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ABSTRACT

In autonomous driving, detection of abnormal driving behaviors is
essential to ensure the safety of vehicle controllers. Prior works in
vehicle anomaly detection have shown that modeling interactions
between agents improves detection accuracy, but certain abnor-
mal behaviors where structured road information is paramount
are poorly identified, such as wrong-way and off-road driving. We
propose a novel unsupervised framework for highway anomaly de-
tection named Structural Attention-Based Recurrent VAE (SABeR-
VAE), which explicitly uses the structure of the environment to aid
anomaly identification. Specifically, we use a vehicle self-attention
module to learn the relations among vehicles on a road, and a sep-
arate lane-vehicle attention module to model the importance of
permissible lanes to aid in trajectory prediction. Conditioned on the
attention modules’ outputs, a recurrent encoder-decoder architec-
ture with a stochastic Koopman operator-propagated latent space
predicts the next states of vehicles. Our model is trained end-to-end
to minimize prediction loss on normal vehicle behaviors, and is
deployed to detect anomalies in (ab)normal scenarios. By combin-
ing the heterogeneous vehicle and lane information, SABeR-VAE
and its deterministic variant, SABeR-AE, improve abnormal AUPR
by 18% and 25% respectively on the simulated MAAD highway
dataset over STGAE-KDE. Furthermore, we show that the learned
Koopman operator in SABeR-VAE enforces interpretable structure
in the variational latent space. The results of our method indeed
show that modeling environmental factors is essential to detecting
a diverse set of anomalies in deployment. For code implementation,
please visit https://sites.google.com/illinois.edu/saber-vae.
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1 INTRODUCTION

Autonomous vehicles have the potential to realize a fast, safe, and
labor-free transportation system. A trustworthy self-driving vehi-
cle should have the ability to operate reliably in normal situations
and, more importantly, to perceive and react to anomalous driving
scenarios (e.g., skidding and wrong-way driving of surrounding
human vehicles) promptly and robustly. The detection of such ab-
normal situations can help identify traffic accidents and dangerous
driving behaviors of road participants, and thus provide high-level
guidance for vehicle controllers to act safely.

Deep-learning based Anomaly Detection (AD) algorithms have
shown great promise in intelligent vehicle applications [7]. Many
previous works utilize vehicle trajectories as an anomaly signal [2,
12, 43]. However, only a few vehicle trajectory datasets with suf-
ficient anomaly labels exist for supervised learning methods [18,
43, 47]. To leverage the larger store of unlabeled driving data, re-
searchers like Yao and Wiederer have employed unsupervised learn-
ing methods [42, 44, 45]. Specifically, a neural network, which
generally follows an encoder-decoder architecture for trajectory
reconstruction or prediction, learns an underlying distribution of
normal vehicle trajectories in the latent space. An anomaly is then
detected whenever the trajectory is out of distribution and produces
a large reconstruction or prediction error. In interactive driving
scenarios, Wiederer et al. [42] showed that modeling interactions
between agents can largely improve the reconstruction accuracy
and subsequently the AD performance. However, such interaction-
aware methods still ignore the effect of road structures on vehicle
behaviors, and thus can miss abnormal scenarios like wrong-way
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driving trajectories that appear normal when environmental con-
text is overlooked.

Alongside performance accuracy, the decisions made by AD
algorithms need to be interpretable to stakeholders. Deep neural
networks are black boxes by nature. However, the decisions of deep
networks impact various stakeholders such as policy makers and
end users. Designing methods with interpretable features for stake-
holders is a key challenge in AD, and the field of machine learning
overall [5, 16, 37, 39]. In vehicle AD more specifically, interpretable
algorithms need to account for the wide distribution of human
drivers who act according to their own policies [6]. For example,
different drivers may choose to overtake other vehicles at different
times and speeds. To ensure interpretability, we use variational
autoencoder (VAE) to cluster useful features from similar behaviors
together in a continuous and stochastic latent space [26]. Our re-
sults indicate that vehicle trajectories transitioning to an abnormal
state are explicitly encoded by interpretable transformations in the
learned latent space.

