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Abstract

We study the problem of approximating stationary

points of Lipschitz and smooth functions under

(ε, δ)-differential privacy (DP) in both the finite-

sum and stochastic settings. A point ŵ is called

an α-stationary point of a function F : Rd → R if

∥∇F (ŵ)∥ ≤ α. We give a new construction that

improves over the existing rates in the stochas-

tic optimization setting, where the goal is to find

approximate stationary points of the population

risk given n samples. Our construction finds a

Õ
(

1
n1/3 +

[√
d

nε

]1/2)
-stationary point of the pop-

ulation risk in time linear in n. We also provide

an efficient algorithm that finds an Õ
([√

d
nε

]2/3)
-

stationary point in the finite-sum setting. This im-

proves on the previous best rate of Õ
([√

d
nε

]1/2)
.

Furthermore, under the additional assumption of

convexity, we completely characterize the sam-

ple complexity of finding stationary points of the

population risk (up to polylog factors) and show

that the optimal rate on population stationarity is

Θ̃
(

1√
n
+

√
d

nε

)
. Finally, we show that our methods

can be used to provide dimension-independent

rates of O
(

1√
n
+min

([√
rank

nε

]2/3
, 1
(nε)2/5

))
on

population stationarity for Generalized Linear

Models (GLM), where rank is the rank of the

design matrix, which improves upon the previous

best known rate.
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1. Introduction

Protecting users’ data in machine learning models has be-

come a central concern in multiple contexts, e.g. those in-

volving financial or health data. In this respect, differential

privacy (DP) is the gold standard for rigorous privacy pro-

tection (Dwork & Roth, 2014). Therefore, recent research

has focused on the limits and possibilities of solving some

of the most well-established machine learning problems un-

der the constraint of DP. Despite intensive research, some

fundamental problems remain not completely understood.

One example is nonconvex optimization; namely, the task

of approximating stationary points, which has been heavily

studied in recent years in the non-private setting (Fang et al.,

2018; Ma et al., 2018; Carmon et al., 2017; Nesterov &

Polyak, 2006; Ghadimi & Lan, 2013; Arjevani et al., 2019;

Foster et al., 2019). This problem is motivated by the in-

tractability of nonconvex (global) optimization, as well as

by a number of settings where stationary points have been

shown to be global minima (Ge et al., 2016; Sun et al.,

2016).

1.1. Contributions

In this work, we make progress towards resolving the com-

plexity of approximating stationary points in optimization

under the constraint of differential privacy, for both empir-

ical and population risks. A summary of our new results

is available in Table 1. In what follows, d is the problem

dimension, n is the dataset size, and ε, δ are the approximate

DP parameters.

Our first set of results pertains to the task of approximating

stationary points of the population risk. Results for this

problem are scarce. We provide the fastest rate up to date

for this problem under DP, of Õ
(

1
n1/3 +

[√
d

nε

]1/2)
, with

an algorithm that moreover has oracle complexity n (i.e.,

is single-pass). This algorithm is a noisy version of the

SPIDER algorithm (Fang et al., 2018), whose gradient esti-

mators are built using a tree-aggregation data structure for

prefix-sums (Asi et al., 2021).

Next, we focus on the task of approximating sta-

tionary points in empirical nonconvex optimization

(a.k.a. finite-sum case). In this context, we provide al-
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gorithms with rate O
([√

d
nε

]2/3)
, and oracle complexity1

Õ
(
max

{(
n5ε2

d

)1/3
,
(
nε√
d

)2})
. This rate is sharper than

the best known for this problem (Wang et al., 2017).

We continue by investigating stationary points for convex

losses and give an algorithm based on the recursive regular-

ization technique of (Allen-Zhu, 2018) which achieves the

optimal rate of Θ̃
(

1√
n
+

√
d

nε

)
on population stationarity. To

establish optimality, we give a lower bound of Ω
(√

d
nε

)
on

empirical stationarity under DP (Theorem 4.3) and a non-

private lower bound of Ω( 1√
n
) on population stationarity

(Theorem A.2). We also give a linear-time method, which

achieves the optimal rate when the smoothness parameter is

not so large. We conclude the paper showing a black-box

reduction that converts any DP method for finding station-

ary points of smooth and Lipschitz losses into a DP method

with dimension-independent rates for the case of general-

ized linear models (GLM). Using our proposed method with

Private Spiderboost as the base algorithm yields a rate of

Õ
(

1√
n
+min

([√
rank

nε

]2/3
, 1
(nε)2/5

))
on population sta-

tionarity. This improves upon the result of (Song et al.,

2021) which proposed a method with Õ
([√

rank

nε

]1/2)
em-

pirical stationarity2.

1.2. Our Techniques

Our methods combine multiple techniques from optimiza-

tion and differential privacy in novel ways. The lower bound

for the empirical norm of the gradient uses fingerprinting

codes to a loss similar to that used for Differentially Private-

Empirical Risk Minimization (DP-ERM) (Bassily et al.,

2014), crafted to work in the unconstrained case. This lower

bound can be extended to the population gradient norm by a

known re-sampling argument (Bassily et al., 2019). We also

give a non-private lower bound of Ω (1/
√
n) on population

stationarity with n samples which holds even in dimension

1, as opposed to previous results (Foster et al., 2019).

Efficient algorithms for (both empirical and population)

norm of the gradient are derived using noisy versions of

variance-reduced stochastic first order methods, which have

proved remarkably useful in DP stochastic optimization (Asi

et al., 2021; Bassily et al., 2021b;a). In the case of the empir-

ical risk, we use a noisy version of SpiderBoost (Wang et al.,

2019c). We remark that our methods can achieve compara-

ble rates when applied to similar algorithms such as Spider

(Fang et al., 2018) and Storm (Cutkosky & Orabona, 2019),

but SpiderBoost allows for a larger learning rate which is

1We consider for complexity the first-order oracle model, stan-
dard for continuous optimization (Nemirovsky & Yudin, 1983).

2This is the rate obtained after fixing a mistake in the proof of
Theorem 4.1 in (Song et al., 2021). Specifically, in their proof, the
last term in Eq. (14) is missing a factor of T .

considered better in practice. For the population risk, it is

worth noting that the empirical norm of the gradient does

not translate directly into population gradient guarantees,

even if the algorithm in use is uniformly stable (Bousquet &

Elisseeff, 2002), since this type of guarantee does not enjoy

a stability-implies-generalization property. Therefore, we

opt for single pass methods that combine variance-reduction

with tree-aggregation; these techniques are particularly suit-

able for the classical Spider algorithm (Fang et al., 2018),

which is the one we base our method on. For the convex

setting, we use recursive regularization (Allen-Zhu, 2018)

which was used to achieve the optimal non-private rate by

(Foster et al., 2019).

Finally, our method for (non-convex) GLMs uses the

Johnson-Lindenstrauss based dimensionality reduction tech-

nique similar to (Arora et al., 2022), which focused on the

convex setting. Moreover, for population stationarity of

GLMs, we give a new uniform convergence result of gradi-

ents of Lipschitz functions. This guarantee, unlike the prior

work of (Foster et al., 2018), has only poly-logarithmic de-

pendence on the radius of the constraint set, which is crucial

for our analysis.

1.3. Related Work

The current work fits within the literature of differentially

private optimization, which has primarily focused on the

convex case (Chaudhuri et al., 2011; Jain et al., 2012; Kifer

et al., 2012; Bassily et al., 2014; Talwar et al., 2014; Jain

& Thakurta, 2014; Talwar et al., 2015; Bassily et al., 2019;

Feldman et al., 2020; Asi et al., 2021; Bassily et al., 2021b).

The culmination of this line of work for the convex smooth

case showed that optimal rates are achievable in linear time

(Feldman et al., 2020; Asi et al., 2021; Bassily et al., 2021b).

Our work shows that in the convex case similar rates are

achievable for the norm of the gradient: this result is useful,

e.g., for dual formulations of linearly constrained convex

programs (Nesterov, 2012), and moreover it has become a

problem of independent interest (Allen-Zhu, 2018; Foster

et al., 2019).3

Regarding stationary points for nonconvex losses, work

in DP is far more recent, and primarily focused on the

empirical stationarity (Wang et al., 2017; Zhang et al., 2017;

3To provide a specific example, consider the dual of the reg-
ularized discrete optimal transport problem, as discussed in (Di-
akonikolas & Guzmán, 2023), Section 5.6. If the marginals µ, ν in
that model are accessed through i.i.d. samples, then this becomes
an SCO problem. Moreover, it is argued in that reference that
approximate stationary points provide approximately feasible and
optimal transports through duality arguments. Hence, the result is
an SCO problem where we require approximate stationary points.
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Setting Convergence Our Rate Previous best-known rate

Non-convex
Empirical

(√
d

nε

)2/3
(Thm. 4.2)

(√
d

nε

)1/2
(Wang et al., 2017)

Population 1
n1/3 +

(√
d

nε

)1/2
(Thm. 3.2)

√
dε+

(√
d

nε

)1/2
(Zhou et al., 2020)

Convex Population 1√
n
+

√
d

nε (Thm. 5.1) None

Non-convex
GLM

Empirical
[√

rank

nε

]2/3∧ 1
(nϵ)2/5

(Cor. 6.2)

(√
rank

nε

)1/2
(Song et al., 2021)

Population 1
√

n
+

[

√

rank

nε

]2/3∧ 1

(nϵ)2/5
(Cor. 6.2) None

Convex GLM Population 1
√

n
+

√

rank

nε
∧ 1

√

nϵ
(Cor. 6.2) None

Table 1. Results summary: We omit log factors and function-class parameters. The symbol ∧ stands for minimum of the quantities.

Wang & Xu, 2019; Wang et al., 2019a)4. Under similar

assumptions to ours these works approximate stationary

points with rate Õ
([√

d
nε

]1/2)
, which is slower than ours.

Works addressing population guarantees for the norm of

the gradient under DP are scarce. (Zhou et al., 2020) pro-

posed a noisy gradient method, whose population guaran-

tee is obtained by generalization properties of DP. How-

ever, the best guarantee obtainable with their analysis is

O
([√

d
nε

]1/2
+
√
dε
)

5. Note that for any ε this rate is

Ω
(
[d/n]1/3

)
. Under additional assumptions (on the Hes-

sian), (Wang & Xu, 2019) obtains a rate of Õ(
√
d/(nε)) by

uniform convergence of gradients, which is sharper when ε
is constant. By contrast, our rate is much faster than both

for ε = Θ(1). In particular, in this range, our rates are faster

than those obtained by uniform convergence, O(
√
d/n)

(Foster et al., 2018). Moreover, our method runs in time

linear in n. On the other hand, in the much more restric-

tive setting where the loss satisfies the Polyak-Łojasiewicz

(PL) inequality, (Zhang et al., 2021) provide population risk

bounds of Õ(d/[nε]2) under DP.

The work of (Bassily et al., 2021a) studies population guar-

antees for stationarity in constrained settings, obtaining

rates O
(

1
n1/3 +

[√
d

nε

]2/5)
in linear time. Notice first that

these guarantees are based on the Frank-Wolfe gap, mak-

ing those results incomparable to ours. Despite this fact,

4Another work, (Wang et al., 2019b), claims to achieve this
with improved oracle complexity. However, the analysis therein
contains an error which is not easily fixed. Specifically, (Wang
et al., 2019b, proof of Theorem 4.1) uses σ2

0b
2
0 > 0.7 to employ

privacy amplification via subsampling. This is not true as they set

σ0 = 1/[d1/4
√
n] and b0 =

√
n/d1/4.

5(Zhou et al., 2020) omits the term
√
dε, but this omission is

only valid when ε < 1/[n
√
d]1/3.

their rates are slower than ours.6 On the other hand, they

provide results for (close to nearly) stationary points in

constrained/unconstrained settings, for a broader class of

weakly convex losses (possibly nonsmooth). This result

is then more general, but the rate of O
(

1
n1/4 +

[√
d

nε

]1/3)

is substantially slower than ours, and their algorithm has

oracle complexity which is superlinear in n.

The problem of stationary points in (nonprivate) stochastic

optimization has drawn major attention recently (Ghadimi &

Lan, 2013; 2016; Fang et al., 2018; Allen-Zhu, 2018; Foster

et al., 2018; 2019; Arjevani et al., 2019). To the best of our

knowledge, no lower bounds for the sample complexity7 of

this problem are known (beyond those known for the convex

case (Foster et al., 2019)). On the other hand, oracle com-

plexity is by now understood: in high dimensions, for (on

average) smooth losses the optimal stochastic oracle com-

plexity rate is O(1/n1/3) (Arjevani et al., 2019). Although

this provides some evidence of the sharpness of our results

(see Appendix B.2), note that these lower bounds require

very high dimensional constructions (namely, d = Ω(1/α4),
where α is the rate), which limits their applicability in the

private setting.

In an independent and concurrent work, (Tran & Cutkosky,

2022) achieve a rate of O(
[√

d
nϵ

]2/3
+ 1√

n
) on the empir-

ical gradient with gradient complexity O(n7/3ϵ3/4/d2/3)
using a DP tree aggregation method. Note that our result

removes the 1/
√
n term and improves the oracle complexity

to Õ
(
max

{(
n5ε2

d

)1/3
,
(
nε√
d

)2})
, which is better whenever

6We believe our methods can be extended to constrained set-
tings using gradient mapping, a guarantee for which is stronger
than for Frank-Wolfe gap (Lan, 2020, Section 7.5.1). We defer this
extension to future work.

7Sample complexity is the fundamental limit on the sample
size needed, as a function of α, to achieve α stationarity. This
is different from the oracle complexity as one is not limited to
first-order methods.
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d ≤ n2ϵ1/4 (i.e. essentially whenever the error is nontrivial).

Further, we accomplish this with a much simpler analysis.

2. Preliminaries

Let f : R
d × X → R denote a (loss) function tak-

ing as input, the model parameter w and data point x ∈
X . We assume that the function w 7→ f(w;x) is L0-

Lipschitz and L1-smooth. That is, for all x ∈ X and

w1, w2 ∈ R
d, |f(w1;x)− f(w2;x)| ≤ L0 ∥w1 − w2∥

and ∥∇f(w1;x)−∇f(w2;x)∥ ≤ L1 ∥w1 − w2∥. Given

a dataset S ∈ Xn of n points, we define the empirical

risk as F (w;S) = 1
n

∑n
i=1 f(w;xi). Assuming that the

data points are sampled i.i.d. from an unknown distri-

bution D, the population risk, denoted as F (w;D) is de-

fined as F (w;D) = Ex∼Df(w;x). Furthermore, we define

F0 = F (0;S)−minw∈Rd {F (w;S)} when discussing the

empirical case and similarly for the population loss when

discussing stationary points of the population loss. We use

w∗ to denote the population risk minimizer. Finally, we use

the notation Id to denote the d× d identity matrix and use

[a] to denote the set {1, 2, ..., a} for a ≥ 1.

