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Abstract

We study private empirical risk minimization (ERM) problem for losses satisfying the (-, x)-Kurdyka-
Lojasiewicz (KL) condition, that is, the empirical loss F satisfies F'(w) — min,, F(w) < 4%||VF(w)||".
The Polyak-Lojasiewicz (PL) condition is a special case of this condition when x = 2. Specifically,
we study this problem under the constraint of p zero-concentrated differential privacy (zCDP). When
k € [1,2] and the loss function is Lipschitz and smooth over a sufficiently large region, we provide

a new algorithm based on variance reduced gradient descent that achieves the rate O((n—‘/\/gﬁ)ﬂ) on the
excess empirical risk, where n is the dataset size and d is the dimension. We further show that this

rate is nearly optimal. When x > 2 and the loss is instead Lipschitz and weakly convex, we show it
is possible to achieve the rate O((n—‘/jp)n) with a private implementation of the proximal point method.

When the KL parameters are unknown, we provide a novel modification and analysis of the noisy gradient

~ 2K
descent algorithm and show that this algorithm achieves a rate of O((H‘{/EE) =% adaptively, which is

nearly optimal when x = 2. We further show that, without assuming the KL condition, the same gradient
descent algorithm can achieve fast convergence to a stationary point when the gradient stays sufficiently
large during the run of the algorithm. Specifically, we show that this algorithm can approximate stationary
points of Lipschitz, smooth (and possibly nonconvex) objectives with rate as fast as O(nijﬁ) and never
worse than O((n—‘f/gﬁ) 1 2). The latter rate matches the best known rate for methods that do not rely on
variance reduction.

1 Introduction

As modern machine learning techniques have increasingly relied on optimizing non-convex objectives, char-
acterizing our ability to solve such problems has become increasingly important. Due to the inherent limita-
tions of solving non-convex optimization problems, that is, the intractability of approximating global mini-
mizers, work in this area has largely focused on approximating stationary points [FLLZ18, CDHS17, GL13,
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ACD™22, FSS™19], or has imposed further restrictions on the loss function. In the latter camp, numerous
possible assumptions have been proposed, such as the restricted secant inequality [ZY13] or star/quasar
convexity [HSS20]. Perhaps the most promising such condition is the Polyak-ELojasiewicz (PL) condition
[Pol63], and its generalization, the Kurdyka-F.ojasiewicz (KL) condition [Kur98]'. A function F : RY >R
satisfies the (7, x)-KL condition if for all w € R? it holds that,

F(w) = min{F(w)} <" [|[VF(w; 9)|" (1

That is, the loss lower bounds the gradient norm. The PL condition is the special case where x = 2. Both the
KL and PL settings have been the subject of numerous works [KNS16, FSS18, SMS22]. The KL condition,
in addition to being weaker than many of the previously mentioned conditions, has led to a number of strong
convergence rate results. Furthermore, an increasingly rich literature has shown that overparameterized
models such as neural networks satisfy the KL condition in a number of scenarios [BBM18, CP18, LZB20,
SMS22].

On the other hand, the reliance of modern machine learning techniques on large datasets has caused
growing concern over user privacy. Overparameterized models are of particular concern due to their ability
to memorize training data [Swe21, CLE'19, FZ20, BBF™21]. In response to this concern, differential
privacy (DP) has arisen as the most widely accepted method for ensuring the privacy of individuals present
in a dataset. Unfortunately, it has been shown in a variety of settings that differentially private learning
has fundamental limitations. As a result, characterizing these limitations has been the subject of numerous
recent works.

Non-convex optimization under differential privacy is still not well understood. For example, in regards
to the task of approximating stationary points in the DP setting, there are still gaps between existing up-
per and lower bounds [ABG*23]. Furthermore, for the problem of approximating global minimizers of
non-convex loss functions under DP, it has been shown the best possible rate is only O(%), even if the
optimization algorithm is allowed exponential running time [GTU23]. In the PL setting however, it has
been shown that rates of O(n%&z) on the excess empirical risk are achievable [WYX17]. Interestingly, this
matches the optimal rate for DP optimization in the (much more restrictive) strongly convex setting, and sub-
sequently lower bounds for this setting show the rate is optimal [BST14]. Given this promising result, the
question arises whether such results can be obtained for the more general class of objectives satisfying the
KL condition, particularly since recent work has shown this generalization allows one to capture common
models outside the reach of the PL condition [SMS22]. In this work, we answer this question in the affirma-
tive, and show that the KL assumption leads to fast rates under differential privacy, even in the absence of
convexity. We further provide algorithms which are adaptive in the KL parameters. These results widen the
range of non-convex models we can train effectively under DP.

1.1 Contributions

In this work, we develop the first algorithms for differentially private empirical risk minimization (ERM)
under the (v, x)-KL condition without any convexity assumption. We show that for sufficiently smooth
functions it is possible to achieve a rate of O((%)K) on the excess empirical risk for any « € [1,2]. For
Kk > 2, we give an algorithm which attains the same rate for the strictly larger class of weakly convex
functions. This rate is new for any x # 2. We further show this rate is near optimal when 1 + (1) < k < 2

I'These conditions are sometimes also referred to as the gradient domination condition. Further, the KL condition is sometimes
phrased in terms of A(F(w) — min. {F(w)}), for some nondecreasing function h, akin to its first appearance [Lez62]. In our work
we instead focus on the (commonly studied) case where h is a monomial.



by leveraging existing lower bounds for convex functions satisfying the growth condition. For 1 < k < 2,
we obtain our upper bound via a novel variant of the Spider algorithm, first proposed in [FLLZ18]. This
method allows us to leverage the reduced sensitivity of privatizing gradient differences to add less noise, an
observation that has been leveraged in several other works studying the problem of finding stationary points
under differential privacy [ABG123, MS23]. We also leverage a novel round structure (i.e. the number
of steps before the gradient estimator is reset) for our private Spider algorithm. Whereas previous works
have largely used fixed round lengths, our analysis crucially relies on variable round lengths with adaptive
stopping. In the case where x > 2, we obtain our upper bound using a differentially private implementation
of the approximate proximal point method.