In this paper, we present our novel unsupervised Structural
Attention-Based Recurrent Variational Autoencoder (SABeR-VAE)
for highway vehicle anomaly detection. Since contemporary vehi-
cles have map information available to them regarding their nearby
environment and lanes, we make use of the environmental infor-
mation that prior works [29, 36, 42] have ignored to explicitly
model the effect of lane structure on normal vehicle behaviors.
Specifically, we treat a highway scenario as a structured interac-
tion graph where nodes represent vehicles and lane positions, and
edges connect nearby vehicles, and permissible lanes. Two separate
attention modules learn relations between vehicles (vehicle-vehicle
self-attention) and legal permissible route trajectories (lane-vehicle
attention) respectively. A sequence of embeddings from the vehicle-
vehicle attention module are encoded into a Gaussian latent space
to capture the randomness of vehicle trajectories with a recur-
rent network, and cluster similar behaviors close together in an
interpretable fashion. Our work is more computationally efficient
than STGAE-KDE [42], which has a deterministic latent space and
requires the expensive process of fitting a Kernel Density Estima-
tor (KDE) to learn a meaningful distribution of normal behaviors.
We then use a learned Koopman operator to propagate the cur-
rent latent distributions forward in time conditioned on the useful
lane embeddings. We show that the Koopman operator explicitly
enforces interpretable transformations in the latent space that stan-
dard autoencoders like STGAE are unable to incorporate, and is able
to model the complex, non-linear dynamics of drivers. Finally, we
decode a sampled point from the propagated distribution to predict
next states of vehicles. We train our method to predict trajecto-
ries from normal scenarios in the Multi-Agent Anomaly Detection
(MAAD) dataset [42], and compare accuracy metrics against linear,
recurrent, and graph convolutional approaches on anomalous tra-
jectories [34, 36, 42]. Our SABeR-VAE improves AUPR-Abnormal
and wrong-way driving detection over the STGAE-KDE by 18% and
35% respectively, and has an interpretable latent space.

Our contributions can be summarized as follows: (1) We present a
novel unsupervised variational approach for anomaly detection con-
ditioned on structured lane information; (2) We quantitatively show
that incorporating the structured information increases anomaly
detection accuracy, compared with state-of-the-art baselines and
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Figure 1: Map discretization and interaction edges. We model
the vehicle AD problem as an interaction graph with vehicle and
lane nodes. A continuous map of the road is discretized into blocks.
Directed lane edges between lane nodes encode permissible routes
for vehicles. The red vehicle has a directed edge toward the lane
nodes in front and to its left because the driver can legally continue
forward or merge left. Conversely, the green vehicle has no edge
connecting to a left lane node since it cannot cross the road divider.
Vehicle edges, shown in purple, exist for vehicles that are close
enough to interact with each other.

ablations using the MAAD dataset; (3) We show that the stochas-
tic Koopman operator learns interpretable features of (ab)normal
behaviors in the latent space.

Our paper is organized as follows: Section 2 discusses relevant
works in the areas of structured modeling and anomaly detection.
Our problem formulation and methods are presented in Section 3.
We discuss results in Section 4. Finally, we conclude the paper and
discuss future directions in Section 5.

2 RELATED WORKS
2.1 Exploiting Map Information

The quality of information about an environment provided by High
Definition maps (HD-maps) has dramatically increased and led to
their ubiquitous use due to recent advancements in autonomous
driving [30, 46]. Currently, most state-of-the-art methods for vehicle
trajectory prediction, motion forecasting, and anomaly detection,
do not make effective use of the rich information provided in these
HD-maps, and only rely on modeling the interactions between
vehicles on the road [9, 27, 38]. Hence, these methods ignore vital
information such as the plausible movement of vehicles in the
environment, which can be paramount in identifying anomalies
such as wrong-way driving.

However, trajectory prediction methods such as those proposed
by Deo et al. and Liang et al. do exploit the information in these
HD-maps and significantly outperform their counterparts [17, 28].
In proposing LaneGCN, Liang et al. encode different types of inter-
actions between agents on the road with lane information extracted
from maps. [28]. They show that attention-based models can be
used to encode interactions between vehicles and lanes, which are
learned by constructing a graph representation of the road. PGP,
proposed by Deo et al. , further produces scene-compliant trajecto-
ries by sampling from a distribution of driving profiles conditioned
on environment and vehicle interactions [17]. We corroborate the
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usefulness of these vehicle and lane attention-based representa-
tions and show that such embeddings do in fact provide meaningful
insights in detecting highway vehicle anomalies in SABeR-VAE.

2.2 Variational Autoencoders for Sequences

Variational autoencoders (VAE) have been applied to sequential
data combined with recurrent neural networks (RNN) in fields such
as speech and image synthesis and autonomous driving [8, 13-
15, 19, 29, 34]. Liu et al. attempt to infer the traits of drivers from
trajectories encoded in a variational latent space [29]. However,
only two classes of traits and a restricted set of defined trajectories
were considered, while real drivers have a much wider range of
behaviors on the road. Furthermore, they do not utilize map infor-
mation in their learning process, which provide relevant context
for traits. Conditional VAE formulations have also been found to
be able to generate trajectories with different driving styles, but
fail to consistently produce feasible trajectories without necessary
environment context [22, 35, 40]. Recurrent VAEs have also been
applied to robot anomaly detection, but are limited by the simplicity
of the single agent problem statement [34]. These sequential gen-
erative modeling approaches perform reasonably on their simple
tasks, but fail to generate realistic samples from points in the latent
space in more complex areas, due to the limitations of their RNN
components [13, 14, 20].