Stationary points: Given a dataset S, our goal is to find

an α-stationary point w̄ of either empirical or population

risk; formally, ∥∇F (w̄;S)∥ ≤ α or ∥∇F (w̄;D)∥ ≤ α,

respectively.

Differential Privacy (DP) (Dwork et al., 2006): An algo-

rithm A is (ε, δ)-differentially private if for all datasets

S and S′ differing in one data point and all events

E in the range of the A, we have, P (A(S) ∈ E) ≤
eεP (A(S′) ∈ E) + δ.

Generalized Linear Models (GLMs): For data domain

X ⊆ R
d and Y ⊆ R, a loss function f : Rd×X×Y → R is

a GLM if f(w; (x, y)) = ϕy (⟨w, x⟩) for some function ϕy .

Our result for GLMs uses random matrices which satisfy

the Johnson-Lindenstrauss (JL) property, defined as follows.

Definition 2.1 ((γ, β)-JL property). A random matrix Φ ∈
R

k×d satisfies (γ, β)-JL property if for any u, v ∈ R
d,

P [|⟨Φu,Φv⟩ − ⟨u, v⟩| > γ ∥u∥ ∥v∥] ≤ β.

3. Stationary Points of Population Risk

For the population gradient, we provide a linear time al-

gorithm; see Algorithm 1 for pseudocode. It is a noisy

variant of SPIDER (Fang et al., 2018), and utilizes a vari-

ance reduction technique tailored to an underlying binary

tree structure. Namely, we run T rounds, where at the

beginning of round t we build a binary tree of depth D,

whose nodes are denoted by ut,s, where s ∈ {0, 1}D. Every

node ut,s is associated with a parameter vector wt,s and

a gradient estimate ∇t,s. Next, we perform a Depth-First-

Search traversal of the tree. We denote by DFS[D] the set of

nodes in the visiting order excluding the root, for example:

DFS[2] = {u0, u00, u01, u1, u10, u11}. When a left child

node is visited, it receives the same parameter vector and

gradient estimator of the parent node.

Algorithm 1 Tree-based Private Spider

Input: S = (x1, . . . , xn) ∈ Xn: private dataset, (ε, δ):
privacy parameters, T : number of rounds, b: batch size

at beginning of each round, D: depth of trees at each

round, β: step-size parameter, α̃: accuracy parameter.

1: w0,ℓ(2D−1) = 0
2: for t = 1 to T do

3: Set wt,∅ = wt−1,ℓ(2D−1)

4: Draw a batch St,∅ of b data points, set S ← S \St,∅.

5: Set σ2
t,∅ :=

8L2
0 log(1.25/δ)

b2ε2 .

6: ∇t,∅ = 1
b

∑
x∈St,∅

∇f (wt,∅;x) + gt,∅, where

gt,∅ ∼ N
(
0, Idσ

2
t,∅

)
.

7: for ut,s ∈ DFS [D] do

8: Let s = ŝc, where c ∈ {0, 1}.
9: if c = 0 then

10: ∇t,s = ∇t,ŝ

11: wt,s = wt,ŝ

12: else

13: Draw a batch St,s of b
2|s|

data points, set S ←
S \ St,s.

14: Set noise variance σ2
t,s :=

8·2Dβ2 log(1.25/δ)
b2ε2 .

15: ∆t,s =
2|s|

b

∑
x∈St,s

(∇f (wt,s;x)−∇f (wt,ŝ;x))+

gt,s, where gt,s∼N
(
0, Idσ

2
t,s

)
.

16: ∇t,s = ∇t,ŝ +∆t,s.
17: end if

18: if |s| = D (i.e, ut,s is a leaf) then

19: if ∥∇t,s∥ ≤ 2α̃ then

20: Return wt,s

21: end if

22: Let ut,s+ be the next vertex in DFS[D].

23: Set ηt,s :=
β

2D/2L1∥∇t,s∥
24: wt,s+ = wt,s − ηt,s∇t,s.
25: end if

26: end for

27: end for

28: Return w, chosen uniformly at random from {wt,s : t ∈
[T ], ut,s is a leaf}.

On the other hand, when a right child node is visited, it

receives a fresh set of samples and uses it to update the

gradient estimator coming from the parent node. Every

time a leaf node is reached, a gradient step is performed

using the gradient estimator associated to the leaf. Finally,

the parameter vector of a right child node comes from the

gradient step performed at the right-most leaf in the left sub-

4
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tree of it. The use of the binary tree structure is benefitial

because every gradient estimator is updated at most D times

within a round of 2D optimization steps, as opposed to the

original SPIDER algorithm where the gradient estimators

are updated at every optimization step. This way, we are able

to perform the same number of optimization steps but adding

substantially smaller amounts of noise, leading to a faster

rate than the one we would get without using the tree. In the

following, we denote by ℓ(k) the binary representation of

any number k ∈ [0, 2D − 1] and by |s| the depth of ut,s for

any t ∈ [T ].

The proposed algorithm is similar to the one in Section

5 of (Bassily et al., 2021b) for constrained Differentially

Private-Stochastic Convex Optimization (DP-SCO), with

the key difference that Algorithm 1 executes each round

with fixed depth trees, which is key for our convergence

analysis, whereas the prior work leverages convexity to con-

struct trees that increase depth by one at each round. In

addition, to choose the step-size in (Bassily et al., 2021b)

the authors leverage the bounded diameter of the domain,

while our step-size is chosen as that of (Fang et al., 2018),

i.e. normalized by the norm of the gradient estimator and

proportional to the target accuracy. This choice is crucial

for controlling the sensitivity of the gradient variation esti-

mator in the unconstrained setting, and consequently for the

privacy analysis as well. Our results are presented below

and the proofs are deferred to Appendix C.

Theorem 3.1 (Privacy guarantee). For any ε, δ ∈ [0, 1],
Algorithm 1 is (ε, δ)-DP.

Theorem 3.2 (Accuracy guarantee). Let p ∈ (0, 1), ε, δ >

0, b = max
{
n2/3,

√
nd1/4

√
ε

}
, D be such that D2D+1 =

b, T = n
b(D/2+1) , α =

√
2L0 max

{
1

n1/3 ,
(√

d
nε

)1/2}
,

β = αmin{1,
√
bε√
d
}, and α̃ = C̃α, where C̃ =

256 log
(
1.25
δ

)
log
(

2T2D+1

p

)
+ 8L1F0

√
2D(D/2+1)
2L2

0
. Then,

for any n ≥ max{
√
d(D2 + 1)2/ε, (D2 + 1)3}, with proba-

bility 1−p, Algorithm 1 ends in line 20, returning an iterate

wt,s with

∥∇F (wt,s;D)∥ ≤ 3
√
2L0C̃max

{ 1

n1/3
,
(√d
nε

)1/2}
.

Furthermore, Algorithm 1 has oracle complexity of n.

4. Stationary Points of Empirical Risk

4.1. Efficient Algorithm with Faster Rate

The algorithm for our upper bound is a noisy version of the

SpiderBoost algorithm (Wang et al., 2019c)8. The algorithm

8SpiderBoost itself is essentially the Spider algorithm (Fang
et al., 2018) with a different learning rate and analysis.

works by running a series of phases of length q. Each phase

starts with a minibatch estimate of the gradient, and subse-

quent gradient estimates within the phase are then computed

by adding an estimate of the gradient variation. The key to

the analysis is to bound the error in the gradient estimate

at each iteration. Towards this end, we have the following

generalization of the (Wang et al., 2019c) Lemma 1, which

follows directly from (Fang et al., 2018) Proposition 1.

Lemma 4.1. Consider Algorithm 2, and for any t ∈
{0, .., T} let st =

⌊
t
q

⌋
q. If each ∇t computed in

line 9 is an unbiased estimate of ∇F (wt;S) satisfying

E

[
∥∇st −∇F (wst ;S)∥2

]
≤ τ21 and each ∆t computed

in line 13 is an unbiased estimate of the gradient variation

satisfying E

[
∥∆t − [∇F (wt;S)−∇F (wt−1;S)]∥2

]
≤

τ22 ∥wt − wt−1∥2. Then for any t ≥ st + 1, the iterates
of Algorithm 2 satisfy

E
[

∥∇t −∇F (wt)∥2
]

≤ τ2
2

t
∑

k=st+1

E
[

∥wk − wk−1∥2
]

+ τ2
1 .

For privacy, using smoothness we observe the sensitivity of

the gradient variation estimate at iteration t is proportional

to β ∥wt − wt−1∥. Thus we can apply the above lemma

with τ21 =
L2

0

b1
+L2

0σ
2
1 and τ22 =

L2
1

b2
+L2

1σ
2
2 (note the Gaus-

sian noise in line 13 is drawn with variance scale at most

σ2
2 ∥wt − wt−1∥2). By carefully balancing the algorithm

parameters, we are then able to obtain the following result.

The full proof is deferred to Appendix B.1.

Theorem 4.2 (Private Spiderboost ERM). Let ε, δ ∈ [0, 1].

Let n ≥ max

{
(L0ε)

2

F0L1d log(1/δ) ,
√
dmax{1,√L1F0/L0}

ε

}
. Al-

gorithm 2 is (ε, δ)-DP. Further, there exist settings of

T, η, q, b1, b2 such that Algorithm 2 has E [∥∇F (w̄;S)∥]
bounded as

O



(√

F0L1L0

√
d log (1/δ)

nε

)2/3

+
L0

√
d log (1/δ)

nε




and oracle complexity Õ

(

max

{

(

n5/3ε2/3

d1/3

)

,
(

nε
√

d

)2
})

.

Note that the restriction on n in the theorem statement

is essentially trivial when the upper bound is nontrivial.

We remark that the case where the dominant error term

is α = Õ
([√

d
nε

]2/3)
, then we approximately have oracle

complexity Õ
(
max

{
1
α3 ,

n
α

})
.

4.2. Lower Bound

We now show a lower bound for the sample complexity of

finding a stationary point under differential privacy in the un-

constrained setting, which shows that the O
(L0

√
d log(1/δ)

nε

)

5
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Algorithm 2 Private SpiderBoost

Input: Dataset: S ∈ Xn, Function: f : Rd × X 7→ R,

Learning Rate: η, Phase Size: q, Batch Sizes b1, b2,

Privacy Parameters: (ε, δ), Iterations: T
1: w0 = 0

2: σ1 =
cL0

√
log(1/δ)

ε max
{

1
b1
,

√
T√
qn

}
, where c is a uni-

versal constant.

3: σ2 =
cL1

√
log(1/δ)

ε max
{

1
b2
,
√
T
n

}

4: σ̂2 =
2cL0

√
log(1/δ)

ε max
{

1
b2
,
√
T
n

}

5: for t = 0, . . . , T do

6: if mod (t, q) = 0 then

7: Sample batch St of size b1
8: Sample gt ∼ N (0, Idσ

2
1)

9: ∇t =
1
b1

∑
x∈St

∇f(wt;x) + gt
10: else

11: Sample batch St of size b2

12: gt ∼ N
(
0, Id min

{
σ2
2 ∥wt − wt−1∥2 , σ̂2

2

})

13: ∆t =
1
b2

∑
x∈St

[∇f(wt;x)−∇f(wt−1;x)]+gt

14: ∇t = ∇t−1 +∆t

15: end if

16: wt+1 = wt − η∇t

17: end for

18: return w̄ uniformly at random from {w1, . . . , wT }

term in the rate given in Theorem 4.2 is necessary. Further-

more, as our lower bound holds for all levels of smoothness,

it also shows that our rate in Theorem 4.2 is optimal in the

(admittedly uncommon) regime where L1 ≤
√
dL2

0

F0nε
. Our

lower bound in fact holds even for convex functions. Fur-

thermore, this result implies the same lower bound (up to

log factors) for the population gradient using the technique

in (Bassily et al., 2019), Appendix C.

Theorem 4.3. Given L0, L1, n, ε = O(1), 2−Ω(n) ≤ δ ≤
1/n1+Ω(1), there exists an L0-Lispchitz, L1-smooth (con-

vex) loss f : Rd × X → R and a dataset S of n points

such that any (ε, δ)-DP algorithm run on S with output w̄
satisfies,

∥∇F (w̄;S)∥ = Ω

(
L0 min

(
1,

√
d log (1/δ)

nε

))
.

The proof is based on a reduction to DP mean estimation.

Specifically, we consider a instance of the Huber loss func-

tion for which the minimizer is the empirical mean of the

dataset. We then argue that close to the minimizer, the

empirical stationarity is lower bounded by DP mean esti-

mation bound (Steinke & Ullman, 2015), and far away, by

construction, the empirical stationarity is L0.

Proof of Theorem 4.3. For any r > 0, let Wr denote the

ball of radius r centered at the origin. LetB = L0

L1
. Consider

the loss function:

f(w;x) =

{
L1

2 ∥w − x∥
2

if ∥w − x∥ ≤ B
L0 ∥w − x∥ − L2

0

2L1
otherwise

The function f(w;x) is convex, L1-smooth and L0-

Lispchitz in R
d. We restrict to datasets S = {xi}ni=1 where

xi ∈ WB/4 for all i, and let F (w;S) = 1
n

∑n
i=1 f(w;xi)

be the empirical risk on S. The unconstrained minimizer of

F (w;S) is w∗ = 1
n

∑n
i=1 xi which lies inWB/4.

For any w ∈ W3B/4, w lies in the quadratic region around

all data points. Hence, from L1-strong convexity of w 7→
F (w;S) onW3B/4, we have that whenever w̄ ∈ W3B/4,

∥∇F (w̄;S)∥ ∥w̄ − w∗∥ ≥ ⟨∇F (w̄;S), w∗ − w̄⟩
≥ F (w̄;S)− F (w∗;S)

≥ L1

2
∥w̄ − w∗∥2 .

Let E be the event that w̄ ∈ W3B/4 and let EE denote the

conditional expectation (conditioned on event E) operator.

Then,

EE∥∇F (w̄;S)∥ ≥
L1

2
E ∥w̄ − w∗∥

≥ L1

2
Ω

((
L0

4L1

)
min

(
1,

√
d log (1/δ)

nε

))
.

where the last inequality follows from known lower bounds

for DP mean estimation (Steinke & Ullman, 2015; Kamath

& Ullman, 2020). We remark that the lower bound in the

referenced work is for algorithms which produce outputs

in the ball of the same radius as the dataset, i.e. WB/4.