For both these algorithms, our analysis leverages the fact that the KL condition forces large gradients
during the run of the algorithm. We further show that these larger gradient norms allow us to add more noise
“for free”, and thus better control the privacy budget. We use this observation to run Spider with a higher
noise level than, for example, one would see without the KL condition [ABG123].

Leveraging this intuition, we further develop a simple variant of noisy gradient descent that automatically
scales the noise proportional to the gradient norm. We provide a novel analysis to show this algorithm

achieves the rate O((g)“% + (%)N/z) under the (v, x)-KL condition when x € [1,2]. This rate is
O(#) when x = 2 (i.e. nearly optimal) and is O((%)Q/g) in the slowest regime (x = 1). This
result is adaptive and requires no prior knowledge of the KL parameters. We additionally prove that this
same gradient descent algorithm can achieve fast convergence guarantees even when the KL condition does
not hold. In this case where no KL assumption is made, we settle for convergence to a stationary point
as approximating a global minimizer is intractable. Specifically, we show that when the trajectory of noisy
gradient descent encounters mostly points with large gradient norm, the algorithm finds a point with gradient

norm O(%). We further establish that in the worst case, the algorithm finds a point with gradient norm at

~ 1/2 . . . o .
most O (( ‘/E) / ), recovering the best known rate for noisy gradient descent in this setting.

ne

1.2 Related Work

Differentially private optimization by now has a rich literature spanning over a decade. Much of this atten-
tion has been directed at the convex setting [CMS11, JKT12, KST12, BST14, TTZ14, TTZ15, BFTGT19,
FKT20, AFKT21, BGN21]. The study of differentially private optimization in the non-convex setting is
comparatively newer, but has nonetheless been growing rapidly [WYX17, GTU23, ABG'23, GLOT23].

Currently, research into DP non-convex optimization under the KL condition specifically has been re-
stricted to the special case of the PL condition. Assuming that the loss is Lipschitz, smooth, and satisfies
the PL condition, the work of [WYX17] obtained the rate of o) ( #) on the excess empirical risk. This
rate is optimal because of existing lower bounds for the strongly convex setting [BST14]. More recently,
[YHL*22] studied the (more general) minmax optimization problems under differential privacy when the
primal objective is assumed to be PL, although the rates therein are slower. Alternatively, in the convex
setting, [ALD21] characterized the optimal rates for DP optimization under an assumption known as the
growth condition. When convexity is assumed, the KL condition and the growth condition are equivalent
[BNPS17, Theorem 5.2]. Convex functions satisfying the growth condition are a strict subset of (general)
KL functions.

There are also a number of works which have studied optimization under the KL condition without pri-
vacy considerations. The early works [Pol63, Lez62] were the first to show that for gradient descent, linear
convergence rates are possible when the objective is smooth and satisfies the PL condition. More recently,
[BBM18] showed that under an additional assumption known as the interpolation condition, stochastic gra-



dient descent also achieves linear convergence. The works [LZB20, SMS22] studied more general variants
of the PL/KL conditions called the PL*/KL* conditions respectively. Specifically, these works study con-
vergence when the condition holds only over a subset of R%.

2 Preliminaries

Empirical Risk Minimization: Let X be a data domain and let S = {x1,...,z,} € X™ be a dataset
of n points. Let f : R x X — R be a loss function and define the empirical risk/loss as F'(w; S) =
LS | f(w;z;). We denote the set of global minimizers as W* = arg min,, F'(w), which we assume is
nonempty. We assume we are given some starting point wy € R? and define the closest global minimizer
to wo as w*. Thatis w* = argmin,, )y {|Jwo — w||}. As W* may be non-convex, multiple such mini-
mizers may exist, but it suffices to select one arbitrarily. We consider the problem of minimizing the excess
empirical risk, defined at a point w as F(w; S) — F(w*;S). We assume throughout that f is Lo-Lipschitz
continuous over some ball (to be defined later). We will denote the d-dimensional ball centered at w of
radius B as Bp(w).

KL* Condition: Since assuming the loss satisfies the KL condition over all of R is unrealistic in prac-
tice (and indeed impossible if Lipschitzness is assumed), several works have proposed the modified KL*
condition [SMS22, LZB20]. The exact definition of this condition varies. We use the following definition.

Definition 1. A function F : RY — R satisfies the (v, k)-KL* condition on S C R? w.rt. w' € R? if
Vw € S it holds that v*||VF(w)||" > F(w) — F(w").

We will take w’ = w* (i.e. the closest global minimizer to wp) unless otherwise stated. In this case,
under the KL* condition, one equivalently has %(F (w) — F(w*))Y/* < ||VF(w)||. Prior work studying
the PL*/KL* condition has generally further assumed F'(w*) = 0, but we will avoid this assumption for
the sake of generality [LZB20, SMS22]. We note that the condition is often phrased so that the constant
~ has no exponent, however this definition will ease notation in our analysis; a conversion to the standard
definition is straightforward. For our algorithms, we will show that it is sufficient for the KL* condition to
hold in a ball around an initial point wy. Our guarantees could alternatively be phrased under the condition
that the KL* assumptions holds in a ball around w*, (see Remark 1, Appendix A).

