
From Adaptive Query Release to Machine Unlearning

Enayat Ullah 1 Raman Arora 1

Abstract

We formalize the problem of machine unlearn-

ing as design of efficient unlearning algorithms

corresponding to learning algorithms which per-

form a selection of adaptive queries from struc-

tured query classes. We give efficient unlearn-

ing algorithms for linear and prefix-sum query

classes. As applications, we show that unlearn-

ing in many problems, in particular, stochastic

convex optimization (SCO), can be reduced to

the above, yielding improved guarantees for the

problem. In particular, for smooth Lipschitz

losses and any ρ > 0, our results yield an un-

learning algorithm with excess population risk of

Õ
(

1√
n
+

√
d

nρ

)
with unlearning query (gradient)

complexity Õ(ρ · Retraining Complexity), where

d is the model dimensionality and n is the initial

number of samples. For non-smooth Lipschitz

losses, we give an unlearning algorithm with ex-

cess population risk Õ
(

1√
n
+
(√

d
nρ

)1/2)
with the

same unlearning query (gradient) complexity. Fur-

thermore, in the special case of Generalized Lin-

ear Models (GLMs), such as those in linear and

logistic regression, we get dimension-independent

rates of Õ
(

1√
n
+ 1

(nρ)2/3

)
and Õ

(
1√
n
+ 1

(nρ)1/3

)

for smooth Lipschitz and non-smooth Lipschitz

losses respectively. Finally, we give generaliza-

tions of the above from one unlearning request

to dynamic streams consisting of insertions and

deletions.

1. Introduction

The problem of machine unlearning is concerned with up-

dating trained machine learning models upon request of

deletions to the training dataset. This problem has recently

gained attention owing to various data privacy laws such

1Department of Computer Science, The Johns Hopkins Univer-
sity, USA. Correspondence to: Enayat Ullah <enayat@jhu.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

as General Data Protection Regulation (GDPR), California

Consumer Act (CCA) among others, which empower users

to make such requests to the entity possessing user data.

The entity is then required to update the state of the system

such that it is indistinguishable to the state had the user

data been absent to begin with. While as of now, there is

no universally accepted definition of indistinguishibility as

the unlearning criterion, in this work, we consider the most

strict definition, called exact unlearning (see Definition 1).

Motivating Example: The main objective of our work is to

identify algorithmic design principles for unlearning such

that it is more efficient than retraining, the naive baseline

method. Towards this, we first discuss the example of un-

learning for Gradient Descent (GD) method, which will

highlight the key challenges as well as foreshadow the for-

mal setup and techniques. GD and its variants are extremely

popular optimization methods with numerous applications

in machine learning and beyond. In a machine learning

context, it is typically used to minimize the training loss,

L̂(w;S) = 1
n

∑n
i=1 ℓ(w; zi) where S = {zi}ni=1 is the

training dataset and w, the model. Starting from an initial

model w1, in each iteration, the model is updated as:

wt+1 = wt − η∇L̂(wt;S) = wt − η

(
1

n

n∑

i=1

∇ℓ(wt; zi)

)
,

where η is the learning rate. After training, a data-point,

say zn without loss of generality, is requested to be un-

learnt and so the updated training set is S′ = {zi}n−1
i=1 .

We now need to apply an efficient unlearning algorithm

such that its output is equal to that of running GD on S′.
Observe that the first iteration of GD is simple enough

to be unlearnt efficiently by computing the new gradient

∇L̂(w1;S
′) = 1

n−1

(
n∇L̂(w1;S) − ∇ℓ(w1; zn)

)
and up-

dating as w′
2 = w1−η∇L̂(w1;S

′). However, in the second

iteration (and onwards), the gradient is computed on w′
2

which can be different from w2 and the above adjustment

can no longer be applied and one may need to retrain from

here onwards. This captures a key challenge for unlearning

in problems solved by simple iterative procedures such as

GD – adaptivity – that is, the gradients (or more generally,

the queries) computed in later iteration depend on the re-

sult of the previous iterations. We systematically formalize

such procedures and design efficient unlearning algorithms

for them.

1

From Adaptive Query Release to Machine Unlearning

1.1. Our Results and Techniques

Learning/Unlearning as Query Release: Iterative proce-

dures are an integral constituent of the algorithmic toolkit

for solving machine learning problems and beyond. As in

the case of GD above, these often consist of a sequence of

simple but adaptive computations. The simple computations

are often efficiently undo-able (as in the first iteration of

GD) but its adaptive nature – change of result of one iter-

ation changing the trajectory of the algorithm – makes it

difficult to undo computation, or unlearn, efficiently.

As opposed to designing unlearning (and learning) algo-

rithms for specific (machine learning) problems, we study

the design of unlearning algorithms corresponding to (a

class of) learning algorithms. We formalize this by con-

sidering learning algorithms which perform adaptive query

release on datasets. Specifically, this consists of a selection

of adaptive queries from structured classes like linear and

prefix-sum queries (see Section 3 for details). The above ex-

ample of GD is an instance of linear query, since the query,

which is the average gradient 1
n

∑n
i=1∇ℓ(wt; zi), is a sum

of functions of data-points. With this view, we study how to

design efficient unlearning algorithms for such methods.

We use efficiency in the sense of number of queries made

(query complexity), ignoring the use of other resources, e.g.,

space, computation for selection of queries, etc. To elabo-

rate on why this is interesting, firstly note that this does not

make the problem trivial, in the sense that even with unlim-

ited access to other resources, it is still challenging do design

an unlearning algorithm with query complexity smaller than

that of retraining (the naive baseline). Secondly, let us re-

visit the motivation from solving optimization problems.

The standard model to measure computation in optimization

is the number of gradient queries a method makes for a

target accuracy, often abstracted in an oracle-based setup

(Nemirovskij and Yudin, 1983). Importantly, this setup im-

poses no constraints on other resources, yet it witnesses the

optimality of well-known simple procedures like (variants

of) GD. We follow this paradigm, and as applications of our

results to Stochastic Convex Optimization (SCO), we make

progress on the fundamental question of understanding the

gradient complexity of unlearning in SCO. Interestingly, our

proposed unlearning procedures are simple enough that the

improvement over retraining in terms of query complexity

also applies even with accounting for the (arithmetic) com-

plexity of all other operations in the learning and unlearning

methods.

Linear queries: The simplest query class we consider

is that of linear queries (details deferred to Appendix B).

Herein, we show that the prior work of Ullah et al. (2021),

which focused on unlearning in SCO and was limited to the

stochastic gradient method, can be easily extended to gen-

eral linear queries. This observation yields unlearning algo-

rithms for algorithms for Federated Optimization/Learning

and k-means clustering. Herein, we give a ρ-TV stable (see

Definition 3) learning procedure with T adaptive queries

and a corresponding unlearning procedure with a O(
√
Tρ)

relative unlearning complexity (the ratio of unlearning and

retraining complexity; see Definition 5).

Prefix-sum queries: Our main contribution is the case when

we consider the class of prefix-sum queries. These are a

sub-class of interval queries which have been extensively

studied in differential privacy and are classically solved by

the binary tree mechanism (Dwork et al., 2010). We note

in passing that for differential privacy, the purpose of the

tree is to enable a tight privacy accounting and no explicit

tree may be maintained. In contrast, for unlearning, we

show that maintaining the binary tree data structure aids

for efficient unlearning. We give a binary-tree based ρ-TV

stable learning procedure and a corresponding unlearning

procedure with a Õ(ρ) relative unlearning complexity.

Unlearning in Stochastic Convex Optimization (SCO):

Our primary motivation for considering prefix-sum queries

is its application to unlearning in SCO (see Section 2 for

preliminaries).

1) Smooth SCO: The problem of unlearning in smooth SCO

was studied in Ullah et al. (2021) which proposed algorithms

with excess population risk of Õ

(
1√
n
+
(√

d
nρ

)2/3)
where

ρ is the relative unlearning complexity. We show that using

a variant of variance-reduced Frank-Wolfe (Zhang et al.,

2020), which uses prefix-sum queries, yields an improved

excess population risk of O
(

1√
n
+

√
d

nρ

)
. This corresponds

to Õ(ρn) expected gradient computations upon unlearning.

2) Non-smooth SCO: In the non-smooth setting, which

was not covered in the prior works, we give an algorithm

based on Dual Averaging (Nesterov, 2009), which again

uses prefix-sum query access, and thus fits into the frame-

work. This algorithm gives us an excess population risk of

O
(

1√
n
+ d1/4

√
nρ

)
with Õ(ρn) expected gradient complexity

of unlearning.

3) Generalized Linear Models (GLM): GLMs are one of

most basic machine learning problems which include the

squared loss (in linear regression), logistic loss (in logistic

regression), hinge loss (support vector machines), etc. We

study unlearning in two classes of GLMs (see below), for

which we combine recently proposed techniques based on

dimensionality reduction (Arora et al., 2022) with the above

prefix-sum query algorithms to get the following dimension-

independent rates.

3(a) Smooth GLM: For the smooth convex GLM setting,

we combine Johnson-Lindenstrauss transform with variance

reduced Frank-Wolfe to get O
(

1√
n
+ 1

(nρ)2/3

)
excess pop-

2

From Adaptive Query Release to Machine Unlearning

Problem Base algorithm Rate

Smooth, Lipschitz-SCO VR-FW 1√
n
+

√
d

nρ

Lipschitz SCO DA 1√
n
+ d1/4

√
nρ

Smooth, Lipschitz GLM JL+ VR-FW 1√
n
+ 1

(nρ)2/3

Lipschitz GLM JL+ DA 1√
n
+ 1

(nρ)1/3

Table 1. Excess population risk guarantees for various problems as

well as the base algorithm; ρ: relative unlearning complexity (see

Definition 5), VR-FW: Variance-reduced Frank Wolfe, DA: Dual

averaging, JL: Johnson-Lindenstrauss transform.

ulation risk. Note that we get no overhead in statistical

rate even with very small relative unlearning complexity,

ρ ≈ n−1/4. This class of smooth GLMs contains the well-

studied problem of logistic regression. Hence, our result

demonstrates that it is possible to unlearn logistic regression

with sub-linear, specifically O(n3/4), unlearning complex-

ity with no sacrifice in the statistical rate.

3(b) Lipschitz GLM: Similarly, for the Lipschitz convex

GLM setting, we combine Johnson-Lindenstrauss transform

with Dual Averaging yielding a rate of Õ
(

1√
n
+ 1

(nρ)1/3

)
.

Please see Table 1 for a summary of above results.

SCO in dynamic streams: Finally, we consider SCO in

dynamic streams where we observe a sequence of insertions

and deletions and are supposed to produce outputs after each

time-point. In this case, we present two methods: one which

satisfies the exact unlearning guarantee with worse update

time, the other which satisfies weak unlearning – which only

requires the model (and not metadata) to be indistinguish-

able (see Definition 2) – with improved update time. The

exact unlearning method is inspired from the work of Ullah

et al. (2021) which dealt with insertions similar to deletions.

The weak unlearning method is motivated from the obser-

vation that the above may be too pessimistic. To elaborate,

inserting a new data item does not warrant a (unlearning)

guarantee that the algorithm’s state be indistinguishable to

the case if the point was not inserted. Hence, insertions

should require smaller update time which is indeed the case

for our proposed methods.