However, a simple post-processing argument shows that

the same lower bound applies to algorithms which produce

output inW3B/4. Specifically, assuming the contrary, we

simply project the output in W3B/4 to WB/4: privacy is

preserved by post-processing and the distance to the mean

cannot increase by the non-expansiveness property of pro-

jection to convex sets, hence a contradiction. This gives

us,

EE [∥∇F (w̄;S)∥] ≥ Ω

(
L0 min

(
1,

√
d log (1/δ)

nε

))

Let W̃ = {w : ∥w − w∗∥ ≤ B/2}. Since W̃ ⊆ W3B/4,

we have that the above conditional lower bound applies for

w̄ ∈ W̃ as well. We now consider w̄ ̸∈ W̃ . Let w′ be

any point on the boundary of W̃ , denoted as ∂W . Note

that w′ lies in the region where, for any data point, the

6
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corresponding loss is a quadratic function. Hence, by direct

computation, ∇F (w′;S) = L1 (w
′ − w∗). Therefore,

⟨∇F (w′), w′ − w∗⟩ = L1 ∥w′ − w∗∥2 =
L1B

2

4
.

We now apply gradient monotonicity to obtain the following

(see Lemma A.1, Appendix A),

EEc ∥∇F (w̄;S)∥ ≥ L1B
2

4
· 2
B

=
L0

2
,

whereEc denotes the complement set ofE. We combine the
above bounds using the law of total expectation as follows,

E[∥∇F (w̄;S)∥]
= EE [∥∇F (w̄;S)∥]P{w̄ ∈ E}+ EEc [∥∇F (w̄;S)∥]P{w̄ ∈ Ec}

= Ω
(

L0 min
{

1,

√

d log (1/δ)

nε

})

P(w̄ ∈ E) + Ω(L0)P(w̄ ∈ Ec)

= Ω
(

L0 min
{

1,

√

d log (1/δ)

nε

})

.

This completes the proof.

Challenges for Further Rate Improvements: Given the

above lower bound, the question arises as to whether the

Õ
([√

d
nε ]

2/3
)

term can be improved. An informal argument

using the oracle complexity lower bound of (Arjevani et al.,

2019) suggests several major challenges in obtaining further

rate improvements. A more detailed version of the following

discussion can be found in Appendix B.2.

Consider methods which ensure privacy by directly priva-

tizing the gradient/gradient variation queries. The aim of

such methods is to design some private stochastic first or-

der oracle, Oε′,δ′ , such that a set of G queries to Oε′,δ′

satisfies (ε, δ)-DP, and use this oracle in some optimiza-

tion algorithm A(Oε′,δ′). Such a setup encapsulates nu-

merous results in the convex setting (Bassily et al., 2019;

Kulkarni et al., 2021), and is even more dominant in non-

convex settings (Wang et al., 2017; Zhou et al., 2020; Abadi

et al., 2016). Under advanced composition based argu-

ments, to make G calls to such a private oracle one needs

ε′ ≤ ε/
√
G. Now, standard fingerprinting code arguments

suggest lower bounds on the level of accuracy of any such

private oracle (Steinke & Ullman, 2015). Specifically, with-

out leveraging further problem structure beyond Lipschitz-

ness, one needs the gradient estimation error to be at least

τ1 = Ω
(

L0

√
Gd log(1/δ)

nε

)
. A similar argument suggests the

error in the gradient variation between iterates w,w′ must

at least τ2 ∥w − w′∥ = Ω
(

L1∥w−w′∥√Gd log(1/δ)

nε

)
. Now

consider some optimization algorithm, A, which takes as

input a stochastic oracle O for some smooth function L.

The lower bound of (Arjevani et al., 2019) suggests that ifA
makes at mostG queries toO (as a black box) the algorithm

satisfies E [∥∇L(A(O))∥] = Ω
((

F0τ2τ1
G

)1/3
+ τ1√

G

)
. If

O is a private oracle satisfying the previously mentioned

conditions, we would then have under the setting of τ1 and

τ2 suggested by privacy that the convergence guarantee for

E [∥∇L(A(O))∥] is lower bounded as

Ω



(√

F0L1L0

√
d log (1/δ)

nε

)2/3

+
L0

√
d log (1/δ)

nε


 .

This indicates a substantial challenge for future rate improve-

ments, as alternative methods which avoid private gradients

(see e.g. (Feldman et al., 2020)) rely crucially on stability

guarantees arising from convexity.

5. Stationary Points in the Convex Setting

Algorithm 3 Recursive Regularization

Input: Dataset S, loss function f , steps T , {λt}t, {Rt}t,
PrivateSubRoutine, number of steps of sub-routine

{Kt}, selector functions {St(·)}t, step size {ηt}t, noise

variances {σt}t
1: w0 = 0, n0 = 1
2: Define function (w, x) 7→ f (0)(w;x) = f(w;x) +

λ0

2 ∥w − w0∥2
3: for t = 1 to T − 1 do

4: nt = nt−1 +
⌊
|S|
T

⌋

5: w̄t = PrivateSubRoutine(Snt−1:nt
, f (t−1), Rt,

Kt, ηt,St(·), σt)
6: Define function (w, x) 7→ f (t)(w;x) =

f (t−1)(w;x) + λt

2 ∥w − w̄t∥2
7: end for

Output: w̄ = w̄T

In this section, we additionally assume that the loss function

is convex. The motivation for this is two-fold: firstly, this

setting has recently gained attention in a non-private set-

ting (Nesterov, 2012; Allen-Zhu, 2018; Foster et al., 2019).

Secondly, in this setting we are able to establish tightly the

sample complexity of approximate stationary points.

Our method is based on the recursive regularization tech-

nique proposed in (Allen-Zhu, 2018), and further improved

by (Foster et al., 2019). The main idea, as the name suggests,

is to recursively regularize the objective and optimize it via

some solver. For the DP setting, the key idea is to use a

private sub-routine as the inner solver. Furthermore, while a

solver for the unconstrained problem suffices non-privately,

we need to carefully increase the radius of the constrained

set over which the solver operates.

Theorem 5.1. Let L0, L1, ε, δ > 0, d, n ∈ N. Let w 7→
f(w;x) be an L0-Lipschitz L1-smooth convex function for

7
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all x. Let Rt =
(√

2
)t ∥w∗∥ , λt = 2tλ, ηt = log(Kt)

λtKt
,

T =
⌊
log2

(
L1

λ

)⌋
, σ2

t =
64L2

0K
2
t log(1/δ)
n2ε2 , and St({wk}k) =

1∑Kt
k=1(1−ηtλt)

−k

∑Kt

k=1 (1− ηtλt)
−k
wk.

1. (Optimal rate) Algorithm 3 run with NoisyGD

(Algorithm 7 in Appendix D) as the Pri-

vateSubRoutine with above parameter set-

tings and λ =
L2

0

L1∥w∗∥ min
(
1
n ,

d
n2ε2

)
and

Kt = max

(
L1+λt

λt
log
(

L1+λt

λt

)
,
n2ε2

(
L2

0λ+L
3/2
1

)

T 2λdL2
0 log(1/δ)

)

satisfies (ε, δ)-DP, and given a dataset S of n i.i.d.

samples from D, outputs w̄ such that

E ∥∇F (w̄;D)∥ = Õ

(
L0√
n
+
L0

√
d

nε

)
.

Furthermore, the above rate is tight up to poly-

logarithmic factors.

2. (Linear time rate) Algorithm 3 run with

PhasedSGD (Algorithm 5) as the PrivateSub-

Routine with with above parameter settings and

λ = max
(

L2
0

L1∥w∗∥2 min
(
1
n ,

d
n2ε2

)
, L1 log(n)

n

)
and

Kt = ⌊ nT ⌋ satisfies (ε, δ)-DP and given a dataset S of n
i.i.d. samples from D, in linear time, outputs w̄ with

E ∥∇F (w̄;D)∥ = Õ

(
L0√
n
+
L0

√
d

nε
+
L1 ∥w∗∥√

n

)
.

The proof of the above result is deferred to Appendix D.

For the tightness of the rate, the necessity of the second

term L0

√
d

nε is due to our DP empirical stationarity lower

bound, Theorem 4.3. For the first “non-private” term L0√
n

,

even though (Foster et al., 2019) proved a sample com-

plexity lower bound, their instance is not Lipschitz and has

d = Ω(n log (n)), hence not applicable. To remedy this, we

give a new lower bound construction with a Lispchitz func-

tion in d = 1, Theorem A.2 in Appendix A. The polylog

dependence on L1 and ∥w∗∥ in the upper bounds, is consis-

tent with the non-private sample complexity in (Foster et al.,

2019).

The second result is a linear time method which has an

additional L1 ∥w∗∥ /√n term. Firstly, if the smoothness

parameter is small enough, then there is no overhead; this

small-enough smoothness is precisely the regime in which

we have linear time methods with optimal rates for smooth

DP-SCO (Feldman et al., 2020). More importantly, (Fos-

ter et al., 2019) showed that even in the non-private set-

ting, a polynomial dependence on L1 ∥w∗∥ is necessary

in the stochastic oracle model. However, the optimal non-

private term, shown in (Foster et al., 2019), is L1 ∥w∗∥ /n2,

achieved by accelerated methods. Improving this depen-

dency, if possible, is an interesting direction for future work.

6. Generalized Linear Models

In this section, we assume that the loss function is a general-

ized linear model (GLM), f(w; (x, y)) = ϕy (⟨w, x⟩). Also,

assume the norm of data points x are bounded by ∥X∥ and

the function ϕy : R → R is L0-Lipschitz and L1-smooth

for all y. Furthermore, let rank denote the rank of design

matrix X ∈ R
n×d.

Algorithm 4 JL method

Input: Dataset S, function (z, y) 7→ ϕy(z), Algorithm A,

JL matrix Φ ∈ R
k×d, L0, L1, ∥X∥

1: w̃ = A((z, y) 7→ ϕy(z), {(Φxi, yi)}ni=1 ,

2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ/2)
Output: w̄ = Φ⊤w̃

Algorithm 4 is a generic method which converts any for

smooth Lipschitz losses with an empirical stationarity guar-

antee to get dimension-independent rates on population sta-

tionarity for smooth Lipschitz GLMs. This algorithm is the

JL method from (Arora et al., 2022) used therein to give

excess risk bounds for convex GLM. We note that while

the JL method there is limited to the Noisy GD method,

ours is a black-box reduction. Furthermore, unlike (Arora

et al., 2022), we show that the JL method gives finer rank

based guarantees by leveraging the fact it acts as an oblivi-

ous approximate subspace embedding (see Definition E.1 in

Appendix E).

Theorem 6.1. LetA be an (ε, δ)-DP algorithm which when

run on a L1-smooth L0-Lipschitz function on a dataset

S = {(xi, yi)}ni=1 where xi ∈ X ⊆ R
d, guarantees

E [∥∇F (A(S);S)∥] ≤ g(d, n, L1, L0, ε, δ) and ∥A(S)∥ ≤
poly(n, d, L0, L1) with probability at least 1 − 1√

n
. Then,

Algorithm 4 run with

k =

⌈
min

(
argmin

j∈N

(
g(j, n, 2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ/2)

+
L0 ∥X∥ log (n)√

j

)
, rank log

(
2n

δ

))⌉

on a L0-Lipschitz, L1-smooth GLM loss, is (ε, δ)-DP. Fur-

thermore, given a dataset of n i.i.d samples from D, its

output w̄ has E [∥∇F (w̄;D)∥] bounded as

Õ

(
L0 ∥X∥√

n
+ g(k, n, 2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ/2)

)

The expression for k above comes from the subspace em-

bedding property of JL, and from balancing the dimension

of the embedding with respect to the error of A and the

approximation error of the JL embedding. The proof is

based on the properties of JL matrices: oblivious subspace

embedding and preservation of norms, together with a new

8
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uniform convergence result for gradients of Lipschitz GLMs.

The full proof is deferred to Appendix E.

Below, we instantiate the above with our proposed algo-

rithms.

Corollary 6.2. Under the assumptions of Theorem 6.1, Al-

gorithm 4 run with A as

1. Private Spiderboost (Alg. 2) yields ∥∇F (w̄;D)∥ =

Õ

(
1√
n
+min

((√
rank

nε

)2/3
, 1
(nε)2/5

))
.

2. Algorithm 3 with NoisyGD as PrivateSubRoutine, un-

der the additional assumption that w 7→ f(w; (x, y))
is convex for all x, y, yields ∥∇F (w̄;D)∥ =

Õ
(

1√
n
+min

(√
rank

nε , 1√
nε

))
.

We remark that the above technique also gives bounds on

empirical stationarity. In particular, the first term 1√
n

, in the

above guarantees, is the uniform convergence bound and

the second term is the bound on empirical stationarity.
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A. Lower bounds

A.1. Missing details from DP Empirical Stationarity Lower Bound

Proof of Theorem 4.3. For any r > 0, letWr denote the ball of radius r centered at the origin. Let B = L0

L1
. Consider the

loss function:

f(w;x) =

{
L1

2 ∥w − x∥
2

if ∥w − x∥ ≤ B
L0 ∥w − x∥ − L2

0

2L1
otherwise

The function f(w;x) is convex, L1-smooth and L0-Lispchitz in R
d. We restrict to datasets S = {xi}ni=1 where xi ∈ WB/4

for all i, and let F (w;S) = 1
n

∑n
i=1 f(w;xi) be the empirical risk on S. The unconstrained minimizer of F (w;S) is

w∗ = 1
n

∑n
i=1 xi which lies inWB/4.

For any w ∈ W3B/4, w lies in the quadratic region around all data points. Hence, from L1-strong convexity of w 7→ F (w;S)
onW3B/4, we have that whenever w̄ ∈ W3B/4,

∥∇F (w̄;S)∥ ∥w̄ − w∗∥ ≥ ⟨∇F (w̄;S), w∗ − w̄⟩ ≥ F (w̄;S)− F (w∗;S) ≥ L1

2
∥w̄ − w∗∥2 .

Let E be the event that w̄ ∈ W3B/4 and let EE denote the conditional expectation (conditioned on event E) operator. Then,

EE ∥∇F (w̄;S)∥ ≥
L1

2
E ∥w̄ − w∗∥ ≥ L1

2
Ω

((
L0

4L1

)
min

(
1,

√
d log (1/δ)

nε

))
.

where the last inequality follows from known lower bounds for DP mean estimation (Steinke & Ullman, 2015; Kamath

& Ullman, 2020). We remark that the lower bound in the referenced work is for algorithms which produce outputs in the

ball of the same radius as the dataset, i.e. WB/4. However, a simple post-processing argument shows that the same lower

bound applies to algorithms which produce output inW3B/4. Specifically, assuming the contrary, we simply project the

output inW3B/4 toWB/4: privacy is preserved by post-processing and the distance to the mean cannot increase by the

non-expansiveness property of projection to convex sets, hence a contradiction. This gives us,

EE [∥∇F (w̄;S)∥] ≥ Ω

(
L0 min

(
1,

√
d log (1/δ)

nε

))

Let W̃ = {w : ∥w − w∗∥ ≤ B/2}. Since W̃ ⊆ W3B/4, we have that the above conditional lower bound applies for

w̄ ∈ W̃ as well. We now consider w̄ ̸∈ W̃ . Let w′ be any point on the boundary of W̃ , denoted as ∂W . Note that w′

lies in the region where, for any data point, the corresponding loss is a quadratic function. Hence, by direct computation,

∇F (w′;S) = L1 (w
′ − w∗). Therefore,

⟨∇F (w′), w′ − w∗⟩ = L1 ∥w′ − w∗∥2 =
L1B

2

4
.