Relevant to our discussion will also be the notion of the (X, 7)-growth condition, which states that for
any w € R% it holds that F(w) — F(w*) > A\"||w — w*||". When the loss function is also assumed to be
convex, the KL and growth conditions are in fact equivalent up to parameterization. See Appendix A for
more details.

Loss bound: We assume throughout that one is given a bound Fy > 0 such that F(wy; S) — F(w*; S) <
F, for some wo € R?. However, as our results will assume the KL condition holds at wg, one always has
the worst case bound Fy < y*L§ by the fact that the loss is Lo-Lipschitz.

Differential Privacy (DP): We consider primarily the notion of zero concentrated differential privacy
(zCDP). For the purpose of referencing existing work, we also define approximate DP.

Definition 2 (p-zCDP [BS16]). An algorithm A is p-zCDP if for all datasets S and S’ differing in one data
point and all o € (1,00), it holds that Do (A(S)||A(S")) < pa, where D, is the c-Rényi divergence.



Definition 3 ((e,§)-DP [DMNSO06]). An algorithm A is (e, §)-differentially private if for all datasets S
and S' differing in one data point and all events £ in the range of the A, we have, P(A(S) € &) <
eP(A(S) € &) +4.

zCDP guarantees imply approximate DP guarantees. Specifically, we note that for any 6 > 0 and
e < y/log(1/d), (€, 6)-DP guarantees can be obtained from our results by setting p = O (¢?/log(1/6))
[BS16, Proposition 1.3].

Weak Convexity: A function F' : R? — R is L;-weakly convex w.rt. || - || if forall 0 < A < 1 and
Lix(1—X
w,v € R? one has f(Aw + (1 — A\)v) < Af(w) + (1 = \)f(v) + %Hw — 2.

3 Optimal Algorithm for 1 < x <2

Algorithm 1 KL Spider
Require: Dataset S = {z1,...,z,}, Privacy parameter p > 0, Failure probability 5 > 0, Initial point
wo € RY, Loss bound Fy < (Lgv)", KL* parameters (v, ), Lipschitz parameter L, Smoothness
parameter L
I: wp,0 = wo, (i)o =Fy

2—k
P — " 1
2 c=14+F" 5o

2—K
2k n
2 K = (14 64(1/Fo) <L) [ log(Fo) + wlog (574073 ) ] 0/ = % (73%555)

s5:fork=1,...,K do

6 D= max{%(i)k_h min{(w%“‘/fj%og(l/ﬁ')) 7F0}}

N e 51/k e
7: Tk:(Fo/(I)k)%, O'k:u

/P
Vk70 = % Z?:l Vf(’wk_’o; :cz) + bk,() where bk70 ~ N(O, ]Idé'Q)
: t=0
10:  while t < T}, and |V, ]| > Z&;/" do
11: Nt = 4’7L1”1vk,t” ]1€/N
12: Wht+1 = Wkt — Mkt Vit
13: Ak,tJrl = % Z?:l [Vf(wk7t+1; xz) - Vf(wk_,t; :cz)] + bk,t+1, where bk,tJrl ~ N(O, ]Idag)
14: Vii+1 = Vit + Dg g1
15: t=t+1

16:  end while

170 Wg41,0 = Wk,t—1
18: end for

19: Return 0 = wg 41,0

Algorithm Overview Algorithm 1 is roughly an implementation of noisy Spider with some key differ-
ences. Similar to Spider, the algorithm runs over K rounds. At the start of any round &, a noisy minibatch



gradient estimate Vy, o, is computed. Throughout the rest of the round, the gradient is estimated using the
change in the gradient between iterates. That is, for some ¢t > 0, Vi, = Vi o + Z;Zl Ay ;, where each
Ay, ; corresponds to an estimate of a gradient difference. After each gradient estimate is obtained, a standard
(normalized) gradient descent update step is performed.

In contrast to traditional Spider, at the start of each round k € [K], a target excess risk threshold, @k,
is set. The algorithm then uses this threshold to define an adaptive stopping mechanism for the round. The
stopping condition is needed for the event where the excess risk of the update iterate falls below d;, before
the end of the phase. If this happens, the loss lower bound (and hence the gradient norm lower bound) will
not be strong enough for the subsequent iterate. Consequently, the noise added for privacy could be too
large and cause the trajectory of the algorithm to diverge. As such, we check to see if the loss has fallen
below the target threshold before performing any update. We do this indirectly by checking the gradient
norm and using the KL condition, as bounding the sensitivity of the loss itself (to ensure privacy) is more
delicate. Our implementation also uses varying phase lengths such that the length of the k’th phase is
roughly (1/ ﬁ)k)@*’”")/ ¥ (note the exponent is non-negative since x < 2). Specifically, the phases get longer
as the algorithm progresses. This is due to the fact that as the excess risk decreases, the lower bound on the
gradient norm (induced by the KL condition) becomes weaker, leading to progressively slower convergence.
We have the following guarantee on the Algorithm.

Theorem 1. Let vy > 0, k € [1,2]. There exists B = O( + F ) such that if f is Lo-Lipschitz and

Ly-smooth over Bg(wy), Algorithm 1 is p-zCDP. Further lfF( S) satisfies the (v, k)-KL* condition over
Bg(wo), with probability at least 1 — (3 the output of Algorithm 1 satisfies

TP R iy Y (A A T

where K, B’ are as defined in Algorithm 1, namely K = (1+64(1/Fy)="~2L;) {10g(F0)+I€ log (Vzﬁ )] ,
0
LovEd)> ™"
and B = (Z}W) .

Note the result can be further simplified by setting Fy = (Lg7y)"™ (which is always possible by the KL
condition) which makes (1/Fp) 5420, = zzg,{ We defer the proof of privacy to Appendix B.1, as it
is a standard application of the privacy guarar;)tees of the Gaussian mechanism and composition. In the
following, we focus on proving the convergence guarantee of the algorithm.

Convergence Proof for Algorithm 1 Our ability to assume loss properties hold only over B (wq) (rather
than R) hinges on bounding the trajectory of the algorithm. We assume for the following lemmas that he
conditions of Theorem 1 hold.

Lemma 1. Foranyk € [K| andt € [T}] correspondmg to iterates of Algorithm 1, it holds with probability
Fl/*
1 that wy,; € Bp(wo) for some B = O( o —|—F0 )

The implication of this result is that the algorithm starts in, and never leaves the KL region around wy.
Thus the KL property holds at every iterate of the algorithm. We pr0V1de a proof n Appendlx B.3. Note

that any L;-smooth function is also L}-smooth for L} > L;.

be made negligible by running the algorithm with L; > FO(2 w)/2 /v (although this may increase the rate
depending on Fj and 7).



Our utility proof for Algorithm 1, will crucially rely on the following lemma which bounds the gradient
error at any step in terms of the excess risk target, ®y,.

Lemma 2. With probability at least 1 — B, for every k € [K| and t € [T}] indexing the iterates of the
algorithm, one has that |V — VF(wg ¢; S)|| < %‘i,lc/ﬁ.

Proof. The gradient estimates are generated by using exact gradients plus Gaussian noise, thus

Vit — VF(wi; S)|)?

¢
= HVF(wk,O§S)+bk,O+Z [VF(U/'I@,]‘;S)—VF(wk,jfﬁs)"'_bk,]} VE(wk,; S)||” = sz’w
j=1

We can use Gaussian concentration results, see [JNG'19, Lemma 2], to conclude that for any 7 > 0,

PVt — VF(wi,; S)|| > 7] < 2exp ( T) . Thus, under the settings of & = Lo\/\( and
(& Lyo%)
21/k T K -
op = 2 YIR ypq 7, = (Fo/ <I>k) =, one has that with probability at least 1 — 3’ that:

P

Vit — VF(wg; S \<2\/d10g 1/8"(6 + /Trow)
Kdlog(1/p5") + Kdlog(l/ﬁ’) Bl 2ok

= k} F r
o P

(1) / /

¢ 2L0 Kdlog(l/ﬁ)+2 Kdlog(l/ﬂ)FOl/K
NG s

(i) N G 1
9 4L Kdlog(1/5) g iq)llc/n'
ny/p 8y

Above, (i) uses &;, < Fy. Step (ii) uses that Fy < (yLg)" by the KL condition and Lipschitzness. Step

(#i1) uses the fact that ) > <327L°\/m> _

ny/p
Finally, we observe that for all k € [K], ) > <32’YL° v fjﬁlog(l/ﬁ/)> and Q_T" > 0. Hence, the total

number of iterations of the algorithm is at most

K n\/ﬁ r 277& n\/—Fl/ﬁ K
2Tk (FO <327L0 Kdlog(l/ﬂ')) ) =f <WL0\/m

Thus by the definition of /3’, over the run of the algorithm, we have with probability at least 1 — 3 that every
gradient estimate satisfies the desired error bound. o

We can now prove the main theorem.

Proof of Theorem 1. In the following, we condition on the high probability event that the gradient errors
are bounded, as shown in Lemma 2. Further, recall that by Lemma 1 the trajectory {wg,t }re[x],te[ry] 1S
contained in Bp (wq) with probability 1, and that the (v, x)-KL* conditions holds over this set.

We will show that at the end of the the k’th phase (i.e. the k’th iteration of the outer loop), the excess
risk is at most @y First, consider the case where at some point during the phase the gradient norm stopping



condition is reached. In this case, the condition in the while loop ensures |V .| < %éi/ . Thus by
Lemma 2 and a triangle inequality we have ||V F(wg4;.5)|| < %‘i,lc/m + i‘il/m =1 fiJI/H. Then by
the KL assumption we have that F(wy;.S) — F(w*; S) < 4*||VF(wg,; )H’”" < ( @1/”) < Oy, as
desired.

We thus turn towards analyzing the alternative case, where the final iterate of the phase is wy, 7., using an
induction argument. Specifically, under the inductive assumption that F (wy o; S) — F(w*; §) < @)1, we
will show that F(wg, 1,;.S) — F(w*; S) < ®y. For the base case, we clearly have F'(wg ; S) — F(w*; S) <
by = Fy. Using smoothness and the setting of 7, ;, we can obtain the following descent inequality,

p 1
F(wp s 8) = F(wri159) 2 7o IVrally™ = 71V = VE (s S

~ 16y L
We leave the derivation of the above inequality to Lemma 9 in Appendix B.2. We now can use the fact that
updates are only performed when ||V, .|| > % <i>,1€/ " and the bound on the gradient estimate error derived in

Lemma 2 to obtain

1 22/kK 1 H2/k ! b2/"
I G F s q) - @ > [0 .
(wi.t;9) (Wit 413 5) > 3272L, 25672L; * T 64420, *

Summing over all T}, = (Fo/®%) 3% jterations yields

1 2/k 1 2k
T & = F,
64~2L, 6492,

F(wg,0,5) — F(wg,,;5) >

We then have the following manipulation leveraging the inductive hypothesis,

- - L g3
F(wk,0§5)_F(w ;S)—I—F(w §S) _F(wk,Tk;S) > MFO Py,
A 1 2-k
Dy Fw*;8) - F :S)> ————F, " B
k-1 + F(w"; S) — F(wg,z,; )_647%10 0" Pr-1
2—k 1 ~
1—FN7)<I>,>F :8) — F(w*; S
(1= B s B 2 Flunn,: 8) = F(w's8)

(i)k > F(wk,Tk;S) — F(w*; S)

m) = % and %ﬁ)k < ﬁ)k,l. We have now shown that final

iterate of each phase has excess risk at most ®y.
. A 32yLoy/Kdlog(1/8")\ " . 3
Now, all that remains is to show that & < ( Vo oe(1/8 )) . Noting that we have & <

2—kK
The last step follows because (1 -y

ny/p
max { (%)KFO, (BQ'YL0 v fj%og(l/ﬁ/)) } it suffices to show that (l)KFO < (Jio—ﬁ) The inequality

K log(Fp)+# log(—= )
(%)KFO < (%) is equivalent to e log(cg) Tiava < K. Using the fact that log(1 + x) > {7 for
x > 0, we can obtain that 1og( ) = log(1 + 1/[64F0772L N>+ 64F 2Ll) L. Tt thus suffices to

have K > (1 + 64(1/Fy) =" ~2Ly) [log(Fo) + klog (WL:)/\;E)} , which is satisfied by the algorithm. O




3.1 Lower Bound

We now demonstrate a lower bound showing that our upper bound is nearly optimal. To do this, we leverage
an existing lower bound from [ALD21] for functions exhibiting the growth condition. In Theorem 6 in

Appendix B.4, we extend their result to smooth functions and give a lower bound of {2 ((7') = L)\“—r\f) o )

on excess empirical risk of (e, d)-DP procedures for convex functions satisfying (A, 7)-growth. Combining
this result with the fact that the (£, —£-)-growth condition and convexity implies the (7, x)-KL condition
(Theorem 5.2 (ii) in [BNPS17], restated as Lemma 6), yields the following lower bound.

Corollary 1. Let B, Lo, L1 > Oand 1 < k < 2 such that k = 1 + Q(1). For any p-zCDP algorithm,
A, there exists a dataset, S, point wy € RY, and loss function f such that f is Lo-Lipschitz and L-
smooth over Bg(wq) and F(+; S) is (7, k)-KL, for which the output of A has expected excess empirical risk

M ~L Vd "
o (=) )

Note the bound is independent of B and L;. More details on how to obtain Corollary 1 from the result
of [ALD21] can be found in Appendix B.5.

4 Algorithm for x > 2

Algorithm 2 (KL) Proximal Point Method

Require: Dataset S, Privacy parameter p, zZCDP Optimizer for SC loss .4, Initial poigt wp € R4, Initial loss
bound, Fy > 0, Failure probability S, Lipschitz parameter Ly, Weak convexity Ly

=2 - n
1: T=(1+32F,* 7°L1) [log(Fo) + rlog (vLof\f;ﬁ)}
=4
:fort=1...Tdo ~
Fi(w; §) == F(w; S) + Ly ||w — we_1]|*
Wy = A(Ft,wt,l, %,B/)
: end for
. Return wp

In this section, we assume the loss F'(-;.5) is L1-weakly convex and that the empirical loss satisfies the
(v, k)-KL* condition for k > 2. We avoid making a smoothness assumption in this regime. When x > 2
and the KL* condition holds in a region with small excess risk, the loss functions cannot be smooth (unless
it is the constant function). To elaborate, one can show that the loss upper bound implied by smoothness
and the loss lower bound implied by the KL* condition lead to a contradiction. Instead of smoothness, we
consider the (strictly weaker) assumption of weak convexity. As convex functions are weakly convex with
L = 0, this setting is a strict relaxation of the loss assumptions considered by [ALD21]. Despite this,
we achieve essentially the same rate as theirs. Moreover, in Theorem 8 in Appendix C, we give a lower
bound of (%) ", which establishes that our rate is tight (at least) for d = 1. Its proof adapts the construction
in [ALD21, Theorem 5] from a lower bound on excess population risk under pure, (e,0)-DP to that on
excess empirical risk under approximate, (e, §)-DP. The lower bound holds for convex functions satisfying
the growth condition and thus satisfying the KL condition, via Lemma 6.



Our algorithm in this case is simply a differentially-private implementation of the approximate proximal
point method. This method has been used in prior work for non-KL functions to approximate stationary
points [DG19, DD19a, BGM21]. We have the following guarantee for this method.

~ ’ ’ k=2
Theorem 2. Lety > 0, k > 2, There exists B = O(%‘;(l + v/ Tdlog (njoﬁ;(l/ﬁ )/dB )) + LoF, 72) and

a subroutine A such that if f is Lipschitz then Algorithm 2 is p-zCDP. If F'(+; S) also satisfies the (v, k)-KL*
condition and Ly-weak convexity over Bp(wy), then with probability at least 1 — f3 the output of Algorithm
2 has excess risk, F(wr; S) — F(w*; S), at most

; ( (VLO\/leog(HQ log? (1/ﬁ’)/dﬂ’)>“> 5 ( (7L0\/d(1 + FONW272L~1)>“>'

k2 B
where T = (1 + 32F, = ~°L1) [log(Fo) + klog (%)] and B = /T, as defined in Algorithm 2.

v/ Tdlog ("2:105; (/57)/95") i the radius bound will be o(1) in regime where the conver-

gence guarantees are nontrivial. The privacy of Algorithm 2 is straightforward since the subroutine A is
p-zCDP by the assumption. Algorithm 2 is then private by post processing and composition. To prove the
convergence result, we will use the following fact about the strength of differentially private optimizers for
strongly convex loss functions.

Note the term

Lemma 3. There exists an implementation of A which is p-zCDP and with probability at least 1 — 3’ the
Lidlog (n” log® (l/ﬂ’)/dﬂ'))
Lin2%p :

output of the algorithm has excess risk O (

We provide the details for this result in Appendix E. Furthermore, as in Section 3, we only need the
KL condition to hold over the trajectory of the algorithm. The following lemma allows us to utilize the KL
property at every iterate generated by the algorithm.

Lemma 4. Assume A is as described by Lemma 3 above. With probability at least 1 — 3, w1, ...,wp €

- o n2lo 2 ’ ’ K=2
Bg(wq) for some B = O(%‘l’ (1 + v/ Tdlog 271155(1/5 /P )) + LokFy " 72)'

The proof is deferred to Appendix C.1. The proof of Theorem 2 now follows similar steps to those used
in Theorem 1, but is overall much simpler. One key difference is that, for each ¢t € [T'], we need to use
the KL condition to lower bound ||w; — w;_1]|, rather than ||V F(wy; S)||. For this, note that the optimality
conditions of F; imply 2L ||w} — wy_1|| = || VF(w}; S)|| > %(F(w;‘; S) — F(w*; S))'/*. The inequality
comes from the KL condition. The full proof of Theorem 2 is in Appendix C.2.

5 Adapting to KL condition

In this section, we present an alternative algorithm for ERM under the KL* condition. At the cost of weaker
rates when £ < 2, our algorithm automatically adapts to « and ~. This is in contrast to the Spider method
presented previously which requires prior knowledge of « and ~y. Furthermore, we are able to obtain this
result with a comparatively simple algorithm. That is, our algorithm is a simple modification of the tradi-
tional noisy gradient descent algorithm seen frequently in the DP literature [BST14, WYX17, BFTGT19].
Throughout the following, we will use 7' + 1 to denote the highest value of ¢ reached during the run of
Algorithm 3.

10



Algorithm 3 Adaptive Noisy Gradient Descent

Require: Dataset S, Privacy parameter p > 0, Probability 3 > 0, Initial point wo € R, Lipschitz parame-
ter Lo, Smoothness parameter L
I: n:ﬁ, t=0, po=0
2. while - pr < £ do

3 Ny= |20, Vf(we ;)| + by where by ~ N(0,1462) and & = s
4: V= % S Vf(we; @) + by where by ~ N(0,1407) and 0 = max {m, 3L‘;}

W41 = Wt — NV

_ i { Eidlos(n/p/6) V7
po = min { SN g 7

t=t+1

5
6:
7.
8: end while

Theorem 3. Assume f is Lipschitz. Then running Algorithm 3 and releasing wy, ..., wr is p-zCDP.

The proofis given in Appendix D.2, and relies on the fully adaptive composition theorem of [WRRW22].
Our aim is now to provide convergence guarantees when the loss satisfies the KL* condition over some
region S C RY. We here demonstrate an alternative way of defining S which allows us to leverage the
KL* condition (in contrast to assuming S is a ball). Define the threshold v = max { F(wo; S), F(w*; S) +
2(y*/2 + Ly) (%&W)l/z }.Let T = {w : F(w;S) < o} denote a lower level set of F(-; S). Note
the second term in the max of o only handles the trivial case where wy already has small excess risk. Observe
that Z may not be a path-connected set, thus we define S as the path-connected component of Z that contains
wo. Thatis, w’ € § if there exists a continuous function w : [0, 1] — Z, such that w(0) = wp, w(1) = w’.
Intuitively, S is the local “valley” of F'(+;.S) in which wg resides. Furthermore, we can guarantee that the
trajectory of Algorithm 3 stays in this valley for the duration of its run.

Lemma 5. Assume F(-;.S) is Ly-smooth and Lo-Lipschitz. If F(-;S) satisfies the (v, k)-KL* condition
over S w.rt. w§ = argmin {F'(w; S)}, then w.p. at least 1 — 23, for allt € [T], w, € S.
weS

The proof is deferred to Appendix D.4. Note we are assuming the KL* condition w.r.t. the minimizer
over S (as opposed to the global minimizer) here. We also remark that an existing work, [GHN*23], argued
the importance of public pretraining in the non-convex setting to find some wy in a convex subregion before
training on private data. Alternatively, our result suggests meaningful convergence if the empirical loss
over the localized region is instead KL. This may be more realistic in the overparameterized regime as
existing work has shown such models tend to be non-convex (but KL) around the minimizer [LZB20]. Our
convergence result for Algorithm 3 is as follows.

Theorem 4. Let 3,y > 0, k € [1,2]. Let p > 0 be s.t. L3log(n\/p/B)/(Lin) < \/p. Define pmax =
(1+8+v2Ly) [log(Fo) + 2= log(ny/p/ [’YLO])] If F(+; S) is L1-smooth and Ly-Lipschitz and satisfies the

(7, k)-KL* condition over S (as described above) w.r.t. w, then with probability at least 1 — 23, Algorithm
3 finds wr such that F(wrp; S) — F(w¥; S) is at most

K

O< <’7Lo\/d10g(n\/ﬁ/ﬂ)pmax> = N <max {¥*,1} LG log(n\/ﬁ/ﬁ)>n/2 N (pmax ) % ) .

ny/p min{L1, 1}n./p ny/p
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Ignoring  polylogarithmic terms and problem constants we can more simply write
. .oy Of(Md " 1 \~/2
Flur:$) - Flwg:S) = O((22) ™ + (25)"%).
The simplification in the theorem uses the fact that 5 > 7 for all x. We defer the proof of Theorem
4 to Appendix D.3. The overarching ideas of the proof are similar to those of Theorem 1. However, the
adaptive nature of the algorithm makes the analysis much more delicate.
Observe that for kK = 2 (i.e. the PL condition) this obtains the rate O( + \/_) which essentially

captures the optimal rate in this setting. The rate slows as « decreases, and for x = 1 we obtain a rate of

~ 2/3
O((345)

+ )

5.1 Convergence Guarantees without the KL. Condition

One of the key properties of Algorithm 3 is that it leverages large gradients to better control the privacy
budget. In fact, even in the absence of an explicit KL assumption, we can show that Algorithm 3 obtains
strong convergence guarantees when large gradient norms are observed. We provide the following result
on Adaptive Gradient Descent’s ability to approximate stationary points. Note that we cannot give excess
risk guarantees in this case due to the fact finding approximate global minimizers of non-convex functions
is intractable in this setting.

Theorem 5. Assume f is Ly-smooth and Lg-Lipschitz. Let T + 1 denote the largest value attained
by t during the run of Algorithm 3. Let t* be sampled from {0, ..., T} with probability proportional to

exp ( I VP || F (wy; )||) This algorithm is 2p-zCDP and with probability at least 1 — 3 satisfies

1/2 og(n
|vp<wt*;s>||=o(m{,/FOTLI,(LWn?ﬁle) }+L0 I;;I/f/m)

The proof is given in Appendix D.6. The best case scenario is when most gradients in the run of the
~ 2
algorithm are 2(1). In this case, the algorithm attains 7 = ©(min {n,/p, “5£}) iterations and the con-

vergence guarantee becomes O( \/_ NP /4) We note an existing work showed a lower bound Q(%)

for approximating stationary points, although this is not directly comparable as the previously stated upper
bound does not hold for all functions. In the worst case, the algorithm will achieve convergence guarantee

O( \/”fp/f =+ \/_pl —=L7). By contrast, the best known rate for approximating stationary points is O (n_\/\/gﬁ) 2/ 3)

[ABG™23], and the best known rate for methods which do not rely on variance reduced gradient estimates

(as is more typical in practice) is O((n‘{/__)l/ 2) [WYX17]. Our analysis recovers the O( (=L \/_)1/ 2) rate
obtained by noisy gradient descent as a worst case guarantee with minimal modification to the algorithm
itself, while also potentially achieving a much stronger rate.

The worst case guarantee comes from balancing the number of iterations that the algorithm performs
(which increases when the gradient norms are large) with the minimum gradient norm over the trajectory.

For simplicity, consider the scenario where every gradient in the trajectory has the same norm [N > 0. Then
clearly the minimum norm is also [V, but in this case T' = O(N 2;12” ) Thus the convergence guarantee
implies that N = O( f
the proof in Appendix D.6.

), which at worst means N = O(Lm) More formal/general details are in
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A Relationship between Growth Condition and KL Condition

Definition 4 ((\, 7)-growth). A function F : RY — R satisfies (), T)-growth if the set of minimizers W* =
arg min,, F'(w) is non-empty, and

F(w) = F(wp) = A" [lw — wy|"
where w, be the projection of w onto W*.

Lemma 6 (Theorem 5.2 (ii) in [BNPS17]). Let x > land~vy > 0. If F : R¢ — R is convex and satisfies
(7_1, ﬁ) growth condition, then it satisfies (7, k)-KL condition.

It is proven in [KNS16, Appendix A] that the KL condition with x = 2 (i.e., the PL condition) implies
quadratic growth. We present the following generalized version of this argument.

Lemma 7. Assume F : RY — R satisfies the (v, k)-KL condition for k > 1 and v > 0. Let w € R and
let wy, be the projection of w onto the set of optimal solutions, W* := argmin,, F'(w). Then it holds that

K

1] =T R
Fw) = F(wy) > [ 5277 o —w, | 1.

Proof. Define F'* = min, {F(w)} and g(w) = =7 [F(w) — F*]'=%. We have
we

VF(w) 2
- |- e
IVE (w)]*

 [Flw) = PP v

:Qgg@w;fm

2

Y

1
) “)
Consider the gradient flow starting at a point wg given by

dw(t)
dt
Note F'is invex (i.e. its stationary points are global minimizers) because it is KL. Thus g is an invex function
because it is the composition of monotonically increasing function and invex function. Further, because g
is bounded from below (by 0), the path described above eventually reaches the minimum thus there exists
T < +oo such that F'(w(T)) = F(w*).
Note the length of the path is at least ||wy — wy||. We then have

= —Vg(w(t)), w(t)],—p = wo

T
gtw0) ~gtwr) = = [ (Votw(o), "5 ar

T
=A|wmmew

( ; T
E;AIWMMWH

(21) 1
> ;”wO —’pr,
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where (7) uses Eqn. (2) and (i%) uses the lower bound on the path length. Plugging in the definition of ¢ then
gives

1-1/xk =i

F(w) — F(wy) > [[w — wp|

Note the bound is non-negative if x > 1. Finally, observing that ﬁ = 5 establishes the claim. O

Remark 1. Using the above result one can observe that if the KL condition holds over a ball of radius

B > —”yF , then w* € Bp(wy). Then for some w' € R%, a triangle inequality can then be used to
W' || + ||lwo — w*||. This would allow one to phrase our results in terms of a ball

centered at w*.

B Missing Proofs from Section 3

B.1 Privacy of Algorithm 1

Lemma 8. Assume f is Lo-Lipschitz and Ly-smooth over Bg(w*) (where B is as given in Theorem 1).
Then Algorithm 1 is 2p-zCDP.

Proof. First, by Lemma 1, every wy ., k € [K],t € [T}], is in Bg(w*), and thus the loss is Lipschitz
and smooth at the iterates generated by the algorithm. The sensitivity of the minibatch gradient estimates
(made in the outer loop) is then %, and at most K& such estimates are made. Smoothness guarantees the

sensitivity of the gradient difference estimates (made in the inner loop) at some k € [T], t € [T}] is
Ni,t L1 Hvk .
n )

1H/k o 51/k
< @ since g = W@ . Note at most T}, such estimates are made.

The zCDP guarantees of the Gaussian mechanism ensures that the process of generating each Vy, g is

p-CDP with p = % Similarly, we have that the process of generating each Ay, t > 0, is py-zCDP

with pp, = KLTk. By the composition theorem for zCDP we then have the overall privacy, is at most

Zszl ( Zt 1 KTk) = 2p. L

B.2 Descent Equation for Algorithm 1
Lemma 9. With probability at least 1 — j3, for every k € [K] and t € [T}] indexing iterates of the algorithm

. 1/k
it holds that F(wy1; S) — F(wg 1415 .5) > lﬁle Ve, tH(I) / ﬁ”vk,t — VE(wy; )|
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Proof. We start with a standard descent analysis. Since F'(+;.5) is L;1-smooth, we have

L
F(wi;8) — F(wii113S) > (VF(wpi; S), Wit — Weii1) — 71 [ —r

L177
= 77k,t<VF(wk,t; 5)7 vk,t) - bt

— 1_ Mt L1
et —5—

V]|

4 Nt (VE (we; S) — Vi, Vieyt)

(%) 1 L
> (5 - ) 195all? = T2V = VF (wiss S
( i)
"’“HWF Hvk,t—vnwk,t;sm?
(zu) 1/K 1 _ ) 2
16 L Llek,t VF(wk,t>S)H

Step (i) uses Young’s inequality. Step (i) uses the fact that n » < 57— This is because 7, ; = m pl/n
and updates are only performed when [ V4[| > g~ <I>1/ ™. Step (iii) uses the setting of 7. O
B.3 Proof of Lemma 1
Due to the step size and the phases lengths, with probability 1, we have that,
llw,t — wol| < —‘I) T, < —=—9/", 7 = 220 < ~1>
| 4F0T’)/L1 4vLy 1 \C

Above, we use the fact that "‘—’1 > 0 (since k > 1) to bound @k < Fp. Since ¢ > 1 we have, recalling

K =(1+64F,~ 2L1)[log(F0)—mlog(L°ff)],

KF/" Fi/ LY n./p
—wpl < B0 [Zo 4 qppw [1 F 1 ( )}
llw,t — wol| < i, <47L1 + 0~ 7| |log(Fo) + klog Tovid

B.4 Lower Bound for Smooth Losses Satisfying Growth Condition

We provide the following extension of the lower bound on excess risk in [ALD21]. Our extension yields
a lower bound for losses which satisfy (A, 7)-growth and are L; > 0-smooth over a ball Br(wy), for any
smoothness parameter L; > 0 and radius R > 0. In contrast, the setting of [ALD21] did not have the above
smoothness and existence of a (large) ball Br(wg) assumption (over which smoothness and Lipschitzness
holds). Further, [ALD21] provide a lower bound for constrained DP procedures, which is is based on
a reduction from convex ERM over a constrained set of any diameter D [BST14]. In contrast, we are
interested in lower bound for unconstrained procedures. Therefore, in Theorem 7, we extend the lower
bound of [BST14] to the unconstrained setting. We then provide a reduction, closely following [ALD21],
from unconstrained convex ERM to unconstrained optimization of functions satisfying a growth condition.
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Finally, we note that our unconstrained lower bound in Theorem 7 holds pointwise for all values of the norm
of optimal solution D, so it suffices to construct a reduction for some choice of D. We show that for any
given setting of problem parameters, there is a choice of D, for which the reduced instance satisfies the
requisite properties.

Theorem 6. Let Lo, L1, B, )\ > 0,7 > 2,7 = O(1),0 < e < 1,279 < § < % For any (¢, 6)-DP
algorithm A, there exists a set W C R? containing a ball of radius B, a dataset S and a convex loss
function f such that for all x, the function w — f(w;x) is Lo-Lipschitz, L1-smooth over W, the empirical
loss w — F(w; S) satisfies (\, T)-growth, and

EA[F(A(S); S) — inf F(w)] = [ — <L0\/a>ﬁ

1
weRd 771 \ Ane

Proof. The key to the proof is the following reduction, based on Proposition 3 of [ALD21]. Herein, the aim
is to show that the existence of a DP optimizer for convex losses satisfying the growth condition implies the
existence of an optimizer for general convex losses. More formally, consider a problem instance class where
we are given a set W C R4 containing a ball of radius B, a dataset S € X™ for some X, a function f(w;x)
where w — f(w;x) is Lo-Lipschitz, L;-smooth over W for all z € X and the empirical loss w — F'(w;.S)
satisfies (\, 7)-growth. Note since these properties hold over W, they hold over the ball of radius B. If there
exists an (¢, §)-DP algorithm .4, which for the above problem instance has expected excess empirical risk,

EA[F(A(S); ) - inf F(w)] = 0 ((Tx)*ﬁ A(n,d, Lo, L1, e, 5)) ,

T—2
17y o1 1/7
then for D = max <(A(n7d7L07Llc;€£i;) Sl bk iy B ