introduction

The exact round complexity of secure computation has been a focus of research
in cryptography over the past two decades. This has been especially well-studied
in the synchronous setting in the plain model, with up to all-but-one static mali-
cious corruptions. It is known that general-purpose secure multiparty computa-
tion (MPC) protocols in this setting admitting a black-box simulator require at
least 4 rounds of simultaneous exchange [GK96b, KO04, GMPP16|.% In this work
we focus on MPC with black-box simulation. On the positive side, there has been
a long sequence of works [GMPP16, BHP17, ACJ17, KS17, BGI*T17, BGJ 18,
CCG™20] improving the round complexity, culminating in a round-optimal con-
struction that relies on the minimal assumption that a 4-round malicious-secure
OT protocol exists [CCGT20)].

Black-Box Use of Cryptography. Notably, all MPC protocols discussed above
make non-black-box use of cryptography, which is typically associated with sig-
nificant overheads in efficiency. It is interesting, from both a theoretical and a
practical perspective, to realize fully black-box protocols [RTV04] where not only
does the simulator make black-box use of an adversary, but also the construction
itself can be fully specified given just oracle access to the input-output relation
of the underlying cryptographic primitives, and without being given any explicit
representation of these primitives. In the following, we refer to this standard

5 By simultaneous message exchange we mean that in each round, every party can
send a message over a broadcast channel. However, we allow the adversarial parties
to be rushing, meaning that they can wait until they receive all the honest party
messages in each round before sending their own messages.

notion of fully black-box protocols as simply black-box protocols. The focus of
this work is on the following natural question:

What is the round complezity of black-box MPC' in the plain model?

It was only recently that the concrete round complexity of black-box MPC
in the plain model was studied. Ishai et al. [IKSS21] obtained a five-round MPC
protocol making only black-box use of a public-key encryption scheme with pseu-
dorandom public keys, along with any 2-message OT protocol satisfying semi-
malicious security. They also gave 4-round protocols for a restricted class of
functionalities that consist of parallel copies of “sender-receiver” two-party func-
tionalities. While significantly improving over prior works, which required more
than 15 rounds, it did not generally match the known 4-round lower bound.
Indeed, round-optimal black-box protocols are not known even for the restricted
case of two-sided 2PC, where both parties receive the output at the end of the
protocol execution. Furthermore, [IKSS21] highlighted significant barriers in ex-
tending their techniques to obtain a round-optimal construction.

Our Results. In this work, we overcome these barriers to obtain a 4-round black-
box MPC, thereby obtaining the first round-optimal fully-black-box MPC in
the plain model for general functions. Our construction makes black-box use
of any sub-exponential secure two-message OT, that satisfies a well-studied
“statistical sender privacy” (SSP-OT) property. This essentially requires that
the sender input remain statistically hidden from an unbounded malicious re-
ceiver. Such an OT protocol can be instantiated based on (sub-exponential vari-
ants) of standard cryptographic assumptions such as DDH/QR/N*" Residuos-
ity/LWE |[NP01, ATR01, Kal05, HK12, BD18, DGI*T19]. This covers most of the
standard cryptographic assumptions known to imply public-key cryptography,
with LPN being the most notable exception °

On the role of subexponentially secure OT. We stress that even though we rely
on sub-exponentially secure OT, our final simulator still runs in expected polyno-
mial time. This itself may seem counter-intuitive, and indeed we see it as a high-
light of our technique and work. Very roughly, the reason why subexponentially
secure OT is helpful to us for achieving polynomial-time simulation is that we
design a protocol that admits two separate means for extracting the adversary’s
input. One is an “optimistic” extraction that runs in expected polynomial time,
and the other is a super-polynomial extraction that achieves stronger properties.
We use the super-polynomial extraction to essentially “bootstrap” and allow the
optimistic extraction to succeed for the purposes of simulation. (See Technical
Overview below for more details.) We believe this technique is of independent
interest and may inspire progress in other settings where standard polynomial
simulation is desired, but there is a need to reduce round complexity beyond a

5 Recently, SSP-OT was constructed from low-noise LPN and a standard derandom-
ization assumption [BF22| (building on [DGH™'20]). However, this construction is
only secure against quasi-polynomial sized adversaries.

barrier that arises from the need for some component of the protocol to achieve
simulation security.

Finally, we note that the 4-round lower bound [GK96b, KO04, GMPP16]
holds even when considering protocols that rely on sub-exponential hardness
assumptions as long as the simulator runs in (expected) polynomial time.

1.1 Related Work

The black-box round-complexity of general purpose secure computation as well
as for specific tasks such as oblivious transfer, zero-knowledge, non-malleable
commitments etc., has a long and rich history.

General Purpose MPC. Haitner et al. [HIKT11] gave the first construction of a
malicious-secure black-box MPC protocol in the plain model based on any semi-
honest secure oblivious transfer. However, the round complexity of this construc-
tion grew linearly in the number of parties (denoted by n) even if one starts with
a constant round semi-honest OT protocol. A later work of Wee [Weel0] gave a
O(log™ n) black-box protocol by relying on stronger cryptographic assumptions
such as dense cryptosystems, or homomorphic encryption, or lossy encryption.
This was later improved by Goyal [Goyl1]| to give a constant round protocol un-
der similar assumptions. Unfortunately, this constant was more than 15 which is
a far cry from the lower bound of 4. A recent work of Ishai et al. [IKSS21] gave
a black-box five-round protocol based on any PKE with pseudorandom public
keys and any two-message OT protocol with semi-malicious security.

Special Secure Computation Tasks. For the case of oblivious transfer, Ostrovsky
et al. [ORS15] gave a round-optimal (i.e., a four-round) construction that made
black-box use of enhanced trapdoor permutations. Friolo et al. [FMV19] gave a
round-optimal black-box construction of OT based on any public key encryption
with pseudorandom public keys. Other black-box constructions of four-round OT
from lower level primitives were given in [CCG121, MOSV22].

Ishai et al. [IKSS21]| extended these results to the multiparty setting and
gave a round-optimal protocol for pairwise oblivious transfer functionality. In
the pairwise OT setting, each ordered pair of parties, namely, P; and P; execute
an OT instance with P; acting as the sender and P; acting as the receiver.
This can be extended to parallel instances of general two-party sender-receiver
functionalities.

Hazay and Venkitasubramanian [HV18| and Khurana et al. [KOS18] gave
round-optimal black-box constructions of zero-knowledge arguments based on
injective one-way functions. Hazay et al. [HPV20] showed that unless the poly-
nomial hierarchy collapses, all of NP cannot have a black-box zero-knowledge
argument based on one-way functions.

Goyal et al. [GLOV12] gave the first constant-round black-box construction
of non-malleable commitments based on one-way functions. A latter work of
Goyal et al. [GPR16| gave a three-round (which is round-optimal) black-box
construction that is secure against a weaker class of synchronizing adversaries
assuming the existence of injective one-way functions.

2 Technical Overview

In this section, we give an overview of the main techniques used in our construc-
tion of a round-optimal black-box secure multiparty computation protocol.

Starting Point. The starting point of our work is the recent result of Ishai
et al. [IKSS21] who gave a construction of a five-round MPC protocol that
makes black-box use of any public-key encryption scheme with pseudorandom
public keys and any two-message semi-malicious OT protocol.” Their protocol
is obtained via a round-efficient implementation of the IPS compiler [IPS08] in
the plain model.

We note a key component that was used in their instantiation: a four-round
black-box protocol that securely implements the watchlist functionality. Infor-
mally speaking, the watchlist functionality is an n-party functionality where each
ordered pair of parties (P;, P;) where ¢,j € [n] are involved in a k-out-of-m OT
instance with P; acting as the sender and P; acting as the receiver. Using this
four-round watchlist protocol, Ishai et al. [[KSS21] showed that with an addi-
tional round of interaction, it is possible to securely compute any multiparty
functionality. Furthermore, the resulting protocol only made black-box use of
cryptographic primitives.

Going Below Five Rounds. In the same work, Ishai et al. [IKSS21] also observed
that to get a four-round protocol (which is round-optimal) in the plain model
by making use of the IPS compiler, one needs a three-round watchlist protocol.
However, such a protocol cannot satisfy the standard simulation based security
definition w.r.t. a simulator that only makes black-box use of the adversary. This
is because such a simulation-secure watchlist protocol almost directly implies
a three-round protocol for oblivious transfer that satisfies standard simulation
security. We know that such a protocol is impossible to construct (even with
non-black-box use of cryptography) if the simulator uses the adversary in a
black-box manner [KO04]. Furthermore, to make matters more complicated, the
proof of security of the overall compiler given in [IKSS21] crucially relied on the
watchlist protocol to satisfy the standard simulation-style definition. Therefore,
to go below five rounds and obtain a round-optimal construction, we need to
come up with a new set of techniques.

Our Approach in a Nutshell. In this work, we show how to instantiate the IPS
compiler using a weaker notion of watchlists, that we call watchlists with promise
security. As one of our main contributions, we give a construction of a three-
round watchlist protocol that satisfies promise security. In Section 2.1, we mo-
tivate the definition of this weaker watchlist protocol and show how it can be
used to instantiate the IPS compiler and in Section 2.2, we give the main ideas
in constructing such a watchlist protocol.

" Recall that semi-malicious adversaries are stronger than the standard semi-honest
adversaries and are allowed to fix the random tape of adversarial parties to arbitrary
values. However, like in the semi-honest setting, they are forced to follow the protocol
specification.

2.1 Instantiating the IPS Compiler with Three-Round Watchlist

What Security can be achieved in Three Rounds? The work of Ishai et al. [TKSS21]
gave a round-preserving compiler that transforms any two-party computation
protocol that satisfies certain additional properties (which we will ignore for the
moment) to a watchlist protocol. To understand what security properties can be
achieved by a three-round watchlist protocol, let us first try to understand what
type of security can be achieved by a three-round 2PC protocol.

Recall that in the standard two-party protocol setting, there is a receiver
who holds an input x and there is a sender who holds an input y. At the end of
the protocol, the receiver obtains the output of f(x,y) for some pre-determined
functionality f. If we consider three-round protocols for the above task, then the
first and the third round messages in the protocol are sent by the sender and
the second round message is sent by the receiver.® As the sender is tasked with
sending both the first and the third round message, a simulator could potentially
rewind the second and the third round messages in the protocol and extract the
effective private input from an adversarial sender. In other words, a three-round
2PC protocol could satisfy standard simulation-based security definition against
malicious senders. However, the receiver in this protocol is only sending a single
message, namely, the second round message. In fact, it is impossible to design a
black-box PPT simulator that could extract the effective private input from an
adversarial receiver.