To bridge the gap between complex human behaviors and the
structured environment, and overcome the hurdles of the tempo-
ral propagation in simplistic RNNs, we propose the use of a lane-
conditioned Koopman Operator to model the temporal relations in
the latent space. We were specifically inspired to use the Koopman
operator to propagate the latent space due to its capability to model
the dynamics of complex, non-linear data, including fluid dynamics,
battery properties, and control tasks [1, 3, 4, 31].

2.3 Anomaly Detection

Anomaly detection is well studied in diverse research areas and
application domains [11, 32]. In robotics and automated vehicles,
AD has been used to detect abnormal patterns such as robot fail-
ures [24, 33] and dangerous driving scenarios [42, 45].

Park et al. propose a long short-term memory based variational
autoencoder (LSTM-VAE) to reconstruct the expected distribution
of robot sensor signals. A reconstruction-based anomaly score is
then used for anomaly detection [34]. Furthermore, Ji et al. adopt
an attention mechanism to fuse multi-sensor signals for robust
anomaly detection in uncertain environments [23]. While these
approaches focus on AD for single agent problem statements, our
highway scenarios consist of complex multi-agent social interac-
tions among vehicles, and need to be modeled as such.

In the domain of traffic anomaly detection using multi-agent
trajectories, the most similar work to ours is the spatio-temporal
graph autoencoder (STGAE) proposed with the MAAD dataset [42].
The architecture follows an encoder-decoder structure to recon-
struct vehicle trajectories, where vehicle interactions and motions
are considered using spatial graph convolution and temporal con-
volution layers, respectively. The method has been shown to be
effective by modeling interactions among vehicles to detect anoma-
lous maneuvers in traffic. However, such a network ignores the
constraints imposed by road structures on vehicle trajectories and
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the variability of human driver behaviors. In this work, we explicitly
model both vehicle-to-vehicle interactions and lane-to-vehicle inter-
actions to boost performance, and use an interpretable variational
architecture to learn a continuous distribution over behaviors.

3 METHODOLOGY

In this section, we first introduce our problem formulation of anom-
aly detection from vehicle trajectories, and then explain our pro-
posed SABeR-VAE framework.

3.1 Problem Formulation

Suppose n; € [1, N] vehicles are on a road segment at any time ¢,
and each vehicle takes an acceleration and steering action every
timestep according to unknown policies. Let c}l) = (xlfl), y}l) ) be
the 2D coordinates of the it vehicle at time ¢, where i € [1,...,n].
Each vehicle also has a set of corresponding permissible lane posi-
tions in front, to the left, and to the right of the vehicle, provided
in the form of a discretized map representation shown in Fig. 1. At
every timestep, each vehicle’s position within the map is used to
identify their corresponding front, left, and right lane nodes. We
define a tuple lt(l) = (front, left, right) gl) of three 2D coordinates
containing the lane information for vehicle i at time ¢. The discretiza-
tion step only impacts lt(l). Altogether, the observed information
of each vehicle at any time is the relative displacement of coordi-

nates oii) = (cgi) - Cii)l, lt(i) - cii)) = (Xt(i),Lt(i)). A trajectory of
length T for any vehicle is represented as (oéi), oii), og.izl). We

assume that any vehicle A that is within a distance d to another
vehicle B at time t can accurately detect and track the relative coor-
dinates ch) - ciA) = REA’B). The purple arrow between the green
and blue vehicle in Fig. 1 represents this vehicle interaction type.
For the i-th car, the number of observable cars is mi e [0,n; —1].
Given all vehicle trajectories in a scene, our goal is to provide an

anomaly score AS; € Rx¢ for each time ¢.

3.2 Architecture

Figure 2 contains the complete architecture diagram of SABeR-VAE,
which we discuss in this section.

3.2.1 Vehicle-Vehicle Self-Attention Network. Our goal is to
learn a representation of spatial interactions among vehicles. Rather
than using convolutional methods like those in prior works [28, 42],
we encode the positions of vehicles on the road at each time with
scaled dot-product multi-head self-attention, which allows each
head to learn different features of the data [41].