We now apply Lemma A.1 which gives us,

EEc ∥∇F (w̄;S)∥ ≥ L1B
2

4
· 2
B

=
L0

2
,

where Ec denotes the complement set of E. We combine the above bounds using the law of total expectation as follows,

E[∥∇F (w̄;S)∥] = EE [∥∇F (w̄;S)∥]P{w̄ ∈ E}+ EEc [∥∇F (w̄;S)∥]P{w̄ ∈ Ec}

= Ω
(
L0 min

{
1,

√
d log (1/δ)

nε

})
P(w̄ ∈ E) + Ω(L0)P(w̄ ∈ Ec)

= Ω
(
L0 min

{
1,

√
d log (1/δ)

nε

})
.

This completes the proof.
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Lemma A.1. LetG,R ≥ 0, d ∈ N. LetWR(w0) denote the Euclidean ball around w0 of radiusR and let ∂WR(w0) denote

its boundary. Let f : Rd → R be a differentiable convex function. Suppose w0 ∈ R
d is such that for every v ∈ ∂WR(w0),

⟨∇f(v), v − w0⟩ ≥ G, then for any w ̸∈ WR(w0), we have ∥∇f(w)∥ ≥ G
R .

Proof. For a unit vector u ∈ R
d, define directional directive f ′u(w) = ⟨∇f(w), u⟩. We first show that for any u ∈ R

d :
∥u∥ = 1 and any w′ ∈ R

d, the function f ′u(w
′ + ru) is non-decreasing in r ∈ R+. This simply follows from monotonicity

of gradients since f is convex. In particular, for any r′ > r > 0, we have

f ′u(w
′ + r′u)− f ′u(w′ + ru) = ⟨∇f(w′ + r′u)−∇f(w′ + ru), u⟩

=
1

r′ − r ⟨∇f(w
′ + r′u)−∇f(w′ + ru), w′ + ru− (w′ + ru)⟩

> 0

We now prove the claim in the lemma statement. Let w ̸∈ ∂WR and define u = w−w0

∥w−w0∥ . Then from Cauchy-Schwarz

inequality and the above monotonicity property, we have,

∥∇f(w)∥ ≥ ⟨∇f(w), u⟩ = f ′u(w) ≥ f ′u(w0 +Ru) = ⟨∇f(w0 +Ru), u⟩

=
1

R
⟨∇f(v), v − w0⟩ ≥

G

R

which finishes the proof.

A.2. Non-private Sample Complexity Lower Bound

Theorem A.2. For any L0, L1, n, d ∈ N, there exists a distribution D over some set X and a L0-Lipschitz, L1-smooth

(convex) loss function w 7→ f(w;x) such that given n i.i.d samples from D, the output w̄ of any algorithm satisfies,

E ∥∇F (w̄;D)∥ = Ω

(
L0√
n

)

Proof. We construct a hard instance in d = 1 dimension. Let p ∈ [0, 1] be a parameter to be set later and let v ∈ {−1, 1} be

chosen by an adversary. Let the data domain X = {−1, 1} and consider the distribution D on X as follows:

x =

{
1 with probability 1+vp

2

−1 with probability 1−vp
2

Note that E[x] = vp. Consider the loss function f(w;x) as

f(w;x) =
L0

2
wx+

L1

2
∆(w)

where ∆ is the Huber regularization function, defined as,

∆(w) =

{
|w|2 if |w| ≤ L0

2L1

L0|w|
L1
− L2

0

4L2
1

otherwise

Note that the loss function w 7→ f(w;x) is convex, L0-Lipschitz and L1-smooth in R
d, for all x. The population risk

function is,

F (w;D) = L0

2
wpv +

L1

2
∆(w)

Let w̄ be output some algorithm given n i.i.d. samples from D. Consider two cases:
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Case 1: |w̄| > L0

2L1
: The gradient norm in this case is

|∇F (w̄;D)|2 =

∣∣∣∣
L0

2
vp+

L0w̄

2 |w̄|

∣∣∣∣
2

=
L2
0p

2

4
+
L2
0

4
+

L2
0

2 |w̄|vpw̄

≥ L2
0

4
− L2

0

2
p

=
L2
0

4
− L2

0

8
√
n

≥ L2
0

8

where the first inequality follows since v w̄
|w̄| ≥ −1, the third equality follows by setting p = 1√

16n
and the second inequality

follows since n ≥ 1. We therefore have that E |∇F (w̄;D)| ≥ L0

2
√
2

.

Case 2: |w̄| ≤ L0

2L1
: In this case, the gradient norm is,

|∇F (w̄;D)|2 =

∣∣∣∣
L0

2
vp+ L1w̄

∣∣∣∣
2

Suppose there exists an algorithm with output w̄, which, with n samples guarantees that E |∇F (w̄;D)| < o
(

L0√
n

)
. Then

from Markov’s inequality, with probability at least 0.9, we have that |∇F (w̄;D)|2 < o
(

L2
0

n

)
. Let w̃ = − 2L1w̄

L0
, then we

have that with probability at least 0.9,

|∇F (w̄;D)|2 ≤ o
(
L2
0

n

)
⇐⇒ |vp− w̃|2 < o

(
1

n

)

This contradicts the well-known bias estimation lower bounds, with p = 1√
16n

, using Le Cam’s method ((Duchi, 2016),

Example 7.7), hence E |∇F (w̄;D)| ≥ Ω
(

L0√
n

)
. Combining the two cases finishes the proof.

B. Missing Results for Empirical Stationary Points

B.1. Private Spiderboost

The following lemma largely follows from the analysis in (Wang et al., 2019c). We present a full proof below for

completeness.

Lemma B.1. Let the conditions of Lemma 4.1 be satisfied. Let η ≤ 1
2L1

and q ≤ O
(

1
τ2
2 η

2

)
. Then the output of Private

SpiderBoost, w̄ satisfies

E [∥∇F (w̄;S)∥] = O

(√
F0

ηT
+ τ1

)
. (1)

Proof. In the following, for any t ∈ [T ], let st =
⌊
t
q

⌋
q (i.e. the index corresponding to the start of the phase containing

iteration t).

By a standard analysis for smooth functions we have (recalling that ∇t is an unbiased estimate of ∇F (wt;S) for any

t ∈ [T ])

F (wt+1;S) ≤ F (wt;S) +
η

2
∥∇F (wt;S)−∇t∥2 −

(
η

2
− L1η

2

2

)
∥∇t∥2 .
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Taking expectation we have the following manipulation using the update rule of Algorithm 2

E [F (wt+1;S)− F (wt;S)] ≤
η

2
E

[
∥∇F (wt;S)−∇t∥2

]
−
(
η

2
− L1η

2

2

)
E

[
∥∇t∥2

]

≤ ητ22
2

t∑

k=st+1

E

[
∥wk+1 − wk∥2

]
+
η

2
E

[
∥∇st − F (wst ;S)∥2

]

−
(
η

2
− L1η

2

2

)
E

[
∥∇t∥2

]

≤ η3τ22
2

t∑

k=st+1

E

[
∥∇k∥2

]
+
ητ21
2
−
(
η

2
− L1η

2

2

)
E

[
∥∇t∥2

]
,

where the second inequality follows from Lemma 4.1 and the last inequality follows from the update rule. Note that if

t = st the sum is empty. Summing over a given phase we have

E [F (wt+1;S)− F (wst ;S)] ≤
η3τ22
2

t∑

k=st

k∑

j=st+1

E

[
∥∇j∥2

]
+

t∑

k=st

[
ητ2

1

2 −
(

η
2 −

L1η
2

2

)
E

[
∥∇k∥2

]]

≤ η3τ22 q

2

t∑

k=st

E

[
∥∇k∥2

]
+

t∑

k=st

[
ητ2

1

2 −
(

η
2 −

L1η
2

2

)
E

[
∥∇k∥2

]]

= −
t∑

k=st

[(
η

2
− L1η

2

2
− η3τ22 q

2

)

︸ ︷︷ ︸
A

E

[
∥∇k∥2

]
− ητ21

2

]
, (2)

where the second inequality comes from the fact that each gradient appears at most q times in the sum. We now sum over all

phases. Let P = {p0, p1, ...,} =
{
0, q, 2q, ...,

⌊
T−1
q

⌋
q, T

}
. We have

E [F (wT ;S)− F (w0;S)] ≤
|P |∑

i=1

E
[
F (wpi ;S)− F (wpi−1 ;S)

]

≤ −
T∑

t=0

AE

[
∥∇k∥2

]
+
Tητ21
2

.

Rearranging the above yields

1

T

T∑

t=0

E

[
∥∇k∥2

]
≤ F0

TA
+
ητ21
2A

. (3)

Now let i∗ denote the index of w̄ selected by the algorithm. Note that

E

[
∥∇F (wi∗ ;S)∥2

]
≤ 2E

[
∥∇F (wi∗ ;S)−∇i∗∥2

]
+ 2E

[
∥∇i∗∥2

]
. (4)
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The second term above can be bounded via inequality (3). To bound the first term we have by Lemma 4.1 that

E

[
∥∇i∗ −∇F (wi∗ ;S)∥2

]
≤ τ22

t∗∑

k=st∗+1

E

[
∥wk − wk−1∥2

]
+ τ21

= η2τ22

t∗∑

k=st∗+1

E

[
∥∇k∥2

]
+ τ21

≤ qη2τ22
T

T∑

k=0

E

[
∥∇k∥2

]
+ τ21

≤ τ22 η
2qF0

TA
+
η3qτ22
2A

τ21 + τ21 ,

where the last inequality comes from inequality (3) and the expectation over i∗. Plugging into inequality (4) one can obtain

E

[
∥∇F (wi∗ ;S)∥2

]
≤ 2F0

TA
(1 + τ22 η

2q) +

(
η

A
+ 2 +

τ22 η
3q

A

)
τ21 . (5)

Now recall A = η
2 −

L1η
2

2 − η3τ2
2 q

2 . Since q ≤ O
(

1
τ2
2 η

2

)
and η ≤ 1

2L1
we have A = Θ(η). Thus plugging into inequality

(5) and again using the fact that q ≤ O
(

1
τ2
2 η

2

)
we have

E

[
∥∇F (wi∗ ;S)∥2

]
= O

(
F0

Tη
(1 + τ22 η

2q) +

(
3 +

τ22 η
3q

A

)
τ21

)
= O

(
F0

Tη
+ τ21

)
.

The claim then follows from the Jensen inequality.

For privacy, we will rely on the moments accountant analysis of (Abadi et al., 2016). This roughly gives the same analysis

as using privacy amplification via subsampling and the advanced composition theorem, but allows for improvements in

log factors. We provide the following theorem implicit in (Abadi et al., 2016) Theorem 1 below. The same result can be

obtained using the analysis for (Kulkarni et al., 2021) Theorem 3.1 which uses the truncated central differential privacy

guarantees of the Gaussian mechanism (Bun et al., 2018).

Theorem B.2 ((Abadi et al., 2016; Kulkarni et al., 2021)). Let ε, δ ∈ (0, 1] and c be a universal constant. Let D ∈ Yn be a

dataset over some domain Y , and let h1, ..., hT : Y 7→ R
d be a series of (possibly adaptive) queries such that for any y ∈ Y ,

t ∈ [T ], ∥ht(y)∥2 ≤ λt. Let σt =
cλt

√
log(1/δ)

ε max
{

1
b ,

√
T
n

}
. Then the algorithm which samples batches of size B1, .., Bt

of size b uniformly at random and outputs 1
n

∑
y∈Bt

ht(y) + gt for all t ∈ [T ] where gt ∼ N (0, Iσ2
t ), is (ε, δ)-DP.

We note that the original statement of the Theorem in (Abadi et al., 2016) requires σt ≥ cλt

√
T log(1/δ)

nε and T ≥ n2ε
b2 (or

T ≥ n2

b2 so long as ε ≤ 1). However, in the case where T ≤ n2

b2 , one can simply consider the meta algorithm that does run

T ′ = n2

b2 steps and only outputs the first T results. This algorithm is at least as private as the algorithm which outputs every

result, and under the setting T ′ the scale of noise is
8λt

√
log(1/δ)

bε .

We can now prove the main result for Private Spiderboost, restated below. We note that the setting of b2 given below will

always be less than n under required conditions. More details are provided in the proof below.

Theorem B.3 (Private Spiderboost). Let n ≥ max

{
(L0ε)

2

F0L1d log(1/δ) ,
√
dmax{1,√L1F0/L0}

ε

}
. Private Spiderboost

run with parameter settings η = 1
2L1

, b1 = n, b2 =

⌊
max

{(
L0nε√

F0L1d log(1/δ)

)2/3

, (L0nd log(1/δ))1/3

(L1F0)1/6ε2/3

}⌋
, T =

⌊
max

{(
(F0L1)

1/4nε√
L0d log(1/δ)

)4/3

, nε√
d log(1/δ)

}⌋
, and q =

⌊
n2ε2

L2
1Td log(1/δ)

⌋
satisfies

E [∥∇F (w̃)∥] = O



(√

F0L1L0d log (1/δ)

nε

)2/3

+

√
d log (1/δ)L0

nε



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is (ε, δ)-DP and has oracle complexity Õ

(
max

{(
n5/3ε2/3

d1/3

)
,
(

nε√
d

)2})
.

Proof. For privacy, we rely on the moment accountant analysis of the Gaussian mechanism as per Theorem B.2. Note that

each gradient estimate computed in line 9 has elements with ℓ2-norm at most L0, and this estimate is computed at most T
q

times. Similarly, for a gradient variation at step t in line 13 we have norm bound L1 ∥wt − wt−1∥, and have that at most T
such estimates are computed. As such, the scale of noise in both cases ensures the overall algorithm is (ε, δ)-DP by Theorem

B.2.

We now prove the convergence result. To simplify notation in the following, we define ᾱ =

√
d log(1/δ)

nϵ . If b1 = n (full

batch gradient), the conditions of Lemma 4.1 are satisfied with τ21 = O
(

L2
0Tᾱ2

q

)
and τ22 = O

(
L2

1

b2
+ L2

1T ᾱ
2
)

and some

setting of q so long as T ≥ q n2

b21
= q and T ≥ n2

b22
. Further, if b2 ≥ 1

Tᾱ2 then τ22 = O
(
L2
1T ᾱ

2
)
. Thus the condition on q in

Lemma B.1 is satisfied with q =
L2

1

τ2
2
= 1

Tᾱ2 since η = 1
2L1

Plugging into Eqn. (1) we obtain

E [∥∇F (w̃)∥] = O

(√
F0L1

T
+
L0

√
T ᾱ√
q

)

= O

(√
F0L1

T
+ L0T ᾱ

2

)
. (6)

We now consider the setting of T . Since q = 1
Tᾱ2 , it suffices to set T ≥ 1

ᾱ to ensure T ≥ q. We now set T =

max

{(
(L1F0)

1/4

√
L0ᾱ

)4/3
, 1
ᾱ

}
. Using Eqn. (6) above we have

E [∥∇F (w̃)∥] = O

((√
F0L1L0ᾱ

)2/3
+ L0ᾱ

)
.