1.2. Related work

Our work is a direct follow up of Ullah et al. (2021) which

proposed the framework of Total Variation (TV) stability

and maximal coupling for the exact machine unlearning

problem. They applied this to unlearning in smooth stochas-

tic convex optimization (SCO) and obtained a guarantee

of 1√
n
+
(√

d
nρ

) 2
3 on excess population risk, where n is the

number of data samples, d, model dimensionality and ρ is

the relative unlearning complexity (see Definition 5). We

improve upon the results in that work in multiple ways as

described in the preceding section.Besides this, the exact

unlearning problem has been studied for k-means clustering

(Ginart et al., 2019) and random forests (Brophy and Lowd,

2021). The work of Bourtoule et al. (2021) proposes a gen-

eral methodology for exact unlearning for deep learning

methods. Their focus is to devise practical methods and

they do not provide theoretical guarantees on accuracy, even

in simple settings. Finally, there are works which consider

unlearning in SCO, however they use an approximate notion

of unlearning inspired from differential privacy (Guo et al.,

2019; Neel et al., 2021; Sekhari et al., 2021; Gupta et al.,

2021), and therefore are incomparable to our work.

2. Problem Setup and preliminaries

Let Z be the data space,W be the model space andM be

the meta-data space, where meta-data is additional informa-

tion a learning algorithm may save to aid unlearning. We

consider a learning algorithm as a map A : Z∗ →W ×M
and an unlearning algorithm as a map U :W ×M×Z →
W ×M. We use A and U to denote the first output (which

belongs toW) of A and U respectively.

We recall the definition of exact unlearning which requires

that the entire state after unlearning be indistinguishable

from the state obtained if the learning algorithm were ap-

plied to the dataset without the deleted point.

Definition 1 (Exact unlearning). A procedure (A,U) satis-

fies exact unlearning if for all datasets S, all z ∈ Z , and for

all events E ⊆ W ×M, we have, P (A (S\ {z}) ∈ E) =
P (U (A(S), z) ∈ E)

We next define weak unlearning wherein only the model

output and not the entire state is required to be indistinguish-

able.

Definition 2 (Weak unlearning). A procedure (A,U) satis-

fies weak unlearning if for all all datasets S, all z ∈ Z , and

for all events E ⊆ W×M, we have, P (A (S\ {z}) ∈ E) =
P (U (A(S), z) ∈ E)

Unlearning request: We consider the setting where we

start with a dataset of n samples and observe one unlearning

request. We assume that the choice of unlearning request is

oblivious to the learning process. In Section 6, we generalize

our result to a streaming setting of requests.

Total Variation stability, maximal coupling and efficient

unlearning: The Total Variation (TV) distance between two

probability distributions P and Q is

TV(P,Q) = sup
measurable E |P (E)−Q(E)| .

Next, we define Total Variation (TV) stability to motivate

algorithmic techniques for efficient unlearning.

Definition 3. An algorithm A is said to be ρ Total Vari-

ation (TV) stable if for all datasets S and S′ differing in

3

From Adaptive Query Release to Machine Unlearning

one point, i.e. |S∆S′| = 1, the total variation distance,

TV (A(S),A(S′)) ≤ ρ

Given two distributions P and Q, a coupling is a joint

distribution π with marginals P and Q. Furthermore, a

maximal coupling is a coupling π such that the disagree-

ment probability P(x,y)∼π {x ̸= y} = TV(P,Q). In the

unlearning context, P = A(S), the output on initial dataset,

and Q = A(S′), the output on the updated dataset. Hence,

the unlearning problem simply becomes about transport-

ing P to Q with small computational cost, akin to optimal

transport (Villani, 2009). Furthermore, observe that when

sampled from a maximal coupling between P and Q, by def-

inition, we get the same sample for both P and Q, expect

with probability ρ, and yet satisfying the exact unlearning

criterion. The main idea is that for certain learning algo-

rithms of interest, during unlearning, we can efficiently

construct a (near) maximal coupling of P and Q, and so the

same model output from P suffices for Q, most of the times.

In particular, the fraction of times that we need change the

model is (roughly) the TV-stability parameter ρ of the learn-

ing algorithm. The goal, therefore, is to design an (accurate)

TV-stable learning algorithm and a corresponding efficient

coupling-based unlearning algorithm. In this work, we use

the technique of reflection coupling described below.

Reflection Coupling (Lindvall and Rogers, 1986): Re-

flection Coupling is a classical technique in probability to

maximally couple symmetric probability distributions. Con-

sider two probability distributions P and Q with means u
and u′ and let r be a sample from P . The process involves a

rejection sampling step on the two distributions and sample

r (see line 13 in in Algorithm 3). If it results in accept, we

use the same r as the sample from Q, otherwise, we apply

the following simple map:

Reflect(u, u′, r) = u− u′ + r,

which gives the sample from Q, see line 16 in Algorithm 3.

Our algorithmic techniques borrow tools from differential

privacy (Dwork et al., 2014) such as its relationship with

Total Variation stability; we describe these in Appendix A.

Stochastic Convex Optimization (SCO): SCO is the domi-

nant framework for computationally-efficient machine learn-

ing. Consider a closed convex (constraint) setW ⊂ R
d and

let D denote its diameter. Let ℓ : W × Z → R be a loss

function, which is convex in its first parameter ∀z ∈ Z .

Given n i.i.d. points from an unknown probability distribu-

tion D over Z , the goal is to devise an algorithm, the output

of which has small population risk, defined as

L(w;D) := E
z∼D

ℓ(w; z).

The excess population risk is then L(w;D) − L(w∗;D)
where w∗ denotes a population risk minimizer overW .

Algorithm 1 Template learning algorithm

Input: Dataset S, steps T , query functions {qt(·)}t≤T

where qt ∈ Q, a query class, update functions

{Ut(·)}t≤T , selector function S(·)
1: Initialize model w1 ∈ W
2: for t = 1 to T − 1 do

3: Query dataset ut = qt

(
{wi}i≤t , S

)

4: Update wt+1 = Ut({wi}i≤t , ut)
5: end for

Output: ŵ = S
(
{wt}t≤T

)

Generalized Linear Models (GLM): Generalized Linear

Models (GLMs) are loss functions popularly encountered

in supervised learning problems, like linear and logistic

regression. Herein, ℓ(w; (x, y)) = ϕy (⟨w, x⟩), where ϕy :
R → R is some link function. We use ∥X∥ to denote the

radius bound on data points, i.e. for x ∈ X ⊆ R
d, ∥x∥ ≤

∥X∥. In this case, we consider the unconstrained setup

i.e. W = R
d, as it allows to get dimension-independent

rates for GLMs, similar to what happens under differential

privacy (Jain and Thakurta, 2014; Arora et al., 2022).

We introduce the Johnson-Lindenstrauss property below

which is crucial to our construction.

Definition 4 (Johnson-Lindenstrauss property). A ran-

dom matrix Φ ∈ R
k×d satisfies (β, γ)-JL property if

for any u, v ∈ R
d, with probability at least 1 − γ,

P (|⟨Φu,Φv⟩−⟨u, v⟩| ≥ β ∥u∥ ∥v∥)≤γ.

There exists many efficient constructions of such random

matrices (Nelson, 2011).

3. Unlearning for Adaptive Query Release

We now set up the framework of adaptive query release,

which is a lens to view (existing) iterative learning proce-

dures; this view is useful in our design of corresponding

unlearning algorithms. Iterative procedures run on datasets

consist of a sequence of interactions with the dataset; each

interaction computes a certain function, or query, on the

dataset. The chosen query is typically adaptive, i.e., de-

pendent on the prior query outputs. We consider iterative

learning procedures which are composed of adaptive queries

from a specified query class. Formally, consider a query

class Q ⊆ WW∗×Z∗

; herein, each query in Q is a function

of a sequence of {wi}i<t (typically, prior query outputs),

and the dataset S, with output inW . With this view, we give

a general template of a learning procedure as Algorithm 1,

where {Ut}t and S are the update and selector functions

internal to the algorithm.

Query model: We describe the query model which we use

to measure computational complexity. Under the model, a

query function q({w}i , S) takes |S| unit computations (or

4

From Adaptive Query Release to Machine Unlearning

queries, for brevity) for any q and {wi}i. In our applica-

tions to SCO, this will correspond to the gradient oracle

complexity.

Our algorithmic approach to unlearning is rooted in the

relationship between TV stability and maximal couplings.

With this view, for a specified query class, we have the

following requirements.

1. TV-stability: We want a ρ-TV stable “modification” of

the learning Algorithm 1, in the sense that it responds to

the queries (line 3) while satisfying TV stability.

2. Efficient unlearning algorithm: We measure efficiency

as the average number of queries the unlearning algorithm

makes relative to the learning algorithm (retraining), de-

fined as follows.

Definition 5 (Relative Unlearning Complexity). The Rel-

ative Unlearning Complexity is defined as,

E(A,U) [Query complexity of unlearning algorithm U]

EA [Query complexity of learning algorithm A]

For a ρ-TV stable learning algorithm, we want that the

relative unlearning complexity is (close to) ρ. This is mo-

tivated from the relationship between maximal coupling

and TV distance. In the following, our proposed unlearn-

ing algorithm constructs a (near) maximal coupling of

the learning algorithm’s output under the original and

updated dataset. This means that unlearning algorithm

changes the original output (under the original dataset)

with probability at most ρ – in this case, the unlearning

algorithm makes a number of queries akin to retraining.

In the other case when it does change the output, it makes

a small (ideally, constant) number of queries. The above

imply that relative unlearning complexity is (close to) ρ.

We note that relative unlearning complexity, in itself,

does not completely capture if the unlearning algorithm

is good, since it may be the case that the corresponding

learning algorithm is computationally more expensive

than other existing methods. However, in our applications

to SCO (Section 5), our learning algorithms are linear

time, so the denominator, in the definition above, is as

small as it can be (asymptotically), i.e. Θ(n).

3. Accuracy: We will primarily be concerned with correct-

ness of the unlearning algorithm and its efficiency. In the

applications (Section 5), we will give accuracy guarantees

for specific problems, where we will see our proposed

TV stable modified algorithms are still accurate.

4. Prefix-sum Queries

We now consider prefix-sum queries, which is the main con-

tribution of this work. The reason for this choice is that two

powerful (family of) algorithms for SCO, Dual Averaging

and Recursive Variance Reduction based methods, fit into

this template (detailed in Section 5). We start by defining a

prefix-sum query.

Definition 6. A set of queries {qt}t≥1 where qt : Wt ×
Zn → W are called prefix-sum queries if q1(w1, S) =
p1(w1, z1) and for all t > 1, qt({wi}i≤t , S) =

qt−1({wi}i<t , S) + pt
(
{wi}i≤t , zt)

)
for some functions

{pt}t≥1 where pt :W∗ ×Z →W .

Simply put, prefix-sum queries, sequentially query new data

points and adds them to the previous accumulated query. A

simple example is computing partial sums of data points

(z1, z1 + z2, . . .). Note that in the above definition, we can

equivalently represent the prefix-sum queries using the se-

quence {pt}t. We also assume that the queries have bounded

sensitivity, defined as follows.

Definition 7. A query q :W∗×Zn→W is B-sensitive if

sup
{wi}i

sup
S,S′:|S∆S′|=1

∥q ({wi}i , S)− q ({wi}i , S′)∥ ≤ B.

We note that the bounded sensitivity condition is satisfied in

a variety of applications; see Section 5.