We embed the displacement of each car X; with a multi-layer
perceptron (MLP) fg V to obtain queries Q}/V:

f3V (Xe) =V e RVP, (1)
. . . _ (i,1) (im)|T
where D is the attention size. Let Ry = (R, ", .., R, be the

displacements of all neighboring cars for the i-th car. We use two
other MLPs, fIX V and f‘y V. to embed R; to obtain keys Kly V and
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Figure 2: SABeR-VAE architecture. The SABeR-VAE architecture attempts to predict the one-step future states of vehicles conditioned on
current vehicle positions and structural lane information. Vehicle interactions are modeled by the self-attention module while permissible
routes are encoded by the lane-vehicle attention module. A GRU encoder processes the self-attention embeddings through time to produce a
latent distribution. Then the Koopman operator conditioned on the lane embeddings propagates the latent distributions forward, which
finally get decoded to predict next states. The fje. network shares parameters for reconstruction and prediction.

values VYV respectively:
fIgV(Rt) — KYV e RmXD
f‘YV(Rt) — VtVV c RmXD

@

The final encoding of each vehicle position from this self-attention
layer for time t is calculated as:

VV (pVV)T
t (Kt )
VD
Nonexistent or unobserved vehicles further than a distance d
cannot be allowed to contribute to the attention score of other

vehicles. Thus, we use a mask to set the score contributed from
unobserved vehicles to —co.

VtVV |4 c RI XD

softmax = py 3)

3.22 Lane-Vehicle Attention Network. We use available map
and lane information in a separate lane-vehicle attention layer
to model legal maneuvers in structured environments. Similar to
vehicle-vehicle attention, the query Q{“V is an embedding of X;.
Lane information of each vehicle L; is used to produce keys KtLV

and values VtLV:
f (Xt) _ LV e R]XD
eV (L) = KtLV e R¥P (4)
f\f’lV(Lt) — ‘/tLV c RSXD
The lane-conditioned vehicle embeddings are calculated as:
oLV (KLV) T
t t
softmax vV = p£V e RIXP (5)

\/5 t

Note that all three lane nodes may not always be permissible to
a vehicle. For example, a car in the left-most lane of a road is unable
to legally turn left. As such, we mask out impermissible lane nodes
like in the self-attention layer.

3.23 Recurrent Encoder. A gated recurrent unit (GRU) network
encodes the sequence of self-attention features for each vehicle

(p(‘{ VoYV,

the latent space with temporal correlation. Thus, the latent space

. p¥Y1) into a sequence of Gaussian distributions in

1128

captures the stochastic nature of human behaviors. Specifically, af-
ter embedding the vehicle-vehicle attention feature with a network
fe, we pass the embedding through the GRU to get the hidden state
of each vehicle for the current timestep:

hy = GRU(ht . fe(p, )) ©)

Mean and variance neural networks f,, and f5 produce parame-
ters for a latent normal distribution of dimension j conditioned on
a vehicle’s hidden state at any time:

'V = fu(he), = fo (he). )

3.2.4 Latent Propagation with Koopman Operator. While
the GRU encoder encodes vehicle behaviors into the latent space
solely conditioned on past and current vehicle interactions, we need
a method to propagate the latent distributions in time to predict
the future states of vehicles. To this end, we learn a stochastic
Koopman operator conditioned on the lane-vehicle embeddings
to perform this task, like Balakrishnan and Upadhyay [4]. The
Koopman operator is responsible for temporal reasoning (modeling
vehicle state dynamics), while the preceding attention modules take
charge of spatial reasoning.

In Koopman operator theory, a discrete time system evolves
according to potentially nonlinear dynamics x;+1 = F(x;). However,
a function g maps the state x; into a space where dynamics evolve
linearly with the Koopman operator K [4]:

Kg (xt) = g (F (xt)) = g (xt+1) ®

Similarly, the inverse of function g translates an observable of x
back into the original dynamics space [4]:

97 (Kg (x1)) = x41 9)

In our case, function g is represented by the GRU encoder and
neural networks f;, and f5, which altogether, produce a latent dis-

"t

tribution N (g, 0¢) conditioned on inter-vehicle embeddings pyv.

Like the Stochastic Adversarial Koopman (SAK) model [4], we
use auxiliary neural networks f, and £ to predict tridiagonal
Koopman matrices Ky, s and Ky ¢, rather than solving for their closed
form solution. The outputs of f and £Z, are conditioned on the

vV, VV)

current latent distributions N (,u and the lane features
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p{“V, so that the Koopman operators capture legal route maneuvers
in the latent space propagation:

VvV LV
Ky = fayux (llt Pt )

VV LV
Kot = faux (Ut Pt )

The predicted Koopman matrices are applied to the inter-vehicle
distributions to linearly propagate the mean and variance of the
latent distributions forward in time:

(10)

LV vv Vv
Hevr = Kyt pe =+ 4y (11a)
Jﬂ/l =Kot O';/V + JYV (11b)

Intuitively, we can interpret the GRU encoder as predicting a
distribution of vehicle behaviors from their current trajectories, and
the Koopman operator propagates to a one-step future distribution
of behaviors based on lane information.

