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Abstract

We formalize the problem of machine unlearn-
ing as design of efficient unlearning algorithms
corresponding to learning algorithms which per-
form a selection of adaptive queries from struc-
tured query classes. We give efficient unlearn-
ing algorithms for linear and prefix-sum query
classes. As applications, we show that unlearn-
ing in many problems, in particular, stochastic
convex optimization (SCO), can be reduced to
the above, yielding improved guarantees for the
problem. In particular, for smooth Lipschitz
losses and any p > 0, our results yield an un-
learning algorithm with excess population risk of

O(+ 7=+ f) with unlearning query (gradient)

complexity O( p - Retraining Complexity), where
d is the model dimensionality and n is the initial
number of samples. For non-smooth Lipschitz
losses, we give an unlearning algorithm with ex-
cess population risk 6(ﬁ + (%g) 1/2) with the
same unlearning query (gradient) complexity. Fur-
thermore, in the special case of Generalized Lin-
ear Models (GLMs), such as those in linear and
logistic regression, we get dimension-independent
rates ofO(ﬁ +m )2/3) and O( 7t (m))m)
for smooth Lipschitz and non-smooth Lipschitz
losses respectively. Finally, we give generaliza-
tions of the above from one unlearning request
to dynamic streams consisting of insertions and
deletions.

1. Introduction

The problem of machine unlearning is concerned with up-
dating trained machine learning models upon request of
deletions to the training dataset. This problem has recently
gained attention owing to various data privacy laws such
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as General Data Protection Regulation (GDPR), California
Consumer Act (CCA) among others, which empower users
to make such requests to the entity possessing user data.
The entity is then required to update the state of the system
such that it is indistinguishable to the state had the user
data been absent to begin with. While as of now, there is
no universally accepted definition of indistinguishibility as
the unlearning criterion, in this work, we consider the most
strict definition, called exact unlearning (see Definition 1).

Motivating Example: The main objective of our work is to
identify algorithmic design principles for unlearning such
that it is more efficient than retraining, the naive baseline
method. Towards this, we first discuss the example of un-
learning for Gradient Descent (GD) method, which will
highlight the key challenges as well as foreshadow the for-
mal setup and techniques. GD and its variants are extremely
popular optimization methods with numerous applications
in machine learning and beyond. In a machine learning
context, it is typically used to minimize the training loss,
L(w; S) = L3 (w;z) where S = {z};_, is the
training dataset and w, the model. Starting from an initial
model w, in each iteration, the model is updated as:

~ 1 &
wrp1 = wg —NVL(w; S) =wy — 1 (n Z Ve (wy; zl)>
i=1

where 7 is the learning rate. After training, a data-point,
say z, without loss of generality, is requested to be un-
learnt and so the updated training set is S’ = {21}7;11
We now need to apply an efficient unlearning algorithm
such that its output is equal to that of running GD on S’.
Observe that the first iteration of GD is simple enough
to be unlearnt efficiently by computing the new gradient
VL(wy;S") = -5 (nVL(wy; S) — VI (w1;2,)) and up-
dating as wh, = wy — nVL(wy;S"). However, in the second
iteration (and onwards), the gradient is computed on w}
which can be different from w9 and the above adjustment
can no longer be applied and one may need to retrain from
here onwards. This captures a key challenge for unlearning
in problems solved by simple iterative procedures such as
GD - adaptivity — that is, the gradients (or more generally,
the queries) computed in later iteration depend on the re-
sult of the previous iterations. We systematically formalize
such procedures and design efficient unlearning algorithms
for them.
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1.1. Our Results and Techniques

Learning/Unlearning as Query Release: Iterative proce-
dures are an integral constituent of the algorithmic toolkit
for solving machine learning problems and beyond. As in
the case of GD above, these often consist of a sequence of
simple but adaptive computations. The simple computations
are often efficiently undo-able (as in the first iteration of
GD) but its adaptive nature — change of result of one iter-
ation changing the trajectory of the algorithm — makes it
difficult to undo computation, or unlearn, efficiently.

As opposed to designing unlearning (and learning) algo-
rithms for specific (machine learning) problems, we study
the design of unlearning algorithms corresponding to (a
class of) learning algorithms. We formalize this by con-
sidering learning algorithms which perform adaptive query
release on datasets. Specifically, this consists of a selection
of adaptive queries from structured classes like linear and
prefix-sum queries (see Section 3 for details). The above ex-
ample of GD is an instance of linear query, since the query,
which is the average gradient = 7" | V/(wy; 2;), is a sum
of functions of data-points. With this view, we study how to
design efficient unlearning algorithms for such methods.

We use efficiency in the sense of number of queries made
(query complexity), ignoring the use of other resources, e.g.,
space, computation for selection of queries, etc. To elabo-
rate on why this is interesting, firstly note that this does not
make the problem trivial, in the sense that even with unlim-
ited access to other resources, it is still challenging do design
an unlearning algorithm with query complexity smaller than
that of retraining (the naive baseline). Secondly, let us re-
visit the motivation from solving optimization problems.
The standard model to measure computation in optimization
is the number of gradient queries a method makes for a
target accuracy, often abstracted in an oracle-based setup
(Nemirovskij and Yudin, 1983). Importantly, this setup im-
poses no constraints on other resources, yet it witnesses the
optimality of well-known simple procedures like (variants
of) GD. We follow this paradigm, and as applications of our
results to Stochastic Convex Optimization (SCO), we make
progress on the fundamental question of understanding the
gradient complexity of unlearning in SCO. Interestingly, our
proposed unlearning procedures are simple enough that the
improvement over retraining in terms of query complexity
also applies even with accounting for the (arithmetic) com-
plexity of all other operations in the learning and unlearning
methods.

Linear queries: The simplest query class we consider
is that of linear queries (details deferred to Appendix B).
Herein, we show that the prior work of Ullah et al. (2021),
which focused on unlearning in SCO and was limited to the
stochastic gradient method, can be easily extended to gen-
eral linear queries. This observation yields unlearning algo-

rithms for algorithms for Federated Optimization/Learning
and k-means clustering. Herein, we give a p-TV stable (see
Definition 3) learning procedure with 7" adaptive queries
and a corresponding unlearning procedure with a O(\/T,o)
relative unlearning complexity (the ratio of unlearning and
retraining complexity; see Definition 5).

Prefix-sum queries: Our main contribution is the case when
we consider the class of prefix-sum queries. These are a
sub-class of interval queries which have been extensively
studied in differential privacy and are classically solved by
the binary tree mechanism (Dwork et al., 2010). We note
in passing that for differential privacy, the purpose of the
tree is to enable a tight privacy accounting and no explicit
tree may be maintained. In contrast, for unlearning, we
show that maintaining the binary tree data structure aids
for efficient unlearning. We give a binary-tree based p-TV
stable learning procedure and a corresponding unlearning
procedure with a O(p) relative unlearning complexity.

Unlearning in Stochastic Convex Optimization (SCO):
Our primary motivation for considering prefix-sum queries
is its application to unlearning in SCO (see Section 2 for
preliminaries).

1) Smooth SCO: The problem of unlearning in smooth SCO
was studied in Ullah et al. (2021) which proposed algorithms

~ va\2/3
with excess population risk of O (\}ﬁ + (r,f) > where
p is the relative unlearning complexity. We show that using
a variant of variance-reduced Frank-Wolfe (Zhang et al.,

2020), which uses prefix-sum queries, yields an improved
excess population risk of O (ﬁ =+ X—g). This corresponds

t0 O (pn) expected gradient computations upon unlearning.

2) Non-smooth SCO: In the non-smooth setting, which
was not covered in the prior works, we give an algorithm
based on Dual Averaging (Nesterov, 2009), which again
uses prefix-sum query access, and thus fits into the frame-
work. This algorithm gives us an excess population risk of

Vnp
of unlearning.

0] (ﬁ + #) with 5(pn) expected gradient complexity

3) Generalized Linear Models (GLM): GLMs are one of
most basic machine learning problems which include the
squared loss (in linear regression), logistic loss (in logistic
regression), hinge loss (support vector machines), etc. We
study unlearning in two classes of GLMs (see below), for
which we combine recently proposed techniques based on
dimensionality reduction (Arora et al., 2022) with the above
prefix-sum query algorithms to get the following dimension-
independent rates.

3(a) Smooth GLM: For the smooth convex GLM setting,
we combine Johnson-Lindenstrauss transform with variance

reduced Frank-Wolfe to get O(% + W excess pop-
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‘ described in the preceding section.Besides this, the exact

unlearning problem has been studied for k-means clustering

(Ginart et al., 2019) and random forests (Brophy and Lowd,
2021). The work of Bourtoule et al. (2021) proposes a gen-

eral methodology for exact unlearning for deep learning

Problem | Base algorithm | Rate
Smooth, Lipschitz-SCO VR-FW J+ %f
4
Lipschitz SCO DA 144
Smooth, Lipschitz GLM JL + VR-FW Tn + R
Lipschitz GLM JL+ DA ﬁ i (np§1/3

methods. Their focus is to devise practical methods and

Table 1. Excess population risk guarantees for various problems as
well as the base algorithm; p: relative unlearning complexity (see
Definition 5), VR-FW: Variance-reduced Frank Wolfe, DA: Dual
averaging, JL: Johnson-Lindenstrauss transform.

ulation risk. Note that we get no overhead in statistical
rate even with very small relative unlearning complexity,
p ~ n~ 4 This class of smooth GLMs contains the well-
studied problem of logistic regression. Hence, our result
demonstrates that it is possible to unlearn logistic regression
with sub-linear, specifically O(n?/*), unlearning complex-
ity with no sacrifice in the statistical rate.