The claimed rate now follows if there exists a valid setting for b2 satisfying the previously stated conditions. The restrictions

on the batch size implied by T imply we need b2 ≥ n√
T

and thus it suffices to have b2 ≥ L
1/3
0 nᾱ2/3

(L1F0)1/6
to satisfy this

condition since T ≥
(

(L1F0)
1/4

√
L0ᾱ

)4/3
. We recall that for the setting of q to be valid we also require b2 ≥ 1

Tᾱ2 and

because T ≥
(

(L1F0)
1/4

√
L0ᾱ

)4/3
it suffices that b2 ≥

(
L0√

F0L1ᾱ

)2/3
. Thus we need b2 = max

{(
L0√

F0L1ᾱ

)2/3
,
L

1/3
0 nᾱ2/3

(L1F0)1/6

}
.

Finally, we need b2 ≤ n whenever q ≥ 1. Note that by the setting of q and T we have q ≤
(

L0√
F0L1ᾱ

)2/3
and thus

q ≥ 1 =⇒
(√

L1F0ᾱ
L0

)
≤ 1. Under this same condition we have

L
1/3
0 nᾱ2/3

(L1F0)1/6
≤ n. We further have

(
L0√

F0L1ᾱ

)2/3
≤ n

under the assumption n ≥ (L0ε)
2

F0L1d log(1/δ) given in the theorem statement. It can also be verified that under the condition on

n given in the theorem statement that q ≥ 1. Thus the parameter settings obtain the claimed rate.

Note the number of gradient computations is bounded by

O

(
Tb2 +

Tb1
q

)
= Õ

((
nε√
d

)4/3

max

{(
nε√
d

)2/3

,
(nd)1/3

ε2/3

}
+ n

(
nε√
d

)2/3
)

= Õ

(
max

{(
nε√
d

)2

,
n5/3ε2/3

d1/3

})
.

B.2. Additional Discussion of Rate Improvement Challenges

We here give a more detailed version of the informal discussion in Section 4.2. We want to emphasize that the goal of the

following discussion is not to provide a universal lower bound, but rather to inform future research.
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Let L : Rd 7→ R be a loss function. We say the randomized mapping O : Rd × (Rd ∪ ⊥) 7→ R
d, is a (τ1, τ2)-accurate

oracle for L if ∀w,w′ ∈ R
d

E
O
[O(w,⊥)] = ∇L(w), E

O
[O(w,w′)] = ∇L(w)−∇L(w′)

E
O

[
∥O(w,⊥)−∇L(w)∥2

]
≤ τ21 , E

O

[
∥O(w,w′)∥2

]
≤ τ22 ∥w − w′∥2 .

In short, O is an unbiased and accurate gradient/gradient variation oracle for L. Define

m(G,L1,L0, τ1, τ2) = inf
A

sup
O,L

inf
{
α : E [∥∇L(A(O, L1,L0, τ1, τ2)∥] ≤ α

}
,

where the supremum is taken over L1-smooth functions L satisfying L(0)− argmin
w∈Rd

{L(w)} ≤ L0, and (τ1, τ2)-accurate

oracles for L. The infimum is taken over algorithms which make at most G calls to O.

We have the following lower bound on m (i.e. a lower bound on the accuracy of optimization algorithms which make at

most G queries to the oracle) following from (Arjevani et al., 2019, Theorem 3) and the fact that the oracle model described

above is a special case of the multi-query oracles considered by (Arjevani et al., 2019).

Theorem B.4 ((Arjevani et al., 2019)). Let G,L0, L1, τ1, τ2 ≥ 0 and define α =
(L0τ2τ1

G

)1/3
+ τ1√

G
. If d = Ω̃

([L0L1

α2

]2)
,

then m(G,L1,L0, τ1, τ2) = Ω (α).

Now consider L such that L(w) = 1
n

∑
x∈S ℓ(w;x) for some L0-Lipschitz and L1-smooth loss ℓ : Rd × X 7→ R and

S ∈ Xn. We are interested in designing some (τ̂1, τ̂2)-accurate and differentially private oracle, Ô, which can then be used

by an optimization algorithm, A, to obtain an approximate stationary point w̄ = A(Ô, L1,L0, τ̂1, τ̂2). Specifically, we want

Ô to be capable of answering G queries under (ε, δ)-DP. A common method for achieving this is to ensure each query to

O is at least ( ε√
G
, δ)-DP and use advanced composition (or the more refined moment accountant) analysis. Such a setup

encapsulates numerous results in the convex setting (Bassily et al., 2019; Kulkarni et al., 2021), and is even more dominant

in non-convex settings (Wang et al., 2017; Zhou et al., 2020; Abadi et al., 2016).

Our key observation is that under such a setup, any increase in the number of oracle calls toGmust be met with a proportional

increase in the accuracy parameters (τ̂1, τ̂2). Thus, if such an oracle, Ô is applied in a black box fashion to a stochastic

optimization algorithm A, one can obtain a lower bound on the accuracy of the overall algorithm independent of G.

Specifically, since estimating the gradient and gradient variation can be viewed as mean estimation problems on n vectors,

we can use fingerprinting code arguments to lower bound τ̂1 and τ̂2 (Steinke & Ullman, 2015). In Lemma B.5 below, we

prove that any (τ̂1, τ̂2)-accurate oracle which ensures that any query is ( ε√
G
, δ)-DP must have τ̂1 = Ω

(
L0

√
Gd log(1/δ)

nε

)

and τ̂2 = Ω
(

L1

√
Gd log(1/δ)

nε

)
. Now, observe that by Theorem B.4, we have

m(G,L1,L0, τ̂1, τ̂2) = Ω



(√

F0L1L0

√
d log (1/δ)

nε

)2/3

+
L0

√
d log (1/δ)

nε


 ,

which matches our upper bound.

We now remark on several ways the above barrier could be circumvented. The first and most obvious possibility is to

employ a different privatization method than private oracles. However, this is particularly difficult in the nonconvex setting

as existing methods which avoid private gradients (see e.g. (Feldman et al., 2020) for several such methods) rely crucially

on stability guarantees arising from convexity. Other possible ways to beat the above rate is by designing a stochastic

optimization algorithm which leverages the structure of the noise used in private implementations of the oracle or makes use

of additional assumptions to beat the Ω
((L0τ2τ1

G

)1/3
+ τ1√

G

)
non-private lower bound.

Additional Details on Fingerprinting Bound We conclude by giving a concrete construction for the fingerprinting

argument mentioned above.
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Lemma B.5. Let L0, L1 ≥ 0, ε = O(1), 2−Ω(n) ≤ δ ≤ 1
n1+Ω(1) and

√
d log (1/δ)/(nε) = O(1). Let ℓ,L, S satisfy the

assumptions above. Then there exists ℓ, S such that for any oracle, O, which is (τ1, τ2)-accurate for L it holds that

τ1 = Ω

(
L0

√
d log (1/δ)

nε

)
and τ2 = Ω

(
L1

√
d log (1/δ)

nε

)
.

Proof. In the following, we use uj to denote the j’th component of some vector u. Let B = L0

L1

√
d

and define h : R 7→ R as

h(z) =

{
L1

2 w
2 if|w| ≤ B

L0√
d
|w| − L2

0

2dL1
otherwise

Define d′ = d
2 (assume d is even for simplicity) and for any vector u ∈ R

d let u(1) = [u1, ..., ud′ ]⊤ and u(2) =
[ud′+1, ..., ud]

⊤. Define ℓ(w;x) = ℓ1(w;x) + ℓ2(w;x) where

ℓ1(w;x) =
L0√
d

〈
w(1), x(1)

〉
, ℓ2(w;x) =

1

2

d∑

j=d′+1

h(wj)xj .

LetW = {w : ∥w∥∞ ≤ B} and note for any w ∈ W we have

∇ℓ(w;x) = [
x1√
d
, ...,

xd′√
d
, wd′+1xd′+1, ..., wdxd]

⊤, ∇2ℓ2(w;x) = L1 · Diag(0, ..., 0, xd′+1, ..., xd)

That is, the Hessian of ℓ2(w;x) is a diagonal matrix with entries from x. Thus one can observe that for any x ∈ {±1}d we

have that ℓ(·;x) is L0-Lipschitz and L1-smooth over Rd.

To prove a lower bound on τ1 and τ2, it suffices to show that for any (ε, δ)-DP implementation of O there exists w ∈ R
d

such that E
O

[
∥O(w;⊥)−∇L(w)∥2

]
≥ τ21 and there exist w,w′ ∈ R

d such that E
O

[
∥O(w,w′)∥2

]
≥ τ22 ∥w − w′∥2. For

sake of generality, we will show that these properties hold for a set of w,w′.

Note that to lower bound the gradient error, it suffices to lower bound the error with respect to the first d′ components. We

thus argue using ℓ1, and will in fact show a lower bound for any w ∈ R
d. Let w ∈ R

d. We have for any (ε, δ)-DP oracle O
there exists a dataset S ⊆ {±1}d, where |S| = n, of fingerprinting codes such that

E
O
[∥O(w;⊥)−∇L(w)∥] ≥ E

O

[∥∥∥∥∥O(w;⊥)
(1) − 1

n

∑

x∈S

x(1)

∥∥∥∥∥

]
= Ω

(
L0

√
d log (1/δ)

nε

)
.

The bound follows from standard fingerprinting code arguments. See (Bassily et al., 2014, Lemma 5.1) for a lower bound

and (Steinke & Ullman, 2015, Theorem 1.1) for a group privacy reduction that obtains the additional
√

log (1/δ) factor. This

fingerprinting result also induces the parameter constraints in the theorem statement. We thus have τ1 = Ω

(
L0

√
d log(1/δ)

nε

)
.

Similarly, we will argue a bound on the gradient variation using ℓ2. Let w,w′ ∈ W and u = (w − w′)(2). In what follows,

we only use the second half of the components for each vector, and thus omit the superscript (2) from all vectors for

readability. We have ∇ℓ2(w;x) − ∇ℓ2(w′;x) = L1[u1x1, ..., ud′xd′ ]⊤. Then for any c ∈ (0, 2L0

L1

√
d
] and u ∈ {±c}2 we
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have

E
O

[
∥O(w,w′)− (∇L(w)−∇L(w′))∥2

]
= L2

1 · EO




d′∑

j=1

(
O(w,w′)j −

uj
n

∑

x∈S

xj

)2



= L2
1 · EO




d′∑

j=1

(
uj

(O(w,w′)j
uj

− 1

n

∑

x∈S

xj

))2



= L2
1 · EO


c2

d′∑

j=1

(
O(w,w′)j

uj
− 1

n

∑

x∈S

xj

)2



= Ω

(
L2
1c

2 d
2 log (1/δ)

n2ε2

)
,

where the last step again comes from fingerprinting results. Note that the extra factor of d as compared to the previous

bound comes from the fact that we are considering fingerprinting codes with norm larger by a factor of
√
d. We also use the

fact that the vector O(w,w′) transformed using u is (ε, δ)-DP by post processing. Now since c =
∥w−w′∥√

d
we have

E
O
[∥O(w,w′)− (∇L(w)−∇L(w′))∥] =

(
L1 ∥w − w′∥

√
d log (1/δ)

nε

)
.

Finally, noting that E
O

[
∥O(w,w′)− (∇L(w)−∇L(w′))∥2

]
≤ E

O

[
∥O(w,w′)∥2

]
we obtain τ2 = Ω

(
L1

√
d log(1/δ)

nε

)
. This

completes the proof.

We remark that the accuracy lower bound for the gradient variation can hold for a much more general set of vectors than that

given in the proof. Specifically, the same result can be obtained for any u = w−w′ such that u has Θ(d) components which

are Ω
(∥u∥√

d

)
(i.e. any sufficiently spread out vector). This uses the fact that it suffices to bound the number of components

which disagree in sign with the fingerprinting mean and that fingerprinting codes are sampled using a product distribution,

and thus the tracing attack used by fingerprinting constructions holds over any sufficiently large subset of dimensions.

C. Missing Results for Population Stationary Points

Here we present the proof of privacy and accuracy for Algorithm 1. We start by proving the privacy guarantee.

Proof of Theorem 3.1. By parallel composition of differential privacy, and since the used batches are disjoint, it suffices to

prove that each step in lines 6 and 15 of the algorithm is (ε, δ)-DP. Note that the gradient estimator in step 6 has ℓ2-sensitivity

2L0/b, so by the Gaussian mechanism this step is (ε, δ)-DP.

For step 15, suppose St,s and S′
t,s are neighboring datasets that differ in at most one element: xi∗ ̸= x′i∗ , and let ηt,si and

η′t,si the respective stepsizes used in step 23. Then

∥∆t,s −∆′
t,s∥ =

2|s|

b
∥∇f (wt,s;xi∗)−∇f (wt,ŝ;xi∗)− (∇f (wt,s;x

′
i∗)−∇f (wt,ŝ;x

′
i∗)) ∥ ,

and note between the parent node ut,ŝ and ut,s there are 2D−|s| iterates generated by the algorithm, which we denote as
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wt,ŝ = wt,s0 , wt,s1 , ..., wt,s
2|D|−s

= wt,s. Then, by smoothness of f and the triangle inequality

∥∆t,s −∆′
t,s∥

=
2|s|

b
∥∇f (wt,s; zi∗)−∇f (wt,ŝ; zi∗)− (∇f (wt,s; z

′
i∗)−∇f (wt,ŝ; z

′
i∗)) ∥

≤
2D−|s|∑

i=1

2|s|

b

[
∥∇f (wt,si ; zi∗)−∇f

(
wt,si−1

; zi∗
)
∥+ ∥

(
∇f (wt,si ; z

′
i∗)−∇f

(
wt,si−1

; z′i∗
))
∥
]

≤
2D−|s|∑

i=1

2|s|

b
L1ηt,si−1

∥∇t,si−1
∥+

2D−|s|∑

i=1

2|s|

b
L1η

′
t,si−1

∥∇′
t,si−1

∥

= 2

2D−|s|∑

i=1

2|s|

b

β

2D/2
=

2β2D/2

b
.

The Gaussian mechanism combined with our choice of σt,s certifies privacy of this step.

To prove Theorem 3.2 we will need some technical lemmas. Define (T ,S) as a random stopping time that indicates when

Algorithm 1 ends. Also, we say (t1, s1) ⪯2 (t2, s2) whenever wt1,s1 comes before wt2,s2 in the algorithm iterates.

Lemma C.1 (Gradient estimation error, extension of Lemma 6 in (Fang et al., 2018)). Let p ∈ (0, 1). Then, with probability

1− p the event

E = {∥∇t,s −∇F (wt,s;D)∥2 ≤ α · α̃ ∀(t, s) ⪯2 (T ,S)}

holds, under the parameter setting of σt,∅, σt,s and ηt,s in Algorithm 1, for

α2 ≥
(
L2
0

b
+
β2D2D

b

)
max

{
1,

(d+ 1)

bε2

}
and α̃ ≥ 256 log

(
1.25

δ

)
log

(
2T2D+1

p

)
α.

Proof. Recall the gradient estimate associated to a left child node is the same as that of the parent node. Hence, the gradient

estimate of a non-leaf node is the same as that of the left-most leaf of its left sub-tree. In addition, we only need to control

the gradient estimation error when we perform a gradient step, which occurs at the leaves. Then, to prove the claim,

it suffices to prove that we can control the gradient estimation error at the leaves. Since, the number of iterations (and

leaves) is at most T2D−1, to prove event E happens with probability 1 − p, by the union bound it suffices to prove that

P[∥∇t,s −∇F (wt,s;D)∥2 > α · α̃] ≤ p
T2D−1 for every (t, s) ⪯2 (T ,S) where ut,s is a leaf.

Denote by Ft the sigma algebra generated by randomness in the algorithm until the end of round t. Fix (t, s) ⪯2 (T ,S)
such that ut,s is leaf, and let ut,s∅ = ut,s0 , ut,s1 , ..., ut,sk = ut,s be the path from the root to s. Next, extract a sub-sequence

of it including only the root and the nodes that are right children, obtaining ut,s∅ = ut,sa0
, ut,sa1

, ..., ut,sam
= ut,s. Now

we can write

∇t,s −∇F (wt,s;D) =
m∑

i=0

gt,sai
+
∑

x∈St,∅

1

b
(∇f(wt,∅;x)−∇F (wt,∅;D))

︸ ︷︷ ︸
γ1,x

+

m∑

i=1

∑

x∈St,sai

2|sai
|

b

[(
∇f(wt,sai

;x)−∇f(wt,sai−1
;x)
)
−
(
∇F (wt,sai

;D)−∇F (wt,sai−1
;D)

)]

︸ ︷︷ ︸
γ2,x,i

.

To bound the estimation error, we note that

P[∥∇t,s −∇F (wt,s;D)∥2 > α · α̃|Ft−1]

≤ P

[∥∥∥
m∑

i=0

gt,sai

∥∥∥
2

>
α · α̃
4

∣∣∣Ft−1

]
+ P

[∥∥∥
∑

x∈St,∅

γ1,x +

m∑

i=1

∑

x∈St,sai

γ2,x,i

∥∥∥
2

>
α · α̃
4

∣∣∣Ft−1

]
.
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and proceed to bound each term on the right hand side separately. By vector subgaussian concentration (see Lemma 1 in

(Jin et al., 2019)) and noting that the gaussians are independent of Ft−1, we know that

P



∥∥∥∥∥

m∑

i=0

gt,sai

∥∥∥∥∥

2

>
α · α̃
4


 ≤ 4d exp

(
− α · α̃
32(σ2

t,∅ +
∑m

i=1 σ
2
t,sai

)

)
,

and in order to bound this probability by p
2T2D−1 , since m ≤ D, it suffices that

α · α̃ > 32 log

(
4dT2D

p

)[
8L2

0 log (1.25/δ)

b2ε2
+

8D2Dβ2 log (1.25/δ)

b2ε2

]

= 256 log

(
1.25

δ

)[
d log (4) + log

(
T2D

p

)][
L2
0

b2ε2
+
D2Dβ2

b2ε2

]
.

Now, noting that surely

∥γ1,x∥ ≤
2L0

b
and ∥γ2,x,i∥ ≤

2β2D/2

b
,

where the second bound comes from following similar steps as in the privacy analysis in Theorem 3.1, we have that∑
x∈St,∅

γ1,x +
∑m

i=1

∑
x∈St,sai

γ2,x,i is a sum of bounded martingale differences when conditioned on Ft−1, thus by

concentration of martingale-difference sequences in ℓ2 (see Proposition 2 in (Fang et al., 2018)), and using the fact that

|St,∅| = b and |St,sai
| = b/2|sai

| it follows that

P




∥∥∥∥∥∥

∑

x∈St,∅

γ1,x +

m∑

i=1

∑

x∈St,sai

γ2,x,i

∥∥∥∥∥∥

2

>
α · α̃
4
| Ft−1


 ≤ 4 exp


− α · α̃

16
[
4L2

0

b +
∑m

i=1
4β22D

2|sai
|b

]


 .

Repeating a similar argument as before, to bound this term by p
2T2D−1 , it suffices that

α · α̃ ≥ 64 log

(
2T2D+1

p

)[
L2
0

b
+
β2D2D

b

]
.

Finally, both conditions hold simultaneously for

α2 ≥
(
L2
0

b
+
β2D2D

b

)
max

{
1,

(d+ 1)

bε2

}

and

α̃ ≥ 256 log

(
1.25

δ

)
log

(
2T2D+1

p

)
α.

Lemma C.2 (Descent lemma; Lemma 7 in (Fang et al., 2018)). Under the assumption that the event E from Lemma C.1

occurs and β ≤ 2D/2α̃, we have that if Algorithm 1 reaches the last line, then

F (wT,ℓ(2D);D)− F (0;D) ≤ −(T2D−1)
β · α̃

4 · 2D/2L1
.

where wT,ℓ(2D) is the last iterate in the T -th tree of Algorithm 1.

We provide the proof of Lemma C.2 adapted to our case for completeness.
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Proof. By standard analysis for smooth functions we have

F (wt,s+ ;D) ≤ F (wt,s;D)−
ηt,s
2

(1− ηt,sL1)∥∇t,s∥2 +
ηt,s
2
∥∇t,s −∇F (wt,s;D)∥2,

where ηt,s = β
2D/2L1∥∇t,s∥ and ut,s+ is the node after ut,s in the tree. Since β ≤ 2D/2α̃ and ∥∇t,s∥ > 2α̃, we have that

(1− ηt,sL1) ≥ 1/2. Using this inequality, the definition of ηt,s and the fact that we are assuming E occurs, we obtain

F (wt,s+ ;D)− F (wt,s;D) ≤ −
β

4 · 2D/2L1∥∇t,s∥
∥∇t,s∥2 +

β

2 · 2D/2L1∥∇t,s∥
α · α̃

≤ − β

4 · 2D/2L1
· α̃,

where the second inequality comes from ∥∇t,s∥ > 2α̃ and α ≤ α̃. Then telescoping over all T2D−1 iterations provides the

claimed bound.

We are now ready to prove the convergence guarantee of Algorithm 1.

Proof of Theorem 3.2. From Lemma C.1, we know that ∥∇t,s −∇F (wt,s;D)∥2 ≤ α · α̃ with probability 1− p when

α =
√
2L0 max

{
1

n1/3 ,
(√

d
nε

)1/2}
, α̃ =

(
256 log

(
1.25
δ

)
log
(

2T2D+1

p

)
+ 8L1F0

√
2D(D/2+1)
2L2

0

)
α.

Indeed, using our parameter setting, and noting that d > bε2 if and only if, d > n2/3ε2, yields

α2 ≥ L2
0

b
max

{
1,

(d+ 1)

bε2

}
+
β2

2
max

{
1,

(d+ 1)

bε2

}

= L2
0

(
1

n2/3
1{d+1≤n2/3ε2} +

√
d

nε
1{d+1>n2/3ε2}

)
+
α2

2
min

{
1,
bε2

d

}
max

{
1,

(d+ 1)

bε2

}

≥ L2
0 max

{
1

n2/3
,

√
d

nε

}
+
α2

2
,

which shows our values of α and α̃ are valid for controlling the gradient estimation error with high probability, as claimed in

Lemma C.1.

Now, suppose for the sake of contradiction that Algorithm 1 does not end in line 20 under E . This means it performs T2D−1

gradient updates. We’ll show this implies (T2D−1) β·α̃
4·2D/2L1

> F0 and thus contradicts Lemma C.2, which claims that

F0 ≥ −[F (wT,ℓ(2D);D)− F (w0,ℓ(2D);D)] ≥ (T2D−1) β·α̃
4·2D/2L1

. Indeed, note that by our parameter setting:

(T2D−1)
β · α̃

4 · 2D/2L1
> F0 ⇐⇒ β · α̃ > 8L1F0

T2D/2

⇐⇒ αmin

{
1,

√
bε√
d

}
· α̃ > 8L1F0

√
2D

T
√
b

⇐⇒ α · α̃ > 8L1F0

√
2D(D/2 + 1)

√
b

n
max

{
1,

√
d√
bε

}

⇐⇒ α · α̃ > 8L1F0

√
2D(D/2 + 1)max

{√
b

n
,

√
d

nε

}
,
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and noting that by the setting of b we have max
{√

b
n ,

√
d

nε

}
= max

{
1

n2/3 ,
√
d

nε

}
, we conclude the following

(T2D−1)
β · α̃

4 · 2D/2L1
> F0 ⇐⇒ α · α̃ > 8L1F0

√
2D(D/2 + 1)max

{
1

n2/3
,

√
d

nε

}

⇐⇒ α · α̃ > 8L1F0

√
2D(D/2 + 1)

2L2
0

α2.

Finally, note α · α̃ =
(
256 log (1.25/δ) log

(
2T2D+1/p

)
+ 8L1F0

√
2D(D/2+1)
2L2

0

)
α2 and thus the last inequality holds under

our parameter setting. Since this is equivalent to (T2D−1) β·α̃
4·2D/2L1

> F0, we are done with the contradiction. It follows

that with high probability, Algorithm 1 ends in line 20 returning wt,s such that ∥∇t,s∥ ≤ 2α̃. Also, by Lemma C.1 we have

∥∇F (wt,s;D)−∇t,s∥ < α̃, so the returned iterate satisfies by the triangle inequality

∥∇F (wt,s;D)∥ < 3α̃.

In addition, the linear time oracle complexity follows from the fact that at each binary tree we use b samples at the root, and

then b/2 in levels 1 to D. This gives a total of b(D/2+ 1) samples used at every round. Since we run the algorithm for T =
n

b(D/2+1) rounds, we compute exactly n gradients. To conclude, note the condition n ≥ max{
√
d(D/2+1)2/ε, (D/2+1)3}

implies the number of rounds T is at least 1. Besides, since the definition of D implies 2D < b, the size of the mini-batches

are well-defined (meaning Algorithm 1 uses batches with at least 1 sample). This concludes the proof.

D. Missing Results for Stationary Points in the Convex Setting

We first give pseudo-codes of algorithms used in the section.

Algorithm 5 Phased SGD(S, (w, x) 7→ f(w;x)), R, η,S(·), σ)
Input: Dataset S, loss function f(·;x)), radius R of the constraint setW , steps T , η, Selection function S , Noise variance

σ
1: w1 = 0
2: K = ⌈log (|S|)⌉ and T0 = 1
3: for k = 1 to K − 1 do

4: Tk = 2−k |S| , ηk = 4−kη, σk = ηkσ
5: wk+1 = OutputPerturbedSGD(wk, STk−1+1:Tk

, R, ηk, σk,S(·))
6: end for

Output: w̄ = wK

Algorithm 6 OutputPerturbedSGD(w1, S, (w, x) 7→ f(w;x),∆(·), R, η,S(·)
Input: Dataset S, loss function f(·;x)), regularizer ∆(·), radius R of the constraint setW , steps T , η, Selection function

S , Noise variance σ
1: for t = 1 to |S| − 1 do

2: wt+1 = ΠW (wt − η (∇f(wt;xt)))
3: end for

4: ξ ∼ N (0, σ2
I)

5: w̃ = S
(
{wt}|S|

t=1

)

Output: w̄ = w̃ + ξ

Proof of Theorem 5.1. The privacy guarantee, in both cases, follows from the privacy guarantees of Algorithm 7 and

Algorithm 5, in Lemmas D.3 and D.6 respectively, together with parallel composition.
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Algorithm 7 Noisy GD(S, (w, x) 7→ f(w;x)), R, T, η,S(·), σ)
Input: Dataset S, loss function (w, x) 7→ f(w;x), radius R of the constraint setW , steps T , η, Selection function S , Noise

variance σ
1: w1 = 0
2: for t = 1 to T − 1 do

3: ξt ∼ N (0, σ2
I)

4: wt+1 = ΠW (wt − η (∇F (wt;S) + ξt))
5: end for

Output: w̄ = S
(
{wt}Tt=1

)

We now proceed to the utility part. For simplicity of notation, let R = ∥w∗∥. Recall the definition of the regularized losses

f (t)(w, x) in Algorithm 3. Let {αt}t be such that E[F (t−1)(w̄t;D)] − F (t−1)(w∗
t−1;D) ≤ αt where w̄t are the iterates

produced in the algorithm and w∗
t−1 = argminw∈Rd F (t−1)(w;D). Following (Allen-Zhu, 2018; Foster et al., 2019), we

first establish a general result which will be useful for both parts of the result.

E ∥∇F (w̄T ;D)∥ = E

∥∥∥∥∥∇F
(T−1)(w̄T ;D) + λ

T∑

t=0

2t (w̄t − w̄T )

∥∥∥∥∥

≤ E

∥∥∥∇F (T−1)(w̄T ;D)
∥∥∥+ λ

T−1∑

t=0

2tE
(∥∥w̄t − w∗

T−1

∥∥+
∥∥w̄T − w∗

T−1

∥∥)

≤ 2E
∥∥∥∇F (T−1)(w̄T ;D)

∥∥∥+ λ

T−1∑

t=1

2tE
∥∥w̄t − w∗

T−1

∥∥+ λE
∥∥w0 − w∗

T−1

∥∥

≤ 2E
∥∥∥∇F (T−1)(w̄T ;D)

∥∥∥+ 4

T−1∑

t=1

√
λ2tαt + λRT−1

≤ 4
√
L1αT + 4

T−1∑

t=1

√
λ2t+1αt + λ2T/2R

≤ 4
T∑

t=1

√
λ2t+1αt +

√
λL1R

where the third and fourth inequality follows from strong convexity of F (T−1)(·;D) and Lemma D.2 respectively. The

last inequality follows from the setting of T since we have that F (T−1) is L1 +
∑T−1

t=1 2tλ ≤ L1 + λ2T ≤ 2L1 smooth.

Note that the definition of Rt and Lemma D.1,
∥∥w∗

T−1

∥∥ ≤ RT−1, so the unconstrained minimizer lies in the constraint set.

Therefore E
∥∥∇F (T−1)(w̄T ;D)

∥∥ = E
∥∥∇F (T−1)(w̄T ;D)−∇F (T−1)(w∗

T−1;D)
∥∥ ≤ 2

√
L1αT .