3.25 The Decoder Network. At this point, we have two sets of
distributions in the j-dimensional latent space for the current states
vv VvV

t >0t )

and future predictions of vehicles at each time: N (;1 and
LV _LV

N ('”t+1’ Or+1
point from each of the distributions:

). We utilize the reparameterization trick to sample a

Vv Vv vv Vv VvV
e ~N(01) z/" =p " +¢ "o i
LV LV , LV LV (12)

LV _
€1 ~N(01)  z0 = 5 + €000

A multi-layer perceptron fye. is used as a decoder network, sim-
ilar to g~ ! in Eq. 9, to predict a vehicle coordinate change from the
sampled latent points:

O 4%
Xt = fdec (Zt ) )

Xit1 = fiec (zﬂ’l) : (13)

3.3 Training and Evaluation

3.3.1 End-to-End Training. To fairly compare our method with
prior convolutional approaches, we utilize a similar sliding window
training approach performed by Wiederer et al. [42]. Specifically,
whole trajectories of length T are divided into small overlapping
segments, or windows, of constant length T”.

In our training objective, we minimize the current reconstruc-
tion loss and one-step future prediction loss of the model by split-
ting our input ground truth trajectories into current states X~ =
Xo.7/—2 and one-step future states X* = X;.7v_;. We also regularize
ot

the current distributions N (;1 ) and propagated distribu-

tions N/ (/1{“:/1 O'[LX) to follow a standard normal distribution. Let

Dxr.(p, o) be the KL divergence between any Gaussian distribution
N (u, o) and the standard normal distribution N (0, 1). Then the
regularized prediction and reconstruction losses are:

Lorea = Br- D (1, o™ ) + 11X = X7z

A (14)
Lrecon = f2 - DxL (;UVV, O'VV) +[1XT =X |2

where 1 and f; are tunable weights applied to the regularization

of the latent distributions similar to beta-VAE [21].
The overall objective we optimize is:

L= -Cpred + Lrecon (15)
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Figure 3: Trajectories and SABeR-VAE anomaly scores. (top
row) Examples of a normal overtaking (a,) abnormal off-road driv-
ing (b,) and wrong-way driving (c) scenarios in the MAAD dataset.
White arrows point toward direction of normal traffic flow. (bot-
tom row) Predicted anomaly score curves for each scenario above.
Colors of lines within the curves show the ground-truth labels of
normal (green,) ignored (yellow,) & abnormal (red) timesteps.

We again mask out coordinates of unobserved vehicles so they do
not contribute to the loss.

While SAK [4] applies maximum mean discrepancy (MMD) to
synchronize the current and propagated distributions of their Koop-
man model to any general distribution, we explicitly encourage the
latent space distributions to follow the standard gaussian. We leave
experimentation of various Koopman synchronization methods for
the anomaly detection task as a future direction of research.

3.3.2 Anomaly Detection Evaluation. At test time, we follow
the same sliding window practice as performed in training. First,

we calculate the one-step future prediction loss Lyred r41 = ||Xt(i)1 -

X t(i)l ||2 for every vehicle at each timestep, within every window of
a complete trajectory.

Then, we average the prediction loss of overlapping timesteps
among all windows in the sequence, for each vehicle separately.
Suppose W (D s the set of all windows in the complete trajec-
tory containing time t where vehicle i is observed. The averaged
prediction error for car i at ¢ is:

Z"Vew“’i) 'Epred, wt(i)

p(D)  _
-Lpred,t - |(W(t,i)| > (16)
where £ (i) 1s the prediction error of time ¢ for vehicle i in
pred,w,

window w of the set W (1),
Finally, we choose the anomaly score AS to be the maximum
averaged prediction loss over all vehicles at a given timestep t:

AS; = max £ (17)

i=1,...n, pred,t

4 EXPERIMENTAL SETUP AND RESULTS

In this section, we first describe the MAAD dataset on which we
performed experiments and detail baselines and ablations. We also
present our quantitative results and latent space interpretations.

4.1 MAAD Dataset and Augmentation

The MAAD dataset [42] consists of 2D trajectories of two vehicles
on a straight two-lane highway with a divider separating the two
possible directions, as visualized in the top row of Fig. 3. There are
80 training and 66 test-split trajectories ranging from a length of 25
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Table 1: Accuracy results of baselines, ablations, and SABeR methods over ten runs.

Method Detection Type AUROCT AUPR-AbnormalT AUPR-NormalT FPR @ 95%-TPR |
CVM Reconstruction Loss  83.1 + 0.0 54.5+ 0.0 96.0 = 0.0 74.6 £ 0.0
RAE-Recon’ Reconstruction Loss  56.2 0.7 16.9 £ 1.0 89.5+0.1 84.6 £ 0.3
STGAE Reconstruction Loss  74.8 + 5.1 37.8+7.2 94.1+1.3 77.8 +9.8
STGAE—KDE* One Class 86.3+1.7 55.2+7.7 97.2 £ 0.5 50.0 £7.9
RAE-Pred Prediction Loss 725+ 153 435+ 174 929+44 75.8 £ 10.6
VV-RAE Prediction Loss 54.2+4.9 14.8 £ 0.9 89.5+2.4 77.1+7.3
Att-LSTM-VAE Prediction Loss 85.8 +£0.7 64.9 +0.9 96.5 + 0.3 66.6 +£5.9
SABeR-AE Prediction Loss 87.2+0.4 69.0 + 0.5 96.9 + 0.2 64.1 +5.0
SABeR-VAE Prediction Loss 87.0+ 1.5 65.5+2.9 96.9 + 0.5 57.7+7.6

