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Abstract. We propose a unifying framework that yields an array of
cryptographic primitives with certified deletion. These primitives enable
a party in possession of a quantum ciphertext to generate a classical cer-
tificate that the encrypted plaintext has been information-theoretically
deleted, and cannot be recovered even given unbounded computational
resources.

— For X € {public-key, attribute-based, fully-homomorphic, witness, timed-release},
our compiler converts any (post-quantum) X encryption to X en-
cryption with certified deletion. In addition, we compile statistically-
binding commitments to statistically-binding commitments with cer-
tified everlasting hiding. As a corollary, we also obtain statistically-
sound zero-knowledge proofs for QMA with certified everlasting zero-
knowledge assuming statistically-binding commitments.

— We also obtain a strong form of everlasting security for two-party and
multi-party computation in the dishonest majority setting. While si-
multaneously achieving everlasting security against all parties in this
setting is known to be impossible, we introduce everlasting security
transfer (EST). This enables any one party (or a subset of parties)
to dynamically and certifiably information-theoretically delete other
participants’ data after protocol execution. We construct general-
purpose secure computation with EST assuming statistically-binding
commitments, which can be based on one-way functions or pseudo-
random quantum states.

‘We obtain our results by developing a novel proof technique to argue that
a bit b has been information-theoretically deleted from an adversary’s
view once they output a valid deletion certificate, despite having been
previously information-theoretically determined by the ciphertext they
held in their view. This technique may be of independent interest.

1 Introduction

Deletion in a classical world. On classical devices, data is stored and exchanged
as a string of bits. There is nothing that can prevent an untrusted device with
access to such a string from making arbitrarily many copies of it. Thus, it seems
hopeless to try to force an untrusted device to delete classical data. Even if the
string is merely a ciphertext encoding an underlying plaintext, there is no way
to prevent a server from keeping that ciphertext around in memory forever. If
at some point in the future, the security of the underlying encryption scheme is
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broken either via brute-force or major scientific advances, or if the key is com-
promised and makes its way to the server, the server will be able to recover the
underlying plaintext. This may be unacceptable in situations where extremely
sensitive data is being transmitted or computed upon.

In fact, there has recently been widespread interest in holding data collec-
tors accountable in responding to “data deletion requests” from their clients, as
evidenced by data deletion clauses in legal regulations adopted by the European
Union [17] and California [1]. Unfortunately, the above discussion shows that
these laws cannot be cryptographically enforced against malicious data collec-
tors, though there has been recent work on cryptographically formalizing what
it means for honest data collectors to follow such guidelines [19].

Deletion in a quantum world. The uncertainty principle [24], which lies at the
foundation of quantum mechanics, completely disrupts the above classical intu-
ition. It asserts the existence of pairs of measurable quantities such that precisely
determining one quantity (e.g. the position of an electron) implies the inability
to determine the other (e.g. the momentum of the electron). While such effects
only become noticeable at an extreme microscopic scale, the pioneering work of
Wiesner [43] suggested that the peculiar implications of the uncertainty principle
could be leveraged to perform seemingly impossible “human-scale” information
processing tasks.

Given the inherent “destructive” properties of information guaranteed by the
uncertainty principle, provable data deletion appears to be a natural information
processing task that, while impossible classically, may become viable quantumly.
Surprisingly, the explicit study of data deletion in a quantum world has only be-
gun recently. However, over the last few years, this question has been explored in
many different contexts. Initial work studied deletion in the context of non-local
games [18] and information-theoretic proofs of deletion with partial security [12],
while the related notion of revocation was introduced in [41].

The work of [11] first considered certified deletion in the context of encryp-
tion schemes, leveraging the uncertainty principle to obtain one-time pad en-
cryption with certified deletion. This caused a great deal of excitement, leading
to many recent followup works on deletion in a cryptographic context: device-
independent security of one-time pad encryption with certified deletion [32],
public-key and attribute-based encryption with certified deletion [25], commit-
ments and zero-knowledge with certified everlasting hiding [27], and most re-
cently fully-homomorphic encryption with certified deletion [39].

This work. Our work makes new definitional, conceptual and technical contribu-
tions. Our key contribution is a new proof technique to show that many natural
encryption schemes satisfy security with certified deletion. This improves prior
work in many ways, as we summarize below.

1. A unified framework. We present a simple compiler that relies on conju-
gate coding/BB84 states [43,6] to bootstrap semantically-secure cryptosys-
tems to semantically-secure cryptosystems with certified deletion. For any



X € {public-key encryption, attribute-based encryption, witness encryp-
tion, timed-release encryption, statistically-binding commitment}, we imme-
diately obtain “X with certified deletion” by plugging X into our compiler.
This compiler builds on [11], who used BB84 states in the context of certified
deletion for one-time pad encryption.

2. Stronger definitions. We consider a strong definition of security with cer-

tified deletion for public-key primitives, which stipulates that if an adversary
in possession of a quantum ciphertext encrypting bit b issues a certificate of
deletion which passes verification, then the bit b must now be information-
theoretically hidden from the adversary.
Previous definitions of public-key and fully-homomorphic encryption with
certified deletion [25,39] considered a weaker experiment, inspired by [11],
where after deletion, the adversary is explicitly given the secret key, but
is still required to be computationally bounded. For the public-key setting,
we consider this prior definition to capture a (strong) security against key
leakage property, as opposed to a certified deletion property'. In the full
version [5], we show that the everlasting flavor of our definition implies prior
definitions. Intuitively, this is because for public-key schemes, an adversary
can sample a secret key on its own given sufficient computational resources.
Moreover, in the case of fully-homomorphic encryption (FHE), prior work
[39] considered definitions (significantly) weaker than semantic security.? We
obtain the first semantically-secure FHE with certified deletion from stan-
dard LWE.

3. Simpler constructions and weaker assumptions. Our compiler removes

the need to rely on complex cryptographic primitives such as non-committing
encryption and indistinguishability obfuscation as in [25], or idealized models
such as random oracles as in [41,27], or complex quantum states (such as
Gaussian coset states) as in [39], instead yielding simple schemes satisfying
certified deletion for a range of primitives from BB84 states and minimal
assumptions.
In fact, reliance on non-committing encryption was a key reason that prior
techniques did not yield homomorphic encryption schemes with certified
deletion, since compact homomorphic encryption schemes cannot simulta-
neously be non-committing [29]. Our work builds simple homomorphic en-
cryption schemes that support certified deletion by eliminating the need to
rely on non-committing properties, and instead only relying on semantic
security of an underlying encryption scheme.

4. Overcoming barriers to provable security. How can one prove that a bit
b has been information-theoretically deleted from an adversary’s view once

! In contrast, in the one-time pad encryption setting as considered by [11], the original
encrypted message is already information-theoretically hidden from the adversary,
S0 to obtain any interesting notion of certified deletion, one must explicitly consider
leaking the secret key.

2 Subsequent to the original posting of our paper on arXiv, an update to [39] was
posted with somewhat different results. We provide a comparison between our work
and the updated version of [39] in Section 1.3.



they produce a valid deletion certificate, while it was previously information-
theoretically determined by the ciphertext they hold in their view?

Prior work [41,25,27,39] resorted to either idealized models or weaker defi-
nitions, and constructions with layers of indirection, in order to get around
this barrier. We develop a novel proof technique that resolves this issue by
(1) carefully deferring the dependence of the experiment on the plaintext bit,
and (2) identifying an efficiently checkable predicate on the adversary’s state
after producing a valid deletion certificate. We rely on semantic security of
encryption to show that this predicate must hold, and we argue that if the
predicate holds, the adversary’s left-over state is statistically independent
of the plaintext bit. This allows us to prove certified deletion security for
simple and natural schemes.

5. New implications to secure computation: Everlasting Security Trans-
fer (EST). We introduce the concept of everlasting security transfer. Ev-
erlasting security guarantees (malicious) security against a participant in
a secure two-(or multi-)party computation protocol even if the participant
becomes computationally unbounded after protocol execution. We introduce
and build secure computation protocols where participants are able to trans-
fer everlasting security properties from one party to another, even after the
protocol ends.

We elaborate on our results in more detail below, then we provide an overview
of our techniques.

1.1 Our results

Warmup: secret sharing with certified deletion. We begin by considering cer-
tified deletion in the context of one of the simplest cryptographic primitives:
information-theoretic, two-out-of-two secret sharing. Here, a dealer Alice would
like to share a classical secret bit b between two parties Bob and Charlie, such
that

1. (Secret sharing.) The individual views of Bob and Charlie perfectly hide
b, while the joint view of Bob and Charlie can be used to reconstruct b, and

2. (Certified deletion.) Bob may generate a deletion certificate for Alice,
guaranteeing that b has been information theoretically removed from the
joint view of Bob and Charlie.