4.1. Learning with Binary Tree Data-Structure

The learning algorithm, given as Algorithm 2, is based on

answering the adaptive prefix-sum queries with the binary

tree mechanism (Dwork et al., 2010). For n samples (as-

sume n is a power of two, otherwise we can append dummy

“zero” samples without any change in asymptotic complex-

ity), the binary tree mechanism constructs a complete binary

tree T with the leaf nodes corresponding to the data sam-

ples. The key idea in the binary tree mechanism is that

instead of adding fresh independent noise to each prefix-

sum query, it is better to add correlated noise, where the

correlation structure is described by a binary tree. For ex-

ample, suppose we want to release the seventh prefix-sum

query,
∑7

i=1 pi({wj}j≤i , zi), then consider the dyadic de-

composition of 7 as 4, 2 and 1, and release the sum,

(4∑

i=1

pi({wj}j≤i , zi) + ξ1
)
+
(6∑

i=5

pi({wj}j≤i , zi)ξ2
)

+
(
p7({wj}j≤i , zi) + ξ3

)
,

where ξi’s denote the added noise, which may have also

been used in prior prefix-sum query responses. See Figure 1

(left) for a simplified description of the process.

We index the nodes of the tree using using binary strings

B = {0, 1}log(n) which describes the path from the root.

Let the tree T = {vb}b∈B which denotes the contents stored

by the learning algorithm. Herein, each node contains the

tuple (u, r, w, z) where u ∈ R
d is the query response, r ∈

5

From Adaptive Query Release to Machine Unlearning

R
d is the noisy response, w ∈ R

d a model and z ∈ Z a data

point. In fact, only the leaf nodes store the model and data

sample. The size of the tree is the space complexity of the

learning procedure. Finally, define leaf : [n]→ {0, 1}log(n)
which gives the binary representation of the input leaf node.

This binary tree data structure supports the following opera-

tions:

1. Append(u, σ; T): Add a new leaf to T , which consists

of setting its query response and noisy query response to

u, and u+N (0, σ2
I) respectively. Further, update tree to

add u to ub, corresponding to nodes vb in the path from

this leaf to root, and add noise to their noisy response rb
for nodes which are left child in the path.

2. GetPrefixSum(t; T), where t ∈ N: Get the t-th noisy

response from T , which consists of traversing the tree

from t-th leaf to root, and adding the noisy responses of

nodes which are left child.

3. Get(b; T) where b ∈ {0, 1}log(n): Get all items in the

vertex of T indexed by b.

4. Set(b, v; T) where b ∈ {0, 1}log(n): Set the contents of

vertex b in the T as v.

Following Guha Thakurta and Smith (2013), we give

pseudo-codes of the above operations in Appendix C, with

minor modifications to aid the unlearning process.

Algorithm 2 TreeLearn(t0; T)
Input: Dataset S, steps T , B-sensitive prefix-sum queries

{pt}t≤T , update functions {Ut}t≤T , noise std. σ
1: if t0 = 1 then Permute dataset and initialize T end if

2: (·, ·, wt0 , ·) = Get(leaf(t0); T)
3: for t = t0 to |S| − 1 do

4: ut = pt({wt}i≤t , zt)
5: Append(ut, σ; T)
6: rt = GetPrefixSum(t; T)
7: wt+1 = Ut

(
{wt}≤t , rt

)

8: Set(leaf(t), (ut, rt, wt, zt) ; T)
9: end for

Output: ŵ = S ({wt}t)

4.2. Unlearning by Maximally Coupling Binary Trees

The unlearning Algorithm 3 is based on constructing a (near)

maximal coupling of the binary trees under current and

updated dataset. Let zj be the element to be deleted and let

vs be the leaf node which contains zj (we use z in place

of zj from here on, for simplicity). During unlearning, we

simulate (roughly speaking) the dynamics of the learning

algorithm if the deleted point was not present to begin with.

In that case, in place of the deleted point, some other point

would have been used. Now, since the dataset was randomly

Algorithm 3 TreeUnlearn

Input: zj : data point to be deleted, T : internal tree data-

structure saved during learning

1: s = leaf(j) and l = leaf(|S|)
2: (·, ·, w, z) = Get(s; T) and (·, ·, ·, z′) = Get(l; T)
3: g = pj({wq}q≤s , z) and g′ = pj({wq}q≤s , z

′)

4: Let path = {l→ · · · → root} be the path from l to

root.

5: for b ∈ path do ub = ub − g′ end for

6: Remove node l from T .

7: Let b = s and ct = 1
8: if j = |S| then let b = ∅ end if

9: while b ̸= ∅ do

10: (u, r, ·, ·) = Get(b; T)
11: u′ = u− g + g′

12: if Unif (0, 1) ≤ ϕN(u,σ2I)(r)

ϕN(u′,σ2I)(r)
then

13: if b = s then Set(b, (u′, r, w, z′) ; T) else then

Set(b, (u′, r, ∅, ∅) ; T) end if

14: else

15: r′ = Reflect(u, u′, r)
16: if b = s then

17: Set(b; (u′, r′, ∅, z′) ; T)
18: w′ = Uj

(
{wq}q≤b ,GetPrefixSum(j; T)

)

19: Set(b, (u′, r′, w′, z′) ; T)
20: else

21: Set(b, (u′, r′, ∅, ∅) ; T)
22: end if

23: TreeLearn(j + ct; T) // Continue Retraining

24: break

25: end if

26: if b is left sibling then ct = ct + 2|s|−|b|−1 end if

27: Set (new) b as binary representation of parent of b
28: end while

29: Update dataset S = S\ {zj}
Output: ŵ = S({wb}b)

permuted, every point is equally likely to have been used,

and thus we can use the point z′ in the last leaf node, say

vl, in the tree – this choice of the last point is important for

unlearning efficiency. Firstly, the computations associated

with the last point z′ needs to be undone – towards this, we

update the contents of the nodes in the path from node vl
to root (line 5), finally removing node vl from the tree (line

6). Then, we need to replace all the computations which

used the deleted point z with the same computation under

z′. Since the learning algorithm was based on the binary

tree mechanism, the point z was only explicitly used in the

nodes lying on the path from leaf vs to the root (so, at most

log (n) nodes). We say explicitly above because due to the

adaptive nature of the process, in principle, all nodes after vs
depend on it, in the sense that their contents would change

if the response in vs were to change. However, importantly,

6

From Adaptive Query Release to Machine Unlearning

+ξ8

+ξ4

+ξ2

p1(w0) + ξ1

z7

p2(w≤1)

z2

+

p3(w≤2) + ξ3

z1

p4(w≤3)

z5

+

+ξ6

p5(w≤4) + ξ5

z4

p6(w≤5)

z3

+

p7(w≤6) + ξ7

z6

p8(w≤7)

z8

−g+ g′

RS3

+ξ4

+ξ2

p1(w0) + ξ1

z7

p2(w≤1)

z2

+

p3(w≤2) + ξ3

z1

p4(w≤3)

z5

−g+ g′

−g+ g′

RS2

−g+ g′

RS1

z4
z8

p6(w≤5)

z3

+

p7(w≤6) + ξ7

z6

p8(w≤7)

z8

Figure 1. A simplified schematic of the learning (left) and unlearning (right) procedures for prefix-sum queries. In the left, the leaves

contain (noisy, if +ξi) prefix-sum queries applied on the randomly permuted data-point (zi’s) below it. The intermediate nodes with +

adds the not-noised values of its children, where as others add noise to it. On the right, the deleted point z4 is replaced with z8 which

amounts to adjusting the queries with −g + g′ (see Algorithm 3 for details) and performing Rejection Sampling (abbreviated RSi, where

i’s indicates the order of occurrence of sequence of rejection samplings) along the height of the tree.

the binary search structure of our learning algorithm and

our coupling technique (details below) would enable us to

(mostly) only care about explicit computations.

We first compute two new queries, under the data point

z and z′, with responses g = pj({wq}q≤s , z) and g′ =

pj({wq}q≤s , z
′) respectively (line 3). Starting with leaf

node vs, we update the original unperturbed prefix-sum

query response under z i.e. u to what it would have been un-

der data-point z′: u′ = u−g′+g (line 11). Further, since the

training method adds noise N (0, σ2
I) to u to produce origi-

nal noisy response r, we now need to produce a sample from

N (u′, σ2
I) to satisfy exact unlearning. Naively, we could

simply get a fresh independent sample from N (u′, σ2
I),

however, this would change the noisy response r, and hence

require all subsequent computations to be redone (the adap-

tive nature). So, ideally, we want to reuse the same r and

yet generate a sample from N (u′, σ2
I). This is precisely

the problem of constructing a maximal coupling, discussed

in the Section 2, wherein we also discussed the method of

reflection coupling to do it.

This amounts to doing a rejection sampling which (roughly)

ascertains if response r is still sufficient under the new dis-

tribution N (u′, σ2
I). Specifically we compute the ratio of

the probability densities at r under the noise added to u

and u′, i.e.
ϕN(u,σ2I)(r)

ϕN(u′,σ2I)(r)
and compare it against a randomly

sampled Unif(0,1); if it results in accept, we move to par-

ent of the node vs, and repeat. If any step fails, we reflect

which generates a different noisy response r′, and continue

retraining from the next leaf w.r.t. the post order traversal

of the tree (the variable ct in Algorithm 3 keeps track of this

next node). See Figure 1 for a simplified description of the

process.

The main result of this section is as follows.

Theorem 1. The following are true for Algorithms 2 and 3,

1. The learning Algorithm 2 with σ2 = 64B2log2(n)
ρ satis-

fies ρ-TV stability.

2. The corresponding unlearning Algorithm 3 satisfies

exact unlearning.

3. The relative unlearning complexity is Õ (ρ)

As discussed in the preceding section, in the Theorem above,

we have all the properties we needed with the unlearning

process. We now move on to applications and give accuracy

guarantees.

5. Applications

In the following, we describe some problems and learning

algorithms. The corresponding unlearning algorithms and

its correctness simply follow as application of the result

of the preceding section, provided we show that it uses

a bounded sensitivity prefix-sum query. The only other

thing to show is the accuracy guarantee of the TV stable

modification of the learning algorithm (Algorithm 2).

From here on, we use runtime to mean gradient complex-

ity as is standard in convex optimization (Nemirovskij and

Yudin, 1983). But, as pointed out before, our proposed

unlearning algorithm yields similar improvements over re-

training, even accounting for other operations in the method.

5.1. Smooth SCO with Variance Reduced Frank-Wolfe

We assume that the loss function w 7→ ℓ(w; z) is H-smooth

and G-Lipschitz for all z1. The algorithm we use is variance
reduced Frank-Wolfe method where the variance reduced
gradient estimate ut is the Hybrid-SARAH estimate (Tran-

1A real valued function x 7→ f(x) is G-Lipschitz
and H-smooth if |f(x1)− f(x2)| ≤ G ∥x1 − x2∥ an
∥∇f(x1)−∇f(x2)∥ ≤ H ∥x1 − x2∥ respectively.

7

From Adaptive Query Release to Machine Unlearning

Dinh et al., 2019) with γt =
1

t+1 given as,

ut = (1− γt) (ut−1 +∇ℓ(wt; zt)−∇ℓ(wt−1; zt)) + γt∇ℓ(wt; zt)

=
1

t+ 1

t∑

i=1

((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi))

We show that the above is a prefix sum query with sensitivity

B = 2 (HD +G), thus fits into our framework. The full

pseudo-code is given as Algorithm 12 in Appendix E. We

state the main result below where the accuracy guarantee

follows from modifications to the analysis in Zhang et al.

(2020).