" These results are presented in [42].

to 127 timesteps. To compare fairly with baselines, these dynamic
length trajectories are subsampled to produce approximately 6.3K
training and 3.1K testing windows of constant length T’ = 15. As
the original dataset sequences did not come with map or lane details,
we augmented the data to include this information. Specifically, we
discretized the highway in the x-coordinate direction into blocks of
length five meters as shown in Fig. 1, and stored the 2D coordinates
of the front, left, and right blocks for each vehicle at every timestep
in all trajectories. We chose a discretization factor of five meters be-
cause vehicles traveled on average five meters or less every timestep.
All the training sequences consist of normal vehicle behaviors like
driving side-by-side, overtaking, following, and driving in opposite
directions. In contrast, the test-split contains both normal and 11
anomalous behavior classes like aggressive overtaking, pushing
aside, tailgating, off-road, and wrong-way driving.

4.2 Baseline Methods

We compare against baselines implemented by Wiederer et al. that
depend on reconstruction loss rather than future prediction er-
ror [42]. (1) The Constant Velocity Model (CVM) is a standard
baseline that predicts the next states of vehicles assuming each
vehicle travels at the same velocity as the last timestep, without
modeling any inter-vehicle relations. (2) Recurrent Autoencoder
(RAE-Recon) uses an LSTM network to encode and decode a se-
quence of coordinates from an unregularized latent space, attempt-
ing to minimize reconstruction loss. (3) Spatio-Temporal Graph
Autoencoder (STGAE) is a convolutional method that models inter-
vehicle behaviors, and outputs parameters for a bi-variate distri-
bution describing the estimated state of the reconstructed pose
of vehicles, and is trained to maximize the log-likelihood of the
estimated probability distribution. Finally, (4) the STGAE-KDE
baseline fits a Kernel Density Estimator (KDE) to the unregularized
latent space of a trained STGAE model to predict the one-class
probability of a set of points originating from a normal behavior
window. Unlike the STGAE-KDE, our SABeR-VAE does not require
an expensive KDE fitting procedure since our anomaly score solely
relies on prediction error, and we still model inter-vehicle relations
unlike CVM and RAE-Recon.

We additionally train ablation models with future prediction
loss to identify the impact of different components in our method.
We train (5) an unregularized Recurrent Autoencoder (RAE-Pred)

using a standard deterministic MLP to propagate latent points for-
ward in time, without explicitly modeling any inter-vehicle be-
haviors, like the RAE-Recon. (6) A Recurrent Autoencoder with a
vehicle-vehicle Self-Attention module (VV-RAE) minimizes predic-
tion error while modeling inter-vehicle relations. We also train (7)
a deterministic variant of SABeR-VAE without a regularized latent
space, SABeR-AE. SABeR-AE utilizes both vehicle self-attention
and lane-vehicle attention like SABeR-VAE, but encodes trajectories
into an unregularized (uninterpretable) latent space. (8) To test the
effectiveness of the Koopman operator in SABeR-VAE, we train
an ablation model (Att-LSTM-VAE) that replaces the Koopman
propagation module with a recurrent decoder like Park et al. [34].

4.3 Quantitative Evaluation Metrics

We quantitatively evaluate the effectiveness of models on the MAAD
dataset using four metrics. (1) Area Under Receiver-Operating
Characteristic curve (AUROC) is calculated by plotting the False-
Positive Rate (FPR) and True-Positive Rate (TPR) of a model over
several decision thresholds, and computing the area under the
curve. A model with greater AUROC performs better, and a perfect
classifier has an AUROC of 100%. Though, AUROC is skewed in
datasets where there are very few positive labels, like in the field
of outlier identification. As such, FPR may be misleadingly low,
producing an optimistic AUROC value. We compute (2) the Area
Under Precision-Recall Curve (AUPR) with the anomalous points
being the positive class (AUPR-Abnormal) and (3) with normal
points being positive (AUPR-Normal). The AUPR metric adjusts
for skewed dataset distributions, and we evaluate model effective-
ness of classifying anomalies, and not mis-classifying normal points
with AUPR-Abnormal and AUPR-Normal respectively. Finally, we
use (4) FPR @ 95%-TPR to check the rate of mis-labeling normal
points when TPR is high.