Observe that from the setting of T , F (T ) is 4L1 smooth for all t. Furthermore, the radius of the constraint set in the t-th
round is Rt = 2T/2R. Hence, the Lipschitz constant Gt ≤ L0 + 8L1Rt ≤ O

(
L0 + L12

T/2
)
. Now we instantiate αt,

which is the excess population risk bound of the DP-SCO sub-routine.

Optimal rate: The excess population risk guarantee of Algorithm 7 is in Lemma D.3, with (in context of the notation in

the Lemma) Lipschitz parameter L0 being the same and G∆ = O
(
L12

T/2
)
. Therefore, we have αt = Õ

(
G2

λtn
+ dG2

λtn2ε2

)
.

Plugging in the above estimate, we get,

E ∥∇F (w̄;D)∥ = Õ

(
G√
n
+

√
dG

nε
+

√
λ

L1
R

)
= Õ

(
G√
n
+

√
dG

nε

)

where the last step follows by setting of λ.

The optimality claim follows by combining the non-private lower bound in Theorem 5.1, and the DP empirical stationarity

lower bound in Theorem 4.3 together with a reduction to population stationarity as in (Bassily et al., 2019, Appendix C).
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Linear time rate: The excess population risk guarantee of Algorithm 5 is in Lemma D.6, with Lipschitz parameter L0

being the same and G∆ = O
(
L12

T/2
)
. This gives us αt = Õ

(
L2

0

λtn
+

dL2
0

λtn2ε2

)
, and thus

E ∥∇F (w̄;D)∥ = Õ

(
L0√
n
+

√
dL0

nε
+
√
λL1R

)
= Õ

(
L0√
n
+

√
dL0

nε
+
L1R√
n

)

where the last step follows by setting of λ. Finally, note that the Lemma D.6 requires that n = Ω̃
(

L1+λt

λt

)
for all t. This

can be checked to be satisfied by substituting the value of λt.

D.1. Utility Lemmas

We first present some key results which will be useful in the proofs.

Lemma D.1. Let f : Rd → R be an L1-smooth convex function and let w∗ = argminw∈Rd f(w). Let R = ∥w∗∥ and

w0 ∈ R
d such that ∥w0∥ ≤ R. Define f̃(w) = f(w) + λ

2 ∥w − w0∥2 and let w̃ = argmin f̃(w). Then for any λ ≥ 0,

∥w̃∥ ≤
√
2R.

Proof. From optimality criterion, 0 = ∇f̃(w̃) = ∇f(w̃) + λ (w̃ − w0). Therefore, ∇f(w̃) = λ (w0 − w̃) and thus

⟨∇f(w̃), w0 − w̃⟩ > 0. Furthermore, since f is convex, from monotonicity, ⟨∇f(w̃), w∗ − w̃⟩ ≤ 0. Since both w0 and w∗

lie in the ball of radius R (sayWR), the above two implies that the hyperplane H = {w : ⟨∇f(w̃), w − w̃⟩ = 0} intersects

withWR. Furthermore, since ∇f(w̃) = λ (w0 − w̃), we have that w̃ is the projection of w0 on H i.e. ΠH(w0).

Let w′ = ΠH(0). We have that w′ ∈ WR; this is because the hyperplane cuts the hypersphereWR creating a spherical cap

and w′ is the center of the cap. From properties of convex projections ∥ΠH(w0)−ΠH(0)∥ ≤ ∥w0 − 0∥ ≤ R. Furthermore,

ΠH(0) and ΠH(w0) − ΠH(0) are orthogonal. Hence ∥w̃∥2 = ∥ΠH(w0)∥2 = ∥ΠH(0)∥2 + ∥ΠH(w0)−ΠH(0)∥2 ≤
2R2.

We state the following result from (Allen-Zhu, 2018; Foster et al., 2019).

Lemma D.2. Suppose for every t = 1, 2, . . . T , E[F (t−1)(w̄t;D)] − F (t−1)(w∗
t−1;D) ≤ αt where w̄t are the iterates

produced in the algorithm, w∗
t−1 = argminw∈Rd F (t−1)(w;D) and λt = 2tλ, we have,

1. For every t ≥ 1, E[
∥∥w̄t − w∗

t−1

∥∥2] ≤ 2αt

λt−1

2. For every t ≥ 1, E[∥w̄t − w∗
t ∥2] ≤ αt

λt

3. E[
∑T

t=1 λt ∥w̄t − w∗
T ∥] ≤ 4

∑T
t=1

√
αtλt

D.2. Lemmas for NoisyGD (Algorithm 7)

Lemma D.3. Consider a function f(w;x) = ℓ(w;x) + ∆(w), where w 7→ ℓ(w;x) is convex and L0 Lipschitz for

all x, and ∆(w) is λ strongly convex, G∆ Lipschitz and H∆ smooth over a bounded convex set W . Algorithm 6 run

with parameters η = log(T )
λT , σ2 =

64L2
0T log(1/δ)
n2ε2 , T = max

(
L1+H∆

λ log
(
L1+H∆

λ

)
,
n2ε2(L2

0+G2
∆)

dL2
0 log(1/δ)

)
and S({wt}t) =

1∑T
t=1(1−ηλ)−t

∑T
t=1 (1− ηλ)

−t
wt satisfies (ε, δ)-DP and given a dataset S of n i.i.d. points fromD, the excess population

risk of its output w̄ is bounded by,

E

[
F (w̄;D)− min

w∈WR

F (w;D)
]
= O

(
L2
0

λn
+
dL2

0 log (1/δ)

λn2ε2

)
.

Proof. For the privacy analysis, as in (Bassily et al., 2014), for fixed w, the sensitivity of the gradient update is bounded by
2L0

n . Applying advanced composition, we have that σ2 =
64L2

0T log(1/δ)
n2ε2 suffices for (ε, δ)-DP.

For utility, we first compute a bound on uniform argument stability of the algorithm; let {wt} and {w′
t} be sequence of

iterates on neighbouring datasets. Note that the function w 7→ f(w;x) is L1 +H∆-smooth and λ-strongly convex for all x.

From the setting of T , we have that the step size η ≤ 1
L1+H∆

, hence from the standard stability analysis,
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wt+1 − w′
t+1 = wt − η∇L(wt;S)− η∇∆(wt)− w′

t + η∇L(w′
t;S

′) + η∇∆(w′
t)

= wt − w′
t − η (∇L(wt;S) +∇∆(wt)−∇L(w′

t;S)− η∇∆(w′
t))

+ η (∇L(w′
t;S

′)−∇L(w′
t;S))

=
(
I− η

(
∇2L(w̃t;S) +∇2∆(w̃t)

))
(wt − w′

t)

+ η (∇L(w′
t;S

′)−∇L(w′
t;S))

where the last equality follows from Taylor remainder theorem where w̃t is some intermediate point on the line joining wt

and w′
t. Using the fact that η ≤ 1

L1+H∆
, we have

∥∥wt+1 − w′
t+1

∥∥ ≤ (1− ηλ) ∥wt − w′
t∥+

2ηL0

n
≤ 2L0

λn

The above gives the same bound for the iterate using the selector S ,

∥S({wt})− S({w′
t})∥ ≤

2L0

λn

Note that the overall Lipschitz constant for the empirical loss is L̃0 = L0 +G∆. For the excess empirical risk guarantee, we

use Lemma 5.2 in (Feldman et al., 2020) to get,

E [L (w̄;S) + ∆(w̄)− L(w∗;S)−∆(w∗)] = E [F (w̄;S)− F (w∗;S)]

= Õ

(
L̃0

2

λT

)

= Õ

(
L̃0

2
+ σ2d

λT

)

= Õ

(
L̃0

2

λT
+
dL2

0 log (1/δ)

λn2ε2

)

= O

(
dL2

0 log (1/δ)

λn2ε2

)

where the last step follows from the setting of T . For the population risk guarantee, we have,

E [F (w̄;D)− F (w∗;D)] = E [F (w̄;D)− F (w̄;S)] + E [F (w̄;D)− F (w∗)]

= E[L(w̄;D)− L(w̄;S)] +O

(
dL2

0 log (1/δ)

λn2ε2

)

≤ L0E ∥w̄ − w̄′∥+O

(
dL2

0 log (1/δ)

λn2ε2

)

= Õ

(
L2
0

λn
+
dL2

0 log (1/δ)

λn2ε2

)

where the inequality follows from Lipschitzness and standard generalization gap to stability argument.

D.3. Lemmas for PhasedSGD (Algorithm 5)

The following lemma gives population risk guarantees for strongly convex functions under privacy, in terms of variance of

stochastic gradients, as opposed to standard Lipschitzness bounds.

Lemma D.4 (Variance based bound for constant step-size SGD for strongly-convex functions). Consider a func-

tion f(w;x) such that w 7→ f(w;x) is λ strongly convex, L1 smooth over a convex set W for all x and let
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Ex ∥∇f(w;x)− Ex∇f(w;x)∥2 ≤ V2 for all w ∈ W . Let γt = (1− ηλ)−t
. Given a dataset S = {x1, x2, . . . , xn}

sampled i.i.d from D and η ≤ 1
2β as input, for any w ∈ W , the iterates of Algorithm 6 satisfy

E

[
1∑n

t=1 γt

n∑

t=1

γtF (wt;D)
]
− F (w) ≤ λ

eηλn − 1
∥w0 − w∥2 + ηV2

Furthermore, for n = Ω
(
L1

λ log
(
L1

λ

))
, with η = log(n)

λn and S({wt}t) = 1∑n
t=1 γt

∑n
t=1 γtwt, the excess population risk of

w̃ = S({wt}t) satisfies

E

[
F (w̃;D)− min

w∈W
F (w;D)

]
= O

(V2 log (n)

λn

)

Proof. An equivalent way to write the update in Algorithm 6 is

wt+1 = argmin
w∈W

(
⟨∇f(wt, xt), w⟩+

1

η
∥wt − w∥2 + ψ(w)

)

where ψ(w) = 0 if w ∈ W , otherwise∞.

Following standard arguments in convex optimization, for any w ∈ W , we have

F (wt+1;D)− F (w)
= F (wt+1;D) + ψ(wt+1)− F (w;D)− ψ(w)

≤ F (wt) + ⟨∇F (wt), wt+1 − wt⟩+
L1

2
∥wt+1 − wt∥2 + ψ(wt+1)

+ F (w;D)− ψ(w)

≤ ⟨∇F (wt), wt+1 − wt⟩+ ⟨∇F (wt), wt − w⟩ −
λ

2
∥wt − w∥2 +

L1

2
∥wt+1 − wt∥2

+ ψ(wt+1) + F (w;D)− ψ(w)

= Ezt

[
⟨∇p(wt; zt)−∇F (w;D), wt − wt+1⟩+

L1

2
∥wt+1 − wt∥2 + ⟨∇p(wt; zt), wt − w⟩

]

− λ

2
∥wt − w∥2 + ψ(wt+1) + F (w;D)− ψ(w)

≤ Ezt

[
⟨∇p(wt; zt)−∇F (w;D), wt − wt+1⟩ −

(
1

2η
− L1

2

)
∥wt+1 − wt∥2

+

(
1

2η
− λ

2

)
∥wt − w∥2 −

1

2η
∥wt+1 − w∥2

]

≤ Ezt

[ η

2 (1− ηL1)
∥∇p(wt; zt)−∇F (w;D)∥2 +

(
1

2η
− λ

2

)
∥wt − w∥2 −

1

2η
∥wt+1 − w∥2

]

≤ ηV2 + Ezt

[(
1

2η
− λ

2

)
∥wt − w∥2 −

1

2η
∥wt+1 − w∥2

]

where the first inequality follows from smoothness, the second from strong convexity, the third from Fact D.1 in (Allen-Zhu,

2018), fourth from AM-GM inequality and the last from the assumption about variance bound on the oracle.

Now, the above is exactly the bound obtained in the proof of Lemma 5.2 in (Feldman et al., 2020) with the second moment

on gradient norm replaced by variance. Repeating the rest of the arguments in that Lemma gives us the claimed result.

Lemma D.5 (Privacy of Algorithm 6). Consider a function f(w;x) = ℓ(w;x) + ∆(w) such that w 7→ ℓ(w;x) is convex,

L0 Lipschitz, L1-smooth for all z, and ∆(·) is λ strongly convex, G∆ Lipschitz and H∆ smooth over a bounded setW .

For n = Ω
(
L1+H∆

λ log
(
L1+H∆

λ

))
, Algorithm 6 with input as function (w, x) 7→ f(w;x), σ2 = 64G2(log(n))2 log(1/δ)

λ2n2ε2 ,

η = log(n)
λn and S ({wt}nt=1) =

1∑n
t=1 γt

∑n
t=1 γtwt for any weights γt satisfies (ε, δ)-DP.
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Proof. We start with computing the sensitivity of the algorithm’s output: let {wt} and {w′
t} be sequence of iterates produced

by Algorithm 6 on neighbouring datasets. Note that the function w 7→ f(w;x) is L′
1 = L1 +H∆-smooth and λ-strongly

convex for all x. From the assumption on n, we have that the step size η ≤ 1
H+H∆

. Suppose the differing sample between

neighbouring datasets is xj , then wt = w′
t for all t ≤ j. Also,

∥∥wj+1 − w′
j+1

∥∥ = η
∥∥∇ℓ(wj ;xj)−∇ℓ(wj ;x

′
j)
∥∥ ≤ 2ηL0 =

2L0 log (n)

λn

Now, for any t > j, as in the standard stability analysis we have,

wt+1 − w′
t+1 = wt − η∇ℓ(wt;xt)− η∇∆(wt)− wt + η∇ℓ(w′

t;xt) + η∇∆(w′
t)

=
(
I− η

(
∇2ℓ(w̃t;xt) +∇2∆(w̃t)

))
(wt − w′

t)

where the last equality follows from Taylor remainder theorem where w̃t is some intermediate point in the line joining wt

and w′
t. Using the fact that η ≤ 1

L1+H∆
and λ strong convexity, we have

∥∥wt+1 − w′
t+1

∥∥ ≤ (1− ηλ) ∥wt − w′
t∥ ≤

∥∥wj+1 − w′
j+1

∥∥ ≤ 2L0 log (n)

λn

Applying convexity to the weights in the definition of the selector function S , we get,

∥S({wt})− S({w′
t})∥ ≤

2L0 log (n)

λn

The privacy proof now follows from the Gaussian mechanism guarantee.

Lemma D.6 (Phased SGD composite guarantee). Consider a function f(w;x) = ℓ(w;x) + ∆(w) where w 7→ ℓ(w;x)
is convex, L0 Lipschitz, L1 smooth for all x, and ∆(w) is λ strongly convex, G∆ Lipschitz and H∆ smooth over a

bounded setW . For n = Ω
(

K(L1+H∆)
λ log

(
L1+H∆

λ

))
, Algorithm 6 with σ2 =

64L2
0K

2(log(n))2 log(1/δ)
λ2n2ε2 , satisfies (ε, δ)-

DP. Furthermore, with input as function (w, x) 7→ f(w;x), a dataset S of n samples drawn i.i.d. from D, η = log(n)
λn ,

K = ln lnn, γt = (1− ηλ)−t
and S ({wt}nt=1) =

1∑n
t=1 γt

∑n
t=1 γtwt, the excess population risk of output wK is bounded

as

E [F (wK ;D)]− min
w∈W

F (w;D) = Õ

(
L2
0

λn
+

dL2
0

λn2ε2

)

Proof. The privacy proof simply follows from parallel composition. For the utility proof, we repeat the arguments in

Theorem 5.3 in (Feldman et al., 2020) substituting the variance-based bound from Lemma D.4. Note that the variance of the

stochastic gradients used, V2 ≤ L2
0, this gives us,

E [F (wK ;D)]− min
w∈W

F (w;D) = Õ

(
L2
0

λn
+

dL2
0

λn2ε2

)

E. Missing Results for Generalized Linear Models

We first give the definition of oblivious subspace embedding.

Definition E.1 ((r, τ, β)-oblivious subspace embedding). A random matrix Φ ∈ R
k×d is an (r, τ, β)-oblivious subspace

embedding if for any r dimensional linear subspace in R
d, say V , we have that with probability at least 1− β, for all x ∈ V ,

(1− τ) ∥x∥2 ≤ ∥Φx∥2 ≤ (1 + τ) ∥x∥2
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It is well-known that JL matrices with embedding dimension k = O
(

r log(2/β)
τ2

)
are (r, τ, β)-oblivious subspace embeddings

and can be constructed efficiently (Cohen, 2016). A simple example is a scaled Gaussian random matrix, Φ = 1√
k
G where

entries of G are independent and distributed as N (0, 1).

Proof of Theorem 6.1. We first prove privacy. Let G(S) and H(S) be the bounds on the Lipschitz and smoothness constants

of the family of loss functions {w 7→ f(w; Φx)}x∈S . With k = Ω(log (2n/δ)), from the JL-property, it follows that with

probability at least 1 − δ/2, G(S) ≤ 2L0 ∥X∥ and H(S) ≤ 2L1 ∥X∥2. Hence, using the fact that A is (ε, δ/2)-DP, we

have that Algorithm 4 is (ε, δ)-DP.

We now proceed to the utility part. Let w̃ ∈ R
k be the output of the base algorithm in low dimensions. Note that the

final output is w̄ = Φ⊤w̃. The transpose of the JL matrix can only increase the norm by the polynomial factor of d
and n, hence ∥w̄∥ ≤ poly(n, d) ∥w̃∥. By assumption, P (∥w̃∥ > poly(n, d, L0, L1)) ≤ 1√

n
. Hence we also have that

P (∥w̄∥ > poly(n, d, L0, L1)) ≤ 1√
n

. LetW ⊆ R
d denote the above set with radius poly(n, d, L0, L1).

We now decompose the population stationarity as,

E ∥∇F (w̄;D)∥ ≤ E ∥∇F (w̄;D)−∇F (w̄;S)∥+ ∥∇F (w̄;S)∥

≤ E sup
w∈W

∥∇F (w;D)−∇F (w;S)∥+ L0 ∥X∥√
n

+ E ∥∇F (w̄;S)∥ , (7)

where the last inequality follows from the above reasoning that that P (w̄ ∈ W) ≥ 1− 1√
n

. The first term is bounded from

uniform convergence guarantee in Lemma E.2 noting that the dependence on ∥W∥ in the Lemma is only poly-logarithmic.

E sup
w∈W

∥∇F (w;D)−∇F (w;S)∥ = Õ

(
L0 ∥X∥√

n

)
(8)

We now prove a bound on the empirical stationarity. Note that it suffices to prove a high-probability (over the random JL

matrix) bound because the norm of gradient is bounded in worst case by L0 ∥X∥. Thus the expected norm of gradient of the

output is bounded by the high probability bound by considering a small enough failure probability.

From the assumption on A, with probability at least 1− δ/2,

∥∇F (w̃; ΦS)∥ = E

∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)Φxi

∥∥∥∥∥ ≤ g(k, n, 2L0 ∥X∥ , 2L0 ∥X∥ , ε, δ/2)

We now use the fact that if k = O (rank log (2n/δ)), then the JL transform is an (rank, 1/2, δ/2) oblivious subspace

embedding (see Definition E.1). Thus, it approximates the norm of any vector in span({xi}ni=1), and hence any gradient.

Therefore,

E ∥∇F (w̃; ΦS)∥ = E

∥∥∥∥∥Φ
(
1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)xi

)∥∥∥∥∥ ≥
(
1−

√
rank

k

)
E

∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)xi

∥∥∥∥∥

≥ 1

2
E

∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)xi

∥∥∥∥∥ =
1

2
E

∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(
〈
Φ⊤w̃, xi

〉
)xi

∥∥∥∥∥ =
1

2
E ∥∇F (w̄;S)∥

Thus with k = O (rank log (2n/δ)), we get

E ∥∇F (w̄;S)∥ ≤ g(k, n, 2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ) = g(rank, n, 2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ)

For the other bound, let Id−k ∈ R
d×k denote the matrix with first k diagonal entries, (Id−k)j,j with j ∈ [k], are 1 and the
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rest of the matrix is zero. We have,

E ∥∇F (w̄;S)∥

= E

∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(
〈
Φ⊤w̃, xi

〉
)xi

∥∥∥∥∥

≤ E

∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)Id−kΦxi

∥∥∥∥∥+ E

[∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)xi −

1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)Id−kΦxi

∥∥∥∥∥

]

≤ E ∥Id−k∥
∥∥∥∥∥
1

n

n∑

i=1

ϕ′yi
(⟨w̃,Φxi⟩)Φxi

∥∥∥∥∥+
1

n
E

n∑

i=1

∣∣ϕ′yi
(⟨w̃,Φxi⟩)

∣∣ |∥xi − Id−kΦxi∥|

≤ E ∥∇F (w̃; ΦS)∥+ 1

n
E

n∑

i=1

L0 ∥I − Id−kΦ∥ ∥xi∥

≤ g(k, n, 2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ/2) + L0 ∥X∥E ∥I −H∥
where the second inequality follows from triangle inequality, the third inequality follows from L0-Lipschitzness of the GLM,

the third inequality follows from the accuracy guarantee of the base algorithm and substituting H = Id−kΦ. To bound

E ∥I −H∥, we use concentration properties of distribution used in the construction of JL matrices. Specifically, using the

scaled Gaussian matrix construction, from concentration of extreme eignevalues of square Gaussian matrices, we have that

E ∥I −H∥ = Õ
(

1√
k

)
(Rudelson & Vershynin, 2010). This gives us,

E ∥∇F (w̄;S)∥ ≤ g(k, n, 2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ/2) + Õ

(
L0 ∥X∥√

k

)

Choosing k to minimize the above yields the bound of Õ
(

L0∥X∥√
k

)
. Combining the two cases, yields the bound of

g(k, n, 2L0 ∥X∥ , 2L1 ∥X∥2 , ε, δ/2) on gradient norm. Plugging this and the bound in Eqn. (8) in Inequality (7) gives the

claimed bound.

Lemma E.2. Let D be a probability distribution over X such that ∥x∥ ≤ ∥X∥ for all x ∈ supp(D). Let f(w; (x, y)) =
ϕy (⟨w, x⟩) be an L1-smooth L0-Lipschitz GLM. Then, with probability at least 1− β, over a draw of n i.i.d. samples S
from D, we have

sup
w∈W

∥∇F (w;D)−∇F (w;S)∥ ≤ 4L0 ∥X∥ log
(
2n3/2 ∥W∥L1 ∥X∥ /L0

)
√
n

+
4L0 ∥X∥

√
log (1/β)√
n

Proof. We first give a bound on the expected uniform deviation, ES∼Dn supw∈W ∥∇F (w;D)−∇F (w;S)∥. The gradient

of the loss function is ∇f(w;x) = ϕ′x (⟨w, x⟩)x. We start with the standard symmetrization trick,

ES∼Dn sup
w∈W

∥∇F (w;D)−∇F (w;S)∥

= ES∼Dn sup
w∈W

∥∥∥∥∥Eϕ
′
y (⟨w, x⟩)x−

1

n

n∑

i=1

ϕ′xi
(⟨w, xi⟩)xi

∥∥∥∥∥

= ES∼Dn sup
w∈W

∥∥∥∥∥E{x′
i}∼Dn

1

n

n∑

i=1

ϕ′y′
i
(⟨w, x′i⟩)x′i −

1

n

n∑

i=1

ϕ′xi
(⟨w, xi⟩)xi

∥∥∥∥∥

≤ ES,S′∼Dn sup
w∈W

∥∥∥∥∥
1

n

n∑

i=1

ϕ′y′
i
(⟨w, x′i⟩)x′i −

1

n

n∑

i=1

ϕ′xi
(⟨w, xi⟩)xi

∥∥∥∥∥

= ES,S′∼DnE{σi} sup
w∈W

∥∥∥∥∥
1

n

n∑

i=1

σi

(
ϕ′y′

i
(⟨w, x′i⟩)x′i − ϕ′xi

(⟨w, xi⟩)xi
)∥∥∥∥∥

≤ 2ES∼DnE{σi} sup
w∈W

∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w, xi⟩)xi

∥∥∥∥∥ (9)
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where σi are i.i.d. Rademacher random variables. For fixed {xi}ni=1, consider a setW0 s.t. for all w ∈ W and i ∈ [n],

there exists w0 ∈ W0 such that |⟨w, xi⟩ − ⟨w0, xi⟩| ≤ τ . Since ∥w∥ ≤ ∥W∥ and ∥xi∥ ≤ ∥X∥, we require only
2n∥W∥∥X∥

τ
points inW0 to satisfy the above covering condition. Therefore,

ES∼DnE{σi} sup
w∈W

∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w, xi⟩)xi

∥∥∥∥∥

= ES∼DnE{σi} sup
w∈W,w0∈W0

∥∥∥∥∥
1

n

n∑

i=1

σi
(
ϕ′yi

(⟨w, xi⟩)− ϕ′yi
(⟨w0, xi⟩) + ϕ′yi

(⟨w0, xi⟩)
)
xi

∥∥∥∥∥

≤ ES∼DnE{σi} sup
w∈W,w0∈W0

∥∥∥∥∥
1

n

n∑

i=1

σi
(
ϕ′yi

(⟨w, xi⟩)− ϕ′yi
(⟨w0, xi⟩)

)
xi

∥∥∥∥∥+
∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w0, xi⟩)xi

∥∥∥∥∥

≤ ES∼DnE{σi} sup
w∈W,w0∈W0

L1 |⟨w, xi⟩ − ⟨w0, xi⟩| ∥X∥+ ES∼DnE{σi} sup
w0∈W0

∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w0, xi⟩)xi

∥∥∥∥∥

≤ L1τ ∥X∥+ ES∼DnE{σi} sup
w0∈W0

∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w0, xi⟩)xi

∥∥∥∥∥ (10)

where the second last inequality follows from smoothness and the last from the definition of coverW0. For fixed w0, from

standard manipulations, we have,

E{σi}

∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w0, xi⟩)xi

∥∥∥∥∥ ≤

√√√√
E{σi}

∥∥∥∥∥
1

n

n∑

i=1

σiϕ′yi
(⟨w0, xi⟩)xi

∥∥∥∥∥

2

=

√√√√ 1

n2
E{σi}

n∑

i=1

∥∥σiϕ′yi
(⟨w0, xi⟩)xi

∥∥2

≤ L0 ∥X∥√
n

Using Massart’s finite class lemma to handle all w0 ∈ W0, and substituting the above in Eqn. (10), we get,

ES∼DnE{σi} sup
w∈W

∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w, xi⟩)xi

∥∥∥∥∥ ≤ L1τ ∥X∥+
G ∥X∥ log (2n ∥W∥∥X∥ /τ)√

n

Choosing τ = L0

L1
√
n

, we get,

ES∼DnE{σi} sup
w∈W

∥∥∥∥∥
1

n

n∑

i=1

σiϕ
′
yi
(⟨w, xi⟩)xi

∥∥∥∥∥ ≤
2L0 ∥X∥ log

(
2n3/2 ∥W∥L1 ∥X∥ /L0

)
√
n

Finally, substituting the above in Eqn. (9) gives us the following in-expectation bound.

ES∼Dn sup
w∈W

∥∇F (w;D)−∇F (w;S)∥ ≤ 4L0 ∥X∥ log
(
2n3/2 ∥W∥L1 ∥X∥ /L0

)
√
n

For the high-probability bound, let ψ(S) = supw∈W ∥∇F (w;D)−∇F (w;S)∥ and let w∗ ∈ W achieves the supremum.

We can bound the increment between neighbouring datasets S and S′ as,

|ψ(S)− ψ(S′)| ≤ |∥∇F (w∗;D)−∇F (w∗;S)∥ − ∥∇F (w∗;D)−∇F (w∗;S′)∥|
≤ ∥∇F (w∗;S)−∇F (w∗;S′)∥

≤ 2L0 ∥X∥
n

Finally, applying McDiarmid’s inequality gives the claimed bound.
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Proof of Corollary 6.2. The results follow from Theorem 6.1 provided we show that the conditions on the base algorithm in

the Theorem statement are satisfied. The privacy and accuracy claims follow from Theorem 3.2 and 5.1 respectively. We

note that even though we are given population stationarity guarantee for the convex case, the same bound for empirical

stationarity guarantee simply follows from the re-sampling argument in (Bassily et al., 2019). The only thing left to show is

the high-probability bound on the trajectory of the algorithm.

Non-convex setting with Private Spiderboost: From the update in Algorithm 2, we have that for any t

∥∇t∥ ≤
t∑

i=1

∥∆i∥+
∥∥∥∥∥

t∑

i=1

gt

∥∥∥∥∥ ≤ 2tL0 +

∥∥∥∥∥

t∑

i=1

gt

∥∥∥∥∥

where the last inequality follows from the Lipschitzness assumption. Note that gt ∼ N (0, σ2
t I) where σt ≤

O (max (σ1, σ̂2)) = O (poly(n, d, L0, L1)). Hence

∥∥∥
∑t

i=1 gt

∥∥∥ ≤
√
d log (1/β′)O (poly(n, d, L0, L1)) with probabil-

ity at least 1 − β′. Taking a union bound over all t ∈ T gives us ∥wt∥ ≤ poly(n, d, L0, L1, log (poly(n, d)/β)) with

probability at least 1− β. Substituting β = 1√
n

yields the guarantee of Theorem 6.1.

Convex setting with Recursive Regularization: Since the iterates are restricted to the constraint set, the final output,

with probability one, lies in the set of radius

RT = 2T/2 ∥w∗∥ = O

(√
L1

λ
∥w∗∥

)
= O

(
L1 ∥w∗∥3/2 n

L0

)

which completes the proof.
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