The key observation is that if we allow the simulator against malicious re-
ceivers to run in super-polynomial time, then such a simulator can extract the
effective receiver input and provide security against malicious receivers. There-
fore, in the three-round setting, we can hope to construct a two-party proto-
col that satisfies standard simulation based security against malicious senders
and super-polynomial time simulation security against malicious receivers. In-
deed, as we explain later, we give a construction of such a three-round protocol
that makes black-box use of a sub-exponentially hard two-message OT protocol
with statistical sender security. Such an OT protocol is known from the (sub-
exponential variant) of standard cryptographic hardness assumptions such as
DDH/ N residuosity/LWE/QR [AIR01, NP01, Kal05, HK12, BD18, DGI*19].

Instantiating the IPS Compiler with the Three-Round Watchlist. Given the two-
party protocol above, we could hope to obtain a three-round watchlist satisfying
“semi-SPS” security by following ideas in prior work [IKSS21]. If this were pos-
sible, could we directly get a four-round MPC protocol by instantiating the IPS
compiler with this “semi-SPS” three-round watchlist protocol? Unfortunately,
this is not quite possible, as we now explain. To understand this better, we give
a brief overview of the IPS compiler which is simplified and tailored to con-
structing a four-round protocol. The IPS compiler makes use of the following
components:

8 We note that any protocol, even one in the bidirectional communication model, can
be reduced to this setting.

— A two-round client-server MPC protocol that is secure against a malicious
adversary that corrupts an arbitrary number of clients and a constant frac-
tion of the servers. This is called as the outer protocol. Such an outer protocol
was constructed by Ishai et al. [IKP10, Pas12| by making black-box use of
any PRG.

— A four-round inner protocol that satisfies the following robustness property.
Specifically, even if the adversary behaves maliciously and deviates arbitrar-
ily from the protocol specification in the first three rounds, it cannot learn
any information about the inputs of the honest parties. Furthermore, if the
adversary is able to produce an input, random tape that correctly explains
that the messages sent by it in the first three rounds, then the last round
message from the honest parties only reveals the output of the functionality.”

— A three-round watchlist protocol that satisfies the standard extraction of
the adversarial sender inputs and super-polynomial time extraction of the
adversarial receiver inputs.

In the compiled protocol, each party plays the role of a client in the outer
protocol and computation done by the servers are emulated by the inner protocol.
To ensure that that the adversary only cheats in at most a small number of these
inner protocol executions, we make use of the watchlist protocol. Specifically, each
party acting as the receiver in the watchlist protocol chooses a random subset
of k executions as part of its secret watchlist. Every other party acting as the
sender uses the input, randomness used in each of the inner protocol executions
as the sender inputs. This watchlist protocol is run in parallel with the first three
rounds of the inner protocol. At the end of the third round, each party checks if
the input, randomness pair provided by every other party corresponding to its
watched executions are consistent. If it detects any inconsistency, then it aborts.
Using standard probabilistic arguments, it is possible to show that if the honest
parties have not aborted at the end of their watchlist check, then the adversary
only deviates in a tiny constant fraction of the inner protocol executions. These
deviations can be directly mapped to the corresponding server corruptions in
the outer protocol. Since the outer protocol is secure against a constant fraction
of the server corruptions, security of the overall protocol follows.

While the above intuition seems sound, we encounter a major issue while
formalizing it. In particular, recall that we are aiming for standard polynomial
security for our 4-round protocol, but we are relying on super-polynomial time
extraction as an ingredient. Thus, we are only able to show that this protocol
satisfies security via a super-polynomial time simulator. The “super-polynomial”
part in this simulator is needed to extract the receiver inputs used by the ad-
versarial parties in the watchlist protocol. Recall that in the watchlist protocol,
the adversarial receiver inputs correspond to the set of watched executions of

9 For technical reasons, we actually need the inner protocol to run in three rounds in-
stead of four rounds. However, to keep the exposition simple, we will ignore this in the
overview. In the main body, we give a black-box construction of such a three-round
inner protocol based on two-round semi-malicious OT protocol (which is implied by
two-round SSP OT). This construction builds on the protocols given in [GS18, PS21].

the corrupted parties. We need to extract this information in order to invoke the
security of the outer protocol.!® Further, the simulator also needs to additionally
extract the adversarial sender inputs. As mentioned earlier, we cannot hope to
simultaneously achieve efficient polynomial time extraction of both the sender
and the receiver inputs.

Our Solution: “Promise-Style” Extraction. In order to get around this issue,
we use a “promise-style” extraction technique that is inspired by the notion of
Promise Zero-Knowledge [BGJ'18]. Specifically, we seek to devise an alternative
polynomial-time extraction system that guarantees extraction of the adversarial
receiver inputs only against those adversaries that send a valid third round
message in the watchlist protocol (with non-negligible probability). For all other
adversaries, we do not provide any guarantees. Let us now explain how this
weaker extraction guarantee is sufficient to instantiate the IPS compiler.

The simulator of the compiled protocol starts generating the first-round mes-
sages of the outer protocol using some default inputs for the honest parties. Note
that these first round messages correspond to the inputs to the inner protocol
executions. The simulator uses these “dummy” inputs to the inner protocol and
starts interacting with the adversary for the first three rounds. If the adversary
aborts during this interaction, or fails to send a valid third round message in
the watchlist protocol, then the simulator simply outputs the view of this ad-
versary. On the other hand, if the adversary sends a valid third round message
in the watchlist protocol, then the simulator uses the “promise-style” extractor
to extract the set of watched executions. This information is then used by the
simulator to simulate the messages in the main thread (using Goldreich-Kahan
simulation technique [GK96al).

A subtle point to note here is that the third round message in the watchlist
protocol is sent by the adversary only after it receives the third round message
from the honest parties (as we are considering rushing adversaries). However,
the third round message of the watchlist protocol delivers the input, randomness
used by the honest parties corresponding to the adversarial watched executions.
Recall that the simulator described above uses “dummy” inputs in the inner pro-
tocol executions and tries to extract the adversarial watched executions. This
will succeed only if the distribution of the messages generated by the simulator
is computationally indistinguishable to the messages in the real protocol. Specif-
ically, to prove this indistinguishability, we need to make sure that the output
of the watchlist protocol when using the real inputs is indistinguishable to the
case when the simulator uses default inputs.

To argue this, we rely on the security of the outer protocol. Recall that the
inputs given to the inner protocol executions correspond to the messages sent
by the clients to the servers. By corrupting the servers corresponding to the
adversarial watched executions, we are guaranteed that the first round message

10 Specifically, the set of watched executions of the adversarial parties correspond to a
subset, of the corrupted servers in the outer protocol. To invoke the security of the
outer protocol, we need to extract this information from the watchlist messages.

sent to these servers reveals no information about the inputs of the honest clients.
To give a bit more details, this is realized by first relying on the SPS security
of the watchlist protocol against adversarial receivers to extract the adversarial
watched executions, and then switch the input to a default value by relying
the security of the outer protocol, and then switch back to an honest watchlist
execution using the default inputs.

Another point to note here is that we cannot guarantee perfect extraction
of the adversarial receiver inputs even if it sends a valid third round message
with non-negligible probability. Due to technical reasons, we can only guarantee
“almost” perfect extraction. By this, we mean that whenever the output received
by the adversarial receiver is not 1, the output of the promise extractor is
identical to the SPS extractor. In other cases, there are no guarantees about the
extracted value. We show that this weaker property is sufficient to instantiate
the IPS compiler. Roughly, this is because if the output of the watchlist protocol
is provided to the adversary is 1, the adversary learns no information about
the input, randomness for any inner protocol execution. Hence, if the promise
extractor “over-extracts” the adversarial watched executions, this does not create
any trouble with the simulation.

2.2 Constructing Three-Round Watchlists with Promise Extraction

A core ingredient of our black-box MPC protocol is a three-round “watchlist”
protocol with promise-style extraction guarantees. For every i € [n],j € [n]\ {i},
this functionality enables P; to choose a (private) subset K C [m] of protocol
executions of size k, and obtain the input and randomness used by P; in all
executions in the set K, while all other input and randomness values of P;
remain hidden from P;.

Our first goal is to develop a three round protocol that realizes the watch-
list functionality in the plain model in the presence of malicious corruptions,
with super-polynomial simulation and (polynomial) promise-style extraction.
Following [IKSS21], we observe that it would suffice to implement “sender non-
malleable” OTs with super-polynomial simulation-based “real/ideal” security and
with promise-style polynomial extraction; where in the (4, 7)-th execution for
i € [n],j € [n]\ {i}, P; is the receiver and P; is the sender. P;’s input to the
OT will be the input and randomness it used in each of the m instances of the
inner protocol, and P;’s input is a random subset K of [m] of size k. By sender
non-malleability, we mean that the adversarial parties cannot maul the sender
messages in an OT execution with an honest party to obtain a “related” sender
inputs in an OT execution with an honest receiver.

The work of [IKSS21] showed how to implement such sender non-malleable
OT in four rounds from any four-round simulation-secure two-party computation
protocol with certain additional properties (which we ignore for the momemt).
Since we need three-round watchlists, we would need to begin with three-round
two-party computation, which is impossible to realize with black-box polynomial-
time simulation security. Nevertheless, we show that it is possible to realize
such two-party computation with super-polynomial simulation and promise-style

extraction, which is one of our key technical contributions. We describe this in the
next subsection; here we discuss how such a two-party protocol can be compiled
into 3-round non-malleable OT.

Our overall approach builds on [IKSS21], but also diverges in some key techni-
cal aspects. Like [IKSS21], our construction relies on a secure two-party protocol
between a sender and a receiver realizing a special functionality F (described in
Figure 1). Unlike [IKSS21]|, we must develop a three-round compiler instead of a
four round one.

In the [IKSS21] compiler, the sender S on input (mg, m;) first encodes these
messages using an appropriate 2-split-state non-malleable code (Enc, Dec).*! For
technical reasons pertaining to the use of watchlists in our final protocol, we
require our watchlists to satisfy 1-rewinding security, i.e., no adversary should be
able to distinguish the joint distribution of a main and a rewinding thread (with
common prefix) from the real distribution, from those sampled according to the
simulated distribution. This was not needed by [IKSS21], but this requirement
in our setting necessitates deviating from the [IKSS21| template, relying on (a
special type of) 3-split-state non-malleable code — specifically one that is also a
3-out-of-3 secret sharing scheme — instead of 2-split-state non-malleable codes.

Specifically, our sender encodes mg into Lg, Mg, Rg and encodes m; into
L1, M1, Ry. The receiver obtains input a choice bit b € {0,1}, and additionally
samples a uniformly random ¢ € {0,1,2}. S and R invoke a two-party secure
protocol IT to compute functionality F, described in Figure 1.

Sender Inputs: mg, Lo, Mg, Rg, m1, L1, M1, R1, Receiver Inputs: b, c
The functionality F is defined as follows.

Check if Lo, Mo, Ro is a valid encoding of mg and if not, output L.
Check if L1, M1, Ry is a valid encoding of m; and if not, output L.
If ¢ = 0, output (my, Lo, L1).