4.4 Accuracy Results

Every model was trained for 500 epochs on the training split with a
Tesla V100 GPU [25]. Like Wiederer et al. , we calculate metrics for
each hyperparameter choice on a 20% validation split of the whole
test data, and choose to evaluate the best set of hyperparameters
for each respective method on the complete test split [42]. More
details on training and hyperparameter choices are provided in
the supplementary material [10]. Table 1 holds accuracy results of
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Figure 4: ROC curves of tested methods.
Table 2: AUROC (7) of methods by anomaly type.

Anomaly Type CVM  STGAE-KDE SABeR-AE SABeR-VAE
Reeving 96.7 94.6 87.9 89.5
Pushing Aside 91.5 90.4 88.6 91.3
Right Spreading ~ 87.7 96.2 86.7 95.2
Left Spreading 90.9 96.6 96.2 95.9
Off-Road 88.7 98.2 98.2 99.7
Skidding 96.9 99.7 ~100.0 99.8
Wrong-way 63.2 73.2 ~100.0 99.3

" These results are presented in [42].

baselines, ablations, and the SABeR methods on the test split of
the MAAD dataset. Each method, besides CVM, was trained ten
separate times with the same hyperparameters, and we report the
average and standard deviation of each methods’ results over the
ten runs. Figure 4 plots the ROC curves for each method.

Amongst baselines, the simple CVM model already performs
well as an anomaly detector since its AUROC is only 3% less than
that of the STGAE-KDE method. CVM also has no variation of
results since it is a deterministic model that is not trained. The
LSTM-based RAE-Recon model is unable to effectively distinguish
between anomalies and normal scenarios using reconstruction loss,
since it does not model vehicle or lane information. While recurrent
models encode current timestep features based solely on previous
timesteps, temporal convolution methods extract information from
the whole trajectory, which helps to predict a more accurate re-
construction. Thus, the convolutional STGAE method drastically
improves AUROC and AUPR scores over RAE-Recon.

However, once we incorporate a latent propagation network and
predict future timesteps, the RAE-Pred ablation increases AUROC
over RAE-Recon by 29% and even outperforms STGAE in the AUPR-
Abnormal metric, without even modeling inter-vehicle behaviors.
This result hints to the idea that recurrent networks learn to model
normal behaviors more accurately with future prediction error,
than reconstruction error of observed timesteps, which assists in
AD performance. Furthermore, recurrent methods are capable of
reaching the same performance as convolutional methods, while
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relying only on past data points. Still, RAE-Pred is shown to be
unstable as it produces a high variance in results over the ten trained
models. This variance was caused by two of the ten runs achieving
only 45% AUROC. STGAE also has the highest variance in results
among baselines since it is a stochastic method reconstructing a
distribution over states, rather than the deterministic CVM and
RAE-Recon approaches, but is more stable than RAE-Pred.

We see that adding a vehicle-vehicle self-attention layer in VV-
RAE model actually hinders performance, and gives results similar
to RAE-Recon. Effectively, the vehicle-vehicle self-attention layer
did not learn useful features for the future prediction task, and
confused the model generations. This outcome could be a result of
a low complexity neural network or a potentially poor choice for
masking distance d.

The one-class prediction model STGAE-KDE fits a KDE to the
latent space of the STGAE to learn a distribution of normal latent
behaviors. As such, this one-class classification approach improves
detection rates and training stability over the STGAE such that
it outperforms other baselines. However, the fitting process of a
KDE to a large dimensional space is a computationally complex and
constrictive part the method. With gaussian regularization of the
latent space, our SABeR-VAE clusters similar behaviors together
and learns a latent distribution without fitting a KDE, which we
discuss in 4.5.

Finally, SABeR-AE and SABeR-VAE incorporate a lane-vehicle
attention module to capture the effect of the structure of the envi-
ronment on normal behaviors. We see that SABeR-AE outperforms
all methods in AUROC and AUPR-Abnormal with low variance,
showcasing the importance of modeling environment structure in
this field. SABeR-VAE performs slightly better than STGAE-KDE
in AUROC, and significantly increases the AUPR-Abnormal score
by 18%. However, the stochasticity of the SABeR-VAE method hin-
ders its reproducibility, and AUROC scores ranged from 84% to
89% over the ten training runs. SABeR-VAE further decreases the
average FPR @ 95%-TPR of SABeR-AE by 10%. STGAE-KDE and the
two SABeR approaches have similar AUPR-Normal. SABeR-VAE
also outperforms Att-LSTM-VAE meaning a recurrent decoder is
unnecessary when using the Koopman operator.

We present examples of SABeR-VAE scoring anomalous timesteps
in Fig. 3. There, a normal overtaking maneuver was scored very
low during the whole trajectory, whereas going off-road or driv-
ing in the wrong direction were scored high. We can also see in
Fig. 3.b that timesteps where vehicles are acting normally prior to
erratic behavior are still correctly scored low. Table 2 holds AU-
ROC by anomaly type for CVM, STGAE-KDE, and SABeR methods.
SABeR-VAE improves wrong-way driving AD by 35% over STGAE-
KDE, while performing comparably in other metrics. The complete
version of Table 2 is provided in the supplementary material [10].