3(b) Lipschitz GLM: Similarly, for the Lipschitz convex
GLM setting, we combine Johnson-Lindenstrauss transform

. . . . ~ 1 1
with Dual Averaging yielding a rate of O (ﬁ + W)'
Please see Table 1 for a summary of above results.

SCO in dynamic streams: Finally, we consider SCO in
dynamic streams where we observe a sequence of insertions
and deletions and are supposed to produce outputs after each
time-point. In this case, we present two methods: one which
satisfies the exact unlearning guarantee with worse update
time, the other which satisfies weak unlearning — which only
requires the model (and not metadata) to be indistinguish-
able (see Definition 2) — with improved update time. The
exact unlearning method is inspired from the work of Ullah
et al. (2021) which dealt with insertions similar to deletions.
The weak unlearning method is motivated from the obser-
vation that the above may be too pessimistic. To elaborate,
inserting a new data item does not warrant a (unlearning)
guarantee that the algorithm’s state be indistinguishable to
the case if the point was not inserted. Hence, insertions
should require smaller update time which is indeed the case
for our proposed methods.

1.2. Related work

Our work is a direct follow up of Ullah et al. (2021) which
proposed the framework of Total Variation (TV) stability
and maximal coupling for the exact machine unlearning
problem. They applied this to unlearning in smooth stochas-

tic convex optimization (SCO) and obtained a guarantee

2
of ﬁ + (;{—g) % on excess population risk, where n is the

number of data samples, d, model dimensionality and p is
the relative unlearning complexity (see Definition 5). We
improve upon the results in that work in multiple ways as

they do not provide theoretical guarantees on accuracy, even
in simple settings. Finally, there are works which consider
unlearning in SCO, however they use an approximate notion
of unlearning inspired from differential privacy (Guo et al.,
2019; Neel et al., 2021; Sekhari et al., 2021; Gupta et al.,
2021), and therefore are incomparable to our work.

2. Problem Setup and preliminaries

Let Z be the data space, WV be the model space and M be
the meta-data space, where meta-data is additional informa-
tion a learning algorithm may save to aid unlearning. We
consider a learning algorithm as amap A : Z* — W x M
and an unlearning algorithm asamap U : W x M x Z —
W x M. We use A and U to denote the first output (which
belongs to W) of A and U respectively.

We recall the definition of exact unlearning which requires
that the entire state after unlearning be indistinguishable
from the state obtained if the learning algorithm were ap-
plied to the dataset without the deleted point.

Definition 1 (Exact unlearning). A procedure (A, U) satis-
fies exact unlearning if for all datasets S, all z € Z, and for
all events £ C W x M, we have, P (A (S\{z}) € &) =
P(U(A(S),2) € &)

We next define weak unlearning wherein only the model
output and not the entire state is required to be indistinguish-
able.

Definition 2 (Weak unlearning). A procedure (A, U) satis-
fies weak unlearning if for all all datasets S, all z € Z, and
Sorall events E C W x M, we have, P (A (S\ {z}) € £) =
P U (A(S),2) €€)

Unlearning request: We consider the setting where we
start with a dataset of n samples and observe one unlearning
request. We assume that the choice of unlearning request is
oblivious to the learning process. In Section 6, we generalize
our result to a streaming setting of requests.

Total Variation stability, maximal coupling and efficient
unlearning: The Total Variation (TV) distance between two
probability distributions P and () is

TV(P,Q) |P(&) —Q(E)].
Next, we define Total Variation (TV) stability to motivate

algorithmic techniques for efficient unlearning.

Definition 3. An algorithm A is said to be p Total Vari-
ation (TV) stable if for all datasets S and S’ differing in

— sup
~ measurable £
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one point, i.e. |SAS'| = 1, the total variation distance,

TV (A(S), A(S) < p

Given two distributions P and @, a coupling is a joint
distribution 7 with marginals P and (). Furthermore, a
maximal coupling is a coupling 7 such that the disagree-
ment probability P, ) {z # y} = TV(P,Q). In the
unlearning context, P = A(.S), the output on initial dataset,
and @ = A(S’), the output on the updated dataset. Hence,
the unlearning problem simply becomes about transport-
ing P to @ with small computational cost, akin to optimal
transport (Villani, 2009). Furthermore, observe that when
sampled from a maximal coupling between P and @), by def-
inition, we get the same sample for both P and @), expect
with probability p, and yet satisfying the exact unlearning
criterion. The main idea is that for certain learning algo-
rithms of interest, during unlearning, we can efficiently
construct a (near) maximal coupling of P and (), and so the
same model output from P suffices for ), most of the times.
In particular, the fraction of times that we need change the
model is (roughly) the TV-stability parameter p of the learn-
ing algorithm. The goal, therefore, is to design an (accurate)
TV-stable learning algorithm and a corresponding efficient
coupling-based unlearning algorithm. In this work, we use
the technique of reflection coupling described below.

Reflection Coupling (Lindvall and Rogers, 1986): Re-
flection Coupling is a classical technique in probability to
maximally couple symmetric probability distributions. Con-
sider two probability distributions P and ) with means «
and u’ and let r be a sample from P. The process involves a
rejection sampling step on the two distributions and sample
7 (see line 13 in in Algorithm 3). If it results in accept, we
use the same 7 as the sample from (), otherwise, we apply
the following simple map:

Reflect(u,u’,7) = u —u’ + 1,
which gives the sample from @), see line 16 in Algorithm 3.

Our algorithmic techniques borrow tools from differential
privacy (Dwork et al., 2014) such as its relationship with
Total Variation stability; we describe these in Appendix A.

Stochastic Convex Optimization (SCO): SCO is the domi-
nant framework for computationally-efficient machine learn-
ing. Consider a closed convex (constraint) set YW C R? and
let D denote its diameter. Let £ : WW x Z — R be a loss
function, which is convex in its first parameter Vz € Z.
Given n i.i.d. points from an unknown probability distribu-
tion D over Z, the goal is to devise an algorithm, the output
of which has small population risk, defined as

L(w; D) := ]EDZ(w;z).

The excess population risk is then L(w; D) — L(w*; D)
where w* denotes a population risk minimizer over W.

Algorithm 1 Template learning algorithm

Input: Dataset S, steps 7', query functions {¢:(-)},«p
where ¢; € Q, a query class, update functions
{U(-)}, < selector function S(-)

. Initialize model w, € W
:fort=1toT — 1do

1
2
3:  Query dataset u; = ¢ <{wi}i<t , S)
4
5

Update wy1 = Ur({wi}; <, , ut)
: end for

Output: ©w =38 ({wt}th)

Generalized Linear Models (GLM): Generalized Linear
Models (GLMs) are loss functions popularly encountered
in supervised learning problems, like linear and logistic
regression. Herein, ¢(w; (z,y)) = ¢, ((w, z)), where ¢, :
R — R is some link function. We use ||X|| to denote the
radius bound on data points, i.e. forz € X C R, ||z <
[[X]]. In this case, we consider the unconstrained setup
ie. W = RY as it allows to get dimension-independent
rates for GLMs, similar to what happens under differential
privacy (Jain and Thakurta, 2014; Arora et al., 2022).

We introduce the Johnson-Lindenstrauss property below
which is crucial to our construction.

Definition 4 (Johnson-Lindenstrauss property). A ran-
dom matrix ® € RF*9 satisfies (B3,7)-JL property if
for any u,v € R? with probability at least 1 — #,
P (|(®u, Pv)—(u, v)| = B [|u] [|v]]) <.

There exists many efficient constructions of such random
matrices (Nelson, 2011).

3. Unlearning for Adaptive Query Release

We now set up the framework of adaptive query release,
which is a lens to view (existing) iterative learning proce-
dures; this view is useful in our design of corresponding
unlearning algorithms. Iterative procedures run on datasets
consist of a sequence of interactions with the dataset; each
interaction computes a certain function, or query, on the
dataset. The chosen query is typically adaptive, i.e., de-
pendent on the prior query outputs. We consider iterative
learning procedures which are composed of adaptive queries
from a specified query class. Formally, consider a query
class @ C WW'*Z": herein, each query in Q is a function
of a sequence of {w;},_, (typically, prior query outputs),
and the dataset .S, with output in V. With this view, we give
a general template of a learning procedure as Algorithm 1,
where {U;}, and S are the update and selector functions
internal to the algorithm.

Query model: We describe the query model which we use
to measure computational complexity. Under the model, a
query function ¢({w}, , S) takes |.S| unit computations (or
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queries, for brevity) for any ¢ and {w;},. In our applica-
tions to SCO, this will correspond to the gradient oracle
complexity.

Our algorithmic approach to unlearning is rooted in the
relationship between TV stability and maximal couplings.
With this view, for a specified query class, we have the
following requirements.

1. TV-stability: We want a p-TV stable “modification” of
the learning Algorithm 1, in the sense that it responds to
the queries (line 3) while satisfying TV stability.

2. Efficient unlearning algorithm: We measure efficiency
as the average number of queries the unlearning algorithm
makes relative to the learning algorithm (retraining), de-
fined as follows.

Definition 5 (Relative Unlearning Complexity). The Rel-
ative Unlearning Complexity is defined as,

E(a,u) [Query complexity of unlearning algorithm U]

Ea [Query complexity of learning algorithm A

For a p-TV stable learning algorithm, we want that the
relative unlearning complexity is (close to) p. This is mo-
tivated from the relationship between maximal coupling
and TV distance. In the following, our proposed unlearn-
ing algorithm constructs a (near) maximal coupling of
the learning algorithm’s output under the original and
updated dataset. This means that unlearning algorithm
changes the original output (under the original dataset)
with probability at most p — in this case, the unlearning
algorithm makes a number of queries akin to retraining.
In the other case when it does change the output, it makes
a small (ideally, constant) number of queries. The above
imply that relative unlearning complexity is (close to) p.

We note that relative unlearning complexity, in itself,
does not completely capture if the unlearning algorithm
is good, since it may be the case that the corresponding
learning algorithm is computationally more expensive
than other existing methods. However, in our applications
to SCO (Section 5), our learning algorithms are linear
time, so the denominator, in the definition above, is as
small as it can be (asymptotically), i.e. O(n).

3. Accuracy: We will primarily be concerned with correct-
ness of the unlearning algorithm and its efficiency. In the
applications (Section 5), we will give accuracy guarantees
for specific problems, where we will see our proposed
TV stable modified algorithms are still accurate.

4. Prefix-sum Queries

We now consider prefix-sum queries, which is the main con-
tribution of this work. The reason for this choice is that two
powerful (family of) algorithms for SCO, Dual Averaging

and Recursive Variance Reduction based methods, fit into
this template (detailed in Section 5). We start by defining a
prefix-sum query.

Definition 6. A set of queries {q;},~, where g, : W' x
Z" — W are called prefix-sum queries if q1 (w1, S) =
pi(wi,z1) and for all t > 1, qt({wi}igt,S)
qr—1({wi}; oy, S) + pt({wi}igt , zt)) for some functions
{pt}i>) where p : W* x Z = W.

Simply put, prefix-sum queries, sequentially query new data
points and adds them to the previous accumulated query. A
simple example is computing partial sums of data points
(21,21 + 22, ...). Note that in the above definition, we can
equivalently represent the prefix-sum queries using the se-
quence {p; },. We also assume that the queries have bounded
sensitivity, defined as follows.

Definition 7. A query q : W* x Z™ =W is B-sensitive if
sup  sup lg({wi};, ) — g ({wi}; . S)| < B.
{w;},; S,8":|SAS"|=1

We note that the bounded sensitivity condition is satisfied in
a variety of applications; see Section 5.

4.1. Learning with Binary Tree Data-Structure

The learning algorithm, given as Algorithm 2, is based on
answering the adaptive prefix-sum queries with the binary
tree mechanism (Dwork et al., 2010). For n samples (as-
sume n is a power of two, otherwise we can append dummy
“zero” samples without any change in asymptotic complex-
ity), the binary tree mechanism constructs a complete binary
tree 7 with the leaf nodes corresponding to the data sam-
ples. The key idea in the binary tree mechanism is that
instead of adding fresh independent noise to each prefix-
sum query, it is better to add correlated noise, where the
correlation structure is described by a binary tree. For ex-
ample, suppose we want to release the seventh prefix-sum
query, ZZ:1 pi({w;};, %), then consider the dyadic de-
composition of 7 as 4,2 and 1, and release the sum,

4 6
(Zpi({wj}jﬁi ’Zi) + 51) + (Zpi({wj}jgi ) 21)52)
+ (p7({wj}j§i $2i) + 53)7

where £;’s denote the added noise, which may have also
been used in prior prefix-sum query responses. See Figure 1
(left) for a simplified description of the process.

We index the nodes of the tree using using binary strings
B = {0,1}"*8"™ which describes the path from the root.
Let the tree 7 = {vp }, p Which denotes the contents stored
by the learning algorithm. Herein, each node contains the
tuple (u,r,w, z) where u € R? is the query response, r €
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R is the noisy response, w € R? a model and z € Z a data
point. In fact, only the leaf nodes store the model and data
sample. The size of the tree is the space complexity of the
learning procedure. Finally, define leaf : [n] — {0, 1}'°&("
which gives the binary representation of the input leaf node.

This binary tree data structure supports the following opera-
tions:

1. Append(u,o;T): Add a new leaf to 7, which consists
of setting its query response and noisy query response to
u, and u + N (0, o21) respectively. Further, update tree to
add u to up, corresponding to nodes vj, in the path from
this leaf to root, and add noise to their noisy response 7
for nodes which are left child in the path.

2. GetPrefixSum(¢; T), where ¢ € N: Get the ¢-th noisy
response from 7, which consists of traversing the tree
from t¢-th leaf to root, and adding the noisy responses of
nodes which are left child.

3. Get(b; T) where b € {0,1}'°6™): Get all items in the
vertex of 7 indexed by b.

4. Set(b,v; T) where b € {0,1}"°5(™); Set the contents of
vertex b in the 7 as v.

Following Guha Thakurta and Smith (2013), we give
pseudo-codes of the above operations in Appendix C, with
minor modifications to aid the unlearning process.

Algorithm 2 Treelearn(to; T)
Input: Dataset S, steps T, B-sensitive prefix-sum queries
{p+},<r, update functions {U;}, ., noise std. &

1: if tg = 1 then Permute dataset and initialize 7 end if
(-, wyy, ) = Get(leaf(to); T)
3: fort =to to |S| —1do
4w =p({widicy s 2t)
5: Append(u,0;7T)
6.
7

N

ry = GetPrefixSum(t; T)

: Wi41 = Ut ({wt}gt 5 Tt)
8:  Set(leaf(t), (ug, re, we, 2);T)
9: end for
Output: ©w =S ({w:},)

4.2. Unlearning by Maximally Coupling Binary Trees

The unlearning Algorithm 3 is based on constructing a (near)
maximal coupling of the binary trees under current and
updated dataset. Let z; be the element to be deleted and let
v, be the leaf node which contains z; (we use z in place
of z; from here on, for simplicity). During unlearning, we
simulate (roughly speaking) the dynamics of the learning

algorithm if the deleted point was not present to begin with.

In that case, in place of the deleted point, some other point
would have been used. Now, since the dataset was randomly

Algorithm 3 TreeUnlearn

Input: z;: data point to be deleted, 7 internal tree data-
structure saved during learning

s = leaf(j) and I = leaf(|S])

(,,w,z) = Get(s;T) and (-, -,-,2") = Get([;T)
9=pi{we}y<,r2) and g' = pj({wg} <, 2)

Let path = {l — -+ — root} be the path from [ to
root.

5: for b € path do up = up — ¢’ end for

6: Remove node [ from 7.

7: Letb=sandct =1
8
9

B e

. if j = |S| then let b = () end if
: while b # () do
10: (u,r,-,-) = Get(b;T)
1: v=u—g+g
12: i Unif (0,1) < 220l g

- ¢'N‘(u/fg2n)(7)
13: if b = s then Set(b, (v/,7,w,2’);T) else then
Set(b, (u',7,0,0);T) end if
14:  else
15: r’ = Reflect(u, v, 7)
16: if b = s then
17: Set(b; (u/,7',0,2");T)
18: w' = U, ({wq}q<b , GetPrefixSum(j; 7'))
19: Set(b, (v, 7, w', 2);T)
20: else
21 Set(b, (', ", 0,0); T)
22: end if
23: TreeLearn(j + ct; T') /#/ Continue Retraining
24: break
25:  endif

26:  if bis left sibling then ct = ct + 2/5I=1I=1 end if
27:  Set (new) b as binary representation of parent of b
28: end while

29: Update dataset S = S\ {z;}

Output: @ = S({ws},)

permuted, every point is equally likely to have been used,
and thus we can use the point 2’ in the last leaf node, say
vy, in the tree — this choice of the last point is important for
unlearning efficiency. Firstly, the computations associated
with the last point 2’ needs to be undone — towards this, we
update the contents of the nodes in the path from node v;
to root (line 5), finally removing node v; from the tree (line
6). Then, we need to replace all the computations which
used the deleted point z with the same computation under
Z'. Since the learning algorithm was based on the binary
tree mechanism, the point z was only explicitly used in the
nodes lying on the path from leaf v, to the root (so, at most
log (n) nodes). We say explicitly above because due to the
adaptive nature of the process, in principle, all nodes after v
depend on it, in the sense that their contents would change
if the response in v5 were to change. However, importantly,
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Figure 1. A simplified schematic of the learning (left) and unlearning (right) procedures for prefix-sum queries. In the left, the leaves

contain (noisy, if

adds the not-noised values of its children, where as others add noise to it. On the right, the deleted point =, is replaced with
(see Algorithm 3 for details) and performing Rejection Sampling (abbreviated RS;, where

amounts to adjusting the queries with —¢g +

) prefix-sum queries applied on the randomly permuted data-point (z;’s) below it. The intermediate nodes with +

which

4’s indicates the order of occurrence of sequence of rejection samplings) along the height of the tree.

the binary search structure of our learning algorithm and
our coupling technique (details below) would enable us to
(mostly) only care about explicit computations.

We first compute two new queries, under the data point
z and 2’, with responses g = p;({wq},,,%) and g =
pj({wq}, <, #) respectively (line 3). Starting with leaf
node vs, we update the original unperturbed prefix-sum
query response under z i.e. u to what it would have been un-
der data-point z’: v’ = u—g'+g¢ (line 11). Further, since the
training method adds noise N'(0, o%I) to u to produce origi-
nal noisy response r, we now need to produce a sample from
N (v, o21) to satisfy exact unlearning. Naively, we could
simply get a fresh independent sample from N (u’, o%1),
however, this would change the noisy response 7, and hence
require all subsequent computations to be redone (the adap-
tive nature). So, ideally, we want to reuse the same r and
yet generate a sample from N (u’, oT). This is precisely
the problem of constructing a maximal coupling, discussed
in the Section 2, wherein we also discussed the method of
reflection coupling to do it.

This amounts to doing a rejection sampling which (roughly)
ascertains if response 7 is still sufficient under the new dis-
tribution NV'(u/, o2T). Specifically we compute the ratio of
the probability densities at r under the noise added to «
¢N(u102T>(T)
¢N(“',a2u)('r)
sampled Unif(0,1); if it results in accept, we move to par-

ent of the node v, and repeat. If any step fails, we reflect
which generates a different noisy response 7/, and continue
retraining from the next leaf w.r.t. the post order traversal
of the tree (the variable ct in Algorithm 3 keeps track of this
next node). See Figure 1 for a simplified description of the
process.

and v/, i.e. and compare it against a randomly

The main result of this section is as follows.

Theorem 1. The following are true for Algorithms 2 and 3,

1. The learning Algorithm 2 with 02 = 64B%log” (n)

fies p-TV stability.

satis-

2. The corresponding unlearning Algorithm 3 satisfies
exact unlearning.

3. The relative unlearning complexity is O (p)

As discussed in the preceding section, in the Theorem above,
we have all the properties we needed with the unlearning
process. We now move on to applications and give accuracy
guarantees.

5. Applications

In the following, we describe some problems and learning
algorithms. The corresponding unlearning algorithms and
its correctness simply follow as application of the result
of the preceding section, provided we show that it uses
a bounded sensitivity prefix-sum query. The only other
thing to show is the accuracy guarantee of the TV stable
modification of the learning algorithm (Algorithm 2).

From here on, we use runtime to mean gradient complex-
ity as is standard in convex optimization (Nemirovskij and
Yudin, 1983). But, as pointed out before, our proposed
unlearning algorithm yields similar improvements over re-
training, even accounting for other operations in the method.

5.1. Smooth SCO with Variance Reduced Frank-Wolfe

We assume that the loss function w — ¢(wj; z) is H-smooth
and G-Lipschitz for all z'. The algorithm we use is variance
reduced Frank-Wolfe method where the variance reduced
gradient estimate u; is the Hybrid-SARAH estimate (Tran-

'A real valued function z > f(x) is G-Lipschitz
and H-smooth if |f(z1)— f(z2)] < G|lz1— 22| an
IV f(z1) — Vf(z2)|| < H||z1 — 2]| respectively.



From Adaptive Query Release to Machine Unlearning

Dinh et al., 2019) with v =
= (1 - ’Yt) (ut—1 + VL(we; 2¢) —

14
737 given as,

Z (G4 1) Vl(wi; z:) — iVE(wi—1; 2:))

We show that the above is a prefix sum query with sensitivity
B = 2(HD + G), thus fits into our framework. The full
pseudo-code is given as Algorithm 12 in Appendix E. We
state the main result below where the accuracy guarantee
follows from modifications to the analysis in Zhang et al.
(2020).

Theorem 2. Let p < land { : W x Z — R be an H-
smooth, G-Lipschitz convex function over a closed convex
set W of diameter D. Algorithm 12, as the learning al-
_ 64(HD+pG)210g2(n) to = 1 and
N = t+1 on a dataset S of n i.i.d. samples from D outputs

w, with excess population risk bounded as,

gorithm run with o

1 Vd

E[L(#;D) — L(w"; D) = O <(G+HD)D (n s >> |

vn o np
Furthermore, the corresponding unlearning Algorithm 3
(with query and update functions as specified in the learning
algorithm), satisfies exact unlearning with O (pn) expected
runtime.

5.2. Non-smooth SCO with Dual Averaging

In this section, we only assume that loss function w +—
¢(w; z) is G-Lipschitz and convex V z € Z. Herein, we use
dual averaging method (Nesterov, 2009) where the model is
updated as follows:

t
w1 = Iy (wo —nY | Vi(w; Zi))a
1=1

where II denotes the Euclidean projection on to the con-
vex set YW. The above again is a prefix-sum query with

sensitivity G, thus fits into our framework. The full pseudo-
code is given as Algorithm 13 in Appendix E. The accuracy
guarantee mainly follows from Kairouz et al. (2021).

Theorem 3. Let p < land { : W x Z — R be a G-

Lipschitz convex function over a closed convex set W of

diameter D. Algorithm 13, as the learning algorithm, run
1/4

2 _ 64G2/l)02g2(n)’ to =1 andn _ Dd*’*4/log(n) ona

Gvnp
dataset S of n samples, drawn i.i.d. from D, outputs W with

excess population risk bounded as,

5D — Liw* D) = & 1 Vd
E [L(@; D) — L( ,D)]_O<GD<\F+ np))

Furthermore, the corresponding unlearning Algorithm 3
(with query and update functions as specified in the learning
algorithm), satisfies exact unlearning with O (pn) expected
runtime.

with o

Vil(wi-1; 2¢)) + 1 VE€(we; z¢)

5.3. Convex GLM with JL Method

Algorithm 4 JL. Method
Input: Dataset S, loss function ¢, base algorithm A, JL
matrix ® € R4** noise variance o2
I ®S = {Pz;},,
20w = A(é DS, 2G || X, 2HHX|| o)
Output: @ = oW

This JL method, proposed in Arora et al. (2022), is a general
technique to get dimension-independent rates for uncon-
strained convex GLMs from algorithms giving dimension-
dependent rate for constrained (general) convex losses. The
method, described in Algorithm 4, simply embeds the
dataset into a low dimensional space, via a JL matrix @,
and then runs a base algorithm on the low dimensional
dataset.

Smooth, Lipschitz GLMs: We assume that ¢, : R — R is
convex, H-smooth and G-Lipschitz for all y € ). We give
the following result in this case using VR-Frank Wolfe as
the base algorithm.

Theorem 4. Letp < landl: W x X xY — R be an H-

smooth, G-Lipschitz convex GLM loss function. Algorithm
4 instantiated with Algorithm 12, as the learning algorithm,

. ~ [ (H|X)?|w*|+G1X])?
o with o :o(( 121 p2|\ 1)

2/3
B -5 H 2| o | 2/3
piy and k=0 (((H|X|2||w*|+G|X|)> (np) > on

a dataset S of n samples, drawn i.i.d. from D, outputs W
with excess population risk bounded as,

)tozlynt:

(G I+ H 1) ™ |1) [|w"]|

NG
XM 4 H X [t )

E [L(@; D) — L(w*; D)] = 5(

N H1/3G2/3 H

(np)?/3

Furthermore, the corresponding unlearning Algorithm 3
(with query and update functions as specified in the learning
algorithm), satisfies exact unlearning with O (pn) expected
runtime .

Lipschitz GLMs: We assume that ¢, : R — R is convex
and G-Lipschitz for all y € ). We give the following result
in this case using Dual Averaging as the base algorithm.

Theorem 5. Let p < land ¢ : W x X xY — Rbea

G-Lipschitz convex GLM loss function. Algorithm 4 with
Algorithm 13 as the sub-routine, as the learning algorithm,

. m) _ 1, g = lwtlla/loa(n)
run with o —O( 2 Jlo=Ln= Gl X /np

and k = /np on a dataset S of n samples sampled i.i.d.
from D outputs W, with excess population risk bounded as,

& [1(: D) — O(G 111 (5 + o))

L(w";D)] =
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Furthermore, the corresponding unlearning Algorithm 3
(with query and update functions as specified in the learning
algorithm), satisfies exact unlearning with O (pn) expected
runtime.

6. SCO in Dynamic Streams

In this section, we extend our previous results to dynamic
streams wherein we observe a sequence of insertions and
deletions, starting with potentially zero data points. We
assume that the number of available points throughout is
positive and the data points are i.i.d. from an an unknown
distribution as well as the requests are chosen independent
of the algorithm.

To give a simple and unified presentation, let the accuracy,
say expected excess population risk, of the p-TV stable
Algorithm 2 with a dataset S be denoted as, a(p, |S|;P)
where P denotes problem specific parameters such as Lips-
chitzness, diameter etc.

We present two techniques for dynamic streams; one of them
satisfies exact unlearning but has a worse update time; this is
similar to Ullah et al. (2021) and is deferred to Appendix F.
The other, presented below, satisfies weak unlearning (see
Definition 2) with better update time. A key component to
both are anytime guarantees, which hold at every time-point
in the stream, for any length of the stream.

Anytime binary tree mechanism: In the previous section,
the depth of the initialized tree and the noise variance o2,
both were chosen as a function of the dataset size n. How-
ever, the tree can be easily built in an online manner as in
prior work of Guha Thakurta and Smith (2013). For setting
the noise variance: for target p-TV stability, we distribute
the noise budget exponentially along the height of the tree;
specifically, the leaf node contribute to p/2 TV stability, the
nodes above them p/4 and so on. In this way, the final tree
satisfies p-TV stability for any value of n.

Anytime accuracy: The other problem of changing data
size is that the internal parameters of algorithm (step size, in
our case) may be set as a function of n for desirable accuracy
guarantees. Fortunately, the two algorithms that we consider,
VR-Frank Wolfe and Dual Averaging, have known horizon-
oblivious parameter settings (Orabona, 2019). Their JL
counterparts on the other hand, require setting the embed-
ding dimension as a function of n, and thus not applicable
unless we assume that the number of data points throughout
the stream is O(n).

6.1. Weak Unlearning in Dynamic Streams

We first argue in what way insertions handled in Ullah et al.
(2021) is deficient. The main reason is that they require
insertions to also satisfy the unlearning criterion: the state

of the system upon insertion is instinguishable to the state
had the inserted point being present to begin with. However,
this is an overkill; adding new points simply serve to yield
improved statistical accuracy. Furthermore, methods which
allow adding new points, are abound, particularly in the
stochastic optimization setting, sometimes known as incre-
mental methods. Importantly, in most cases, the insertion
time of these methods is constant (in n). Hence, a natural
question is whether, for dynamic streams, can we design
unlearning methods in which we pay for update time only in
proportion to the number of deletions? Our result shows that
we can, albeit under the weak unlearning (see Definition 2)
guarantee.

Specifically, our procedure requires hiding the order in
which data points are processed. Intuitively, an incremental
method typically processes the newest data point the last.
This ordering is problematic to our unlearning procedure,
since if some point is to deleted, then we can no longer re-
place it with the last point, as we did before, since that would
result in a different order. Our main result is as follows.

Theorem 6. In the dynamic streaming setting with R re-
quests, using anytime incremental learning and unlearn-
ing algorithms, Algorithm 2 and 3, without permuting the
dataset, the following are true.

1. It satisfies weak unlearning at every time point in the
Stream.

2. The accuracy of the output W; at time point i, with
corresponding dataset S;, is

E[L(w;; D)} = min L(w; D) = a(p, [Si]; P)

3. The number of times retraining is triggered, for V un-
learning requests is at most O(pV)

Importantly, in the above guarantee, we only pay for the
number of unlearning requests V' rather than the number of
requests .

7. Conclusion

In this paper, we proposed a general framework for design-
ing unlearning algorithms for learning algorithms which can
be viewed as performing adaptive query release on datasets.
We applied this to yield improved guarantees for unlearning
in various settings of stochastic convex optimization. All of
our results (in the main text) are obtained by studying the
class of prefix-sum queries, so a natural future direction is
to extend it to more query classes, which could be useful for
other problems.
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A. Additional Preliminaries

We recall some concepts from differential privacy which will be useful in our algorithmic techniques.

Definition 8. An algorithm A satisfies (o, €(«))-Rényi Differential Privacy (RDP), if for any two datasets S and S’ which
differ in one data point (|[SAS'| = 1), the a-Rényi Divergence between A(S) and A(S"), with probability densities ¢ 4(s)
and ¢ 5(s1, defined as follows:

Da (ASIAED) = 3 . i </R A (x)%A(S/)(x)l_adx)

is bounded as, D, (A(S)|A(S")) < e(a).

RDP satisfies many desirable properties such as adaptive and parallel composition and amplification by sub-sampling
(Mironov, 2017; Wang et al., 2019). Furthermore, we give the following lemma which relates TV stability to RDP.

1
Lemma 1 (RDP — TV-stability). If an algorithm satisfies (o, €(«))-RDP, then it satisfies (1 - exp(—lim e(a))) A%

all

stability.

Proof of Lemma 1. From Theorem 4 in Van Erven and Harremos (2014), we have that hnga (P]|Q) = KL (P||Q), where

K L(-||-) denotes the Kullback-Leibler (KL) divergence between the two distributions. Finally, we relate the TV distance
with the KL divergence using Bretagnolle—Huber bound (Bretagnolle and Huber, 1979; Canonne, 2022) which gives the
claimed bound. O

B. Unlearning for Linear Queries

A basic form of a query we consider is a linear query, defined as follows.
Definition 9. A query q : W* x 2" — W is a linear query if ¢ ({w; };;.5) = >_;cqpj ({wi}, ; 25) for some functions
pj W' X Z = W.

We consider the class of B-sensitive linear queries. We give the TV stable modified learning procedure in Algorithm 5
which basically releases the linear queries perturbed with Gaussian noise of appropriate variance.

Algorithm 5 LearnLinearQueries(w,, to)

Input: Dataset S, initial iteration to, steps 7', query functions {¢;(-)}, ., update functions {Uy(-)}, 1, selector function
S(+), noise variance o2 - -

1: Initialize model w; € W

2: fort =tgtoT —1do
Query the dataset uy = g ({wi}Kt ; S).
4 Perturb: ry = u; + & where & ~ N(0, 0%1,).
5:  Update wy11 = Ut({wi}igt ,Tt)
6
7:

ol

Save (ug, ¢, wes1)
end for
Output: @ =S ({wt}tg)

Note that the underlying probability distribution that the above learning algorithm samples from is a Markov chain. The
corresponding unlearning procedure, described in Algorithm 6, is based on constructing a coupling between the Markov
chains for the current dataset and the dataset without the to-be-deleted point. In particular, we start from the first iteration,
perform rejection sampling, if it results in acceptance, then we proceed to the second iteration and so on. If some iteration
results in rejection, then we do the reflection step, and continue retraining from there on.
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Algorithm 6 Unlearning algorithm for linear queries

Input: Deleted point z;,
1: fort=1to7T —1do
2: (ug,re, w) = Load ()

3:  Compute u} = uy —p{ ({wi}igt ; Zj)

4 ifUnif (0,1) < j;xiiw then
5: Save (u})

6:  else

7 r; = reflect(ry, ug, u})

8 w1 = Uy ({wi}igt »7“2)

9 LearnLinearQueries(w;y1,t + 1)

10: break
11:  endif
12: end for

The above is basically the same unlearning algorithm as that of Ullah et al. (2021) but presented in the general context of
linear queries. Therefore, it generalizes the framework of Ullah et al. (2021) which was limited to the Stochastic Gradient
Descent algorithm. We also remark that linear queries can often be augmented with a sub-sampling operator yielding
amplified guarantees, as done in Ullah et al. (2021). However, we omit this extension for brevity. The main result of this
section is as follows.

Theorem 7. The following are true for Algorithms 5 and 6,

n2

1. The learning algorithm, Algorithm 5 with 0% = 64’;2 satisfies p-TV stability.

2. The unlearning algorithm, Algorithm 6, corresponding to Algorithm 5, satisfies exact unlearning.

3. The relative unlearning complexity is O (p\/f )

Proof. This proof simply follows from the observation that the analysis of Ullah et al. (2021) only uses the bounded
sensitivity linear query structure of the stochastic gradient method for their TV stability bound as well as correctness and
runtime of the unlearning procedure. O

B.1. Applications

This generalization yields the following applications.

B.2. Federated Unlearning for Federated Averaging

In the federated learning setting, we have C clients (which typically correspond to user devices) with their own datasets and
a parameter server (aggregator). A typical, informal, goal is training a single globally shared model using all the dataset
with small communication between the clients and the server, and without moving any private data (explicitly) to the server.
Federated Averaging (Konecny et al., 2016), described in Algorithm 7, is a widely used method in federated learning. Note
that in the every round of the method, the client outputs, {wf}cczl, are aggregated using an averaging operation:

In Algorithm 7, ClientUpdate is a function which runs on the client’s data using the current model w; and problem
specific-parameter P (such as as number of steps, learning rate of some optimization routine). For brevity, we do not
instantiate the ClientUpdate function, but usually some variant of stochastic gradient descent is used.

13
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Algorithm 7 Federated Averaging (Server side)
Input: Number of clients C, number of rounds 7T, client-specific parameters P

1: Initialize model w; € W

2: fort=1toT — 1do

3: forc=1toC do

4: wf,; = ClientUpdate (¢, wy—1,P)
5.  end for
6
7

_ 1 C c
Wi+1 = & >em1 Wiy
end for

Output: @ =38 ({wt}tST)

Federated Unlearning: In the federated unlearning problem, after a model is trained, one of the clients requests to remove
themselves from the process. The parameter server then needs to update the model (and state) in such a way that it is
indistinguishable to the state if the client were absent. Hence, this is analogous to the standard unlearning problem with the
client playing the role of a data point. This analogy also occurs with private federated learning wherein the widely-used
granularity of differential privacy is user-level differential privacy (McMahan et al., 2017). In this case, a client (potentially
containing multiple data items) plays the role of a data item, the presence/absence of which is used in the differential privacy
definition.

TV-stable learning and unlearning: The model aggregation step (line 6 in Algorithm 7) of the federated averaging method
is a linear query over the clients. Moreover, if the clients output models that are bounded in norm, then it is a bounded
sensitivity linear query (typically enforced by clipping the updates). Hence, this fits into the template of linear query release
method and thus can be modified, as in Algorithm 5 to be TV stable. The corresponding unlearning method is the one given
in Algorithm 6.

B.3. Lloyd’s Algorithm for k-means Clustering

In this section, we briefly discuss how an algorithm for k-means clustering fits into the linear query release framework.
We remark that the prior work of Ginart et al. (2019) gave an unlearning method for this problem based on randomized
quantization, which can also be seen as a specific TV-stable algorithm followed by a coupling based unlearning method.

Lloyd’s algorithm is a widely used method for k-means clustering. Herein, starting with an arbitrary choice of centers, we
construct a partition of the dataset, which thereby gives a new set of centers. This process is repeated for a certain number of
rounds. The method is described as Algorithm 8.

We notice again that the updates for every cluster, line 7 in Algorithm 8, is a linear query, hence it fits into the linear query
release template and thus learning and unlearning algorithms based on linear queries readily follow.

Algorithm 8 Lloyd’s algorithm

Input: Number of clusters C, number of rounds 7', dataset S = {z;}._,.
1: Initialize centers {wc}le
2: fort =1toT —1do
3: forc=1toCdo

4: Compute S, = 4 2§, 25, . .. Z|°5| }, the set of data-points closest to w.
5:  end for

6: forc=1toCdo

7: Update w, = ‘Slc‘ Z!ill 28

8: end for

9: end for

Output: {wc}f:1
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C. Missing Details from Section 4

In this section, we provide pseudo-code of the operations supported by the binary tree data structure.

Algorithm 9 Append(u,o;T)
Input: Query response u, noise variance o,Tree 7
1: Let s be the (binary representation of) first empty leaf.
2: Let g be the index with the first 1 in s.
3: path = {s — - - - root} be the path from s to root consisting of at most ¢ + 1 nodes from leaf.
4: UpdateTree(u, path,o; T)

Algorithm 10 UpdateTree(u, path, o; 7))
Input: Query response u, Set of nodes path, noise variance o,Tree T
1: for b € path do
2: Up =up +u
if b is a left child or b is a leaf then
&~ N(0,0°0)
Ty =up +§
break
end if
end for

P RDINEAER

Algorithm 11 GetPrefixSum(¢; 7)
Input: ¢t € N, Tree 7,
1: Initialize g € RP to 0
2: s < leaf(t)
3: Let path be the path from s to root.
4: while b # () do
5: if bis aleaf child or b is a leaf then
6
7
8

g=g+Tmp
end if
: end while
Qutput: g

D. Missing Proofs from Section 4

Proof of Theorem 1. The first part of the Theorem follows from Lemma 2 followed by post-processing to argue that the
same TV stability parameter holds for the final iterate.

The second part, exact unlearning, follows from Lemma 5 wherein () denotes the distribution of the algorithm’s output run
on the dataset without the to-be-deleted point.

For the third part, note that the unlearning algorithm 3 makes two queries if no retraining is triggered. If a retraining
is triggered, the number of queries it makes is at most the query complexity of learning algorithm, 7" = n. Finally, the
probability of retraining, from Lemma 6 is at most log (n) p. Combining, this gives the stated bound on relative unlearning
complexity. O

D.1. Lemmas for Unlearning

Additional notation: We first present some additional notation used in the statement and proof of the following lemmas.
Let S and S’ be datasets before and after the unlearning request. Let P and ) denote the probability measures over the
range of tree data-structure, which is T = (R? x R? x R? x [n])", induced by the output of learning algorithm on S and
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S’ respectively. We order the nodes of the binary tree w.r.t. the post-order traversal of tree. Hence, given two nodes v and
v’ or their binary representations s and s’, we use v < v or s < s’ w.r.t the above ordering. Given a node b, let P, (- |T<b)
denote the conditional distribution of the nodes given the prefix nodes of the tree.

Let p be a permutation over [n] and p, denote the index on the b-th node, when b is a leaf. Let p denote the probability, and
conditional probability, depending on context, of p and py, under the random permutation model. Specifically, we use u(p)
and 11(py|p<sp) to denote the probability of the sequence p and conditional probability of p; given the previous values.

Let 7 denote the initial binary tree i.e. the one constructed after the algorithm is run on dataset S, and 7(?) be the
binary tree constructed after unlearning. Let PP and QP denote the conditional distributions for P and () respectively given
permutation p.

We factor the probability density of P as:
1 1 (1)) (1 1 1
or (T) = TLom (41728) = TL "0 s, (7.0 7))

beB beB s -

Fixing the permutation sequence p(!), denote and factor the conditional distribution as,

(1 )
¢p (1) H (b (1) (ugl)vrl(;l)7w(1)|7-§(i>))

beB By~

Fmally, define response trees T and T which only contain the response variables (r),. Moreover, define distributions
P, b, PP, Pp and Q, Qp, QP Qp as before.

We first show the the tree 7~ produced by the learning algorithm is TV-stable.

2 2
Lemma 2. Let 0 < p < 1, B > 0,n € N. For B-sensitive prefix sum queries, setting o = %@g(n), the response tree

data structure T is p-TV stable.

Proof. The proof of privacy of tree aggregation is classical in differential privacy, see Guha Thakurta and Smith (2013) for
example. The proof has three ingredients: Gaussian mechanism guarantee, parallel composition (to argue that accounting
along the height of the tree suffices) and adaptive composition (for accounting along the height of the tree). Since the
noise is Gaussian and these composition properties also holds under RDP (Mironov, 2017), therefore we can give an RDP
guarantee of e(a) < log?(n) - 64“3 ap?. Finally, using Lemma 1 and a numerical simplification since p < 1 gives the
claimed result. O

Recall that j is the index of the data item (after permutation) which is deleted. Without loss of generality, assume that the
original index of the deleted data-point is n. We first argue the following about the distribution of p(*) and p(?).

Lemma 3. For any set E C [n]™ and any set E' C [n — 1]""L, we have

Po (P(l) € E) = pn(E)

Pp (P(Q) € El) = pn-1(E")

Proof. Since p(!) and p(® are discrete distributions, it suffices to argue the above for the atoms. Firstly, by construction,
p®M ~ 1, and hence the first part is done. For the second part for any sequence h = (hi)?:_ll where h; € [n — 1]. Let [h, §]
denote the concatenation of h and j (the deleted index). By symmetry, the probability

1 )

Py (h) = ——=Ppa) ([h,j]) = pin-1(h)
n+1

This completes the proof. O

We now show transport of the conditional distribution by the unlearning operation.
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Lemma 4. For any measurable event E C Rd|T(2) |,
P (7 @) e Elp“),p@)) Q°(B).

Proof. The proof is based on induction on the nodes of T2 in the post-order traversal. Let (vél)) and (v( )) be the
b

nodes of the tree arranged in the post-order traversal order. Given j, index of the item deleted, let s = leaf(j). Define
prefix(s) and suffix(s), as set of nodes before and after s respectively in the < order.

Given an event £/ C ]Rd|T | and r<y, define E =% as follows:

E;sb _ {6 cRY:.Je e (><>de) : (T§b7676) € E}

where x -;R? denote the Cartesian product of R%’s of upto > b but smaller than or equal to |T(1)‘ elements. Similarly,
define E> 5 as,

ETS” = {e € (><>bR ) : (r<p,€) € E}
Finally, define E;, as

Eo,={e€ (xxR%) : e € (x>R?) : (e,8) € E}

‘We now factorize the probability below as,

IP’(TQ)GEIP(I >): 11 IP’< ) e B[ p®, ;b) (T T<5\T<(§>,p<1 <>>

beprefix(s)
S
= T (i B ) (T € BT 00
beprefix(s)
r2 ~
= 11 Pb( g, <) (T € B Téi%p“%p(”)
beprefix(s)

(2
Qb ( <b|pb2)7 (<2b> <T>s € E <6 T<s 7p(1) (2 )>
(s)

beprefix(s
(2) (2))
1) _ (2 1 _ (2

where the second equality follows since o, = 2y and p, " = p,” forall b < s by construction. The third equality follows

since 7’151) is distributed as P, conditionally and fourth and final follows since conditioned on the permutation being the

same, the prefix is also distributed as Q) < s.

- Q<9 <E<e‘p<sa (<23> (7ﬂ>(2) € E

We now start the induction: let I(induction variable) be I = s i.e the last item is deleted. In this case, the unlearning
algorithm simply removes the s-th node of the tree and all we are left with is the tree with prefix(s) nodes, which as argued
above is distributed as Q.5 = Q.

For the case I = s + 1: we simply focus on ’T 7~'5(2) = rg2). Note that rgl) is distributed as N(u(l), 0211) and we

want rg ) distributed as A/ (u @), o21). The operation in the algorithm is basically a one step reflection coupling which from

Lemma 1 in Ullah et al. (2021) satisfies,

P (r?) e EX p, pl > Q (E gg)
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Therefore,

~.(2) (2)

~ r ~(2)
P(T@ e EpY.p?) = Qc. (B rE)) Q2 (E) )

This finishes the base cases.

We now proceed to the induction step: suppose the following claim holds for nodes upto I = k — for any event F, the
marginal distribution

P (7'(2) € EpY.p ) Q< (E|P )
For node k + 1, consider a few cases:

1. A: All rejection sampling steps prior to node k resulted in accepts:

(a) AP: Node k + 1 lies in the path from the s to root.

i. APA: The rejection sampling at this node succeeds.
ii. APR: The rejection sampling at this node fails i.e. a reflection step is performed.

(b) AN: Node k£ + 1 doesn’t lie in the path from s root.

2. R: Some rejection sampling step resulted in rejection.

() 1)

For case R, we have that 7’1(5-521 ~ ék+1(- |’7'<(i), p(2)). For the case AN, note that the random variable Thi1 = Thits

hence,
_ e _ _ 2 _
P( 12421 € Ek+1\AN (1)713(1),1)(2)) = Pry1 <Ekr<i-lcl|p(2)aT§(i)> = Qr+1 (E/cikip(mng(i))

where the last equality follows since the dependence of rk +1 is only on data points which are leaves of the sub-tree rooted at
node k + 1. These, by assumption do not contain the data point s, hence is identically distributed as Py 1.

For the event AP, we have,
p( @), € B[4 AP, pVp) T<2>) P(riﬁl € Ej4 APAAP, pV), p®) T )
4P <r,(f+)1 € Eki"l,APR|AP p.p 2>,%§}>
A r 1) (2 72
= Qr+1 (Ek_—,_1|p P 7T§k)

where the last step follows from Lemma 1 in Ullah et al. (2021) .

Hence, combining AP and AN cases,

P( 1(321 € Ekfs—kﬂAN (i:)?p Y (2)> = ékﬂ ( k+1|p(2) T(Z)>

‘We now combine all the cases: let d) ko gb < ,2 denote the conditional densities of T< . under events A and R respectively. Let

Ty = ‘Tgk ’ For any event F,
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(T<(i)+1 € Ejp™, 2)> = IP>< 1(321 € Ek+1|A T<k € E<y,p", 2)> P( TS € Ek+1,A|P ap(2)>

—l—IP’(r,(Cle € Ek+1|R 7’< € E<y,pY )P

@) 2 7@ ¢ )
:/ L{r € By ( € B<y ) (T )

R%Tk+1
R 2 2

+1 (72 R) o) (72) )%p(z) (r2, 178 ) ITDar?,

(2) (2) (2) 7(2) ;5 .(2)
= /Rdi_H 1 (Tgk—i-l S E) (,ZSQ%(E) ( ) Qp(2 ( k+1 ) dTgk d?”k+1

p(2)

= Q%41 (B)

<k €E<k Ript” (2)>

where in the third equality, we use the induction hypothesis. This completes the proof of the lemma. O

Lemma 5. For any measurable event E C T, P[T?) € E] = Q(E).

Proof. This follows primarily from Lemma 4, and the fact that other elements in nodes of 7', namely u; and w;, are
deterministic functions of the prefix vertices in the tree 7. Consider a decomposition of the event £ = F,, X E,. X E,, X E.,.
Now,
P[T® € E] = B, P (T<2> € By x Ey x Ey x E,|pM,p® ¢ EZ) P (p(2) e E)
= EpoP (T € B, 1p", p?) s ()

~ (2
=By QP (Ey) pin—1(E2)

2)
= E})(I)Ql:)< (Eu X By % Er) anl(Ez)
= Q(E)

where the second and fourth equality follows since variables w;, and u; are deterministic functions of the responses r<y,.
The second and third equality also uses Lemma 3 and Lemma 4 respectively. O

Lemma 6. The probability of retraining is at most log (n) p.

Proof. A retraining is triggered only when a rejection sampling step fails. Note that a rejection sampling step happens only
when the node b belongs to the path from s to root, say path. Let Accept be the event when all rejection sampling steps
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succeed.

) ( |7-(1))
Q]bj( ) b
]P’(Accept) :ET(1)77—(2)7{%} H Tfu < )
bepath P 5p ( \T )
b

(1) F)
%5(2)( 172 )

:E%U),p(l),p(?) H Pl ou < (1) 7(1)
bepath Qbﬁp(l) ( | )

= Ep(l) p® H / min ( p(z) (r£1)|'f7:<(i)) 7¢15bp(1) (r£1)|'f7v'<(i))> dT‘l()Q)

bepath

()~ (D)~
= Ep(l)’p(Q) H (1 - TV (Q? ,Pbp |T<(}))))

bepath

= II @—n)

bepath

>1- Zpb

bepath

> 1 —log (n) max py
>1—log(n)p

where the fourth equality follows from the definition of TV distance and in the last equality, p; denotes the (conditional)
TV distance of node b. The third to last inequality follows from Lemma 7 and the second to last inequality follows from
Holder’s inequality. For the last inequality, we simply upper bound p; < p since the algorithm is p-TV stable (Lemma 2).
This completes the proof. O

Lemma7. Let {ai}f:l be real numbers such that a; € (0, 1) for all i and Zle a; < 1. Then, Hle (1—a;) > 1—21.“:1 a;

Proof. We prove this via induction on k. The base case k = 1 is immediate. For the induction step k, we have

k k—1
H 1—a;)= [0 =a)(—ar)> <1—Zal> 1—ag)
:1—2%4—(23@)%
1:1 =1
Zl—zai

This completes the proof. O
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E. Missing Proofs from Section 5

E.1. Variance-reduced Frank Wolfe

Algorithm 12 Variance-reduced Frank Wolfe(to; 7)

Input: Dataset S, loss function (w, z) — £(w, z), steps T', o.{n: },
1: if £y = 1 then Permute dataset, initialize 7T, set w;, = 0 end if
2: fort=1toT —1do
3w = ZZ:I ((1+ 1) Vel ws; z;) — iVL(w;—1; 2))

4: Append(ut,0;T)

5: 1 = GetPrefixSum(t; T)
6

7

vVt = arg minwew w, %>
© wepr = (1= mg)wy + mpoy
8:  Set(leaf(t), (us, 7, we, 2¢); T)
9: end for
Output: @ = wr

Proof of Theorem 2. For the accuracy guarantee, we follow the proof of Theorem 1 in Zhang et al. (2020). Let d; = t%
From smoothness, we have

H
L(th;D) S L('LUt,D) + <VL(’lUt;D)7’LUt+1 — wt> + 5 ||’LUt+1 — th2

n? HD?

2

n; HD®
2

< L(wg; D) + me (VL(we; D), w™ — wy) + me (de — VL(wy), w™ — o) +

2D 2HD?
< (U= m) L{w D) = mL(w’s D) + = |ldy = VEL(we: D) + #5—

S L(wt,D) + Mt <VL(wt,D) — dt7’Ut — wt> + <dt, Vy — ’lUt> +

= L(wt,D) + Mt <VL(’LU1§,D) — dt,’l)t — wt> + Nt <dt,w* — wt> +

n; HD®
2

where the second inequality follows from the update and the fact that iterates lie in the set of diameter D). The third
inequality follows from the optimality of v, in the update in Algorithm 12. Finally, the last inequality follows from convexity,
Cauchy-Schwarz inequality and by substituting the step-size. We now take expectation, and use the bound on gradient
estimation error in Lemma 8 to get,

E[L(wt11; D) — L(w"; D)

| 5 _ 1 Vd
< (1 =) E[L(w; D) — L(w*; D) + O ((HD+G)D <<H1)3/2 + (t—|—1)2p>>

HD?
YTy
2(t+1)
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The above recursion gives us,

T-1
E[L(wr; D) — L(w*;D)] < (L(wi; D) — Lw*)) [T (1 =)
S 1 Vd HD? \ !
+;O<(HD+G)D (+1)3/2+(z+1)2p>+(z+1)2>t111(1”t)
HD?
<
=T
6 1 Vd HD? \ 1
+;O<(HD+G)D<(H—1)1/2+(i+1)p)+(z’+1)>T

- 1 Vd HD?
<o ( L)+ )

~ 1 \/g
A )

where the second inequality follows from smoothness and substituting HtT:_Z}H (1—m) = %tll. Substituting number of
iterations 7' = n completes the accuracy proof.

For the unlearning part, we start by showing that the algorithm falls into the template of bounded sensitivity prefix-sum

query release. Recall that the update u; = S'_, ((i + 1) V& (wi; 2;) — iVE(wi_1; 2)).

The sensitivity is then bounded as,

—~

(i + 1) Vl(w;; 2) — iVl wi—1;2)) — ((i + 1) V(w3 2") — iVl (w;—1; 2"))||

< iHn—1 ||vic1 — w1 || + 2G
<2(HD +G)

where the first inequality follows from smoothness and Lipschitzness of the loss. The second inequality follows from the
update in Algorithm 12 and the last inequality follows from the fact that the iterates remain in the set of diameter D. Hence
the correctness of the unlearning algorithm follows from Theorem 1. For runtime, the training time, in terms of gradient
computations is ©(n). Therefor, using the fact that the relative unlearning complexity, from Theorem 1, is O(p), we have
6( pn) bound on expected unlearning runtime. O

Lemma 8. The gradient estimation error E

S — VL(U)t;D)HQ <0 ((HD +G)? (t%l + W))

Proof. Note that d; := t:fl comprises of the original gradient estimate from Zhang et al. (2020), say Jt and the noise added
by the binary tree mechanism, say &;. Hence,

~ 2
E|[d; ~ VL(wi; D)||* = E||d; — VL(ws D) +E &

log(n)
~ ((HD +G)? do?
o( U2 s

IN

i=1 (t + 1)2 P>

e . 1 d
_OQHD+® Q+1+u+n%g>

where the first inequality follows from Lemma 2 in Zhang et al. (2020) with o = 1, and the fact that in the binary tree
mechanism we add noise of variance o at most log (n) times; the factor 1/(t + 1)? comes because the gradient estimate is
r+/(t + 1) and r; is the binary tree response. The final equality follows by plugging in the value of o. O
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E.2. Dual Averaging

Algorithm 13 Dual averaging(to; 7)

Input: Dataset S, loss function (w, z) — £(w, z), steps T', {n:},,
1: if ¢y = 1 then Permute dataset, initialize T, set w;, = 0 end if
2. fort=1toT — 1do
3w =Y, Vi wi; z)

4: Append(us,0;T)

5.

6

= GetPrefixSum(t; T)
o wegr = Iy (wo — mepe)
7. Set(leaf(t), (ue, 7, wy, 26);T)
8: end for
Output: @ = wr

Proof of Theorem 3. The accuracy guarantee directly follows from Theorem 5.1 in Kairouz et al. (2021), replacing

G2 G?log <1/6>)

¢/log?(1/68)? therein by p. To elaborate, we set ¢ = 0] (TZ) as opposed to O ( , hence substituting it in

the accuracy proof of Theorem 5.1 in Kairouz et al. (2021) gives the claimed guarantee.

For the unlearning part, we start by showing that the algorithm falls into the template of bounded sensitivity prefix query
release.

Recall that the update u; = Zﬁzl Ve(wy; z;). The sensitivity is simply bounded by Lipschitznes as,

|VE(ws; 2) — VE(wy; 2| < 2G

Hence the correctness of the unlearning algorithm follows from Theorem 1. For runtime, the training time, in terms of
gradient computations is ©(n). Therefor, using the fact that the relative unlearning complexity, from Theorem 1, is O(p),
we have O(pn) bound on expected unlearning runtime. O

E.3. Convex GLMs with the JL method

Proof of Theorem 4. We start with the accuracy guarantee. Let o < 1 be a parameter to be set later. From the JL
property, with k& = O (log (n/B) /a?), with probability at least 1 — 3, the norm of all data- -points in S, ||®Pz;]] <
(1+a)[xll <2 ||X ||. Hence, conditioned on the above event, the GLM loss function function is G = 2G ||.X||-Lipschitz

and H = 4H ||X|*-smooth. Let ®D denote the push-forward measure of D under the map (z,y) — (®x,y). With
probability at least 1 — /3, the excess risk is,

E[L(@; D) — L(w*;D)] = E[L(® @; D) — L(®w*; ®D)] + E[L(dw*; ®D) — L(w*; D)]
= E[L(@; ®D) — L(Qw"; ®D)] + E[¢, ((Pw”, ®z)) — ¢y ((w", 7))]

<0 ((5‘ + H [Jw*|]) | (Vlﬁ i \r{f)) + %E (®z, Duw*) — (@, w)|

(G + 1) ) ==+ Y5 o Zrl
v np K
(G H ) Il 9G2S |2 4
NG ’ (np)?73

where in the first inequality, we use the accuracy guarantee of VR-Frank Wolfe (Theorem 2) and smoothness of ¢, together
with the fact that w* is globally optimal. The second inequality follows from JL property and the last inequality follows by
the setting of k.
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For the in-expectation (over the JL matrix) bound, note that in the worst-case, L(w; D) — L(w*; D) < G || — w*||. From
boundedness of the range of (typical) JL maps, || — w*|| = poly(n,d) w.p. 1. Hence, taking the failure probability S to be
small enough suffices to be give an expectation bound which is same as above upto polylogarithmic factors.

We now proceed to the unlearning guarantee. We first remark that the correctness of the unlearning algorithm (see Lemma
4) holds as long as the learning algorithm uses prefix-sum queries, even with unbounded sensitivity. Hence, the correctness
follows. We now proceed to bound the unlearning runtime. We first bound the TV stability parameter of the learning
algorithm using Lemma 9. The setting of noise variance o in Algorithm 4 together with the stability guarantee of Theorem 2
ensures that v(H, G) < 7. Hence the JL method satisfies p-TV stability. Now, Lemma 6 gives us that the probability of

retraining is at most 6(p) Since the training time, in terms of gradient computations is ©(n), we have 5(pn) bound on
expected unlearning runtime. O

Proof of Theorem 5. We start with the accuracy guarantee; let « < 1 be a parameter to be set later. From the JL property, with
k = O (log (n/B) /o), with probability at least 1 — 3, the norm of all data-points in S, || Dz;|| < (1 + ) ||Ix;| < 2 X].
Hence, conditioned on the above event, the GLM loss function function is G = 2G || X||-Lipschitz. Let D denote the
push-forward measure of D under the map (z,y) — (Px,y). With probability at least 1 — /3, the excess risk is,

E[L(@; D) — L(w*; D)) = E[L(® @; D) — L(dw*; &D)] + E[L(Puw*; D) — L(w*; D)]

= E[L(w; ®D) — L(®w"; @D)] + E[¢, ((Pw", @x)) — ¢y, ((w", 2))]
<0 (énw*n % + ﬁ + GE |(®z, dw*) — (x,w")|
<6(é||w*|| %+ ﬁ *Gl\l},f'

<0 (é | (;ﬁ + (npl)l/s»

where in the first inequality, we use the accuracy guarantee of Dual Averaging (Theorem 3) and Lipschitzness of ¢,, together.
The second inequality follows from JL property and the last inequality follows by the setting of k. As in Theorem 4, the
same bound as above for in-expectation (over the JL matrix) holds follows by taking the failure probability 3 to be small
enough.

The correctness and runtime of the unlearning algorithm follows as in the proof of Theorem 4. [

Lemma 9. Suppose A is an algorithm which when run on H-smooth and é-Lipschitz functions is v(ﬁ , é)—TV stable,
then the JL method with with k = O (log (2n/7)) and A as input, run on H-smooth and G-Lipschitz GLMs, satisfies

5+ (26 X AH | X)) )TV stability

Proof. Given a dataset S let Gg be the uniform bound on Lipschitzness parameter of the class of loss functions
{w = l(w;2)},cq. We define Hg similarly. Let o < 1 be a parameter to be set later. From the JL property, with
k = O (log (n/f)), with probability at least 1 — 3, the norm of all data-points in S, ||®z;|| < 2||X]|| - we denote this
event as Fy . Since the loss function is a GLM, we have that conditioned on FEji, the Lipschitzness and smoothness
parameters Gg and Hg are bounded by 2@ ||X|| and 2H || X||* respectively. We therefore get a stability parameter

F = (26 |1 48 X)),

We set 5 = p/2. We now incorporate the failure probability in the failure guarantee. Let Py and Q¢ denote the probability
distributions of the output on datasets .S and S’. By definition of TV distance,
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V(Pp,Qa) =supPy~p (w € E) —Pyog (w € E)
E
= sup (wap (w € B|Ey)P(Ey) + Pyp (w € E|E})P(E})
~ Pung (w € BIEw) P(Ey) — Pung (w € B| By ) P(E}))

< (bup Py~p (’U] € E|EJL) — ]P)wNQ w e E|E_]L P EJL

(suprNp w € E|Ey) — Py (w € E|E}) ) P(E})
> +p/2

(Sup]P’wNp (w € E|Ey) — Py (w € E|Ey)
¥+ p/2

which completes the proof. O

F. Missing details from Section 6

In this section, we present additional details and proofs of results in Section 6.

F.1. Weak Unlearning

Proof of Theorem 6. The first claim, weak unlearning guarantee of the unlearning algorithm, follows mainly from Lemma
4. Specifically, it shows that conditioned on the permutation of the dataset (in this case, since the dataset is not permuted, the
permutation is simply identity), the distribution over the responses (7), in the tree after unlearning, is transported to the
distribution of the output under S’. Since the model output is a deterministic function of the responses, (weak unlearning)
correctness follows for one request. For the streaming setting, we simply apply the above inductively over the requests.

The second claim follows since, at every time point, the executed algorithm is indistinguishable from the base algorithm
executed over the current dataset. Moreover, by assumption, the base algorithm, is anytime, i.e. no parameter is set which
depends on the size of the dataset. Hence, the accuracy guarantee follows. For the last claim about the number of retraining,
firstly, as motivated, by the assumption that the algorithm is incremental, the insertions are handled in O(1) time. For the
unlearning requests, note that from p-TV stability at every point, using Lemma 6, we have a 5(;)) probability of retraining.
We now apply Proposition 8 from Ullah et al. (2021) which converts this to a bound on the expected number of times a
retraining is triggered. For V unlearning requests, this gives us a O(pV') bound on the number of retraining triggers. [

F.2. Exact Unlearning

Another way to extend the results for one unlearning request to dynamic streams is to modify the definition of unlearning
(Definition 1) to also hold for insertions, as is done in Ullah et al. (2021). This allows us to apply the same tree based
unlearning technique when handing insertions. Specifically, upon inserting a new point, we randomly choose a leaf and
replace the leaf with the inserted point, and then insert the chosen leaf as the last leaf in the tree. We have the following
guarantee for this method.

Theorem 8. In the dynamic streaming setting with R requests, using anytime learning and unlearning algorithms, Algorithm
2 and 3, the following are true.

1. Exact unlearning at every time point in the stream.
2. The accuracy of the output W; at time point i, with corresponding dataset S;, is

E[L(@;; D)] — min L(w; D) = a(p, |Si] ; P)

w

3. The total number of times, a retraining is triggered, for R requests is at most O(pR)
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Proof. The arguments are similar to that of the proof of Theorem 6. The first part follows by applying the correctness of the
unlearning algorithm, Theorem 1, inductively over the stream. We remark that the handling the insertions in the same way
as deletions hardly changes anything in the proofs. The second claim follows from the anytime nature of the algorithm and
by assumption on the accuracy guarantee. Finally, using the probability of retraining in Lemma 6 and Proposition 8 in Ullah
et al. (2021) gives us the stated number of retraining triggers. [
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