If c = 1, output (mb, Mo, Ml)

If ¢ = 2, output (mp, Ro, R1).

Grs W=

Fig. 1: The functionality F

We note that the ideal functionality F only reveals m; to the receiver, and sta-
tistically hides mj_p. This is because the receiver obtains only one of L1_p, M1_p
and Rq_p, and secrecy follows from the security of the secret sharing scheme.
Thus, given one of the states the message mj_; is information-theoretically hid-
den. Further, even given two executions of the ideal functionality on the same

11 Recall that a split-state non-malleable code (Enc, Dec) encodes any message m into
multiple states, such that the distribution of the tampered message obtained by
tampering the each state individually is independent of m.

sender inputs, same receiver input b, and different receiver challenges c, the re-
ceiver only obtains m; and two out of Ly_;, M;_; and R1_;. Given two out of
these three shares, m;_; is again statistically hidden. Indeed, when F is real-
ized via a secure protocol II, m;_; continues to be computationally hidden even
given a main and rewinding thread (with same inputs mg, my, b). This protocol IT
makes only black-box use of cryptography, and can be based on black-box access
to our three-round two-party computation protocol that additionally satisfies
certain amount of rewinding security, which we discuss in the next subsection.

Proving Sender Non-Malleability. We must prove that running this protocol 11
between every pair of parties in parallel securely realizes the watchlist function-
ality. We model the adversary as a man-in-the-middle, which acts as a receiver
in “left” sessions and as sender in “right” sessions. We require that there is a
simulator-extractor Sim-Ext that given the inputs of all honest receivers (in all
right sessions), is able to extract all the implicit inputs used by the man-in-the-
middle in all its right sessions. Crucially, Sim-Ext does not have access to the
inputs of honest senders. Since the underlying protocol IT may be susceptible to
arbitrary mauling attacks, achieving this property is non-trivial, as we discuss
next.

Similar to [IKSS21], we use the specific way that sender inputs are encoded
to introduce an alternate extraction mechanism. Specifically, one could imagine
rewinding the second and the third round message of IT twice, with first round
message fixed, and using inputs ¢ = 0, ¢ = 1 and ¢ = 2 on behalf of the
honest receiver in the real and rewinding threads, respectively. Our two-party
computation protocol will be developed in such a way that fixing the first round
message will fix all other inputs mg, my,b in all left and right sessions. Let us
make the simplifying assumption that our adversary does not abort. Therefore,
we expect to obtain outputs (Lo, L1), (Mg, M;) and (Ro, Ry) in the right session
in the real and rewinding threads respectively. At this point, we can use the
decoder of the non-malleable code to obtain (mg, M), which, by correctness of
the two-party protocol, should correspond to the implicit inputs of the MIM in
the right session.

The Need for 2-Rewinding Security. Before we can rely on non-malleable codes
to formally argue security, we need to replace the two-party protocol I1 with its
simulated version. At the same time, we need to argue that the joint distribution
of values extracted from the strategy above (via extracting (Lo, L1), (Mg, M1) and
(RO, Rl)) from the simulated two-party protocol, matches the distribution in the
real protocol. This requires the two-party protocol IT to satisfy a stronger secu-
rity property, that we call 2-rewind sender security. This roughly means that any
adversarial receiver/MIM that rewinds the honest sender one time in the third
and fourth rounds, with its input ¢ set to a possibly different value, does not learn
more than the output of F on (fixed) inputs (mg, my, Lo, Ly, Mg, M1, Rp,Ry,b,¢ =
0), (mo, m1, Lo, L1, Ro, Ry, b,¢ = 1) and (mg, my, Lo, L1, Ro, Ry, b, = 2). This can
be formalized by demonstrating the existence of a simulator that simulates the
receiver’s view in the real and rewinding threads, given only (mg,Lo,L;) in the

10

main thread, and (mg, Mg, M1), (mg, Ro, Ry) respectively in each of the rewinding
threads (w.l.o.g.). Now, it may seem like the sum total of this information could
essentially allow the receiver to recover m; . Yet, we show that if IT satisfies this
property, it becomes possible to replace m; ¢ with an arbitrary value (say 0*).
Here we make use of the fact that the different states of the non-malleable code
are available to the MIM in separate (i.e. real and rewinding) executions, which
allows us to rely on the security guarantees provided by non-malleable codes,
by arguing that each of these states are essentially tampered by independent
functions.

Finally, we note that just as in [IKSS21|, we require these codes to satisfy
many-many non-malleability. At a high level, these are codes that are secure
against multiple tamperings of a codeword [CGL16]. We note that a construc-
tion of 3-out-of-3 non-malleable secret sharing from [GSZ21] satisfies all the
required properties (if instantiated with the CGL non-malleable code). Also
following [IKSS21], to deal with adversaries who might abort, we will modify
the protocol and functionality F so that instead of encoding (mg,m1) a single
time, the sender generates A (where A is the security parameter) fresh encodings
{(LE, M{, RE) Yien beqo,13 of mg and my. The receiver picks A choice bits ¢1, . . ., ¢y
instead of a single bit ¢. The functionality F checks if for every i € [n],b € {0,1},
{(LE, Mp, RE) Yicpa befo,1y encode my. If the check fails, F outputs L. If it passes,
then for every i € [n], it outputs (L, LY) if ¢; = 0, (M§,M}) if ¢; = 1, and
otherwise, outputs (R}, R}). We also recall that our watchlists need to satisfy
super-polynomial simulation with “promise-style” extraction, but we note that
these properties in fact carry over from the underlying special two-party com-
putation protocol.

2.3 Constructing Three-Round 2PC with Special Extraction

In this subsection, we explain the key ideas behind our construction of a three-
round 2PC that satisfies the “promise-style” extraction guarantee and “2-rewinding”
sender security.

8-Round OT Protocol. As a first step, we construct a three-round black-box
OT protocol that satisfies standard simulation-based security against malicious
senders and super-polynomial time simulation security against malicious re-
ceivers. For this purpose, we rely on a (sub-exponentially hard) two-round OT
protocol that has super-polynomial time simulation security against malicious
receivers. To enable polynomial time extraction of the malicious sender input,
we additionally require the sender to generate an extractable commitment to its
input. To ensure the consistency of inputs used in the extractable commitment
and the ones used in the OT protocol, we rely on the IPS compiler. Specifically,
we use the 1-out-of-2 SPS OT to construct a k-out-of-m SPS OT protocol (us-
ing Yao’s garbled circuits) and use this as the watchlist protocol. We show that
this watchlist protocol is sufficient to instantiate the IPS compiler when we only
require SPS security against malicious receivers.

11

3-Round 2PC. As a next step, we use the above OT protocol to construct a three-
round 2PC protocol that satisfies standard simulation security against malicious
senders and SPS security against malicious receivers. This step involves stan-
dard tools and closely follows the construction given in [IKSS21]. Additionally,
we also show how to add 2-rewinding sender security to this protocol. Specifi-
cally, we show that if the underlying 3-round OT is 2-rewinding sender secure
and we also have a 2-rewinding secure extractable commitment scheme (which
was constructed in [BGJT18]), we get a 2-rewinding sender secure 2PC protocol.
Further, we note that 2-rewinding sender security of our 3-round OT protocol
just boils down to instantiating the underling extractable commitment on the
sender side (as explained earlier) with a 2-rewinding secure one, and we instan-
tiate this with the construction given in [BGJ*18].

8-Round 2PC with Special Extraction. We then use the above 3-round 2PC
protocol to construct a protocol that additionally satisfies the “promise-style”
extraction guarantee. To achieve this, we require the receiver to commit to its
input (as well as the randomness) used in the 2PC protocol via a three-round
extractable commitment. Again, as in the case of OT protocol, we need to make
sure that the inputs committed via the extractable commitment is consistent
with the inputs used in the 2PC protocol. As before, we rely on the IPS compiler
but we observe that we do not need the “full-blown” watchlist protocol. Instead,
we require the sender in the second round to send a set of executions to be
opened in the clear and the receiver in the final round opens the extractable
commitment corresponding to these executions. The sender then checks whether
the input, randomness committed via the extractable commitment is consistent
with the messages sent in the 2PC protocol. If they are consistent for randomly
opened set of executions, then by standard statistical argument, we can show
that they are consistent for a majority of the executions with overwhelming
probability. This allows us to rewind and extract the receiver’s input via the
extractable commitment. We note that we are only able to guarantee “almost”
perfect extraction due to the existence of a “small” set of inconsistent executions.
Specifically, the “small” set of inconsistent executions could force the output
of the watchlist protocol to be L, but even in this case, our polynomial time
extract could extract some receiver input. But as explained earlier, this is not
problematic and is sufficient to instantiate the IPS compiler. We also note that
if the underlying 2PC protocol is 2-rewinding sender secure then this property
is inherited by the 2PC protocol with special extraction as well.

Organization. Due to lack of space, we only present the watchlist protocol and
defer the other constructions and their proof of security to the full version.

3 Preliminaries

We recall some standard cryptographic definitions in this section.

12

Split-State Non-Malleable Codes We will use non-malleable codes in the split-
state model that are one-many secure and satisfy a special augmented non-
malleability [AAG™ 16| property, as discussed below.

Definition 1 (One-many augmented split-state non-malleable codes).
Fiz any polynomials £(-),p(). An £(-)-augmented non-malleable code with error
e(-) for messages m € {0,1}*N) consists of algorithms NM.Code, NM.Decode
where

— NM.Code(m) — (L, M, R) where L € L, M € M and R € R (we will assume
that L =M =R) are a three-out-of-three secret sharing of the message,
— For every m € {0,1}P),

NM.Decode(NM.Code(m)) = m, and

— For every set of functions f = (f1, f2,.-- fen)s9 = (91,92, ---gex)), b =
(h1,ha, ... hexy) and every set of permutations {o;}icpony, 0" on (L, M, R)
there exists a random variable Dy 4 p.o.00 0n Rx{{0,1}PMUsame* }X) which
is independent of the randommness in NM.Code such that for all messages
m € {0,137 it holds that the statistical distance between the distributions

o'(L), o' (M), {NM.Decode(fi(ci(L)), gi(0:(M)), hi(0:(R))) }icren)
and (replace(Dy g h.0,00,m)) where (L,M,R <= NM.Code(m))

is at most €(X\), where the function replace : {0,1}*x{0,1}* — {0, 1} replaces
all occurrences of same* in its first input with its second input, and outputs
the result.