4.5 Latent Space Interpretation

SABeR-VAE is a variational model with a continuous latent space
such that observations with similar learned characteristics are clus-
tered closer together in the latent space. In Fig. 5.a, we plot the
test-split latent space of one of the SABeR-VAE models evaluated
in Table 1. Points are clustered into three distinct regions in the
latent space, which we will refer to as “bottom,” “middle,” and “top”

clusters respectively. We see from sampled trajectories that the
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Figure 5: Koopman propagated latent space and corresponding trajectories. (a) We encode every window trajectory in the test-split
of the MAAD dataset and plot the 2D sampled latent positions of the final timestep of the windows. Blue points correspond to ground truth
normal windows while orange are abnormal. (1-5) Five scenario windows are encoded into the latent space, and are explicitly annotated in
(a.) Each of the five windows has two latent points for the pink and blue vehicles respectively. (e.g., annotations “1B” & “1P” are the latent
points of the blue and pink vehicles in road trajectory window (1.) Within the five trajectory windows, solid lines are the ground truth
trajectory of the vehicle while open circles are predicted by SABeR-VAE. White arrows denote direction of traffic flow. (b & d) The prediction
error curves for trajectories 4 and 5 respectively. (c & e) The trajectory of latent points for vehicle windows 4 and 5 respectively. A heat map
of the original latent space is plotted in orange in the background. Blue and pink circles are the latent trajectories of the blue and pink car
through time. The largest circles encode the initial timestep of the window, and they decrease in size as the window progresses.

bottom and middle clusters encode vehicles that travel toward the
—x (left) direction in either of the top two lanes of the highway,
while the top cluster encodes vehicles traveling to the right in the
bottom two lanes. For example, points 1P, 2P, 3B, 4B, and 5B corre-
spond to blue (B) and pink (P) cars that travel to the left in the top
lanes. Similarly, the trajectory of the pink car driving to the right
in window 4 is encoded to point 4P in the top cluster of the latent
space. Vehicles that are also physically close and interacting with
each other are encoded closely in the latent space, as shown with
latent points corresponding to windows 1 and 2. The middle cluster
embeds anomalous scenarios from the top lanes where vehicles are
close enough to interact with each other, like window 2.

Furthermore, anomalous, non-interactive trajectories that are
poorly predicted are encoded to the outskirts of the primary cluster
distributions. For example, the pink cars in trajectories 3 and 5
are driving in the wrong direction. These trajectories have high
prediction error as visualized by the little overlap between the pre-
dicted open circle positions and ground truth trajectories. As such,
those poorly predicted points are encoded in the spaces between
the bottom and middle, and middle and top clusters respectively.
In contrast, trajectories 1 and 4 have low loss and are encoded to
positions within the primary clusters. Thus the latent space has
learned a correspondence between permissible lane routings and
expected vehicle behavior.

Finally, we visualize the transformation of the latent space over
time within one trajectory window to show the interpretable im-
pact of the learned Koopman operator. Figures 5.c and 5.e show the
transformation of the latent space as time progresses in trajectory

1132

windows 4 and 5. We can see in Fig. 5.c that the blue and pink latent
trajectories stay in the bottom and top clusters respectively, since
the vehicles follow the correct direction on the road throughout
window 4. Conversely, we see in Fig. 5.e that the pink latent trajec-
tory begins in the top cluster since the pink vehicle in trajectory
5 is in one of the bottom two lanes on the road. But, at timestep
6, the pink car crosses the road divider into the wrong direction
lane. Thus, we see a jump in the pink car’s latent trajectory in
Fig. 5.e from the top cluster to the bottom and middle clusters that
correspond to the top two lanes. At the same time, Fig. 5.d has a
spike in the prediction loss of the pink vehicle. For the remainder
of the trajectory window, the pink car oscillates drastically in the
latent space around the middle cluster, since the model expects
the vehicle to be traveling to the left. Note, even though the pink
vehicle in trajectory 5 is acting abnormally, this does not effect the
latent trajectory of the blue vehicle in the same window, since the
vehicles are not close enough to impact each other. Overall, the
Koopman operator explicitly models this transition from normal to
anomalous states in the latent space, in an interpretable manner.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel framework for anomaly detection
with an unsupervised recurrent VAE network conditioned on struc-
tured environment information and vehicle interactions. We show
that modeling this structured information is imperative to having
high accuracy over a wide range of anomaly types and study the
interpretability of the architecture. Future work includes using raw
sensor data for detection and integrating with a vehicle controller.
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