Theorem 2. Let ρ ≤ 1 and ℓ : W × Z → R be an H-
smooth, G-Lipschitz convex function over a closed convex
set W of diameter D. Algorithm 12, as the learning al-

gorithm, run with σ2 = 64(HD+G)2log2(n)
ρ2 , t0 = 1 and

ηt =
1

t+1 on a dataset S of n i.i.d. samples from D outputs

ŵ, with excess population risk bounded as,

E [L(ŵ;D)− L(w∗;D)] = Õ

(
(G+HD)D

(
1√
n
+

√
d

nρ

))
.

Furthermore, the corresponding unlearning Algorithm 3

(with query and update functions as specified in the learning

algorithm), satisfies exact unlearning with Õ (ρn) expected

runtime.

5.2. Non-smooth SCO with Dual Averaging

In this section, we only assume that loss function w 7→
ℓ(w; z) is G-Lipschitz and convex ∀ z ∈ Z . Herein, we use

dual averaging method (Nesterov, 2009) where the model is

updated as follows:

wt+1 = ΠW
(
w0 − η

t∑

i=1

∇ℓ(wi; zi)
)
,

where Π denotes the Euclidean projection on to the con-
vex set W . The above again is a prefix-sum query with

sensitivity G, thus fits into our framework. The full pseudo-

code is given as Algorithm 13 in Appendix E. The accuracy

guarantee mainly follows from Kairouz et al. (2021).

Theorem 3. Let ρ ≤ 1 and ℓ : W × Z → R be a G-

Lipschitz convex function over a closed convex set W of

diameter D. Algorithm 13, as the learning algorithm, run

with σ2 = 64G2log2(n)
ρ2 , t0 = 1 and η =

Dd1/4
√

log(n)

G
√
nρ on a

dataset S of n samples, drawn i.i.d. from D, outputs ŵ with

excess population risk bounded as,

E [L(ŵ;D)− L(w∗;D)] = Õ

(
GD

(
1√
n
+

√√
d

nρ

))
.

Furthermore, the corresponding unlearning Algorithm 3

(with query and update functions as specified in the learning

algorithm), satisfies exact unlearning with Õ (ρn) expected

runtime.

5.3. Convex GLM with JL Method

Algorithm 4 JL Method

Input: Dataset S, loss function ℓ, base algorithm A, JL

matrix Φ ∈ R
d×k, noise variance σ2

1: ΦS = {Φxi}ni=1

2: w̃ = A(ℓ,ΦS, 2G ∥X∥ , 2H ∥X∥2 , σ)
Output: ŵ = Φ⊤w̃

This JL method, proposed in Arora et al. (2022), is a general

technique to get dimension-independent rates for uncon-

strained convex GLMs from algorithms giving dimension-

dependent rate for constrained (general) convex losses. The

method, described in Algorithm 4, simply embeds the

dataset into a low dimensional space, via a JL matrix Φ,

and then runs a base algorithm on the low dimensional

dataset.

Smooth, Lipschitz GLMs: We assume that ϕy : R→ R is

convex, H-smooth and G-Lipschitz for all y ∈ Y . We give

the following result in this case using VR-Frank Wolfe as

the base algorithm.

Theorem 4. Let ρ ≤ 1 and ℓ :W ×X × Y → R be an H-
smooth, G-Lipschitz convex GLM loss function. Algorithm
4 instantiated with Algorithm 12, as the learning algorithm,

run with σ2 = Õ

(
(H∥X∥2∥w∗∥+G∥X∥)2

ρ2

)
, t0 = 1, ηt =

1
t+1 and k = Õ

((
H∥X∥2∥w∗∥

(H∥X∥2∥w∗∥+G∥X∥)

)2/3

(nρ)
2/3

)
on

a dataset S of n samples, drawn i.i.d. from D, outputs ŵ
with excess population risk bounded as,

E [L(ŵ;D)− L(w∗;D)] = Õ

((
G ∥X∥+H ∥X∥2 ∥w∗∥

)
∥w∗∥√

n

+
H1/3G2/3 ∥w∗∥4/3 ∥X∥4/3 +H ∥X∥2 ∥w∗∥2

(nρ)2/3

)
.

Furthermore, the corresponding unlearning Algorithm 3

(with query and update functions as specified in the learning

algorithm), satisfies exact unlearning with Õ (ρn) expected

runtime .

Lipschitz GLMs: We assume that ϕy : R→ R is convex

and G-Lipschitz for all y ∈ Y . We give the following result

in this case using Dual Averaging as the base algorithm.

Theorem 5. Let ρ ≤ 1 and ℓ : W × X × Y → R be a
G-Lipschitz convex GLM loss function. Algorithm 4 with
Algorithm 13 as the sub-routine, as the learning algorithm,

run with σ2 = O
(

G2∥X∥2

ρ2

)
, t0 = 1, η =

∥w∗∥d1/4
√

log(n)

G∥X∥√nρ

and k =
√
nρ on a dataset S of n samples sampled i.i.d.

from D outputs ŵ, with excess population risk bounded as,

E [L(ŵ;D)− L(w∗;D)] = Õ
(
G ∥X∥ ∥w∗∥

(1√
n
+

1

(nρ)1/3

))
.

8

From Adaptive Query Release to Machine Unlearning

Furthermore, the corresponding unlearning Algorithm 3

(with query and update functions as specified in the learning

algorithm), satisfies exact unlearning with Õ (ρn) expected

runtime.

6. SCO in Dynamic Streams

In this section, we extend our previous results to dynamic

streams wherein we observe a sequence of insertions and

deletions, starting with potentially zero data points. We

assume that the number of available points throughout is

positive and the data points are i.i.d. from an an unknown

distribution as well as the requests are chosen independent

of the algorithm.

To give a simple and unified presentation, let the accuracy,

say expected excess population risk, of the ρ-TV stable

Algorithm 2 with a dataset S be denoted as, α(ρ, |S| ;P)
where P denotes problem specific parameters such as Lips-

chitzness, diameter etc.

We present two techniques for dynamic streams; one of them

satisfies exact unlearning but has a worse update time; this is

similar to Ullah et al. (2021) and is deferred to Appendix F.

The other, presented below, satisfies weak unlearning (see

Definition 2) with better update time. A key component to

both are anytime guarantees, which hold at every time-point

in the stream, for any length of the stream.

Anytime binary tree mechanism: In the previous section,

the depth of the initialized tree and the noise variance σ2,

both were chosen as a function of the dataset size n. How-

ever, the tree can be easily built in an online manner as in

prior work of Guha Thakurta and Smith (2013). For setting

the noise variance: for target ρ-TV stability, we distribute

the noise budget exponentially along the height of the tree;

specifically, the leaf node contribute to ρ/2 TV stability, the

nodes above them ρ/4 and so on. In this way, the final tree

satisfies ρ-TV stability for any value of n.

Anytime accuracy: The other problem of changing data

size is that the internal parameters of algorithm (step size, in

our case) may be set as a function of n for desirable accuracy

guarantees. Fortunately, the two algorithms that we consider,

VR-Frank Wolfe and Dual Averaging, have known horizon-

oblivious parameter settings (Orabona, 2019). Their JL

counterparts on the other hand, require setting the embed-

ding dimension as a function of n, and thus not applicable

unless we assume that the number of data points throughout

the stream is Θ(n).

6.1. Weak Unlearning in Dynamic Streams

We first argue in what way insertions handled in Ullah et al.

(2021) is deficient. The main reason is that they require

insertions to also satisfy the unlearning criterion: the state

of the system upon insertion is instinguishable to the state

had the inserted point being present to begin with. However,

this is an overkill; adding new points simply serve to yield

improved statistical accuracy. Furthermore, methods which

allow adding new points, are abound, particularly in the

stochastic optimization setting, sometimes known as incre-

mental methods. Importantly, in most cases, the insertion

time of these methods is constant (in n). Hence, a natural

question is whether, for dynamic streams, can we design

unlearning methods in which we pay for update time only in

proportion to the number of deletions? Our result shows that

we can, albeit under the weak unlearning (see Definition 2)

guarantee.

Specifically, our procedure requires hiding the order in

which data points are processed. Intuitively, an incremental

method typically processes the newest data point the last.

This ordering is problematic to our unlearning procedure,

since if some point is to deleted, then we can no longer re-

place it with the last point, as we did before, since that would

result in a different order. Our main result is as follows.

Theorem 6. In the dynamic streaming setting with R re-

quests, using anytime incremental learning and unlearn-

ing algorithms, Algorithm 2 and 3, without permuting the

dataset, the following are true.

1. It satisfies weak unlearning at every time point in the

stream.

2. The accuracy of the output ŵi at time point i, with

corresponding dataset Si, is

E[L(ŵi;D)]−min
w

L(w;D) = α(ρ, |Si| ;P)

3. The number of times retraining is triggered, for V un-

learning requests is at most Õ(ρV)

Importantly, in the above guarantee, we only pay for the

number of unlearning requests V rather than the number of

requests R.

7. Conclusion

In this paper, we proposed a general framework for design-

ing unlearning algorithms for learning algorithms which can

be viewed as performing adaptive query release on datasets.

We applied this to yield improved guarantees for unlearning

in various settings of stochastic convex optimization. All of

our results (in the main text) are obtained by studying the

class of prefix-sum queries, so a natural future direction is

to extend it to more query classes, which could be useful for

other problems.

Acknowledgements

This research was supported, in part, by NSF BIGDATA

award IIS-1838139 and NSF CAREER award IIS-1943251.

9

From Adaptive Query Release to Machine Unlearning

References

Raman Arora, Raef Bassily, Cristóbal A Guzmán, Michael

Menart, and Enayat Ullah. Differentially private gener-

alized linear models revisited. In Advances in Neural

Information Processing Systems, 2022.

Lucas Bourtoule, Varun Chandrasekaran, Christopher A

Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu

Zhang, David Lie, and Nicolas Papernot. Machine un-

learning. In 2021 IEEE Symposium on Security and Pri-

vacy (SP), pages 141–159. IEEE, 2021.

Jean Bretagnolle and Catherine Huber. Estimation des den-

sités: risque minimax. Zeitschrift für Wahrscheinlichkeit-

stheorie und verwandte Gebiete, 47(2):119–137, 1979.

Jonathan Brophy and Daniel Lowd. Machine unlearning for

random forests. In International Conference on Machine

Learning, pages 1092–1104. PMLR, 2021.

Clément L Canonne. A short note on an inequality between

kl and tv. arXiv preprint arXiv:2202.07198, 2022.

Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N

Rothblum. Differential privacy under continual observa-

tion. In Proceedings of the forty-second ACM symposium

on Theory of computing, pages 715–724, 2010.

Cynthia Dwork, Aaron Roth, et al. The algorithmic founda-

tions of differential privacy. Found. Trends Theor. Comput.

Sci., 9(3-4):211–407, 2014.

Antonio Ginart, Melody Guan, Gregory Valiant, and

James Y Zou. Making ai forget you: Data deletion in

machine learning. Advances in Neural Information Pro-

cessing Systems, 32, 2019.

Abhradeep Guha Thakurta and Adam Smith. (nearly)

optimal algorithms for private online learning in full-

information and bandit settings. Advances in Neural

Information Processing Systems, 26, 2013.

Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens

Van Der Maaten. Certified data removal from machine

learning models. arXiv preprint arXiv:1911.03030, 2019.

Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth,

Saeed Sharifi-Malvajerdi, and Chris Waites. Adaptive

machine unlearning. Advances in Neural Information

Processing Systems, 34, 2021.