We note that the construction of non-malleable secret sharing in [GSZ21] can
be proven to satisfy this definition. This is already implicit in [GSZ21] for the case
of single tampering but extension of their proof to the case of multiple tamperings
follows directly if we use a strong two-source non-malleable extractors that is
multi-tamperable [CGL16].Thus, we have the following:

Lemma 1. [GSZ21] For every polynomial £(-), there exists a polynomial q(-)
such that for every A € N, there exists an explicit (-augmented, split-state non-
malleable code satisfying Definition 1 with efficient encoding and decoding algo-

rithms with code length q()\), rate g(A\)~%M) and error PRCICVNRS

Low-Depth Proofs Any computation performed by a family of polynomial sized
ciruits can be transformed into a proof that is verifiable by a family of circuits in
NC1. We refer to the transformation as a low-depth proof, and we require such
a proof to satisfy the following definition.

Definition 2 (Low-Depth Non-Interactive Proofs). A low-depth non-interactive
proof with perfect completeness and soundness for a relation R consists of an (ef-
ficient) prover P and a verifier V that satisfy:

13

— Perfect completeness. A proof system is perfectly complete if an honest
provers can always convince an honest verifier. For all x € L we have

Pr[V (r) = 1|1 « P(z)] = 1

— Perfect soundness. A proof system is perfectly sound if it is infeasible to
convince an honest verifier when the statement is false. For all x ¢ L and
all (even unbounded) adversaries A we have

PriV(xz,m) =17 + A(z)] = 0.
— Low Depth. The verifier V can be implemented in NCL1.

It is shown in [IKSS21] building on [GGH™ 13| how such a non-interactive proof
can be constructed in a simple way. Looking ahead, our construction of watchlists
makes use of a (malleable) two-party computation protocol for NC1 that must
verify validity of a non-malleable code. We rely on low-depth proofs to ensure
that the two-party computation protocol only performs NC1 computations.

3.1 3-Round Two-Party Computation Protocol with Special
Extraction

The watchlist protocol requires a special two-party computation protocol. We
give a construction of this protocol in the full version and present the definition
here.

Syntaz. A three-round protocol II = (IIy, Ils, I3, outyy) between a sender and
a receiver proceeds as follows. In each round r € [3], the sender runs II, on its
identity, the transcript, its input and randomness to generate msgf . Similarly,
in round r, the receiver runs II, on its identity, the transcript, its input and
randomness to generate msgl?. The sender sends msg?> to the receiver and the
receiver sends msgf to the sender and these messages are then added to the
transcript. At the end of the protocol, the receiver run out;; on its identity,
transcript, its input and randomness to compute the output which is a string
z or L. The sender runs outy; on its identity and the first round message from
the receiver, the second round message from the sender and third round message
from the receiver and outputs either accept/reject. We note that while the output
computation of the receiver requires access to its private random tape, the output
of the sender is publicly computable.

Definition 3. A three-round two-party protocol I = (IIy,Il5,II5,0uty) for
computing a function f is said to satisfy k-special extraction if:

— Public Coin Second Round Messages. The second round messages from
the sender and the receiver are both public coin.

14

— Security against Malicious Senders. There exists an expected PPT ma-
chine Simg such that for every non-uniform A the corrupts the sender and
for every receiver’s input x € {0,1}", we have:

{(ViewA(<R(1’\,x),A(l’\)>),outR(<R(1’\,x),A(l’\)>))} ~,
{(Viewa, f(,)) : (View,y) < (Sims)* (1)}

In the above definition, we note that if y output by Simg is the special symbol
L, then the output of f is also L. We additionally need the existence of a
straight-line SPS simulator SPSimg that has the same guarantees as Simg.

— Super-Polynomial Time Simulation Security against Malicious Re-
ceivers. There exists a super-polynomial time machine SPSimg = (SPSim}z,
SPExtg, SPSim%, SPSim?I’;{) such that for every adversary A corrupting the re-
cetwer and for every sender’s input y € {0,1}", we have:

{ViewA(<A(1’\),S(1’\,y)>)} ~. Idealz(1*,y, A, SPSimp)

where the experiment ldealr is described in Figure 2.

— 2-Rewinding Sender Security against Sub- Exponential Adversaries.
We require that this protocol to be secure against any malicious sub-exponential
time receiver that could rewind an honest sender twice by giving possibly dif-
ferent second round messages in each rewind.

— Special Extraction of the Malicious Receiver Input. There exists a
super-polynomial time extractor SPSpecExty such that for any adversary A
corrupting the receiver and for any sender input y € {0,1}", the probability
the following experiment outputs 1 is negligible:

1. Sample a transcript T from ldealg(17,y, A, SPSimg).

2. If the output of the sender S in the transcript T is reject, then output of
the experiment is 0.

3. Run SPExtg(msgk) (where msgh € T) to obtain x. If x = L, output of
the experiment is 0.

4. Else, run SPSpecExt(T) to obtain x’.

5. The output of the experiment is 1 if and only if v # x'.

— Existence of k accepting Transcript Extractor. There exists a polyno-
mial time machine Extg that on input any k transcripts Ty, ..., Ty such that
in each of the transcript the output of the sender is accept outputs T such
that T = SPSpecExt(T,) with overwhelming probability.

— Delayed Function Selection. The function to be computed can be chosen
by the sender in the third round.

4 The Watchlist Protocol

In this section, we formally construct and prove security of three-round watchlist
protocol. Recall that in the watchlist protocol, each ordered pair of parties P;

15

— Run SPSim%(1*) to obtain (msg?, st) and send msg? to A. Receive msg® from
A.

Run SPExtr(msg?) to obtain z,st’.

— Sample (msgj,st”) from SPSim%(st,st’) and send msg5 to A.

— Receive msgZ from A.

Run SPSim¥%(st”, f(z,), msglt, msgX, msg5) to obtain msg; and send this to
A.

— Receive msgf from A.

— Output view of A.

Fig.2: Description of Idealg.

and P; invoke a f-out-of-m OT functionality where P; acts as the receiver and
P; acts as the sender. Specifically, the private input of party P; in this OT
instance consists of of x; which is the vector of sender inputs of dimension m
and the private input of party P; is K; which is a subset of [m] of size £. The
output to party P; consists of {X; 1 }rck,. We note that in the watchlist protocol,
every honest party P; uses the same K; in each instance of the OT functionality
when acting as the receiver and same x; in each instance when acting as the
sender. However, the corrupted party P; may choose different K; and x; for each
instance when acting as the receiver and the sender respectively. For ease of
notation, whenever we use K; as the receiver input of a corrupted party P;, we
actually mean a set of subsets {K; ;};en. Similarly, whenever we use x; as the
sender input of a corrupted party P;, we actually mean set of vectors, one for
each honest party.

4.1 Definitions

Before we proceed to the formal definition of the watchlist protocol, we give an
informal overview of the various properties that the protocol needs to satisfy.

1. The first requirement is the existence of a straight-line super-polynomial time
simulator Simy, that has oracle access to the watchlist functionality and
produces a view of the adversary that is computationally indistinguishable
to the real world. This requirement is same as standard SPS security. Here,
it is crucial that the simulator is straight-line i.e., it does not rewind the
adversary.

2. The second property is about the existence of an “alternate” extraction
mechanism of the malicious receiver inputs. Specifically, we require that if
the output of all the honest parties when acting as the sender is not L in
the protocol, then there exists an alternate super-polynomial time extractor
SPExtwi r that extracts the adversarial receiver inputs using the accepting
transcript. Further, for each corrupted party, these inputs are the same as
the ones extracted by Simyy except in the case that it is L.

16

3. The third property is about the existence of polynomial-time rewinding ex-
tractor (that rewinds the adversary until it obtains k accepting transcripts)
and outputs the malicious receiver inputs that is identical to the one output
by SPExtw r. For technical reasons, we need to separate out the existence of
a polynomial time rewinding extractor and super-polynomial time extractor
in the alternate extraction mechanism.

4. The fourth property is about the one-rewinding sender non-malleability.
Roughly speaking, it requires that adversarial sender inputs cannot depend
on the honest party sender inputs even if the adversary is allowed to rewind
the second and third round message of the protocol once.

Definition 4 (Extractable (n,m,{)-Watchlists). Fiz any polynomials n =
n(A),m = m(\),L = £(N\). An extractable (n, m,£)-watchlist is a protocol that
achieves the simultaneous n-party m-choose-¢ OT functionality with the follow-
g security guarantees:

1. Real-Ideal Security with Straight-line SPS simulator. There exists
a (stateful) straight-line super-polynomial time simulator Simw such that
for any (stateful) adversary A that is corrupting an arbitrary subset M of
the parties and for any choice of honest party inputs {x;, K;}jcu (where H
denotes the set of honest parties, X;’s denote the sender inputs of party j,
and K;’s denote the set of executions that player j watches), we have the
following two distributions are computationally indistinguishable:

(a) View of the adversary and the output of all the honest parties H in the
real execution of the protocol.

(b) Idealsps(1*, M, A, Simwi) where Idealsps is given in Figure 3.

Furthermore, the distribution of the messages generated by Simw on behalf

of honest receivers is identically distributed to the real receiver messages with

dummy inputs.

2. Special Extraction of the Malicious Receiver Input. There exists a
super-polynomial time extractor SPExtwi r such that for any adversary A
corrupting a subset M of the parties and for any choice of honest party
inputs {x;, K;};jcm, the probability that the following experiment outputs 1
1s negligible:

(a) Sample a transcript T from ldealgpg experiment and let {o;};cu be the
output of the honest parties.

(b) If o; = L for each j € H in |dealgps experiment, then output of the
experiment s 0.

(¢) Else, run Simwi ({msgi }icar) (where {msgt }icnr € T) to obtain ({K;}icnr,st).

(d) Run SPExtw, r(T) to obtain {K]}iem.

(e) The output of the experiment is 1 if and only if there exists an i € H
such that K| # K; whenever K; # L.

3. Existence of k accepting Transcript Extractor. There exists a polyno-
mial time machine Extw r such that on input any k transcripts Tq,..., Ty
with common first message such that in each of the transcript the out-
put of the honest parties is not L outputs {K;}jen such that {K;}jen =
SPExtwi, r(T1) with overwhelming probability.

17

4. One-Rewinding Sender Non-Malleability. We require the existence of
an (expected) PPT algorithm Extwi s such that for any I1-rewinding adver-
sary A corrupting any set M of the parties (by 1-rewinding, we refer to an
adversary that is allowed to rewind the second and third round message of
the protocol once) and for any choice of honest party inputs {x;, K;}jen
such that the following two distributions are computationally indistinguish-
able against adversaries that run in time which is polynomial in the running
time of SPSimw g:

(a)

(b)

Consider the ldealsps experiment in Figure 3 with the 1-rewinding ad-
versary A (i.e., step-4 in the experiment is repeated once more). Let us
denote the first execution with the adversary as the main thread and the
rewinding execution with A as the rewind thread. After step-4, run Simyw,
on the messages generated in the main thread to compute {X;}ienr. Out-
put the view of the adversary A and {x;}icp-

Sample uniform random tape {r;};cm and execute the protocol honestly
with the 1-rewinding adversary A using the honest inputs {K;,X;}jen
with the above random tape. Run Extwi s(1*, {K;,%;j,7;};jen) to obtain
{x;}iem- Output view of the adversary in the above honest execution
along with {x;}ien -

1. Run Simw (1, M) to obtain {msg’}jex and send this to .A. Receive
{msgi }ienr from A.

2. Run Simwi ({msg’ }iear) to obtain ({K;}iear, st).

3. Compute the output of the watchlist received by the parties in M when
the honest sender inputs are {x;};jcn and the malicious receiver inputs are
{Ki}icm. Let {0;}iem be this output.

4. For each r € {2,3}:

(a) Run SimWL({ai}ieMﬁt,{msg}c}ke[r_ll,ieM) to obtain {msgi}ng and

5. Run Simwe ({msg}, }icar,xefz)) to obtain {x;}iens.

6. Compute the output of the watchlist received by the parties in H when
the honest receiver inputs are {K;};cx and the malicious sender inputs are
{xi}iem. Let {0;};en be this output.

7. Output view of A and {0;};en.

send this to A. Receive {msg; }icns from A.

Fig.3: Description of ldealgps.

4.2 Construction

Our construction is described in Figure 4, and makes use of the following ingre-

dients:

18

— A 3 round two-party secure computation protocol IT satisfying Definition 3
with delayed-function selection for NC! circuits and 2-rewinding sender se-
curity.

— An information-theoretic m(\) - £(A) non-malleable coding scheme satisfy-
ing Definition 1.

— A low-depth proof for P according to Definition 2.

— An existentially unforgeable signature scheme with algorithms denoted by
Signature.Setup, Signature.Sign and Signature.Verify.

We describe our protocol formally in Figure 4. The correctness of this protocol
follows from correctness of the underlying oblivious transfer, non-malleable codes
and signature scheme. In what follows, we formally prove security according to
Definition 4.

Theorem 1. Let A denote the security parameter, and m = m(\), k = k(X\), £ =

L(N\) be arbitrary polynomials. There exists a 3 round £ non-malleable 7: obliv-

1ous transfer protocol satisfying Definition 4 that makes black-box use of any 3
round two-party secure computation protocol II satisfying Definition 3 with 2-
rewinding sender security, and any existentially unforgeable signature scheme.

Proof of Theorem 1. We observe that properties 2 and 3 carry over from the
properties of the underlying two-party computation protocol, and 1 is implied
by 4 together with SPS security of the two-party protocol against malicious ad-
versaries (following [IKSS21]). Our key goal is to prove that the protocol satisfies
property 4. To keep exposition simple, we prove this property against polyno-
mial time distinguishers. We note that indistinguishability against distinguishers
running in time which is polynomial in the running time of SPExtw g follows
directly from the 2-rewinding sender security of the underlying 2PC protocol
against such distinguishers.

We now consider a man-in-the-middle adversary that participates as an OT
receiver in upto £(A) executions of this protocol on the right, and participates
as an OT sender in upto £(\) executions on the left. Towards proving that our
protocol satisfies property 1, we will prove that there exists a PPT algorithm
Sim-Ext, that with black-box access to the MIM, and to ¢ copies of the ideal OT
functionality OT = {OT;({m; ;}icim),)}jeq and with input {K};efq, simu-
lates an execution of the protocol with the MIM and extracts all the inputs
{({mi;}iepm)) }jerg used by the MIM in the executions where the MIM is sender.
We will prove that the 1-rewinding view output by Sim-Ext, that we denote by
|dea|M|M({mm}ie[m])je[g], {Kj}je[l]) will be such that

Realmim ({S; ({mi j }icim)) Y AR (K5) Yiera) ~e Idealvim({mi; Yiepml,ieig, {5 Fiern)

where the expression on the left denotes the joint distribution of the view and
messages committed by a 1-rewinding adversary in an interaction where honest
senders S; have inputs {mm}ie[m], and honest receivers R; have inputs Kj;.

To prove indistinguishability, we define a sequence of hybrid experiments,
where the first one outputs the distribution Realyim ({S;({mi ; }icm)) e, {R(Kj)}iemm

19

Inputs: Sender S has inputs {m;};cm and receiver R has input a set K C [m]
where |K| = k.

Protocol: § and R do the following.

1. S samples (vk, sk) < Signature.Setup(1*), then does the following.
— For each i € [A],j € [m], pick uniform randomness r; ; and compute

(Li,]', M,‘ﬂj, Ri,]’) = NM.Code((vk|mj); Tiyj).
— Set instance & = (vk, {(Li,j, Mi j, Ri 5, m;) }ic[n),jeim)) and language

L = {(vk,{(Lij,Mij,Rij,mj)}iein,jem) :
Vi € [A],j € [m], NM.Decode(Lm-, M; ;, Riyj) = (Uk‘m])}

Compute Idp = LDP.Prove(z, £).
2. For each i € [A], R picks ¢; + {0,1,2}.
3. Both parties engage in the protocol IT to compute functionality F where:
— R plays the receiver with input K committed in round 1 and delayed
function (c1,...,cx) chosen in round 2.
— S plays the sender with input (z,ldp), where x is parsed as
(vk, {mj, (Lij, Mij, Rij) bien),jeim)-
— The functionality F on input (vk, {m;,L; ;, M; ;, Ri,j}ie[)\],je[nl]a K, {Ci}z‘e[/\])
generates an output as follows:
o If LDP.Verify(z,ldp) # 1, output L. Otherwise set out = vk, {m;} ck.
o Additionally, for every i € [A], if ¢; = 0, append ({Li,;};epm)) to out,
if ¢; = 1, append ({M;;}jem) to out, else append ({Ri,;};cim]) to
out.
e Output out.
Additionally, S signs messages generated according to [II, de-

noted by (II1,II3). It sets o, = Signature.Sign(Ily,ids, sk), o3 =
Signature.Sign(I1s, ids, sk) where idg is the identity of the sender. It sends
(o1,03) to R.

4. R obtains output out and parses out = (vk,{m;};ex,). It outputs {m;};cx
iff Signature.Verify(o1, IT1, idsvk) A Signature.Verify(os, II3,ids, vk) = 1, other-
wise outputs L.

Fig.4: ¢(\) Non-Malleable m(\)-choose-k(\) Oblivious Transfer

and the final one outputs the distribution Idealyim({mi ; }icim),jerg, 155} jer)-

Formally, these hybrids are defined as follows:

Hyb, : This corresponds to an execution of the MIM with ¢ honest senders
{S;}jel on the left, each using inputs {m; ;}icm) respectively and £ honest
receivers on the right with inputs ({K};¢[q) respectively. The output of this

20

hybrid is Realmim({S;({mi; Yicim)) bieis 1R (K5) }ielo-

Hyb, : This experiment modifies Hyb; by introducing an additional abort condi-
tion. Specifically, the experiment first executes the complete protocol correspond-
ing to the real execution of the MIM exactly as in Hyb, (including rewinding the
MIM once) to obtain the distribution Realmim ({S; ({mi;j Ficpm) Fies AR () i) -
Let p(\) denote the probability that the MIM completes this execution with-
out aborting. Set v(A) = max (X, p~2())). With the first two rounds of the tran-
script fixed, the rewind the right execution up to 7v2(\) times, picking inputs
(cf,...,c}) for each of the ¢ receivers {R;},c[q independently and uniformly
at random in every run. If there exist two rewinding threads where the MIM
completes the protocol execution, denote the inputs chosen by the challenger

on behalf of the honest receiver in these rewinding threads by (¢’ {, o &) and
(c"],...,c"]) respectively. For every j € [{], let index a; € [A] be such that

y — 13 "y
¢y, =0,cy, =17, =2

YU
MOtj,’i7

Additionally for every j € [€],i € [m], use (L

aj,e)?

ﬁfljz) obtained as
output from the main and rewinding executions respectively to compute ﬁﬁg =
NM.Decode(LJ%_’i7 Mflj’i, Riy”)

If no such rewinding thread exists, or if there exists j € [{] for which there
does not exist a € [A] such that ¢/, = 0,¢”, = 1,¢"?, = 2, then set m! = L for

all ¢ € [m]. Now, the output of this hybrid is the joint distribution

Viewnim ({S; ({m? Yicm)) et (R (K9 Yeq)s {M? }ietericim)-

Lemma 2. For every unbounded distinguisher D and large enough A € N,
Pr[D(Hyb,) = 1] — Pr[D(Hyb,) = 1]| = negl(}\)

Proof. Since the MIM’s inputs {rﬁf }jelq are committed in round 1 of the pro-
tocol, then conditioned on the adversary providing a non-aborting transcript in
rewinding executions in Hyb,, by simulation security of the 2pc, {(m?} ¢y are
correctly extracted.

Therefore, to prove this lemma it suffices to show that two rewinding exe-
cutions (with a non-aborting transcript) can be found within v2()\) attempts,
except with probability negl(\). To see this, we observe that the probability of
a non-aborting transcript is p(\), and therefore, the probability that 42(\) — 1
out of the v2(\) trials abort is negl(\).

Hyb,: This experiment modifies Hyb; to execute the superpolynomial simulator
of IT in all sessions where the MIM is a receiver. Specifically, in these executions,

instead of the honest sender strategy with input {mz Fieim),jelg, we execute the

superpolynomial simulator Sim-2PCS'\I/|eI,:vI F[Psi) Where

: _ JogJ J J J J J
inpg; = ({m7, L1,i? R L)\,i’ Ml,i’ RER MA,i’ Rl,i’ R RA,i}iE[m])'

21

Sim-2PCse, expects round 1 and round 2 messages from the MIM, and the MIM
in turn expects corresponding messages from the receiver in the right execution.
Receiver messages for the right execution are generated using honest receiver
strategy with inputs K7 fixed, and inputs ¢}, .. ., ¢, chosen uniformly at random,
exactly as in Hyb,. Denote the view of the MIM by

VieWSim{]-‘(inij e <{'R,j(Kj)}j€m>,

where for every j € [{], inpg; is as defined above.

Next, with the first round of the transcript fixed, the challenger rewinds the
right execution up to () times, picking inputs (c],...,c}) for RJ indepen-
dently and uniformly at random in every run, and generating messages in the
left execution by running the simulator Sim-2PCse, each time.

If there exist two rewinding executions where the MIM completes the proto-
col, denote the inputs chosen by the challenger on behalf of the honest receiver

in this rewinding thread by (c’{, . ,c’g\) and (c"{, .. .,c”i) respectively. For
every j € [{], let index a; € [A] be such t}at Ca, :~O?c’flj = 1L,d%, =2
Additionally for every j € [{],i € [m], use (foj’i, Mij’i, Rij’i) obtained as out-

put from the main and the two rewinding executions respectively to compute

ml = NM.Decode(L? . M’ ﬁigz) If no such rewinding thread exists, or if

Otj,i7 ij,i’)
there exists j € [¢] for which there does not exist a € [\] such that ¢/, = 0,c?, =

1,c”7 = 2, then abort. The output of this hybrid is the joint distribution:

Viewg, (i, e (R (K?) Yiera)s M} e icim)s
where for every j € [¢], inpg; is as defined above.

Lemma 3. Assuming 2-rewinding secure two party computation according to
Definition 3, for every PPT distinguisher D and large enough \ € N,

Pr[D(Hyb,) = 1] — Pr[D(Hyb,) = 1]| = negl(\)

Proof. We consider a sequence of sub-hybrids Hyb, o, Hyb, ;,...Hyb, , where for
every j € [{], Hyb; ; is identical to Hyb; ;_;, except that instead of executing
the honest sender strategy using honest sender inputs {m; }iem), We execute the

MIM, F (inpg; ,-)

Sen where

simulator in the j** left execution, where Sim-2PC

inpg; = ({m}, L] ;... . L4 ;»M] ... ,ML . RY, - RY Fiepm))

Suppose the lemma is not true. Then for every large enough A € N there
exists 7*(A) € [¢(\)], a polynomial p(-) and a distinguisher D such that for
infinitely many A € N,

1
Pr[D(Hyb, ;._1) = 1] — Pr[D(Hyb, ;.) = 1]| = —=
q(A)

We derive a contradiction by building a reduction A that on input A, obtains
J7*(A\) as advice and with black-box access to the MIM and to D contradicts 2-
rewinding security of the two party computation protocol. A proceeds as follows:

22

— A first creates receiver R’ that interacts with the external challenger as
follows.

e Obtain the first round sender message from the 2pc challenger, and for-
ward this to the MIM as S7"’s message in the j*™ left execution. In
addition, generate the first round messages according to receiver strat-
egy with inputs { K’ }iepq for the right execution. Obtain the first round
message from the MIM, which includes a (malicious) sender message for
the right execution and a (malicious) receiver message for the left exe-
cution. Output the MIM’s receiver message in the j*** left execution to
the challenger of the 2pc.

o Generate the second round message for the right execution according to
honest receiver strategy, and obtain the second round message for the
left execution from the challenger. Forward the MIM’s message in left
session j* to the challenger.

e Obtain the third round message for the left execution externally from
the challenger, and forward this to the MIM as S’s message in the j*th
left execution. Generate messages for the right executions using honest
receiver strategy. Obtain the third round message from the MIM for the
right execution.

— Next, A rewinds R’ twice with fixed first round, and obtains MIM outputs
as follows.

e Run the second round with honest receiver strategy on the right, and
obtain challenger messages on the left. Obtain the second round mes-
sage from the MIM, and output the MIM’s message in session j* to the
challenger.

e Obtain the third round message for the left execution externally from
the challenger, and forward this to the MIM as S’s message in the j*th
left execution. Obtain the third round messages from the MIM.

— If none of the executions abort, for every j € [¢], find «; € [A] such that c&j =

"i
aj

0, c’ij =1,c = 2. If these do not exist, abort. Otherwise use the outputs of

the two-party computation protocol to compute rﬁg = NM.Decode(E&j i |\~/Iij7i, ﬁfx“)
for i € [m],j € [(]. Else, set m! = L for i € [m],j € [(]

— A outputs the entire view of R’ together with {ﬁ’]g}ie[m] je[g- If the challenger
used honest sender messages, we denote the distribution output by A in this
experiment by Dist; and if the challenger used simulated messages, we denote
the distribution output by A in this experiment by Dists.

If the challenger’s messages correspond to the real sender S, then the distribu-
tion output by A conditioned on not aborting corresponds to Hyb,, and if the
challenger’s messages correspond to Sim-2PCge,, then the distribution output by
A conditioned on not aborting corresponds to Hyb,.

By assumption, for infinitely many A € N,

Pr[D(Hyb,) = 1] — Pr[D(Hyb,) = 1]| = ﬁ

23

Since the MIM completes any run of the protocol without aborting with prob-
ability at least p(\), and because aborts are independent of the distinguishing
advantage, for infinitely many A € N:

1
Pr[D=1 A —abort|Hyb;] — Pr[D =1 A —abort|Hyb,|| > ————
where —abort denotes the event that an execution that is completed in the main
thread, is also completed without aborting in one rewinding execution.
This implies that for infinitely many A € N:

v
P*(A) -q(A)’

where Dist; and Disty denote the real and ideal distributions of the underlying
2-party computation protocol under 2-rewinding security. This implies that D
contradicts 2-rewinding security of the two party computation protocol.

Pr[D(Dist;) = 1] — Pr[D(Disty) = 1]| >

Hybs: This hybrid is the same as Hyb, except whenever the challenger obtains
as output a verification key in one of the right sessions that is identical to a
verification key used in one of the left sessions, the hybrid outputs L. By exis-
tential unforgeability of the signature scheme, given any PPT adversary MIM,
Hyb, and Hybs; are computationally indistinguishable.

Hyby: This hybrid is the same as Hybs except that inpg; is set differently.
Specifically, for every j € [¢],i € [m] and a € [A], we set (L], ;,M, ;,R] ;)
NM.Sim(17™), and set

: _ JoJ J J J J J
inps; = ({m7, Ll,i? R L)\,i’ Ml,i’ EER MA,i’ Rl,i’ R R/\,i}ie[m])'

We note that at this point, the functionality { F(inpg;,-)};c[¢ can be perfectly
simulated with access to the ideal functionality {OT7(m?, m?,-)} jele- Moreover,
this hybrid runs the super-polynomial simulator of the two-party computation
protocol, which can be split into a straight-line simulator that extracts ad-
versarial receiver input from the first round, and then a rewinding-based ex-
pected polynomial-time simulator that extracts adversarial sender input. The
latter can also be replaced by a straight-line superpolynomial simulator that ex-
tracts the adversarial sender-input by running the straight-line superpolynomial
simulator of the two-party computation protocol. Finally, as long as the un-
derlying two-party computation protocol has its ideal distribution be identical
to an honest execution with dummy inputs, the same is true for our proto-
col. Therefore, the output of this hybrid is identical to the ideal distribution

Idealvim ({m? }icpmysers 1K} jein)-

Lemma 4. Assuming m(\)-£(\) symmetric non-malleable codes satisfying Def-
inition 1, for every unbounded distinguisher D and large enough A € N,

Pr[D(Hyb,) = 1] — Pr[D(Hyb;) = 1]| = negl(}\)

24

Proof. We prove indistinguishability between Hyb,; and Hyb, by considering a
sequence of sub-hybrids, {Hybs ; ; }ie[1,m],je[1,0,ke[0,n] Where:

— Hyb; = Hybs,o,z,m Hyb, = Hybs,m,z,m

— for i € [m], Hybs ; ;1 ,, = Hybs, 1 ¢

— for j € [€], Hybs ; ;1 » = Hybs; ; 0,

— for every i € [m],j € [€],k € [A], Hybs ; ; ;. is identical to Hybg ; ; ,_; except
that Hybg , ; , samples (L], ;, M7, R}) <~ NM.Code(0).

Suppose the lemma is not true. Then there exists i* € [m],j* € [{],k* € [}],
an unbounded distinguisher D and a polynomial p(-) such that for large enough
AeN,

b

Pr[D(Hybg .. .« «) = 1] — Pr[D(Hybg .« v s =1]| =
I‘[(y3,z J ,k)] 1"[(y3,z g%k —1) } p()\>

(1)

We now define a set of tampering functions (fmim, gmim, hvim), and a set of
additional functions (wwmim, Ymim, 2mim)- Before defining them, we define a shared
state for these functions, that is generated as follows:

— Execute Sim—2PCg/'e'r'1vI , using honest R strategy in the right executions with
input {K7}¢(q and uniformly chosen {c}, ... };eq, until Sim-2PCsep gen-
erates a query to the ideal functionality F at the end of round 2.

— At this point, Sim—2PC5|YLI,:V| outputs a view and transcript of the MIM until
the third round, as well as {f(7} jele) that correspond to the receiver’s inputs
in the left execution.

— Rewind the second round twice with uniformly and independently chosen
{c1,....3}jeqg and {1, ..., "} }jelq respectively in each rewind. If for
every j € [£())], there exists «; € [A] such that céj = O,c’ij = l,c”ij =2,
continue, otherwise abort.

— Obtain the rewinding message of the adversary in the second round (with
the same first round prefix), as well as (¢y,...,¢,) and (Cy,...,C,) that
correspond to the receiver’s chosen functions in the j*th left session in this
rewinding execution.

— If ¢+, €+ and Cp» are all different, continue. Otherwise, abort.

— Generate (Li,ﬂMi,i’Ri,i) for every (i,4,k) € [m] x [€] x [A] \ {¢*, 5%, k*}
according to Hybg ;. ..y (this is identical to setting them according to
Hybg ;e o g)-

— Output the view of the MIM until round 2 in the main the rewinding threads,
and also output (i*, j*, k*), and the values (L, ;, My ;s Ry) (i j.k)efm]x [0 A\ (i 5+ k+) -

— Additionally, output the receiver’s inputs {I?j,EjL . ,E{\}jem and also out-
put the sender’s inputs {sk’, vk’, {m{}ie[m] }ielg, along with randomness 7.

The functions fumim,i,j, gmim,i,; and Amim,i,; correspond to tampering functions,
and are defined as follows.

25

-

— The deterministic function fumim,s; on input L, sets Li*yi* = L,Mf;,i* =
0,R]. .. =0.

Now, using hardwired values _{vkj,{mg}ie[m]}jem, {(Ki &, ... 7E§}j€[€] as

well as the values (Li,i’ Mi,i’ Ri)i)(@j,k})e[m]x[é]x[)\]\{i*,j*,k*}v it computes

out = {F7 (vk?, {m;, L ;. M]_ R Yicimy e K7, {E ke Hieto-

It then invokes Sim-2PCge, using randomness r on out to generate the third
round message of the protocol transcript in the thread corresponding to
the receiver challenge being 0. It outputs the value L}, ; or M, or R},
obtained from the MIM. . B .

— The function gmim,i,; on input M, sets M7, .. = M,R]. .. =L]. .. =0.

Now, using hardwired values {vkj, {mg}ie[m]}je[lb {[?j,E{, .. 7Eg\}j€[4] as

y * Tl y
) K K

well as the values (Li’i, Mi,w Ri,i)(i,j,k)e[m]x[e]x[A]\{i*,j*,k*}’ it computes

out = {F7 (vk?, {mi, L], ;, ML, RL Yietm ke K7, € eern) Yiers-

It then invokes Sim-2PCs, using randomness 7 on out to generate the third
round message of the protocol transcript in the thread corresponding to
the receiver challenge being 1. It outputs the value Ly, , or MY, ; or R}
obtained from the MIM. . . .

— The function hmim,;,; on input R, sets Ril =R, Mi:*;i: = Lil = 0.
Now, using hardwired values {Ukj, {m?}icpm biew, {K7,€,..., &} e as
well as the values (Lj, ;, My, ;, Ry ;) (i.j.k)elm]x (€] x A\ {i* j= .k*} » it computes

out = {F7 (v’ {mi, L ;, ML, R Fictml ke K75 (S kein) Yiels-

It then invokes Sim-2PCse, using randomness r on out to generate the third
round message of the protocol transcript in the thread corresponding to
the receiver challenge being 2. It outputs the value L]aj,i or Mf]j or fow
obtained from the MIM.

i
The functions wmim, ymim, 2mim generate the threads themselves and are defined
as follows.

—0,RI. .. =0.

Now, using hardwired values {vkj,{mf}ie[m]}jem, {[?j,E{,...,Eg\}je[g] as

— Next, the function wwmm on input L, sets Li*,i* =1L, I\/I{Cl .

well as the values (ng., Mfm, Ri,i)(i,j,k)e[m]x[ax[)\]\{i*,j*,k*}’ it computes
out = {F (vk?, {mi, Ly ;, Ry Yietmiken, K7, {6 ken) Vet -

It then invokes Sim-2PCse, on out to generate the third round message of

the protocol transcript in the thread corresponding to receiver left challenge

being 0. It outputs the resulting transcript as one thread in the view of the
MIM.

26

=M,R]. .. =0.
Now, using hardwired values {vkj {m] }1€[m]}J€[5 {K7, cl,...,Ei}je[g] as

— Next, the function yym on input M, sets Lk . =0, Mki

i*

well as the values (LfC i I\/If£ i Rk) (g k)elm] X [()x [N\ {i.j= k+}» it computes

out:{]—'J(vk],{mi, kz,RJ } [m],ke[)\]vf?jv{Ei}kG[)\])}jG[l}'

It then invokes Sim-2PCse, on out to generate the third round message of
the protocol transcript in the thread corresponding to receiver left challenge
being 1. It outputs the resulting transcript as another thread in the view of
the MIM. i . .

— Next, the function zym on input R, sets Lk* L. =0, Mi* L =0, Ri*’i* =R.
Now, using hardwired values {vk] {m] },e[m]}Je[g (K7, cl,...,Ei}je[g] as
well as the values (Li 0 Mi i Rk z)(w,k)e[1% [€) % [N\ {i*, 5% k*}» it computes

out = {F7 (vk?, {mi, LI, ;, RL ; Fiemy e K7 {Sh rein) bt

It then invokes Sim-2PCse, on out to generate the third round message of
the protocol transcript in the thread corresponding to receiver left challenge
being 2. It outputs the resulting transcript as another thread in the view of
the MIM.

Note that there is a fixed set of permutations o; j such that fymim,s,;, IMIM,i.5 hMIM, 3,5
can be relabeled as functions F; ;, G; g H; ; such that F; ; outputs L values, G; ;
outputs M values, and H; ; outputs R values.

By Definition 1 of £ augmented non-malleable codes, we have that for every
permutation o and ¢’ on L,M,R, and every F; ;,G; ; and H; j,

But these distributions upon post-processing (via the functions wmim, ymim, 2mim)
exactly correspond to the outputs of Hybg ;« i« .« and Hybg . ;. 1. respectively,

whenever ¢ ck* , 0,76* and cfc* are all different. On the other hand, when any two of

the three values Ei*,cki and c,7c are identical, the distributions Hybg ;« jx j_;
and Hyb ;. ;. ;. are statistically indistinguishable because of the two- out—of—
three secret sharing property of the code, i.e. they jointly do not depend on all
three of the shares, L,R and M. Since e(A\) = negl(\), this contradicts Equa-
tion (1), as desired.

Finally, this proof also extends to show that security of the watchlist protocol
holds against sub-exponential adversaries that run in time less than or equal to
T, where T denotes the running time of adversaries against which the underlying
two-party computation protocol is 2-rewinding sender secure.

27

5 4-Round Black-Box MPC Protocol

In this section, we give our construction of a four-round black-box MPC proto-
col from any two-message OT protocol that has super-polynomial time security
against malicious receivers and sub-exponential indistinguishability-based secu-
rity against malicious senders. Specifically, we prove the following theorem.

Theorem 2. For some € > 0, assume black-box access to a two-round oblivious
transfer protocol with super-polynomial time simulation security against mali-
cious receivers and (2*6,24‘()-mdistmguishability—based security against mali-
cious senders. Then, there exists a four-round protocol for computing general
functions.

5.1 Building Blocks
The construction makes use of the following building blocks:

1. A three-round watchlist protocol WL = (WL, WLy, WL3, outwy) satisfying
Definition 4. Let T7(\) (abbreviated as T7) be the running time of Simwy
(which is the SPS simulator for the watchlist protocol). Let T2(A) (abbre-
viated as T3) to be the running time of Simw r (which is the special SPS
extractor that over extracts the receiver inputs).

2. A two-round n-client, m-server MPC protocol & = (@1, P2, 0outg) that sat-
isfies ((T1 + T2) - poly(-), negl)-privacy with knowledge of outputs property
against any adversary corrupting upto t servers and an arbitrary number
of clients. By (T, €)-security, we require e distinguishing advantage against
any adversary that runs in time 7. By privacy with knowledge of out-
puts [IKP10], we consider a weaker notion of security (when compared to
standard malicious security in the real/ideal paradigm), wherein the adver-
sary has the additional power to determine the outputs of the honest parties.
This is modelled by the ideal functionality getting an output to be delivered
to the honest parties from the adversary. We call this protocol as the outer
protocol. We set ¢t = 2An? and m = 3t + 1. We need this protocol to addi-
tionally satisfy the property that the first round message generated by the
simulator on behalf of the honest clients to the corrupted servers is identi-
cally distributed to the first round messages generated by honest clients on
some default input. We note that [[KP10, Pas12] constructed such a protocol
making black-box use of a ((T} + T) - poly(+), negl)-secure PRG. As noted
in [IKSS21], we can delegate the PRG computations done by the servers
to the clients and ensure that the computations done by the servers are
information-theoretic.

3. For each h € [m], a three-round inner protocol II}, = (11}, 1, IIp 2, ITj 3, 0ut g,)
for computing the functionality of the h-th server in the outer protocol. We
require this protocol to satisfy Definition 5 (discussed below) against adver-
saries running in time (T} + T3) - poly(A\) and the distinguishing advantage
being negl(A).

28

Syntaz. The three-round inner protocol computing a function f is given by
a tuple of algorithms (117, IT5, IT3, out;r) with the following syntax. For each
round r € [3], the i-th party in the protocol runs I, on 1*, the index i, the
private input x; and the transcript of the protocol in the first (r — 1) rounds
to obtain 7. It sends 7 to every other party via a broadcast channel. We
use 7(r) to denote the transcript of IT in the first r rounds. At the end of
the interaction, parties run the public decoder outr(7(3)) to compute the
output.

Definition 5 ([IKSS21]). The protocol II is said to be an inner protocol
for computing a funtion f if it satisfies the following properties.
— Correctness. The protocol II correctly computes a function f if for
every choice of inputs x; for party P;,

Prlouty(7(3)) = f(x1,...,zn)] =1

where w(3) denotes the transcript of the protocol II when the input of P;
15 X4.

— Security. Let A be an adversary corrupting a subset of the parties in-
dexed by the set M and let H be the set of indices denoting the honest
parties. We require the existence of a simulator Simy such that for any
choice of honest parties inputs {x;};cp, we have:

Real(A,{x;,ri}icu) ~c Ideal(A, Simpr, {;}icm)

where the real and ideal experiments are described as in [IKSS21] (details
deferred to the full version due to lack of space).

Given these building blocks, our construction is described in Figure 5.
Due to space constraints, the full proof of security of this construction is
deferred to the full version.

Acknowledgments. Y. Ishai was supported in part by ERC Project NTSC (742754),
BSF grant 2018393, ISF grant 2774/20, and a Google Faculty Research Award.
D. Khurana was supported in part by NSF CAREER CNS-2238718 and DARPA
SIEVE. A. Sahai was supported in part from a Simons Investigator Award,
DARPA SIEVE award, NTT Research, NSF Frontier Award 1413955, BSF grant
2012378, a Xerox Faculty Research Award, a Google Faculty Research Award,
and an Okawa Foundation Research Grant. This material is based upon work
supported by the Defense Advanced Research Projects Agency through Award
HR00112020024. A. Srinivasan was supported in part by a SERB startup grant
and Google India Research Award.

References

AAG™16. Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji,
Omkant Pandey, and Manoj Prabhakaran. Optimal computational split-
state non-malleable codes. In Eyal Kushilevitz and Tal Malkin, editors,
TCC 2016-A, Part II, volume 9563 of LNCS, pages 393—417, Tel Aviv, Is-
rael, January 10-13, 2016. Springer, Heidelberg, Germany.

29

— Round-1: In the first round, the party P; with input x; does the following:
1. It chooses a random MAC key k; < {0,1}" and sets z; :== (xi, ki)-
2. It computes (¢171, ..., d17™) « D1(1%,4, 2;).
3. It chooses a random subset K; C [m] of size A and sets z; ; = K; for every
j €)\ {i}.
4. It chooses a random string r;, < {0,1}" for every h € [m] and sets
Yi,j = {rin, @17 " Ineim) for every j € [n]\ {i}.
5. It computes W|i — W|_1(1A7 i, {xij, yi,j}je[n]\{i})-
6. It broadcasts wl?.
— Round-2: In the second round, P; does the following:
1. For each h € [m], it computes ﬂ'hyl =101 (1%, 6,607).
2. It computes wlj « WLa(1*, 4, {zs j, yi.j biefnp £}, WI(1)). (Here, wi(r) de-
notes the transcript in the first r rounds of WL.)
3. It broadcasts {m, 1 }re[m), Wlb.
— Round-3: In the third round, P; does the following:
1. For every h € [m], it computes 7}, 5 := I 2(1*, i, ¢7", 7 (1);74,1). (Here,
7mr(r) denotes the transcrlpt in the first 7 rounds of I1.)
2. Tt computes wlj + WL3(1 ,z,{xw,yz,]}]e[n]\{ 1, wli(2)).
3. It broadcasts {7rh Q}he[m],wlg
— Round-4: In the fourth round, P; does the following:
1. It runs outwr on i, {Z: j,¥i ;}jem)\{i}, the random tape used to generate
the messages in WL and wl(3) to obtain {r; p, d){_’h}je[n]\{i},he&.
2. For each j € [n] \ {i} and h € Kj, it checks:
(a) If the PRG computations in ¢? " are correct.
(b) For each £ € [2], whether 7 , := ITy (1,5, 7" mn (0 — 1);75.1)
where 7, (0) is set to be the null string.
If any of the above checks fail, then it aborts.
Else, for each h € [m], it computes 7, 5 := ITy3(1*, 4, ¢ ", 7a(2);7i0)-
. It broadcasts {}, 5}ne[m) to every party.
utput Computation. To compute the output, P; does the following:
1. If a party has aborted before sending the fourth round message, output
L.
2. For every h € [m], it computes ¢4 := outp, (i, 7h(3)).
It runs outs on ({qﬁg}he[m]) to recover (y,01,...,0n).
4. It checks if o; is a valid tag on y using the key k;. If yes, it outputs y and
otherwise, it aborts.

o

[
o

w

Fig.5: Description of the Four-Round MPC Protocol

ACJ17. Prabhanjan Ananth, Arka Rai Choudhuri, and Abhishek Jain. A new
approach to round-optimal secure multiparty computation. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401
of LNCS, pages 468499, Santa Barbara, CA, USA, August 20-24, 2017.
Springer, Heidelberg, Germany.

30

ATROL1.

BD18.

BF22.

BGI*17.

BGJ7'18.

BHP17.

CCG™20.

CCG™21.

CGL16.

DGH™20.

DGIT19.

FMV19.

GGH™13.

GK96a.

William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer:
How to sell digital goods. In Birgit Pfitzmann, editor, EUROCRYPT 2001,
volume 2045 of LNCS, pages 119135, Innsbruck, Austria, May 6-10, 2001.
Springer, Heidelberg, Germany.

Zvika Brakerski and Nico Dottling. Two-message statistically sender-private
OT from LWE. In TCC 2018, Part II, LNCS, pages 370-390. Springer,
Heidelberg, Germany, March 2018.

Nir Bitansky and Sapir Freizeit. Statistically sender-private ot from lpn and
derandomization. In Crypto 2022, 2022.

Saikrishna Badrinarayanan, Sanjam Garg, Yuval Ishai, Amit Sahai, and
Akshay Wadia. Two-message witness indistinguishability and secure com-
putation in the plain model from new assumptions. In ASTACRYPT, 2017.
Saikrishna Badrinarayanan, Vipul Goyal, Abhishek Jain, Yael Tauman
Kalai, Dakshita Khurana, and Amit Sahai. Promise zero knowledge and
its applications to round optimal MPC. LNCS, pages 459-487, Santa Bar-
bara, CA, USA, 2018. Springer, Heidelberg, Germany.

Zvika Brakerski, Shai Halevi, and Antigoni Polychroniadou. Four round
secure computation without setup. In Yael Kalai and Leonid Reyzin, editors,
TCC 2017, Part I, volume 10677 of LNCS, pages 645—677, Baltimore, MD,
USA, November 12-15, 2017. Springer, Heidelberg, Germany.

Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. On round optimal secure multiparty computation from
minimal assumptions. To appear in TCC, 2019:216, 2020.

Arka Rai Choudhuri, Michele Ciampi, Vipul Goyal, Abhishek Jain, and
Rafail Ostrovsky. Oblivious transfer from trapdoor permutations in minimal
rounds. In TCC 2021, Part I, pages 518-549, 2021.

Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors
and codes, with their many tampered extensions. In Daniel Wichs and
Yishay Mansour, editors, 48th ACM STOC, pages 285-298, Cambridge,
MA, USA, June 18-21, 2016. ACM Press.

Nico Déttling, Sanjam Garg, Mohammad Hajiabadi, Daniel Masny, and
Daniel Wichs. Two-round oblivious transfer from CDH or LPN. In Anne
Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part II, pages 768—
797, 2020.

Nico Déttling, Sanjam Garg, Yuval Ishai, Giulio Malavolta, Tamer Mour,
and Rafail Ostrovsky. Trapdoor hash functions and their applications.
LNCS, pages 3-32, Santa Barbara, CA, USA, 2019. Springer, Heidelberg,
Germany.

Daniele Friolo, Daniel Masny, and Daniele Venturi. A black-box construction
of fully-simulatable, round-optimal oblivious transfer from strongly uniform
key agreement. In Dennis Hofheinz and Alon Rosen, editors, Theory of
Cryptography - 17th International Conference, TCC 2019, Nuremberg, Ger-
many, December 1-5, 2019, Proceedings, Part I, volume 11891 of Lecture
Notes in Computer Science, pages 111-130. Springer, 2019.

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and
Brent Waters. Candidate indistinguishability obfuscation and functional
encryption for all circuits. In 54th FOCS, pages 40-49, Berkeley, CA, USA,
October 2629, 2013. IEEE Computer Society Press.

Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. J. Cryptology, 9(3):167-190, 1996.

31

GK96b.

GLOV12.

GMPP16.

Goyll.

GPRI16.

GS18.

GSZ21.

HIKT11.

HK12.

HPV20.

HV18.

IKP10.

IKSS21.

Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge
proof systems. SIAM J. Comput., 25(1):169-192, 1996.

Vipul Goyal, Chen-Kuei Lee, Rafail Ostrovsky, and Ivan Visconti. Con-
structing non-malleable commitments: A black-box approach. In 53rd
FOCS, pages 51-60, New Brunswick, NJ, USA, October 20-23, 2012. IEEE
Computer Society Press.

Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychro-
niadou. The exact round complexity of secure computation. In Marc Fischlin
and Jean-Sébastien Coron, editors, FUROCRYPT 2016, Part II, volume
9666 of LNCS, pages 448-476, Vienna, Austria, May 8-12, 2016. Springer,
Heidelberg, Germany.

Vipul Goyal. Constant round non-malleable protocols using one way func-
tions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC,
pages 695-704, San Jose, CA, USA, June 6-8, 2011. ACM Press.

Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable
commitments. In Daniel Wichs and Yishay Mansour, editors, 48th ACM
STOC, pages 1128-1141, Cambridge, MA, USA, June 18-21, 2016. ACM
Press.

Sanjam Garg and Akshayaram Srinivasan. Two-round multiparty secure
computation from minimal assumptions. LNCS, pages 468-499. Springer,
Heidelberg, Germany, 2018.

Vipul Goyal, Akshayaram Srinivasan, and Chenzhi Zhu. Multi-source non-
malleable extractors and applications. In EUROCRYPT 2021, Part II,
pages 468-497, 2021.

Iftach Haitner, Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Pe-
trank. Black-box constructions of protocols for secure computation. STAM
J. Comput., 40(2):225-266, 2011.

Shai Halevi and Yael Tauman Kalai. Smooth projective hashing and two-
message oblivious transfer. Journal of Cryptology, 25(1):158-193, January
2012.

Carmit Hazay, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam.
Which languages have 4-round fully black-box zero-knowledge arguments
from one-way functions? In Anne Canteaut and Yuval Ishai, editors, EURO-
CRYPT 2020, volume 12107 of Lecture Notes in Computer Science, pages
599-619. Springer, 2020.

Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Round-
optimal fully black-box zero-knowledge arguments from one-way permu-
tations. In TCC 2018, Part I, LNCS, pages 263-285. Springer, Heidelberg,
Germany, March 2018.

Yuval Ishai, Eyal Kushilevitz, and Anat Paskin. Secure multiparty com-
putation with minimal interaction. In Tal Rabin, editor, CRYPTO 2010,
volume 6223 of LNCS, pages 577-594, Santa Barbara, CA, USA, August 15—
19, 2010. Springer, Heidelberg, Germany.

Yuval Ishai, Dakshita Khurana, Amit Sahai, and Akshayaram Srinivasan.
On the round complexity of black-box secure MPC. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 41st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes in
Computer Science, pages 214-243. Springer, 2021.

32

IPS08.

Kal05.

KOo04.

KOS18.

KS17.

MOSV22.

NPO1.

ORS15.

Pasl2.

PS21.

RTVO04.

WeelO.

Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography
on oblivious transfer - efficiently. In David Wagner, editor, CRYPTO 2008,
volume 5157 of LNCS, pages 572-591, Santa Barbara, CA, USA, August 17—
21, 2008. Springer, Heidelberg, Germany.

Yael Tauman Kalai. Smooth projective hashing and two-message oblivious
transfer. In Ronald Cramer, editor, FUROCRYPT 2005, volume 3494 of
LNCS, pages 78-95, Aarhus, Denmark, May 22-26, 2005. Springer, Heidel-
berg, Germany.

Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party
computation. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 335-354, Santa Barbara, CA, USA, August 15-19, 2004.
Springer, Heidelberg, Germany.

Dakshita Khurana, Rafail Ostrovsky, and Akshayaram Srinivasan. Round
optimal black-box “commit-and-prove”. In TCC 2018, Part I, LNCS, pages
286—313. Springer, Heidelberg, Germany, March 2018.

Dakshita Khurana and Amit Sahai. Two-message non-malleable commit-
ments from standard sub-exponential assumptions. JACR Cryptology ePrint
Archive, 2017:291, 2017.

Varun Madathil, Chris Orsini, Alessandra Scafuro, and Daniele Ven-
turi. From privacy-only to simulatable OT: black-box, round-optimal,
information-theoretic. In ITC 2022, volume 230, pages 5:1-5:20, 2022.
Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In
S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual Symposium on
Discrete Algorithms, January 7-9, 2001, Washington, DC, USA., pages 448—
457. ACM/STAM, 2001.

Rafail Ostrovsky, Silas Richelson, and Alessandra Scafuro. Round-optimal
black-box two-party computation. In Rosario Gennaro and Matthew J. B.
Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages
339-358, Santa Barbara, CA, USA, August 16-20, 2015. Springer, Heidel-
berg, Germany.

Anat Paskin-Cherniavsky. Secure Computation with Minimal Interaction.
PhD thesis, Technion, 2012. Available at http://www.cs.technion.ac.il /users/
wwwb /cgi-bin/tr-get.cgi/2012/PHD /PHD-2012-16.pdf.

Arpita Patra and Akshayaram Srinivasan. Three-round secure multiparty
computation from black-box two-round oblivious transfer. In Tal Malkin and
Chris Peikert, editors, Advances in Cryptology - CRYPTO 2021 - 1st An-
nual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part II, volume 12826 of Lecture Notes in
Computer Science, pages 185—-213. Springer, 2021.

Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 1-20, Cambridge, MA, USA, February 19-21, 2004.
Springer, Heidelberg, Germany.

Hoeteck Wee. Black-box, round-efficient secure computation via non-
malleability amplification. In 51st FOCS, pages 531-540, Las Vegas, NV,
USA, October 23-26, 2010. IEEE Computer Society Press.

33

	Round-Optimal Black-Box MPC in the Plain Model
	Introduction
	Related Work

	Technical Overview
	Instantiating the IPS Compiler with Three-Round Watchlist
	Constructing Three-Round Watchlists with Promise Extraction
	Constructing Three-Round 2PC with Special Extraction

	Preliminaries
	3-Round Two-Party Computation Protocol with Special Extraction

	The Watchlist Protocol
	Definitions
	Construction

	4-Round Black-Box MPC Protocol
	Building Blocks

	References