That is, as long as Bob and Charlie do not collude at the time of generating
the certificate of deletion, their joint view upon successful verification of this
certificate is guaranteed to become independent of b. As long as the certificate
verifies, b will be perfectly hidden from Bob and Charlie even if they decide to
later collude.

To build such a secret sharing scheme, we start by revisiting the usage of con-
jugate coding/BB84 states to obtain encryption with certified deletion, which
was first explored in [11]. While the construction in [11] relies on a seeded ran-
domness extractor in combination with BB84 states, we suggest a simpler al-
ternative that replaces the seeded extractor with the XOR function. Looking



ahead, this simplification combined with other proof techniques will help gener-
ically lift our secret sharing scheme to obtain several encryption schemes with
certified deletion.

Consider a random string < {0, 1}*, and a random set of bases 6 + {0, 1}*
(where 0 corresponds to the standard basis and 1 corresponds to the Hadamard
basis). To obtain a scheme with certifiable deletion, we will build on the intuition
that it is impossible to recover = given only BB84 states |z), without knowledge
of the basis 6. Furthermore, measuring |z), in an incorrect basis 6’ will destroy
(partial) information about z.

Thus to secret-share a bit b in a way that supports deletion, the dealer will
sample x <+ {0,1}* and bases 6 < {0,1}*. Bob’s share is then

|2)q

and Charlie’s share is

0,0 =be @

That is, in Charlie’s share, b is masked by the bits of = that are encoded in the
standard basis.

We note that Bob’s share contains only BB84 states while Charlie’s share is
entirely classical. Bob can now produce a certificate of deletion by returning the
results of measuring all his BB84 states in the Hadamard basis, and Alice will
accept as a valid certificate any string «’ such that z; = 2} for all ¢ where 6; = 1.
We show that this scheme is indeed a two-out-of-two secret sharing scheme that
satisfies certified deletion as defined above.

A conceptually simple and generic compiler. As our key technical contribution,
we upgrade the secret sharing with certified deletion scheme to the public-key
setting by encrypting Charlie’s share. In more detail, to encrypt a bit b with
respect to any encryption scheme, we first produce two secret shares of b as de-
scribed above, and then release a ciphertext that contains (1) Bob’s share in the
clear and (2) an encryption of Charlie’s share. To certifiably delete a ciphertext,
one needs to simply measure the quantum part of the ciphertext (i.e., Bob’s
share) in the Hadamard basis. Intuitively, since information about the bases
(Charlie’s share) is hidden at the time of producing the certificate of deletion,
generating a certificate that verifies must mean information theoretically losing
the description of computational basis states.

This method of converting a two-party primitive (i.e. secret sharing with cer-
tified deletion) into one-party primitives (i.e. encryption schemes with certified
deletion) is reminiscent of other similar compilers in the literature, for instance
those converting probabilistically checkable proofs to succinet arguments [7,28].
In our case, just like those settings, while the intuition is relatively simple, the
proof turns out to be fairly non-trivial.



Our main theorem. In (almost) full generality, our main theorem says the fol-
lowing.? Consider an arbitrary family of distributions {Zx(#)}xen,pe{0,1}» and
an arbitrary class &/ of computationally bounded adversaries A = {Aj)}xen,
such that Z)(6) semantically hides 6 against A,. Then, consider the following
distribution Z~;\4* (b) over quantum states, parameterized by a bit b € {0, 1}.

— Sample z,6 + {0,1}* and initialize Ay with

2\0),0e P wile),

— Ay’s output is parsed as a bitstring 2/ € {0,1}* and a residual state on
register A/,

— If z; = «} for all i such that 6; = 1 then output A’, and otherwise output a
special symbol .

Then,

Theorem 1. For every A € o, the trace distance between 23\4* (0) and Z;\A*(l)
is negl(A).

Intuitively, this means that as long as the adversary A, is computationally
bounded at the time of producing any deletion certificate x' that properly verifies
(meaning that x} is the correct bit encoded at index ¢ for any indices encoded
in the Hadamard basis), their left-over state statistically contains only negligible
information about the original encrypted bit b. That is, once the certificate
verifies, information about b cannot be recovered information-theoretically even
given unbounded time from the adversary’s residual state.

This theorem is both quite simple and extremely general. The quantum part
that enables certified deletion only involves simple BB84 states, and we require
no additional properties of the underlying distribution Z, except for the fact
that Z,(#) and Z,(0*) are indistinguishable to some class of adversaries. * We
now discuss our (immediate) applications in more detail.

3 In order to fully capture all of our applications, we actually allow Z to operate on
all inputs, including the BB84 states. See Section 3 for the precise details.

It may seem counter-intuitive that the certified deletion guarantees provided by our
theorem hold even when instantiating Z) with general semantically secure schemes,
such as a fully-homomorphic encryption scheme. In particular, what if an adversary
evaluated the FHE to recover a classical encryption of b, and then reversed their
computation and finally produced a valid deletion certificate? This may seem to
contradict everlasting security, since a classical ciphertext could be used to recover
b given unbounded time. However, this attack is actually not feasible. After per-
forming FHE evaluation coherently, the adversary would obtain a register holding
a superposition over classical ciphertexts encrypting b, but with different random
coins. Measuring this superposition to obtain a single classical ciphertext would
collapse the state, and prevent the adversary from reversing their computation to
eventually produce a valid deletion certificate. Indeed, our Theorem rules out this
(and all other) efficient attacks.

4



Public-key, attribute-based and witness encryption. Instantiating the distribution
Zy with the encryption procedure for any public-key encryption scheme, we
obtain a public-key encryption scheme with certified deletion.

We also observe that we can instantiate the distribution Z, with the en-
cryption procedure for any attribute-based encryption scheme, and immediately
obtain an attribute-based encryption scheme with certified deletion. Previously,
this notion was only known under the assumption of indistinguishability obfus-
cation, and also only satisfied the weaker key leakage style definition discussed
above [25]. Finally, instantiating Z with any witness encryption scheme implies
a witness encryption scheme with certified deletion.

Fully-homomorphic encryption. Next, we consider the question of computing
on encrypted data. We observe that, if Z, is instantiated with the encryption
procedure Enc for a fully-homomorphic encryption scheme [20,9,21], then given
|z)g , Enc(6,b & €D;.9,— ¥i), one could run a homomorphic evaluation procedure
in superposition to recover (a superposition over) Enc(b). Additionally, given
multiple ciphertexts, one can even compute arbitrary functionalities over the
encrypted plaintexts. Moreover, if such evaluation is done coherently (without
performing measurements), then it can be reversed and the deletion procedure
can subsequently be run on the original ciphertexts.

This immediately implies what we call a “blind delegation with certified
deletion” protocol, which allows a computationally weak client to utilize the re-
sources of a computationally powerful server, while (i) keeping its data hidden
from the server during the protocol, and (ii) ensuring that its data is information-
theoretically deleted from the server afterwards, by requesting a certificate of
deletion. We show that, as long as the server behaves honestly during the “func-
tion evaluation” phase of the protocol, then even if it is arbitrarily malicious
after the function evaluation phase, it cannot both pass deletion verification and
maintain any information about the client’s original plaintexts.

Recently, Poremba [39] also constructed a fully-homomorphic encryption
scheme satisfying a weaker notion of certified deletion.® In particular, the guar-
antee in [39] is that from the perspective of any server that passes deletion
with sufficiently high probability, there is significant entropy in the client’s orig-
inal ciphertext. This does not necessarily imply anything about the underlying
plaintext, since a ciphertext encrypting a fixed bit b may be (and usually will
be) highly entropic. Moreover, their construction makes use of relatively compli-
cated and highly entangled Gaussian coset states in order to obtain these deletion
properties. In summary, our framework simultaneously strengthens the security
(to standard semantic security of the plaintext) and simplifies the construction
of fully-homomorphic encryption with certified deletion. We also remark that
neither our work nor [39] considers security against servers that may be mali-
cious during the function evaluation phase of the blind delegation with certified
deletion protocol. We leave obtaining security against fully malicious servers as
an interesting direction for future research.

® We discuss comparisons with a recently updated version of [39] in Section 1.3.



Commitments and zero-knowledge. Next, we consider commitment schemes. A
fundamental result in quantum cryptography states that one cannot use quan-
tum communication to build a commitment that is simultaneously statistically
hiding and statistically binding [35,34]. Intriguingly, [27] demonstrated the fea-
sibility of statistically-binding commitments with a certified everlasting hid-
ing property, where hiding is computational during the protocol, but becomes
information-theoretic after the receiver issues a valid deletion certificate. How-
ever, their construction relies on the idealized quantum random oracle model.
Using our framework, we show that any (post-quantum) statistically-binding
computationally-hiding commitment implies a statistically-binding commitment
with certified everlasting hiding. Thus, we obtain statistically-binding commit-
ments with certified everlasting hiding in the plain model from post-quantum
one-way functions, and even from plausibly weaker assumptions like pseudoran-
dom quantum states [3,37].

Following implications in [27] from commitments with certified deletion to
zero-knowledge, we also obtain interactive proofs for NP (and more generally,
QMA) with certified everlasting zero-knowledge. These are proofs that are sta-
tistically sound, and additionally the verifier may issue a classical certificate
after the protocol ends showing that the verifier has information-theoretically
deleted all secrets about the statement being proved. Once a computationally
bounded verifier issues a valid certificate, the proof becomes statistically zero-
knowledge (ZK). Similarly to the case of commitments, while proofs for QMA
or NP are unlikely to simultaneously satisfy statistical soundness and statistical
ZK, [27] previously introduced and built statistically sound, certified everlast-
ing ZK proofs in the random oracle model. On the other hand, we obtain a
construction in the plain model from any statistically-binding commitment.

Timed-release encryption. As another immediate application, we consider the
notion of revocable timed-release encryption. Timed-release encryption schemes
(also known as time-lock puzzles) have the property that, while ciphertexts can
eventually be decrypted in some polynomial time, it takes at least some (parallel)
T()) time to do so. [41] considered adding a revocable property to such schemes,
meaning that the recipient of a ciphertext can either eventually decrypt the ci-
phertext in > T'(\) time, or issue a certificate of deletion proving that they will
never be able to obtain the plaintext. [41] constructs semantically-secure revoca-
ble timed-release encryption assuming post-quantum timed-release encryption,
but with the following drawbacks: the certificate of deletion is a quantum state,
and the underlying scheme must either be exponentially hard or security must
be proven in the idealized quantum random oracle model.

We can plug any post-quantum timed-release encryption scheme into our
framework, and obtain revocable timed-released encryption from (polynomially-
hard) post-quantum timed-released encryption, with a classical deletion certifi-
cate. Note that, when applying our main theorem, we simply instantiate the
class of adversaries to be those that are T'(\)-parallel time bounded.



Secure computation with Fverlasting Security Transfer (EST). Secure computa-
tion allows mutually distrusting participants to compute on joint private inputs
while revealing no information beyond the output of the computation. The first
templates for secure computation that make use of quantum information were
proposed in a combination of works by Crépeau and Kilian [13], and Kilian [31].
For a while [36,46] it was believed that unconditionally secure computation could
be realized based on a specific cryptographic building block: an unconditionally
secure quantum bit commitment. Unfortunately, beliefs that unconditionally se-
cure quantum bit commitments exist [10] were subsequently proven false [35,34],
and the possibility of unconditional secure computation was also ruled out [33].

As such, secure computation protocols must either assume an honest ma-
jority or necessarily rely on computational hardness to achieve security against
adversaries that are computationally bounded. But this may be troublesome
when participants wish to compute on extremely sensitive data, such as medical
or government records. In particular, consider a server that computes on highly
sensitive data and keeps information from the computation around in memory
forever. Such a server may be able to eventually recover data if the underlying
hardness assumption breaks down in the future. In this setting, it is natural
to ask: Can we use computational assumptions to design “everlasting” secure
protocols against an adversary that is computationally bounded during protocol
execution but becomes computationally unbounded after protocol execution?

Unfortunately, everlasting secure computation against every participant in
a protocol is also impossible [40] for most natural two-party functionalities (or
multi-party functionalities against dishonest majority corruptions). For the spe-
cific case of two parties, this means that it is impossible to achieve everlasting
security against both players, without relying on special tools like trusted/ideal
hardware. Nevertheless, it is still possible to obtain everlasting (or even the
stronger notion of statistical) security against one unbounded participant (see
eg., [30] and references therein). But in all existing protocols, which party may
be unbounded and which one must be assumed to be computationally bounded
must necessarily be fixed before protocol execution. We ask if this is necessary.
That is,

Can participants transfer everlasting security from one party
to another even after a protocol has already been executed?

We show that the answer is yes, under the weak cryptographic assumption
that (post-quantum) statistically-binding computationally-hiding bit commit-
ments exist. These commitments can in turn be based on one-way functions [38]
or even pseudo-random quantum states [37,3].

We illustrate our novel security property by considering it in the context of
Yao’s classic millionaire problem [45]. Stated simply, this toy problem requires
two millionaires to securely compute who is richer without revealing to each
other or anyone else information about their wealth. That is, the goal is to
only reveal the bit indicating whether x1 > x5 where x; is Alice’s private input
and x5 is Bob’s private input. In our extension, the millionaires would also like



(certified) everlasting security against the wealthier party, while maintaining
standard simulation-based security against the other party. Namely, if z; > x5
then the protocol should satisfy certified everlasting security against Alice and
standard simulation-based security against computationally bounded Bob; and
if it turns out that xo > x1, then the protocol should satisfy certified everlasting
security against Bob and simulation-based security against bounded Alice.

More generally, our goal is to enable any one party (or a subset of parties) to
dynamically and certifiably information-theoretically delete other participants’
inputs, during or even after a secure computation protocol completes. At the
same time, the process of deletion should not destroy standard simulation-based
security.

We build a two-party protocol that is (a) designed to be secure against com-
putationally unbounded Alice and computationally bounded Bob. In addition,
even after the protocol ends, (b) Bob has the capability to generate a proof whose
validity certifies that the protocol has now become secure against unbounded Bob
while remaining secure against bounded Alice. In other words, verification of the
proof implies that everlasting security roles have switched: this is why we call
this property everlasting security transfer. This implies zero-knowledge proofs
for NP/QMA with certified everlasting ZK as a special case. We also extend
this result to obtain multi-party computation where even after completion of the
protocol, any arbitrary subset of parties can certifiably, information-theoretically
remove information about the other party inputs from their view.

At a high level, we build these protocols by carefully combining Theorem 1
with additional techniques to ensure that having one party generate a certificate
of deletion does not ruin standard (simulation-based, computational) security
against the other party.

In what follows, we provide a detailed overview of our techniques.

1.2 Techniques

We first provide an overview of our proof of Theorem 1.

Our construction and analysis include a couple of crucial differences from
previous work on certified deletion. First, our analysis diverges from recent
work [11,39] that relies on “generalized uncertainty relations” which provide
lower bounds on the sum of entropies resulting from two incompatible measure-
ments, and instead builds on the simple but powerful “quantum cut-and-choose”
formalism of Bouman and Fehr [8]. Next, we make crucial use of an unseeded
randomness extractor (the XOR function), as opposed to a seeded extractor, as
used by [11].

Delaying the dependence on b. A key tension that must be resolved when proving
a claim like Theorem 1 is the following: how to information-theoretically remove
the bit b from the adversary’s view, when it is initially information-theoretically
determined by the adversary’s input. Our first step towards a proof is a simple
change in perspective. We will instead imagine sampling the distribution by
guessing a uniformly random b < {0,1}, and initializing the adversary with
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|z),,0", Zx(0). Then, we abort the experiment (output L) if it happens that
b # b D,.g,—0vi- Since b’ was a uniformly random guess, we always abort
with probability exactly 1/2, and thus the trace distance between the b = 0 and
b = 1 outputs of this experiment is at least half the trace distance between the
outputs of the original experiment.5

Now, the bit b is only used by the experiment to determine whether or not
to output L. This is not immediately helpful, since the result of this “abort
decision” is of course included in the output of the experiment. However, we can
make progress by delaying this abort decision (and thus, the dependence on b)
until after the adversary outputs x’ and their residual state on register A’. To
do so, we will make use of a common strategy in quantum cryptographic proofs:
replace the BB84 states |z), with halves of EPR pairs %(|00) +|11)). Let C be
the register holding the “challenger’s” halves of EPR pairs, and A be the register
holding the other halves, which is part of the adversary’s input. This switch is
perfectly indistinguishable from the adversary’s perspective, and it allows us to
delay the measurement of C in the 6-basis (and thus, delay the determination
of the string x and subsequent abort decision), until after the adversary outputs
(', A).

We still have not shown that when the deletion certificate is accepted, infor-
mation about b doesn’t exist in the output of the experiment. However, note that
at this point it suffices to argue that EBMFO x; is distributed like a uniformly
random bit, even conditioned on the adversary’s “side information” on register
A’ (which may be entangled with C). This is because, if €B,.y, _o = is uniformly
random, then the outcome of the abort decision, whether o' = b @ ®i:0,~=0 x;, is
also a uniformly random bit, regardless of b.

Identifying an efficiently-checkable predicate. To prove that @MFO x; is uni-
formly random, we will need to establish that the measured bits {z;}:.9,—0 con-
tain sufficient entropy. To do this, we will need to make some claim about the
structure of the state on registers C;.g,—o. These registers are measured in the
computational basis to produce {;};.9,—0, so if we could claim that these reg-
isters are in a Hadamard basis state, we would be done. We won’t quite be
able to claim something this strong, but we don’t need to. Instead, we will rely
on the following claim: consider any (potentially entangled) state on systems
X and Y, such that the part of the state on system Y is in a superposition of
Hadamard basis states |u), where each u is a vector of somewhat low Hamming
weight.” Then, measuring Y in the computational basis and computing the XOR
of the resulting bits produces a bit that is uniformly random and independent

5 One might be concerned that extending this argument to multi-bit messages may
eventually reduce the advantage by too much, since the entire message must be
guessed. However, it actually suffices to prove Theorem 1 for single bit messages and
then use a bit-by-bit hybrid argument to obtain security for any polynomial-length
message.

" It suffices to require that the relative Hamming weight of each u is < 1/2.
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of system X.® This claim can be viewed as saying that XOR is a good (seedless)
randomness extractor for the quantum source of entropy that results from mea-
suring certain structured states in the conjugate basis. Indeed, such a claim was
developed to remove the need for seeded randomness extraction in applications
like quantum oblivious transfer [2], and it serves a similar purpose here.’

Thus, it suffices to show that the state on registers C;.9,—¢ is only supported
on low Hamming weight vectors in the Hadamard basis. A priori, it is not clear
why this would even be true, since C, A are initialized with EPR pairs, and the
adversary, who has access to A, can simply measure its halves of these EPR pairs
in the computational basis. However, recall that the experiment we are interested
in only outputs the adversary’s final state when its certificate of deletion is
valid, and moreover, a valid deletion certificate is a string =’ that matches z
in all the Hadamard basis positions. Moreover, which positions will be checked
is semantically hidden from the adversary. Thus, in order to be sure that it
passes the verification, an adversary should intuitively be measuring most of its
registers A in the Hadamard basis.

Reducing to semantic security. One remaining difficulty in formalizing this intu-
ition is that if the adversary knew @, it could decide which positions to measure
in the Hadamard basis to pass the verification check, and then measure A;.9,—o
in the computational basis in order to thwart the above argument from going
through. And in fact, the adversary does have information about 6, encoded in
the distribution Z,(6).

This is where the assumption that Ay cannot distinguish between Z(6) and
Z,(0*) comes into play. We interpret the condition that registers C;.p,—¢ must
be in a superposition of low Hamming weight vectors in the Hadamard basis (or
verification doesn’t pass) as an efficient predicate (technically a binary projective
measurement) that can be checked by a reduction to the indistinguishability of
distributions Zy () and Z,(0*). Thus, this predicate must have roughly the same
probability of being true when the adversary receives Z,(0%). But now, since
is independent of the adversary’s view, we can show information-theoretically
that this predicate must be true with overwhelming probability.

We note that the broad strategy of identifying an efficiently-checkable pred-
icate which implies the uncheckable property that some information is random
and independent of the adversary’s view has been used in similar (quantum cryp-
tographic) contexts by Gottesman [22] in their work on the related concept of

8 This proof strategy is inspired by the techniques of [8], who show a similar claim
using a seeded extractor.

If we had tried to rely on generic properties of a seeded randomness extractor, as
done in [11], we would still have had to deal with the fact the adversary’s view
includes an encryption of the seed, which is required to be uniform and independent
of the source of entropy. Even if the challenger’s state can be shown to produce a
sufficient amount of min-entropy when measured in the standard basis, we cannot
immediately claim that this source of entropy is perfectly independent of the seed of
the extractor. Similar issues with using seeded randomness extraction in a related
context are discussed by [41] in their work on revocable timed-release encryption.

9
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uncloneable (or perhaps more accurately, tamper-detectable) encryption!® and
by Unruh [41] in their work on revocable timed-release encryption.

Application: A wvariety of encryption schemes with certified deletion. For any
X € {public-key encryption, attribute-based encryption, witness encryption,
statistically-binding commitment, timed-release encryption}, we immediately
obtain “X with certified deletion” by instantiating the distribution Z, with the
encryption/encoding procedure for X, and additionally encrypting/encoding the
bit b @ @i:@izo x; to ensure that semantic security holds regardless of whether
the adversary deletes the ciphertext or not.

Similarly, if Z, is instantiated with the encryption procedure for a fully-
homomorphic encryption scheme [20,9,21], then the scheme also allows for ar-
bitrary homomorphic operations over the ciphertext. We also note that such a
scheme can be used for blind delegation with certified deletion, allowing a weak
client to outsource computations to a powerful server and subsequently verify
deletion of the plaintext. In particular, a server may perform homomorphic eval-
uation coherently (i.e. by not performing any measurements), and return the
register containing the output to the client. The client can coherently decrypt
this register to obtain a classical outcome, then reverse the decryption opera-
tion and return the output register to the server. Finally, the server can use this
register to reverse the evaluation operation and recover the original ciphertext.
Then, the server can prove deletion of the original plaintext as above, i.e. mea-
sure the quantum state associated with this ciphertext in the Hadamard basis,
and report the outcomes as their certificate.

Application: Secure computation with Everlasting Security Transfer (EST). Re-
call that in building two-party computation with EST, the goal is to build proto-
cols (a) secure against unbounded Alice and computationally bounded Bob such
that, during or even after the protocol ends, (b) Bob can generate a proof whose
validity certifies that the protocol has now become secure against unbounded Bob
while remaining secure against bounded Alice.

Our goal is to realize two-party secure computation with EST from minimal
cryptographic assumptions. We closely inspect a class of protocols for secure
computation that do not a-priori have any EST guarantees, and develop tech-
niques to equip them with EST.

In particular, we observe that a key primitive called quantum oblivious trans-
fer (QOT) is known to unconditionally imply secure computation of all clas-
sical (and quantum) circuits [31,14,16]. Namely, given OT with information-
theoretic security, it is possible to build secure computation with everlasting

10 Tn this notion, the adversary is an eavesdropper who sits between a ciphertext genera-
tor Alice and a ciphertext receiver Bob (using a symmetric-key encryption scheme),
who attempts to learn some information about the ciphertext. The guarantee is
that, either the eavesdropper gains information-theoretically no information about
the underlying plaintext, or Bob can detect that the ciphertext was tampered with.
While this is peripherally related to our setting, [22] does not consider public-key
encryption, and moreover Bob’s detection procedure is quantum.
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(and even unconditional) security against unbounded participants. We recall
that information-theoretically secure OT cannot exist in the plain model, even
given quantum resources [33]. However, for the case of EST, we establish a gen-
eral sequential composition theorem (in the full version [5]) which shows that
oblivious transfer with EST can be plugged into the above unconditional proto-
cols to yield secure computation protocols with EST.

Furthermore, a recent line of work [13,15,8,4,23] establishes ideal commit-
ments!! as the basis for QOT. Intuitively, these are commitments that sat-
isfy the (standard) notion of simulation-based security against computationally
bounded quantum committers and receivers. Namely, for every adversarial com-
mitter (resp., receiver) that interacts with an honest receiver (resp., committer)
in the real protocol, there is a simulator that interacts with the ideal commitment
functionality and generates a simulated state that is indistinguishable from the
committer’s (resp., receiver’s) state in the real protocol. Our composition theo-
rem combined with [4] also immediately shows that ideal commitments with EST
imply QOT with EST. Thus, the problem reduces to building ideal commitments
with EST.

Constructing Ideal Commitments with EST. An ideal commitment with EST
satisfies statistical simulation-based security against unbounded committers, and
computational simulation-based security against bounded receivers. Further-
more, after an optional delete/transfer phase succeeds, everlasting security is
transfered: that is, then the commitment satisfies statistical (simulation-based)
security against unbounded receivers, and remains computationally (simulation-
based) secure against bounded committers.

To build ideal commitments with EST, we start with any commitment that
satisfies standard computational hiding, and a strong form of binding: namely,
simulation-based security against an unbounded malicious committer. At a high
level, this means that there is an efficient extractor that can extract the in-
put committed by an unbounded committer, thereby statistically simulating
the view of the adversarial committer in its interaction with the ideal commit-
ment functionality. We call this a computationally-hiding statistically-efficiently-
extractable (CHSEE) commitment, and observe that prior work ([4]) builds such
commitments from black-box use of any statistically-binding, computationally-
hiding commitment. Our construction of ideal commitments with EST starts
with CHSEE commitments, and proceeds in two steps, where the first involves
new technical insights and the second follows from ideas in prior work [4].

Step 1: One-Sided Ideal Commitments with EST. While CHSEE com-
mitments satisfy simulation-based security against a malicious committer, they
do not admit security transfer. Therefore, our first step is to add the EST prop-
erty to CHSEE commitments, which informally additionally allows receivers to

1 The term “ideal committment” can sometimes refer to the commitment ideal fun-
tionality, but in this work we use the term ideal commitment to refer to a real-world
protocol that can be shown to securely implement the commitment ideal functional-
ity.
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certifiably, information-theoretically, delete the committed input. We call the re-
sulting primitive one-sided ideal commitments with EST. The word “one-sided”
denotes that these commitments satisfy simulation-based security against any
malicious committer, but are not necessarily simulation-secure against malicious
receivers. Instead, these commitments semantically hide the committed bit from
a malicious receiver and furthermore, support certified everlasting hiding against
malicious receivers.

We observe that invoking Theorem 1 while instantiating Z, with a CHSEE
commitments already helps us add the certified everlasting hiding property to
any CHSEE commitment. While this ensures the desired certified everlasting se-
curity against malicious receivers, the scheme appears to become insecure against
malicious committers after certified deletion!

To see why, recall that the resulting commitment is now |z),,Com (6,b'),
where Com is a CHSEE commitment and V' = b & @MFO z;. In particular, to
simulate (i.e., to extract the bit committed by) a malicious committer C*, a sim-
ulator must extract the bases 6 and masked bit b’ from the CHSEE commitment,
measure the accompanying state |¢) in basis 6 to recover z, and then XOR the
parity €D;.g,—o ¥i With b’ to obtain the committed bit b. Thus, the simulator will
have to first measure qubits of |¢)) that correspond to 6; = 0 in the computa-
tional basis to recover x; values at these positions. If the committer makes a
delete request after this point, the simulator must measure all positions in the
Hadamard basis to generate the certificate of deletion. But consider a cheating
committer that (maliciously) generates the qubit at a certain position (say i = 1)
as a half of an EPR pair, keeping the other half to itself. Next, this committer
commits to §; = 0 (i.e., computational basis) corresponding to the index i = 1.
The simulation strategy outlined above will first measure the first qubit of |¢)
in the computational basis, and then later in the Hadamard basis to generate a
deletion certificate. On the other hand, an honest receiver will only ever measure
this qubit in the Hadamard basis to generate a deletion certificate. This makes
it easy for such a committer to distinguish simulation from an honest receiver
strategy, simply by measuring its half of the EPR pair in the Hadamard basis,
thereby breaking simulation security post-deletion.

To prevent this attack, we modify the scheme so that the committer C* only
ever obtains the receiver’s outcomes of Hadamard basis measurements on indices
where the committed §; = 1. In particular, we make the delete phase interactive:
the receiver will first commit to all measurement outcomes in Hadamard bases,
C* will then decommit to 6, and then finally the receiver will only open the
committed measurement outcomes on indices i where 6; = 1. Against malicious
receivers, we prove that this scheme is computationally hiding before deletion,
and is certified everlasting hiding after deletion. Against a malicious commit-
ter, we prove statistical simulation-based security before deletion, and show that
computational simulation-based security holds even after deletion.

Step 2: Ideal Commitments with EST. Next, we upgrade the one-sided
ideal commitments with EST obtained above to build (full-fledged) ideal com-
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mitments with EST. Recall that the one-sided ideal commitments with EST
do not satisfy simulation-based security against malicious receivers. Intuitively,
simulation-based security against malicious receivers requires the existence of a
simulator that interacts with a malicious receiver to produce a state in the com-
mit phase, that can later be opened (or equivocated) to a bit that is only revealed
to the simulator at the end of the commit phase. We show that this property can
be generically obtained (with EST) by relying on a previous compiler, namely
an equivocality compiler from [4]. We defer additional details of this step to the
full version [5] since this essentially follows from ideas in prior work [4]. This
also completes an overview of our techniques.

Roadmap. We refer the reader to Section 3 for the proof of our main theorem,
Section 4 for secret sharing and public-key encryption with certified deletion, and
the full version [5] for additional cryptosystems with certified deletion including
details on building secure computation with everlasting security transfer.

1.3 Concurrent and independent work

Subsequent to the original posting of our paper on arXiv, an updated version
of [39] was posted with some independent new results on fully-homomorphic
encryption with certified deletion. The updated FHE scheme with certified dele-
tion is shown to satisfy standard semantic security, but under a newly introduced
conjecture that a particular hash function is “strong Gaussian-collapsing”. Prov-
ing this conjecture based on a standard assumption such as LWE is left as an
open problem in [39]. Thus, the FHE scheme presented in our paper is the first
to satisfy certified deletion based on a standard assumption (and in addition
satisfies everlasting hiding). On the other hand, the updated scheme of [39] also
satisfies the property of publicly-verifiable deletion, which we do not consider in
this work.

Also, a concurrent and independent work of Hiroka et al. [26] was posted
shortly after the original posting of our paper. In [26], the authors construct
public-key encryption schemes satisfying the definition of security that we use in
this paper: certified everlasting security. However, their constructions are either
in the quantum random oracle model, or require a quantum certificate of dele-
tion. Thus, our construction of PKE with certified everlasting security, which is
simple, in the plain model, and has a classical certificate of deletion, subsumes
these results. On the other hand, [26] introduce and construct the primitive of
(bounded-collusion) functional encryption with certified deletion, which we do
not consider in this work.

2 Preliminaries

Let A\ denote the security parameter. We write negl(-) to denote any negligible
function, which is a function f such that for every constant ¢ € N there exists
N € N such that for all n > N, f(n) <n~°.
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Given an alphabet A and string z € A", let h(z) denote the Hamming
weight (number of non-zero indices) of x, and w(x) := h(x)/n denote the relative
Hamming weight of . Given two strings z,y € {0,1}", let A(z,y) = w(x ® y)
denote the relative Hamming distance between z and y.

2.1 Quantum preliminaries

A register X is a named Hilbert space C2". A pure quantum state on register X
is a unit vector [¢)* € C2", and we say that |1)* consists of n qubits. A mixed
state on register X is described by a density matrix pX € C2"*2", which is a
positive semi-definite Hermitian operator with trace 1.

A quantum operation F is a completely-positive trace-preserving (CPTP)
map from a register X to a register Y, which in general may have different
dimensions. That is, on input a density matrix p*, the operation F produces
F(p*) = 77 a mixed state on register Y. We will sometimes write a quantum
operation F' applied to a state on register X and resulting in a state on register
Y as Y « F(X). Note that we have left the actual mixed states on these reg-
isters implicit in this notation, and just work with the names of the registers
themselves.

A unitary U : X — X is a special case of a quantum operation that satisfies
UTU = UUT = IX, where IX is the identity matrix on register X. A projector IT
is a Hermitian operator such that IT? = II, and a projective measurement is a
collection of projectors {II;}; such that >, IT; = 1.

Let Tr denote the trace operator. For registers X, Y, the partial trace TrY is
the unique operation from X, Y to X such that for all (p, 7)Y, Tr¥ (p,7) = Tr(7)p.
The trace distance between states p, 7, denoted TD(p, 7) is defined as

T(p.7) = 3l 7l = 57 (o= )it 1).

We will often use the fact that the trace distance between two states p and 7 is an
upper bound on the probability that any (unbounded) algorithm can distinguish
p and 7. When clear from context, we will write TD(X,Y) to refer to the trace
distance between a state on register X and a state on register Y.

Lemma 1 (Gentle measurement [44]). Let p* be a quantum state and let
(II,1 — II) be a projective measurement on X such that Tr(IIp) > 1 — 0. Let

P IIpll
P Te(llp)

be the state after applying (II,1 — II) to p and post-selecting on obtaining the
first outcome. Then, TD(p, p') < 2v/0.

We will make use of the convention that 0 denotes the computational basis
{]0),|1)} and 1 denotes the Hadamard basis {‘OHM 0)=11) } For a bit r €

V2 V2
{0,1}, we write |r), to denote r encoded in the computational basis, and |r),
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to denote 7 encoded in the Hadamard basis. For strings z,6 € {0,1}*, we write
|z)g to mean [x1)y ..., |Tx)g, -

A non-uniform quantum polynomial-time (QPT) machine {Ay, [¢), }ren is
a family of polynomial-size quantum machines Ay, where each is initialized with
a polynomial-size advice state |1, ). Each A, is in general described by a CPTP
map. Similar to above, when we write Y < A(X), we mean that the machine A
takes as input a state on register X and produces as output a state on register Y,
and we leave the actual descripions of these states implicit. Finally, a quantum
interactive machine is simply a sequence of quantum operations, with designated
input, output, and work registers.

2.2 The XOR extractor

We make use of a result from [2] which shows that the XOR function is a good
randomness extractor from certain quantum sources of entropy, even given quan-
tum side information. We include a proof here for completeness.

Imported Theorem 2 ([2]) Let X be an n-qubit register, and consider any

)

quantum state |y)"" that can be written as

M= Y ) e,

uh(u)<n/2

where h(-) denotes the Hamming weight. Let p™P be the mived state that results
from measuring X in the Hadamard basis to produce a string x € {0,1}", and
writing @ie[n] x; into a single qubit register P. Then it holds that

AT =T D (G100 + 5 T).

Proof. First, write the state on registers A, X, P that results from applying Hadamard
to X and writing the parity, denoted by p(z) = @ie[n] x;, to P:

LY T o ) m e = X 100t ) @)

z€{0,1} \u:h(u)<n/2 z€{0,1}"
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Then, tracing out the register X, we have that

PP = S 100 b)) ()] 0]

ze{0,1}™

1 1

=5 D 162 (6l @ 100+ 5 D2 19a) (dal @111
z:p(x)=0 z:p(x)=1

1 u u )T

=5 2 > (=1) Ty, ) (b, | | ©0) (0]
z:p(x)=0 \u1,u2:h(uy),h(uz)<n/2
1 u u ) x

to Dl > (=) ®2T ) (s | | @ (1) (1]

z:p(z)=1 \u1,uz:h(u1),h(uz)<n/2

= Z [V, ) (V| ® 2% Z (—1)(u1®u2)‘z 10) (0] + 2% Z (_U(m@uz)'w 1) (1

wy,uz:h(uy),h(uz)<n/2 x:p(z)=0 z:p(z)=1
1 1

= 3 watwde (0 00+ 5 a)

u:h(u)<n/2

1 1
TR ) @ (100 01+ 31 ).
where the 5th equality is due to the following claim, plus the observation that
uy @ ug # 1™ for any uq, ug such that h(ui) < n/2 and h(uz) < n/2.
Claim. For any u € {0,1}"™ such that u ¢ {0™, 1™}, it holds that
S e e
z:p(x)=0 z:p(z)=1

Proof. For any such u ¢ {0™,1™}, define Sy = {i : u; =0} and S; = {i : u; = 1}.
Then, for any yo € {0,1}/%l and y; € {0,1}1%], define x,, ,, € {0,1}" to be the
n-bit string that is equal to yo when restricted to indices in Sy and equal to y;
when restricted to indices in S;. Then,

DESIEEDS S e

z:p(z)=0 y1€{0,1}1511 yo€{0,1}1501:p(zy 4, )=0
_ Z 2\50|—1(_1)1I51\‘y1 — 9lSo|-1 Z (_1)p(y1) =0,
y1€{0,1}1511 y1€{0,1}151l

where the second equality can be seen to hold by noting that for any fixed
y1 € {0,1}1511] there are exactly 219/~ strings yo € {0,1}/*°l such that the
parity of xy, ., is 0. Finally, the same sequence of equalities can be seen to hold
for x : p(x) = 1.
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2.3 Quantum rewinding
We will make use of the following lemma from [42].

Lemma 2. Let Q be a quantum circuit that takes n qubits as input and outputs
a classical bit b and m qubits. For an n-qubit state 1), let p(|¥)) denote the
probability that b = 0 when executing Q on input |¢). Let po,q € (0,1) and
€ €(0,1/2) be such that:

— For every n-qubit state |¢) ,po < p(|v)),
— For every n-qubit state |¢), [p(JY)) —q| <e,

= po(1 —po) < gq(1—q),
_log(1/e)

4-po(1—po)
n qubits, and returning as output m qubits, with the following guarantee. For an

n qubit state |, let Qo(|th)) denote the output of Q on input |b) conditioned
on b =0, and let Q(|¢)) denote the output of Q on input |1). Then, for any
n-qubit state 1),

Then, there is a quantum circuit Q of size O < |Q|) taking as input

log(1/e)
po(1—po)’

D (Qu(l6)). () < 1y/e 2B

3 Main theorem

Theorem 3. Let {Zx(-,-,")}aen be a quantum operation with three arguments:
a \-bit string 0, a bit b, and a \-bit quantum register A. Let o/ be a class of
adversaries'? such that for all {Ax}ren € &, and for any string 6 € {0,1}*, bit

b € {0,1}, and state |¢>A’C on A-bit register A and arbitrary size register C,

Pr[Ay(2(0,1,A), C) = 1] — Pr[Ay (25 (0}, 0, A),C) = 1]‘ = negl()).

That is, Zy is semantically-secure against Ay with respect to its first input. For

any {Ax}ren € &, consider the following distribution {ZN/“\L‘A (b)} over
AEN,be{0,1}

quantum states, obtained by running Ax as follows.
— Sample x,0 + {0,1}* and initialize Ay with
2 (9,1;@ D wi,x>9>.
191:0

— Ay ’s output is parsed as a string ' € {0,1}* and a residual state on register
A

12 Technically, we require that for any {Ax}ren € o7, every adversary B with time and
space complexity that is linear in A more than that of A, is also in /.
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— If x; = ) for all i such that 0; = 1 then output A', and otherwise output a
special symbol L.

Then,
D (53’;‘* (0), Z (1)) — negl()).

Remark 1. We note that, in fact, the above theorem is true as long as z, 6 are
w(log)) bits long.

Proof. We define a sequence of hybrid distributions.

— Hybg(d) : This is the distribution {2:\4* (b)}AEN described above.
— Hyb, (b) : This distribution is sampled as follows.
e Prepare A\ EPR pairs %(|00> + |11)) on registers (C1,A1),...,(Cx,Ax).
Define C:=Cq,...,Cy and A = Aq,...,A,.
e Sample 0 < {0,1}*,b' < {0, 1}, measure register C in basis # to obtain
x € {0,1}*, and initialize Ay with Z5(0,b', A).
o If ) =b® P,y v then proceed as in Hyb, and otherwise output L.
— Hyb,(b) : This is the same as Hyb, (b) except that measurement of register C
to obtain z is performed after A, outputs z’ and p.

We define Advt(Hyb,) := TD (Hyb,(0), Hyb,(1)) . Then, we have that
Advt(Hyb;) > Advt(Hyb,)/2,

which follows because Hyb, (b) is identically distributed to the distribution that
outputs L with probability 1/2 and otherwise outputs Hyb,(b). Next, we have
that

Advt(Hyb,) = Advt(Hyb, ),

which follows because the register C is disjoint from the registers that A oper-
ates on. Thus, it remains to show that

Advt(Hyb,) = negl()).
To show this, we first define the following hybrid.
— Hyb4(b) : This is the same as Hyb, except that Ay is initialized with Z, (0}, 8, A).

Now, for any b € {0,1}, consider the state on register C immediately after
Ay outputs (z/,A’) in Hyb)(b). For any 6 € {0,1}*, define sets 0y := {i : 6; = 0}
and 6y := {i: 6; = 1}, and define the projector

Co Co

1y g = (H@\Gll |1J91> <1J91|H®|01\> ‘2 Z (H®|9°‘ ) <y|H®|0“|> o ’
ye{0,1}1%] st
Ay,xy, )=1/2

where A(+,-) denotes relative Hamming distance. Then, let Pr[II, o, Hyb)(b)] be
the probability that a measurement of {II, ¢,1— II,» g} accepts (returns the
outcome associated with IT,s ) in Hybb(b).
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Claim. For any b € {0,1}, Pr[Il,/ g, Hyb,(b)] = negl(\).

Proof. Consider running Hybj(b) until Ay outputs ' and a state on register A’
that may be entangled with the challenger’s state on register C. Note that we
can sample 6 « {0,1}* independently since it is no longer in Ay’s view. Then
since Il g is diagonal in the Hadamard basis for any (2',0), we have that

Pr[Hér’ﬁv Hybé(b)} = w/PgI“y [y‘91 = ‘T/91 NA (yeoam/@r) = 1/2] )
where the second probability is over A, outputting z’, the challenger sam-
pling 6 < {0,1}*, and the challenger measuring register C in the Hadamard
basis to obtain y. For any fixed string z’, this probability can be bound by stan-
dard Hoeffding inequalities. For example, in [8, Appendix B.3], it is shown to be

bounded by 4e—1/2)/32 = negl(\), which completes the proof.
Now we consider the corresponding event in Hyb, (b), denoted Pr[IT,: g, Hyb,(b)].
Claim. For any b € {0,1}, Pr[I1,: g, Hyby(b)] = negl(\).

Proof. This follows by a direct reduction to semantic security of {Zx(-,-, ) }ren
with respect to its first input. The reduction samples 6 < {0,1}*, &' + {0, 1},
prepares A\ EPR pairs on registers (A, C), and sends (0,4, A) to its challenger.
It receives either Zy (0,0, A) or Z(0*,',A), which its sends to Ay. After Ay
outputs (z,A’), the reduction measures {II,/ 9,1 — I,/ o} on register C. Note
that the complexity of this reduction is equal to the complexity of Ay plus an
extra A bits of space and an extra linear time operation, so it is still in of. If
Pr[I1, 9, Hyby(b)] is non-negligible this can be used to distinguish Z,(6,', A)
from Zy(0*,8',A), due to Section 3.

Finally, we can show the following claim, which completes the proof.
Claim. Advt(Hyb,) = negl()).

Proof. First, we note that for any b € {0, 1}, the global state of Hyb,(b) imme-

diately after A, outputs z’ is within negligible trace distance of a state Tlgé;
in the image of I — I,/ g. This follows immediately from Section 3 and Gentle

Measurement (Lemma 1). Now, consider measuring registers Cq, of ﬁg,’;\; to de-
termine whether the experiment outputs L. That is, the procedure measures Cg,
in the Hadamard basis and checks if the resulting string is equal to m/91‘ There
are two options.

— If the measurement fails, then the experiment outputs L, independent of
whether b = 0 or b = 1, so there is 0 advantage in this case.

— If the measurement succeeds, then we know that the state on register Cy, is
only supported on vectors H®!%l |y} such that Ay, xy,) < 1/2, since Tlg’e/zll

was in the image of I — I,/ 9. These registers are then measured in the

computational basis to produce bits {x;}:.0,—0, and the experiment outputs
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Lif @;.9,—¢ i # b’ ® b and otherwise outputs the state on register A". Note
that (i) this decision is the only part of the experiment that depends on
b, and (ii) it follows from Theorem 2 that the bit €D,.5._o i is uniformly
random and independent of the register A’, which is disjoint (but possibly
entangled with) C. Thus, there is also 0 advantage in this case.

Indeed, Theorem 2 says that making a Hadamard basis measurement of
a register that is in a superposition of computational basis vectors with
relative Hamming weight < 1/2 will produce a set of bits {x;}i.0,—0 such
that EBMFO x; is a uniformly random bit, even given potentially entangled
quantum side information. We can apply this lemma to our system on Cg,, A’
by considering a change of basis that maps H®!%l |z,) — |0%l). That is,
the change of basis first applies Hadamard gates, and then an XOR with the
fixed string :rgo. Applying such a change of basis maps Cg, to a state that is
supported on vectors |y) such that w(y) < 1/2, and we want to claim that a
Hadamard basis measurement of the resulting state produces {x;};.9,—0 such
that @i:@izo x; is uniformly random and independent of A’. This is exactly
the statement of Theorem 2.

This completes the proof, since we have shown that there exists a single dis-
tribution, defined by Tlg’e/:l , that is negligibly close to both Hyb,(0) and Hyb,(1).

4 Cryptography with Certified Everlasting Security

4.1 Secret sharing

We give a simple construction of a 2-out-of-2 secret sharing scheme where there
exists a designated party that the dealer can ask to produce a certificate of
deletion of their share. If this certificate verifies, then the underlying plaintext
is information theoretically deleted, even given the other share.

Definition. First, we augment the standard syntax of secret sharing to include
a deletion algorithm Del and a verification algorithm Ver. Formally, consider a
secret sharing scheme CD-SS = (Share, Rec, Del, Ver) with the following syntax.

— Share(m) — (s1, 52, vk) is a quantum algorithm that takes as input a classical
message m, and outputs a quantum share si, a classical share sy and a
(potentially quantum) verification key vk.

— Rec(s1,82) = {m, L} is a quantum algorithm that takes as input two shares
and outputs either a message m or a L symbol.

— Del(s1) — cert is a quantum algorithm that takes as input a quantum share
s1 and outputs a (potentially quantum) deletion certificate cert.

— Ver(vk,cert) = {T, L} is a (potentially quantum) algorithm that takes as in-
put a (potentially quantum) verification key vk and a (potentially quantum)
deletion certificate cert and outputs either T or L.

We say that CD-SS satisfies correctness of deletion if the following holds.
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Definition 1 (Correctness of deletion). CD-SS = (Share, Rec, Del, Ver) sat-
isfies correctness of deletion if for any m, it holds with 1 — negl(\) probability
over (s1, s2,vk) <— Share(m), cert <— Del(s1), u < Ver(vk, cert) that p=T.

Next, we define certified deletion security for a secret sharing scheme.

Definition 2 (Certified deletion security).

Let A = {Ax}ren denote an unbounded adversary and b denote a classical
bit. Consider experiment EV—EXPf(b) which describes everlasting security given
a deletion certificate, and is defined as follows.

Sample (s1, s2,vk) < Share(b).

— Initialize Ay with s1.

Parse Ay ’s output as a deletion certificate cert and a residual state on register
A

— If Ver(vk,cert) = T then output (A, s2), and otherwise output L.

Then CD-SS = (Share, Rec, Del, Ver) satisfies certified deletion security if for any
unbounded adversary A, it holds that

D (EV-EXPf(O), EV-EXP“A“(l)) = negl(\),

Corollary 1. The scheme CD-SS = (Share, Rec, Del, Ver) defined as follows is a
secret sharing scheme with certified deletion.

— Share(m) : sample z,0 < {0,1}* and output

s1=|T)p,52 = (9,6@ @ x?,) ,  vk:=(z,0).

i:é‘i:O
— Rec(s1,s2) : parse s1 = |x),,52 = (0,1'), measure |x), in the O-basis to
obtain x, and output b="1V & D,y _o Ti-
— Del(s1) : parse sy :=|z), and measure |x), in the Hadamard basis to obtain

a string x’, and output cert := x’.
— Ver(vk, cert) : parse vk as (z,0) and cert as 2’ and output T if and only if
x; = x for all i such that 0; = 1.

Proof. Correctness of deletion follows immediately from the description of the
scheme. Certified deletion security, i.e.

™ (EV-EXPj\“(O), EV-EXPf(l)) = negl(\)

follows by following the proof strategy of Theorem 3. This setting is slightly
different than the setting considered in the proof of Theorem 3 since here we
consider unbounded Ay that are not given access to 6 while Theorem 3 considers
bounded Ay that are given access to an encryption of . However, the proof is
almost identical, defining hybrids as follows.
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Hyb (b) : This is the distribution {EV-EXP;\“A (b)})\ . described above.
€
Hyb, (b) : This distribution is sampled as follows.

— Prepare A EPR pairs %OOO) +|11)) on registers (Cy,A1),...,(Cx,Ax). De-
fine C:=Cq,...,Cy and A:=Aq,... A

— Sample § + {0,1}," < {0,1}, measure register C in basis 6 to obtain
x € {0,1}*, and initialize A, with register A.

= If V' =b® €D,.9,—0 *i then proceed as in Hyb, and otherwise output L.

Hyb, (b) : This is the same as Hyb, (b) except that measurement of register C to
obtain x is performed after A, outputs 2’ and A’.

Indistinguishability between these hybrids closely follows the proof of Theo-
rem 3. The key difference is that Hybg (b) is identical to Hyb,(b) except that sy is
set to (b',0%). Then, Pr[II, o, Hyby(b)] = negl()) follows identically to the proof
in Theorem 3, whereas Pr[II,s g, Hyby(b)] = negl()\) follows because the view
of Ay is identical in both hybrids. The final claim, that Advt(Hyb,) = negl())
follows identically to the proof in Theorem 3.

Remark 2 (One-time pad encryption). We observe that the above proof, which
considers unbounded .4y who don’t have access to 6 until after they produce a
valid deletion certificate, can also be used to establish the security of a simple
one-time pad encryption scheme with certified deletion. The encryption of a bit b
would be the state |z), together with a one-time pad encryption k©b®€D,.5. _o i
with key k < {0,1}. The secret key would be (k,8). Semantic security follows
from the one-time pad, while certified deletion security follows from the above
secret-sharing proof. This somewhat simplifies the construction of one-time pad
encryption with certified deletion of [11], who required a seeded extractor.

4.2 Public-key encryption

In this section, we define and construct post-quantum public-key encryption with
certified deletion for classical messages, assuming the existence of post-quantum
public-key encryption for classical messages.

Public-Key encryption with certified deletion. First, we augment the standard
syntax to include a deletion algorithm Del and a verification algorithm Ver. For-
mally, consider a public-key encryption scheme CD-PKE = (Gen, Enc, Dec, Del, Ver)
with syntax

— Gen(1*) — (pk,sk) is a classical algorithm that takes as input the security
parameter and outputs a public key pk and secret key sk.

— Enc(pk,m) — (ct,vk) is a quantum algorithm that takes as input the public
key pk and a message m, and outputs a (potentially quantum) verification
key vk and a quantum ciphertext ct.

— Dec(sk,ct) = {m, L} is a quantum algorithm that takes as input the secret
key sk and a quantum ciphertext ct and outputs either a message m or a |
symbol.
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— Del(ct) — cert is a quantum algorithm that takes as input a quantum ci-
phertext ct and outputs a (potentially quantum) deletion certificate cert.

— Ver(vk,cert) — {T, L} is a (potentially quantum) algorithm that takes as in-
put a (potentially quantum) verification key vk and a (potentially quantum)
deletion certificate cert and outputs either T or L.

We say that CD-PKE satisfies correctness of deletion if the following holds.

Definition 3 (Correctness of deletion). CD-PKE = (Gen, Enc, Dec, Del, Ver)
satisfies correctness of deletion if for any m, it holds with 1 —negl(\) probability
over (pk,sk) < Gen(1%), (ct,vk) <+ Enc(pk,m),cert + Del(ct), u + Ver(vk, cert)
that u=T.

Next, we define certified deletion security. Our definition has multiple parts,
which we motivate as follows. The first experiment is the everlasting security ex-
periment, which requires that conditioned on the (computationally bounded) ad-
versary producing a valid deletion certificate, their left-over state is information-
theoretically independent of b. However, we still want to obtain meaningful
guarantees against adversaries that do not produce a valid deletion certificate.
That is, we hope for standard semantic security against arbitrarily malicious
but computationally bounded adversaries. Since such an adversary can query
the ciphertext generator with an arbitrarily computed deletion certificate, we
should include this potential interaction in the definition, and require that the
response from the ciphertext generator still does not leak any information about
b.13 Note that, in our constructions, the verification key vk is actually completely
independent of the plaintext b, and thus for our schemes this property follows
automatically from semantic security.

Definition 4 (Certified deletion security). CD-PKE = (Gen, Enc, Dec, Del, Ver)
satisfies certified deletion security if for any non-uniform QPT adversary A =
{Ax, [¥)\}ren, it holds that

D (EV-EXPj\“(O), EV-EXPf(l)) = negl(\),

and
‘ Pr {C-EXP“A“(O) = 1} —Pr {C-EXP;“(U - 1} ’ = negl(\),

where the experiment EV-EXP;\“(b) considers everlasting security given a deletion
certificate, and is defined as follows.

— Sample (pk,sk) « Gen(1*) and (ct, vk) < Enc(pk, b).

3 One might expect that the everlasting security definition described above already
captures this property, since whether the certificate accepts or rejects is included in
the output of the experiment. However, this experiment does not include the output
of the adversary in the case that the certificate is rejected. So we still need to capture
the fact that the joint distribution of the final adversarial state and the bit indicating
whether the verification passes semantically hides b.
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Initialize Ax(|tpx)) with pk and ct.

Parse Ay ’s output as a deletion certificate cert and a residual state on register
A

If Ver(vk, cert) = T then output A’, and otherwise output L.

and the experiment C—EXPf(b) s a strengthening of semantic security, defined
as follows.

Sample (pk,sk) < Gen(1*) and (ct,vk) < Enc(pk, b).

Initialize Ax(]1n)) with pk and ct.

Parse Ay ’s output as a deletion certificate cert and a residual state on register
A

Output Ay (A’, Ver(vk, cert)).

Now we can formally define the notion of public-key encryption with certified

deletion.

Definition 5 (Public-key encryption with certified deletion). CD-PKE =
(Gen, Enc, Dec, Del, Ver) is a secure public-key encryption scheme with certified
deletion if it satisfies (i) correctness of deletion (Definition 3), and (i) certified
deletion security (Definition 4).

Then, we have the following corollary of Theorem 3.

Corollary 2. Given any post-quantum semantically-secure public-key encryp-
tion scheme PKE = (Gen, Enc, Dec), the scheme CD-PKE = (Gen, Enc’, Dec’, Del, Ver)
defined as follows is a public-key encryption scheme with certified deletion.

— Enc'(pk,m) : sample x,0 < {0,1}* and output

ct = <|x>9 ,Enc (pk, (9,6@ @ xl>>> , vk = (x,0).
2:0;=0

— Dec(sk, ct) : parse ct := (|z),,ct’), compute (0,b') + Dec(sk,ct’), measure

|z), in the 0-basis to obtain x, and output b=V & P, _, =i

— Del(ct) : parse ct = (|z),,ct’) and measure |x), in the Hadamard basis to

obtain a string x’, and output cert := .

— Ver(vk, cert) : parse vk as (z,0) and cert as 2’ and output T if and only if

x; = x for all i such that ; = 1.

Proof. Correctness of deletion follows immediately from the description of the
scheme. For certified deletion security, we consider the following:

— First, we observe that

™D (EV-EXP;‘(O), EV-EXPj\“(l)) = negl()\)

follows from Theorem 3 and the semantic security of PKE by setting the dis-
tribution Z, (6, ', A) to sample (pk, sk) < Gen(1*), and output (A, Enc(pk, (,'))),
and setting the class of adversaries &7 to be all non-uniform families of QPT
adversaries {Aj, |¥a)}ren-
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— Next, we observe that
‘Pr [C_Expf(o) - 1} —Pr [C-EXPf(l) - 1} ’ = negl()\)

follows from the fact that the encryption scheme remains (computationally)
semantically secure even when the adversary is given the verification key x
corresponding to the challenge ciphertext, since the bit b remains encrypted
with Enc.

This completes our proof.

The notion of certified deletion security can be naturally generalized to consider
multi-bit messages, as follows.

Definition 6 (Certified deletion security for multi-bit messages). CD-
PKE = (Gen, Enc, Dec, Del, Ver) satisfies certified deletion security if for any
non-uniform QPT adversary A = {Ax,|¥), }ren, it holds that

D (EV-EXPj\“(O), EV-EXPj\“(l)) = negl(\),

and
‘ Pr [C-Expf(()) - 1} _Pr [C-EXPf(l) - 1} ’ = negl(\),

where the experiment EV—EXPf(b) considers everlasting security given a deletion
certificate, and is defined as follows.

— Sample (pk,sk) < Gen(1*). Initialize Ax (1)) with pk and parse its output
as (mg,mq).

— Sample (ct,vk) < Enc(pk, mp).

— Run Ay on input ct and parse Ay ’s output as a deletion certificate cert, and

a residual state on register A’.

If Ver(vk, cert) = T then output A’, and otherwise output L.

and the experiment C—EXPj\A(b) is a strengthening of semantic security, defined
as follows.

— Sample (pk,sk) < Gen(1*). Initialize Ax (1)) with pk and parse its output

as (mg,mq).

Sample (ct,vk) < Enc(pk, my).

— Run Ay on input ct and parse Ay ’s output as a deletion certificate cert, and
a residual state on register A'.

— Output Ay (A, Ver(vk, cert)).

A folklore method converts any public-key bit encryption scheme to a public-
key string encryption scheme, by separately encrypting each bit in the underlying
string one-by-one and appending all resulting ciphertexts. Semantic security of
the resulting public-key encryption scheme follows by a hybrid argument, where
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one considers intermediate hybrid experiments that only modify one bit of the
underlying plaintext at a time. We observe that the same transformation from bit
encryption to string encryption also preserves certified deletion security, and this
follows by a similar hybrid argument. That is, as long as the encryption scheme
for bits satisfies certified deletion security for single-bit messages per Definition 4,
the resulting scheme for multi-bit messages satisfies certified deletion security
according to Definition 6.

In the full version [5], we show how to build on this framework to obtain sev-
eral advanced primitives with certified everlasting security, including attribute-
based encryption and fully-homormphic encryption.
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