Prateek Jain and Abhradeep Guha Thakurta. (near) dimen-

sion independent risk bounds for differentially private

learning. In International Conference on Machine Learn-

ing, pages 476–484. PMLR, 2014.

Peter Kairouz, Brendan McMahan, Shuang Song,

Om Thakkar, Abhradeep Thakurta, and Zheng Xu. Practi-

cal and private (deep) learning without sampling or shuf-

fling. In International Conference on Machine Learning,

pages 5213–5225. PMLR, 2021.

Jakub Konecnỳ, H Brendan McMahan, Felix X Yu, Peter

Richtárik, Ananda Theertha Suresh, and Dave Bacon.

Federated learning: Strategies for improving communica-

tion efficiency. arXiv preprint arXiv:1610.05492, 2016.

Torgny Lindvall and L Cris G Rogers. Coupling of mul-

tidimensional diffusions by reflection. The Annals of

Probability, pages 860–872, 1986.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and

Li Zhang. Learning differentially private recurrent lan-

guage models. arXiv preprint arXiv:1710.06963, 2017.

Ilya Mironov. Rényi differential privacy. In 2017 IEEE 30th

computer security foundations symposium (CSF), 2017.

Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi.

Descent-to-delete: Gradient-based methods for machine

unlearning. In Algorithmic Learning Theory, 2021.

Jelani Nelson. Sketching and streaming high-dimensional

vectors. PhD thesis, MIT, 2011.

Arkadij Semenovic Nemirovskij and David Borisovich

Yudin. Problem complexity and method efficiency in

optimization. 1983.

Yurii Nesterov. Primal-dual subgradient methods for convex

problems. Mathematical programming, 120(1):221–259,

2009.

Francesco Orabona. A modern introduction to online learn-

ing. arXiv preprint arXiv:1912.13213, 2019.

Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and

Ananda Theertha Suresh. Remember what you want to

forget: Algorithms for machine unlearning. Advances in

Neural Information Processing Systems, 34, 2021.

Quoc Tran-Dinh, Nhan H Pham, Dzung T Phan, and Lam M

Nguyen. Hybrid stochastic gradient descent algorithms

for stochastic nonconvex optimization. arXiv preprint

arXiv:1905.05920, 2019.

Enayat Ullah, Tung Mai, Anup Rao, Ryan A Rossi, and Ra-

man Arora. Machine unlearning via algorithmic stability.

In Conference on Learning Theory, 2021.

Tim Van Erven and Peter Harremos. Rényi divergence

and kullback-leibler divergence. IEEE Transactions on

Information Theory, 60(7):3797–3820, 2014.

10

From Adaptive Query Release to Machine Unlearning

Cédric Villani. Optimal transport: old and new, volume

338. Springer, 2009.

Yu-Xiang Wang, Borja Balle, and Shiva Prasad Ka-

siviswanathan. Subsampled rényi differential privacy

and analytical moments accountant. In International Con-

ference on Artificial Intelligence and Statistics, 2019.

Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed

Hassani, and Amin Karbasi. One sample stochastic frank-

wolfe. In International Conference on Artificial Intelli-

gence and Statistics, pages 4012–4023. PMLR, 2020.

11

From Adaptive Query Release to Machine Unlearning

A. Additional Preliminaries

We recall some concepts from differential privacy which will be useful in our algorithmic techniques.

Definition 8. An algorithm A satisfies (α, ϵ(α))-Rényi Differential Privacy (RDP), if for any two datasets S and S′ which

differ in one data point (|S∆S′| = 1), the α-Rényi Divergence between A(S) and A(S′), with probability densities ϕA(S)

and ϕA(S′), defined as follows:

Dα (A(S)∥A(S′)) =
1

α− 1
ln

(∫

Range(A)

ϕA(S)(x)
αϕA(S′)(x)

1−αdx

)

is bounded as, Dα(A(S)∥A(S′)) ≤ ϵ(α).

RDP satisfies many desirable properties such as adaptive and parallel composition and amplification by sub-sampling

(Mironov, 2017; Wang et al., 2019). Furthermore, we give the following lemma which relates TV stability to RDP.

Lemma 1 (RDP =⇒ TV-stability). If an algorithm satisfies (α, ϵ(α))-RDP, then it satisfies
(
1− exp

(
−lim

α↓1
ϵ(α)

)) 1
2

-TV

stability.

Proof of Lemma 1. From Theorem 4 in Van Erven and Harremos (2014), we have that lim
α↓1

Dα(P∥Q) = KL (P∥Q), where

KL(·∥·) denotes the Kullback-Leibler (KL) divergence between the two distributions. Finally, we relate the TV distance

with the KL divergence using Bretagnolle–Huber bound (Bretagnolle and Huber, 1979; Canonne, 2022) which gives the

claimed bound.

B. Unlearning for Linear Queries

A basic form of a query we consider is a linear query, defined as follows.

Definition 9. A query q : W∗ × Zn → W is a linear query if q ({wi}i ;S) =
∑

j∈S pj ({wi}i ; zj) for some functions

pj :W∗ ×Z →W .

We consider the class of B-sensitive linear queries. We give the TV stable modified learning procedure in Algorithm 5

which basically releases the linear queries perturbed with Gaussian noise of appropriate variance.

Algorithm 5 LearnLinearQueries(wt0 , t0)

Input: Dataset S, initial iteration t0, steps T , query functions {qt(·)}t≤T , update functions {Ut(·)}t≤T , selector function

S(·), noise variance σ2

1: Initialize model w1 ∈ W
2: for t = t0 to T − 1 do

3: Query the dataset ut = qt

(
{wi}i≤t ;S

)
.

4: Perturb: rt = ut + ξt where ξt ∼ N (0, σ2
Id).

5: Update wt+1 = Ut({wi}i≤t , rt)
6: Save (ut, rt, wt+1)
7: end for

Output: ŵ = S
(
{wt}t≤T

)

Note that the underlying probability distribution that the above learning algorithm samples from is a Markov chain. The

corresponding unlearning procedure, described in Algorithm 6, is based on constructing a coupling between the Markov

chains for the current dataset and the dataset without the to-be-deleted point. In particular, we start from the first iteration,

perform rejection sampling, if it results in acceptance, then we proceed to the second iteration and so on. If some iteration

results in rejection, then we do the reflection step, and continue retraining from there on.

12

From Adaptive Query Release to Machine Unlearning

Algorithm 6 Unlearning algorithm for linear queries

Input: Deleted point zj ,

1: for t = 1 to T − 1 do

2: (ut, rt, wt) = Load ()

3: Compute u′
t = ut − pjt

(
{wi}i≤t ; zj

)

4: if Unif (0, 1) ≤ ϕN(ut,σ
2I)(rt)

ϕN(u′
t,σ

2I)(rt)
then

5: Save (u′
t)

6: else

7: r′t = reflect(rt, ut, u
′
t)

8: wt+1 = Ut

(
{wi}i≤t , r

′
t

)

9: LearnLinearQueries(wt+1, t+ 1)
10: break

11: end if

12: end for

The above is basically the same unlearning algorithm as that of Ullah et al. (2021) but presented in the general context of

linear queries. Therefore, it generalizes the framework of Ullah et al. (2021) which was limited to the Stochastic Gradient

Descent algorithm. We also remark that linear queries can often be augmented with a sub-sampling operator yielding

amplified guarantees, as done in Ullah et al. (2021). However, we omit this extension for brevity. The main result of this

section is as follows.

Theorem 7. The following are true for Algorithms 5 and 6,

1. The learning algorithm, Algorithm 5 with σ2 = 64B2

n2ρ2 satisfies ρ-TV stability.

2. The unlearning algorithm, Algorithm 6, corresponding to Algorithm 5, satisfies exact unlearning.

3. The relative unlearning complexity is O
(
ρ
√
T
)

.

Proof. This proof simply follows from the observation that the analysis of Ullah et al. (2021) only uses the bounded

sensitivity linear query structure of the stochastic gradient method for their TV stability bound as well as correctness and

runtime of the unlearning procedure.

B.1. Applications

This generalization yields the following applications.

B.2. Federated Unlearning for Federated Averaging

In the federated learning setting, we have C clients (which typically correspond to user devices) with their own datasets and

a parameter server (aggregator). A typical, informal, goal is training a single globally shared model using all the dataset

with small communication between the clients and the server, and without moving any private data (explicitly) to the server.

Federated Averaging (Konecnỳ et al., 2016), described in Algorithm 7, is a widely used method in federated learning. Note

that in the every round of the method, the client outputs, {wc
t}Cc=1, are aggregated using an averaging operation:

wt =
1

C

C∑

c=1

wc
t .

In Algorithm 7, ClientUpdate is a function which runs on the client’s data using the current model wt and problem

specific-parameter P (such as as number of steps, learning rate of some optimization routine). For brevity, we do not

instantiate the ClientUpdate function, but usually some variant of stochastic gradient descent is used.

13

From Adaptive Query Release to Machine Unlearning

Algorithm 7 Federated Averaging (Server side)

Input: Number of clients C, number of rounds T , client-specific parameters P
1: Initialize model w1 ∈ W
2: for t = 1 to T − 1 do

3: for c = 1 to C do

4: wc
t+1 = ClientUpdate (c, wt−1,P)

5: end for

6: wt+1 = 1
C

∑C
c=1 w

c
t+1

7: end for

Output: ŵ = S
(
{wt}t≤T

)

Federated Unlearning: In the federated unlearning problem, after a model is trained, one of the clients requests to remove

themselves from the process. The parameter server then needs to update the model (and state) in such a way that it is

indistinguishable to the state if the client were absent. Hence, this is analogous to the standard unlearning problem with the

client playing the role of a data point. This analogy also occurs with private federated learning wherein the widely-used

granularity of differential privacy is user-level differential privacy (McMahan et al., 2017). In this case, a client (potentially

containing multiple data items) plays the role of a data item, the presence/absence of which is used in the differential privacy

definition.

TV-stable learning and unlearning: The model aggregation step (line 6 in Algorithm 7) of the federated averaging method

is a linear query over the clients. Moreover, if the clients output models that are bounded in norm, then it is a bounded

sensitivity linear query (typically enforced by clipping the updates). Hence, this fits into the template of linear query release

method and thus can be modified, as in Algorithm 5 to be TV stable. The corresponding unlearning method is the one given

in Algorithm 6.

B.3. Lloyd’s Algorithm for k-means Clustering

In this section, we briefly discuss how an algorithm for k-means clustering fits into the linear query release framework.

We remark that the prior work of Ginart et al. (2019) gave an unlearning method for this problem based on randomized

quantization, which can also be seen as a specific TV-stable algorithm followed by a coupling based unlearning method.

Lloyd’s algorithm is a widely used method for k-means clustering. Herein, starting with an arbitrary choice of centers, we

construct a partition of the dataset, which thereby gives a new set of centers. This process is repeated for a certain number of

rounds. The method is described as Algorithm 8.

We notice again that the updates for every cluster, line 7 in Algorithm 8, is a linear query, hence it fits into the linear query

release template and thus learning and unlearning algorithms based on linear queries readily follow.

Algorithm 8 Lloyd’s algorithm

Input: Number of clusters C, number of rounds T , dataset S = {zi}ni=1.

1: Initialize centers {wc}Cc=1

2: for t = 1 to T − 1 do

3: for c = 1 to C do

4: Compute Sc =
{
zc1, z

c
2, . . . z

c
|Sc|

}
, the set of data-points closest to wc.

5: end for

6: for c = 1 to C do

7: Update wc =
1

|Sc|
∑|Sc|

i=1 z
c
i

8: end for

9: end for

Output: {wc}Cc=1

14

From Adaptive Query Release to Machine Unlearning

C. Missing Details from Section 4

In this section, we provide pseudo-code of the operations supported by the binary tree data structure.

Algorithm 9 Append(u, σ; T)
Input: Query response u, noise variance σ,Tree T

1: Let s be the (binary representation of) first empty leaf.

2: Let q be the index with the first 1 in s.

3: path = {s→ · · · root} be the path from s to root consisting of at most q + 1 nodes from leaf.

4: UpdateTree(u, path, σ; T)

Algorithm 10 UpdateTree(u, path, σ; T)
Input: Query response u, Set of nodes path, noise variance σ,Tree T

1: for b ∈ path do

2: ub = ub + u
3: if b is a left child or b is a leaf then

4: ξ ∼ N (0, σ2
I)

5: rb = ub + ξ
6: break

7: end if

8: end for

Algorithm 11 GetPrefixSum(t; T)
Input: t ∈ N, Tree T ,

1: Initialize g ∈ R
p to 0

2: s← leaf(t)
3: Let path be the path from s to root.

4: while b ̸= ∅ do

5: if b is a leaf child or b is a leaf then

6: g = g + rb
7: end if

8: end while

Output: g

D. Missing Proofs from Section 4

Proof of Theorem 1. The first part of the Theorem follows from Lemma 2 followed by post-processing to argue that the

same TV stability parameter holds for the final iterate.

The second part, exact unlearning, follows from Lemma 5 wherein Q denotes the distribution of the algorithm’s output run

on the dataset without the to-be-deleted point.

For the third part, note that the unlearning algorithm 3 makes two queries if no retraining is triggered. If a retraining

is triggered, the number of queries it makes is at most the query complexity of learning algorithm, T = n. Finally, the

probability of retraining, from Lemma 6 is at most log (n) ρ. Combining, this gives the stated bound on relative unlearning

complexity.

D.1. Lemmas for Unlearning

Additional notation: We first present some additional notation used in the statement and proof of the following lemmas.

Let S and S′ be datasets before and after the unlearning request. Let P and Q denote the probability measures over the

range of tree data-structure, which is T =
(
R

d × R
d × R

d × [n]
)n

, induced by the output of learning algorithm on S and

15

From Adaptive Query Release to Machine Unlearning

S′ respectively. We order the nodes of the binary tree w.r.t. the post-order traversal of tree. Hence, given two nodes v and

v′ or their binary representations s and s′, we use v ≤ v or s ≤ s′ w.r.t the above ordering. Given a node b, let Pb (·|T≤b)
denote the conditional distribution of the nodes given the prefix nodes of the tree.

Let p be a permutation over [n] and pb denote the index on the b-th node, when b is a leaf. Let µ denote the probability, and

conditional probability, depending on context, of p and pb, under the random permutation model. Specifically, we use µ(p)
and µ(pb|p≤b) to denote the probability of the sequence p and conditional probability of pb given the previous values.

Let T (1) denote the initial binary tree i.e. the one constructed after the algorithm is run on dataset S, and T (2) be the

binary tree constructed after unlearning. Let Pp and Qp denote the conditional distributions for P and Q respectively given

permutation p.

We factor the probability density of P as:

ϕP

(
T (1)

)
=
∏

b∈B

ϕPb

(
v
(1)
b |T

(1)
≤b

)
=
∏

b∈B

µ(p
(1)
b |p

(1)
≤b)ϕ

P
p
(1)
≤b

b

(
u
(1)
b , r

(1)
b , w

(1)
b |T

(1)
≤b

)

Fixing the permutation sequence p(1), denote and factor the conditional distribution as,

ϕp(1)

P (T (1)) =
∏

b∈B

ϕ
P

p
(1)
≤b

b

(
u
(1)
b , r

(1)
b , w(1)|T (1)

≤b

)

Finally, define response trees T̃ (1) and T̃ (2) which only contain the response variables (rb)b. Moreover, define distributions

P̃ , P̃b, P̃p, P̃p
b and Q̃, Q̃b, Q̃p Q̃p

b as before.

We first show the the tree T̃ produced by the learning algorithm is TV-stable.

Lemma 2. Let 0 < ρ ≤ 1, B ≥ 0, n ∈ N. For B-sensitive prefix sum queries, setting σ2 = 64B2log2(n)
ρ2 , the response tree

data structure T̃ is ρ-TV stable.

Proof. The proof of privacy of tree aggregation is classical in differential privacy, see Guha Thakurta and Smith (2013) for

example. The proof has three ingredients: Gaussian mechanism guarantee, parallel composition (to argue that accounting

along the height of the tree suffices) and adaptive composition (for accounting along the height of the tree). Since the

noise is Gaussian and these composition properties also holds under RDP (Mironov, 2017), therefore we can give an RDP

guarantee of ϵ(α) ≤ log2(n) · 64αB2

σ2 αρ2. Finally, using Lemma 1 and a numerical simplification since ρ ≤ 1 gives the

claimed result.

Recall that j is the index of the data item (after permutation) which is deleted. Without loss of generality, assume that the

original index of the deleted data-point is n. We first argue the following about the distribution of p(1) and p(2).

Lemma 3. For any set E ⊆ [n]n and any set E′ ⊆ [n− 1]n−1, we have

Pp(1)

(
p(1) ∈ E

)
= µn(E)

Pp(2)

(
p(2) ∈ E′

)
= µn−1(E

′)

Proof. Since p(1) and p(2) are discrete distributions, it suffices to argue the above for the atoms. Firstly, by construction,

p(1) ∼ µn and hence the first part is done. For the second part for any sequence h = (hi)
n−1
i=1 where hi ∈ [n− 1]. Let [h, j]

denote the concatenation of h and j (the deleted index). By symmetry, the probability

Pp(2) (h) =
1

n+ 1
Pp(1) ([h, j]) = µn−1(h)

This completes the proof.

We now show transport of the conditional distribution by the unlearning operation.

16

From Adaptive Query Release to Machine Unlearning

Lemma 4. For any measurable event E ⊆ Rd|T (2)|,

P

(
T̃ (2) ∈ E|p(1),p(2)

)
= Q̃p(2)

(E).

Proof. The proof is based on induction on the nodes of T̃ (2) in the post-order traversal. Let
(
v
(1)
b

)
b

and
(
v
(2)
b

)
b
be the

nodes of the tree arranged in the post-order traversal order. Given j, index of the item deleted, let s = leaf(j). Define

prefix(s) and suffix(s), as set of nodes before and after s respectively in the ≤ order.

Given an event E ⊆ R
d|T̃ (2)| and r≤b, define E

r≤b

b as follows:

E
r≤b

b =
{
e ∈ R

d : ∃e ∈
(
×>bR

d
)
: (r≤b, e, e) ∈ E

}

where ×>bR
d denote the Cartesian product of Rd’s of upto > b but smaller than or equal to

∣∣T (1)
∣∣ elements. Similarly,

define E
r≤b

≥b as,

E
r≤b

≥b =
{
e ∈

(
×≥bR

d
)
: (r≤b, e) ∈ E

}

Finally, define E<b as

E<b =
{
e ∈

(
×<bR

d
)
: ∃e ∈

(
×≥bR

d
)
: (e, e) ∈ E

}

We now factorize the probability below as,

P

(
T̃ (2) ∈ E|p(1),p(2)

)
=

∏

b∈prefix(s)

P

(
r
(2)
b ∈ E

r
(2)
<b

b |p(2)b , r
(2)
<b

)
P

(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

=
∏

b∈prefix(s)

P

(
r
(1)
b ∈ E

r
(1)
<b

b |p(1)b , r
(1)
<b

)
P

(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

=
∏

b∈prefix(s)

Pb

(
E

r
(1)
<b

b |p(1)b , r
(1)
<b

)
P

(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

=
∏

b∈prefix(s)

Qb

(
E

r
(2)
<b

b |p(2)b , r
(2)
<b

)
P

(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

= Q<s

(
E<s|p(2)<s, r

(2)
<s

)
P

(
T̃ (2)
≥s ∈ E

r
(2)
<s

≥s |T̃
(2)
<s ,p

(1),p(2)

)

where the second equality follows since r
(1)
≤b = r

(2)
≤b and p

(1)
b = p

(2)
b for all b < s by construction. The third equality follows

since r
(1)
b is distributed as Pb conditionally and fourth and final follows since conditioned on the permutation being the

same, the prefix is also distributed as Q<s.

We now start the induction: let I(induction variable) be I = s i.e the last item is deleted. In this case, the unlearning

algorithm simply removes the s-th node of the tree and all we are left with is the tree with prefix(s) nodes, which as argued

above is distributed as Q<s = Q.

For the case I = s + 1: we simply focus on T̃ (2)
≥s = T̃ (2)

s = r
(2)
s . Note that r

(1)
s is distributed as N (u(1), σ2

I) and we

want r
(2)
s distributed as N (u(2), σ2

I). The operation in the algorithm is basically a one step reflection coupling which from

Lemma 1 in Ullah et al. (2021) satisfies,

P

(
r(2)s ∈ E

r
(2)
<s

s |p(1),p(2)

)
= Q

p(2)
s

s

(
E

r
(2)
<s

s

)

17

From Adaptive Query Release to Machine Unlearning

Therefore,

P

(
T̃ (2) ∈ E|p(1),p(2)

)
= Q<s

(
E<s|p(2)<s, r

(2)
<s

)
Q̃

p(2)
s

s

(
E

r
(2)
<s

s

)
= Q̃p(2)

(E)

This finishes the base cases.

We now proceed to the induction step: suppose the following claim holds for nodes upto I = k – for any event E, the

marginal distribution

P

(
T (2)
≤k ∈ E|p(1),p(2)

)
= Q̃≤k

(
E|p(2)

)

For node k + 1, consider a few cases:

1. A: All rejection sampling steps prior to node k resulted in accepts:

(a) AP: Node k + 1 lies in the path from the s to root.

i. APA: The rejection sampling at this node succeeds.

ii. APR: The rejection sampling at this node fails i.e. a reflection step is performed.

(b) AN: Node k + 1 doesn’t lie in the path from s root.

2. R: Some rejection sampling step resulted in rejection.

For case R, we have that r
(2)
k+1 ∼ Q̃k+1(·|T̃ (2)

≤k ,p
(2)). For the case AN, note that the random variable r

(2)
k+1 = r

(1)
k+1, hence,

P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|AN, T
(2)
≤k ,p

(1),p(2)

)
= P̃k+1

(
E

r
(2)
≤k

k+1|p(2), T̃ (2)
≤k

)
= Q̃k+1

(
E

r
(2)
≤k

k+1|p(2), T̃ (2)
≤k

)

where the last equality follows since the dependence of r
(2)
k+1 is only on data points which are leaves of the sub-tree rooted at

node k + 1. These, by assumption do not contain the data point s, hence is identically distributed as Pk+1.

For the event AP, we have,

P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|AP,p(1)p(2), T̃ (2)

)
= P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1,APA|AP,p(1),p(2), T̃ (2)
≤k

)

+ P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1,APR|AP,p(1),p(2), T̃ (2)
≤k

)

= Q̃k+1

(
E

r
(2)
≤k

k+1|p(1),p(2), T̃ (2)
≤k

)

where the last step follows from Lemma 1 in Ullah et al. (2021) .

Hence, combining AP and AN cases,

P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|AN, T
(2)
≤k ,p

(1),p(2)

)
= Q̃k+1

(
E

r
(2)
≤k

k+1|p(2), T̃ (2)
≤k

)

We now combine all the cases: let ϕ
(A)
≤k , ϕ

(R)
≤k denote the conditional densities of T̃ (2)

≤k under events A and R respectively. Let

Tk =
∣∣∣T̃ (2)

≤k

∣∣∣. For any event E,

18

From Adaptive Query Release to Machine Unlearning

P

(
T̃ (2)
≤k+1 ∈ E|p(1),p(2)

)
= P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|A, T̃
(2)
≤k ∈ E≤k,p

(1),p(2)

)
P

(
T̃ (2)
≤k ∈ E

r
(2)
≤k

k+1,A|p(1),p(2)

)

+ P

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1|R, T̃
(2)
≤k ∈ E≤k,p

(1),p(2)

)
P

(
T̃ (2)
≤k ∈ E≤k,R|p(1), p(2)

)

=

∫

R
dTk+1

1

(
r
(2)
k+1 ∈ E

r
(2)
≤k

k+1

)
1

(
T̃ (2)
≤k ∈ E≤k

)
(
1

(
T̃ (2)
≤k ∈ A

)
ϕ
(A)
≤k

(
T̃ (2)
≤k

)

+ 1

(
T̃ (2)
≤k ∈ R

)
ϕ
(R)
≤k

(
T̃ (2)
≤k

))
ϕ
Q̃p

(2)

k+1

(
r
(2)
k+1|T̃

(2)
≤k

)
dT̃ (2)

≤k dr
(2)
k+1

=

∫

R
dTk+1

1

(
T (2)
≤k+1 ∈ E

)
ϕ
Qp(2)

≤k

(
T̃ (2)
≤k

)
ϕ
Q̃p(2)

k+1

(
r
(2)
k+1|T̃

(2)
≤k

)
dT̃ (2)

≤k dr
(2)
k+1

= Q̃p(2)

≤k+1 (E)

where in the third equality, we use the induction hypothesis. This completes the proof of the lemma.

Lemma 5. For any measurable event E ⊆ T, P[T (2) ∈ E] = Q(E).

Proof. This follows primarily from Lemma 4, and the fact that other elements in nodes of T , namely ub and wb are

deterministic functions of the prefix vertices in the tree T̃ . Consider a decomposition of the event E = Eu×Er ×Ew ×Ez .

Now,

P[T (2) ∈ E] = Ep(1)P

(
T (2) ∈ Eu × Er × Ew × Ez|p(1),p(2) ∈ Ez

)
P

(
p(2) ∈ Ez

)

= Ep(1)P

(
T̃ (2) ∈ Er|p(1),p(2)

)
µn−1(Ez)

= Ep(1)Q̃p(2)

(Er)µn−1(E2)

= Ep(1)Qp(2)

(Eu × Ew × Er)µn−1(Ez)

= Q(E)

where the second and fourth equality follows since variables wb and ub are deterministic functions of the responses r≤b.

The second and third equality also uses Lemma 3 and Lemma 4 respectively.

Lemma 6. The probability of retraining is at most log (n) ρ.

Proof. A retraining is triggered only when a rejection sampling step fails. Note that a rejection sampling step happens only

when the node b belongs to the path from s to root, say path. Let Accept be the event when all rejection sampling steps

19

From Adaptive Query Release to Machine Unlearning

succeed.

P (Accept) = ET (1),T (2),{ub}
∏

b∈path

1


ub ≤

ϕ
Q̃p

(2)

b

(
r
(1)
b |T

(1)
<b

)

ϕ
P̃p

(2)

b

(
r
(1)
b |T

(1)
<b

)




= ET̃ (1),p(1),p(2)

∏

b∈path

P


ub ≤

ϕ
Q̃p

(2)

b

(
r
(1)
b |T̃

(1)
<b

)

ϕ
P̃p

(1)

b

(
r
(1)
b |T̃

(1)
<b

)




= Ep(1),p(2)

∏

b∈path

∫

Rd

min

(
ϕ
Q̃p

(2)

b

(
r
(1)
b |T̃

(1)
<b

)
, ϕ

P̃p
(1)

b

(
r
(1)
b |T̃

(1)
<b

))
dr

(2)
b

= Ep(1),p(2)

∏

b∈path

(
1− TV

(
Q̃p(2)

b , P̃p(1)

b |T̃ (1)
<b

))

=
∏

b∈path

(1− ρb)

≥ 1−
∑

b∈path

ρb

≥ 1− log (n)max
b

ρb

≥ 1− log (n) ρ

where the fourth equality follows from the definition of TV distance and in the last equality, ρb denotes the (conditional)

TV distance of node b. The third to last inequality follows from Lemma 7 and the second to last inequality follows from

Holder’s inequality. For the last inequality, we simply upper bound ρb ≤ ρ since the algorithm is ρ-TV stable (Lemma 2).

This completes the proof.

Lemma 7. Let {ai}ki=1 be real numbers such that ai ∈ (0, 1) for all i and
∑k

i=1 ai ≤ 1. Then,
∏k

i=1 (1− ai) ≥ 1−∑k
i=1 ai

Proof. We prove this via induction on k. The base case k = 1 is immediate. For the induction step k, we have

k∏

i=1

(1− ai) =

k−1∏

i=1

(1− ai) (1− ak) ≥
(
1−

k−1∑

i=1

ai

)
(1− ak)

= 1−
k∑

i=1

ai +

(
k−1∑

i=1

ai

)
ak

≥ 1−
k∑

i=1

ai

This completes the proof.

20

From Adaptive Query Release to Machine Unlearning

E. Missing Proofs from Section 5

E.1. Variance-reduced Frank Wolfe

Algorithm 12 Variance-reduced Frank Wolfe(t0; T)
Input: Dataset S, loss function (w, z) 7→ ℓ(w, z), steps T , σ,{ηt}t

1: if t0 = 1 then Permute dataset, initialize T , set wt0 = 0 end if

2: for t = 1 to T − 1 do

3: ut =
∑t

i=1 ((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi))
4: Append(ut, σ; T)
5: rt = GetPrefixSum(t; T)
6: vt = argminw∈W

〈
w, rt

t+1

〉

7: wt+1 = (1− ηt)wt + ηtvt
8: Set(leaf(t), (ut, rt, wt, zt) ; T)
9: end for

Output: ŵ = wT

Proof of Theorem 2. For the accuracy guarantee, we follow the proof of Theorem 1 in Zhang et al. (2020). Let dt =
rt
t+1 .

From smoothness, we have

L(wt+1;D) ≤ L(wt;D) + ⟨∇L(wt;D), wt+1 − wt⟩+
H

2
∥wt+1 − wt∥2

≤ L(wt;D) + ηt ⟨∇L(wt;D)− dt, vt − wt⟩+ ⟨dt, vt − wt⟩+
η2tHD2

2

= L(wt;D) + ηt ⟨∇L(wt;D)− dt, vt − wt⟩+ ηt ⟨dt, w∗ − wt⟩+
η2tHD2

2

≤ L(wt;D) + ηt ⟨∇L(wt;D), w∗ − wt⟩+ ηt ⟨dt −∇L(wt), w
∗ − vt⟩+

η2tHD2

2

≤ (1− ηt)L(wt;D)− ηtL(w
∗;D) + 2D

t+ 1
∥dt −∇L(wt;D)∥+

η2tHD2

2

where the second inequality follows from the update and the fact that iterates lie in the set of diameter D. The third

inequality follows from the optimality of vt in the update in Algorithm 12. Finally, the last inequality follows from convexity,

Cauchy-Schwarz inequality and by substituting the step-size. We now take expectation, and use the bound on gradient

estimation error in Lemma 8 to get,

E[L(wt+1;D)− L(w∗;D)]

≤ (1− ηt)E[L(wt;D)− L(w∗;D)] + Õ

(
(HD +G)D

(
1

(t+ 1)3/2
+

√
d

(t+ 1)
2
ρ

))

+
HD2

2 (t+ 1)
2

21

From Adaptive Query Release to Machine Unlearning

The above recursion gives us,

E[L(wT ;D)− L(w∗;D)] ≤ (L(w1;D)− L(w∗))
T−1∏

t=1

(1− ηt)

+

T−1∑

i=1

Õ

(
(HD +G)D

(
1

(i+ 1)3/2
+

√
d

(i+ 1)
2
ρ

)
+

HD2

(i+ 1)
2

)
T−1∏

t=i+1

(1− ηt)

≤ HD2

T

+

T−1∑

i=1

Õ

(
(HD +G)D

(
1

(i+ 1)
1/2

+

√
d

(i+ 1) ρ

)
+

HD2

(i+ 1)

)
1

T

≤ Õ

(
(HD +G)D

(
1√
T

+

√
d

Tρ

)
+

HD2

T

)

≤ Õ

(
(HD +G)D

(
1√
T

+

√
d

Tρ

))

where the second inequality follows from smoothness and substituting
∏T−1

t=i+1 (1− ηt) =
i+1
T−1 . Substituting number of

iterations T = n completes the accuracy proof.

For the unlearning part, we start by showing that the algorithm falls into the template of bounded sensitivity prefix-sum

query release. Recall that the update ut =
∑t

i=1 ((i+ 1)∇ℓ(wi; zi)− i∇ℓ(wi−1; zi)).

The sensitivity is then bounded as,

∥((i+ 1)∇ℓ(wi; z)− i∇ℓ(wi−1; z))− ((i+ 1)∇ℓ(wi; z
′)− i∇ℓ(wi−1; z

′))∥
≤ iH ∥wi − wi−i∥+ 2G

≤ iHηi−1 ∥vi−1 − wi−1∥+ 2G

≤ 2 (HD +G)

where the first inequality follows from smoothness and Lipschitzness of the loss. The second inequality follows from the

update in Algorithm 12 and the last inequality follows from the fact that the iterates remain in the set of diameter D. Hence

the correctness of the unlearning algorithm follows from Theorem 1. For runtime, the training time, in terms of gradient

computations is Θ(n). Therefor, using the fact that the relative unlearning complexity, from Theorem 1, is Õ(ρ), we have

Õ(ρn) bound on expected unlearning runtime.

Lemma 8. The gradient estimation error E

∥∥∥ rt
t+1 −∇L(wt;D)

∥∥∥
2

≤ Õ
(
(HD +G)

2
(

1
t+1 + d

(t+1)2ρ2

))

Proof. Note that dt :=
rt
t+1 comprises of the original gradient estimate from Zhang et al. (2020), say d̃t and the noise added

by the binary tree mechanism, say ξt. Hence,

E ∥dt −∇L(wt; D)∥2 = E

∥∥∥d̃t −∇L(wt; D)
∥∥∥
2

+ E ∥ξt∥2

≤ Õ

(
(HD +G)

2

t+ 1

)
+

log(n)∑

i=1

dσ2

(t+ 1)
2
ρ2

= Õ

(
(HD +G)

2

(
1

t+ 1
+

d

(t+ 1)
2
ρ2

))

where the first inequality follows from Lemma 2 in Zhang et al. (2020) with α = 1, and the fact that in the binary tree

mechanism we add noise of variance σ at most log (n) times; the factor 1/(t+ 1)2 comes because the gradient estimate is

rt/(t+ 1) and rt is the binary tree response. The final equality follows by plugging in the value of σ.

22

From Adaptive Query Release to Machine Unlearning

E.2. Dual Averaging

Algorithm 13 Dual averaging(t0; T)
Input: Dataset S, loss function (w, z) 7→ ℓ(w, z), steps T , {ηt}t,

1: if t0 = 1 then Permute dataset, initialize T , set wt0 = 0 end if

2: for t = 1 to T − 1 do

3: ut =
∑t

i=1∇ℓ(wi; zi)
4: Append(ut, σ; T)
5: rt = GetPrefixSum(t; T)
6: wt+1 = ΠW (w0 − ηtpt)
7: Set(leaf(t), (ut, rt, wt, zt) ; T)
8: end for

Output: ŵ = wT

Proof of Theorem 3. The accuracy guarantee directly follows from Theorem 5.1 in Kairouz et al. (2021), replacing

ϵ/log2(1/δ)2 therein by ρ. To elaborate, we set σ = Õ
(

G2

ρ2

)
as opposed to Õ

(
G2log4(1/δ)

ϵ2

)
, hence substituting it in

the accuracy proof of Theorem 5.1 in Kairouz et al. (2021) gives the claimed guarantee.

For the unlearning part, we start by showing that the algorithm falls into the template of bounded sensitivity prefix query

release.

Recall that the update ut =
∑t

i=1∇ℓ(wt; zi). The sensitivity is simply bounded by Lipschitznes as,

∥∇ℓ(wt; z)−∇ℓ(wt; z
′)∥ ≤ 2G

Hence the correctness of the unlearning algorithm follows from Theorem 1. For runtime, the training time, in terms of

gradient computations is Θ(n). Therefor, using the fact that the relative unlearning complexity, from Theorem 1, is Õ(ρ),

we have Õ(ρn) bound on expected unlearning runtime.

E.3. Convex GLMs with the JL method

Proof of Theorem 4. We start with the accuracy guarantee. Let α ≤ 1 be a parameter to be set later. From the JL

property, with k = O
(
log (n/β) /α2

)
, with probability at least 1 − β, the norm of all data-points in S, ∥Φxi∥ ≤

(1 + α) ∥xi∥ ≤ 2 ∥X∥. Hence, conditioned on the above event, the GLM loss function function is G̃ = 2G ∥X∥-Lipschitz

and H̃ = 4H ∥X∥2-smooth. Let ΦD denote the push-forward measure of D under the map (x, y) 7→ (Φx, y). With

probability at least 1− β, the excess risk is,

E[L(ŵ;D)− L(w∗;D)] = E[L(Φ⊤w̃;D)− L(Φw∗; ΦD)] + E[L(Φw∗; ΦD)− L(w∗;D)]
= E[L(w̃; ΦD)− L(Φw∗; ΦD)] + E[ϕy(⟨Φw∗,Φx⟩)− ϕy (⟨w∗, x⟩)]

≤ Õ

((
G̃+ H̃ ∥w∗∥

)
∥w∗∥

(
1√
n
+

√
k

nρ

))
+

H

2
E |⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|2

≤ Õ

((
G̃+ H̃ ∥w∗∥

)
∥w∗∥

(
1√
n
+

√
k

nρ

)
+

H̃ ∥w∗∥2
k

)

= Õ




(
G̃+ H̃ ∥w∗∥

)
∥w∗∥

√
n

+
H̃1/3G̃2/3 ∥w∗∥4/3 + H̃ ∥w∗∥2

(nρ)2/3




where in the first inequality, we use the accuracy guarantee of VR-Frank Wolfe (Theorem 2) and smoothness of ϕy together

with the fact that w∗ is globally optimal. The second inequality follows from JL property and the last inequality follows by

the setting of k.

23

From Adaptive Query Release to Machine Unlearning

For the in-expectation (over the JL matrix) bound, note that in the worst-case, L(ŵ;D)− L(w∗;D) ≤ G ∥ŵ − w∗∥. From

boundedness of the range of (typical) JL maps, ∥ŵ − w∗∥ = poly(n, d) w.p. 1. Hence, taking the failure probability β to be

small enough suffices to be give an expectation bound which is same as above upto polylogarithmic factors.

We now proceed to the unlearning guarantee. We first remark that the correctness of the unlearning algorithm (see Lemma

4) holds as long as the learning algorithm uses prefix-sum queries, even with unbounded sensitivity. Hence, the correctness

follows. We now proceed to bound the unlearning runtime. We first bound the TV stability parameter of the learning

algorithm using Lemma 9. The setting of noise variance σ in Algorithm 4 together with the stability guarantee of Theorem 2

ensures that γ(H̃, G̃) ≤ τ
2 . Hence the JL method satisfies ρ-TV stability. Now, Lemma 6 gives us that the probability of

retraining is at most Õ(ρ). Since the training time, in terms of gradient computations is Θ(n), we have Õ(ρn) bound on

expected unlearning runtime.

Proof of Theorem 5. We start with the accuracy guarantee; let α ≤ 1 be a parameter to be set later. From the JL property, with

k = O
(
log (n/β) /α2

)
, with probability at least 1− β, the norm of all data-points in S, ∥Φxi∥ ≤ (1 + α) ∥xi∥ ≤ 2 ∥X∥.

Hence, conditioned on the above event, the GLM loss function function is G̃ = 2G ∥X∥-Lipschitz. Let ΦD denote the

push-forward measure of D under the map (x, y) 7→ (Φx, y). With probability at least 1− β, the excess risk is,

E[L(ŵ;D)− L(w∗;D)] = E[L(Φ⊤w̃;D)− L(Φw∗; ΦD)] + E[L(Φw∗; ΦD)− L(w∗;D)]
= E[L(w̃; ΦD)− L(Φw∗; ΦD)] + E[ϕy(⟨Φw∗,Φx⟩)− ϕy (⟨w∗, x⟩)]

≤ Õ


G̃ ∥w∗∥


 1√

n
+

√√
k

nρ




+GE |⟨Φx,Φw∗⟩ − ⟨x,w∗⟩|

≤ Õ


G̃ ∥w∗∥


 1√

n
+

√√
k

nρ


+

G̃ ∥w∗∥√
k




≤ Õ

(
G̃ ∥w∗∥

(
1√
n
+

1

(nρ)
1/3

))

where in the first inequality, we use the accuracy guarantee of Dual Averaging (Theorem 3) and Lipschitzness of ϕy together.

The second inequality follows from JL property and the last inequality follows by the setting of k. As in Theorem 4, the

same bound as above for in-expectation (over the JL matrix) holds follows by taking the failure probability β to be small

enough.

The correctness and runtime of the unlearning algorithm follows as in the proof of Theorem 4.

Lemma 9. Suppose A is an algorithm which when run on H̃-smooth and G̃-Lipschitz functions is γ(H̃, G̃)-TV stable,

then the JL method with with k = O (log (2n/τ)) and A as input, run on H-smooth and G-Lipschitz GLMs, satisfies
τ
2 + γ

(
2G ∥X∥ , 4H ∥X∥2

)
-TV stability.

Proof. Given a dataset S let GS be the uniform bound on Lipschitzness parameter of the class of loss functions

{w 7→ ℓ(w; z)}z∈S . We define HS similarly. Let α ≤ 1 be a parameter to be set later. From the JL property, with

k = O (log (n/β)), with probability at least 1 − β, the norm of all data-points in S, ∥Φxi∥ ≤ 2 ∥X∥ - we denote this

event as EJL. Since the loss function is a GLM, we have that conditioned on EJL, the Lipschitzness and smoothness

parameters GS and HS are bounded by 2G ∥X∥ and 2H ∥X∥2 respectively. We therefore get a stability parameter

γ̃ := γ
(
2G ∥X∥ , 4H ∥X∥2

)
.

We set β = ρ/2. We now incorporate the failure probability in the failure guarantee. Let PΦ and QΦ denote the probability

distributions of the output on datasets S and S′. By definition of TV distance,

24

From Adaptive Query Release to Machine Unlearning

TV(PΦ, QΦ) = sup
E

Pw∼P (w ∈ E)− Pw∼Q (w ∈ E)

= sup
E

(
Pw∼P (w ∈ E|EJL)P(EJL) + Pw∼P (w ∈ E|E′

JL)P(E
′
JL)

− Pw∼Q (w ∈ E|EJL)P(EJL)− Pw∼Q (w ∈ E|E′
JL)P(E

′
JL)
)

≤
(
sup
E

Pw∼P (w ∈ E|EJL)− Pw∼Q (w ∈ E|EJL)

)
P(EJL)

+

(
sup
E

Pw∼P (w ∈ E|E′
JL)− Pw∼Q (w ∈ E|E′

JL)

)
P(E′

JL)

≤
(
sup
E

Pw∼P (w ∈ E|EJL)− Pw∼Q (w ∈ E|EJL)

)
+ ρ/2

≤ γ̃ + ρ/2

which completes the proof.

F. Missing details from Section 6

In this section, we present additional details and proofs of results in Section 6.

F.1. Weak Unlearning

Proof of Theorem 6. The first claim, weak unlearning guarantee of the unlearning algorithm, follows mainly from Lemma

4. Specifically, it shows that conditioned on the permutation of the dataset (in this case, since the dataset is not permuted, the

permutation is simply identity), the distribution over the responses (rb)b in the tree after unlearning, is transported to the

distribution of the output under S′. Since the model output is a deterministic function of the responses, (weak unlearning)

correctness follows for one request. For the streaming setting, we simply apply the above inductively over the requests.

The second claim follows since, at every time point, the executed algorithm is indistinguishable from the base algorithm

executed over the current dataset. Moreover, by assumption, the base algorithm, is anytime, i.e. no parameter is set which

depends on the size of the dataset. Hence, the accuracy guarantee follows. For the last claim about the number of retraining,

firstly, as motivated, by the assumption that the algorithm is incremental, the insertions are handled in O(1) time. For the

unlearning requests, note that from ρ-TV stability at every point, using Lemma 6, we have a Õ(ρ) probability of retraining.

We now apply Proposition 8 from Ullah et al. (2021) which converts this to a bound on the expected number of times a

retraining is triggered. For V unlearning requests, this gives us a Õ(ρV) bound on the number of retraining triggers.

F.2. Exact Unlearning

Another way to extend the results for one unlearning request to dynamic streams is to modify the definition of unlearning

(Definition 1) to also hold for insertions, as is done in Ullah et al. (2021). This allows us to apply the same tree based

unlearning technique when handing insertions. Specifically, upon inserting a new point, we randomly choose a leaf and

replace the leaf with the inserted point, and then insert the chosen leaf as the last leaf in the tree. We have the following

guarantee for this method.

Theorem 8. In the dynamic streaming setting with R requests, using anytime learning and unlearning algorithms, Algorithm

2 and 3, the following are true.

1. Exact unlearning at every time point in the stream.

2. The accuracy of the output ŵi at time point i, with corresponding dataset Si, is

E[L(ŵi;D)]−min
w

L(w;D) = α(ρ, |Si| ;P)

3. The total number of times, a retraining is triggered, for R requests is at most O(ρR)

25

From Adaptive Query Release to Machine Unlearning

Proof. The arguments are similar to that of the proof of Theorem 6. The first part follows by applying the correctness of the

unlearning algorithm, Theorem 1, inductively over the stream. We remark that the handling the insertions in the same way

as deletions hardly changes anything in the proofs. The second claim follows from the anytime nature of the algorithm and

by assumption on the accuracy guarantee. Finally, using the probability of retraining in Lemma 6 and Proposition 8 in Ullah

et al. (2021) gives us the stated number of retraining triggers.

26

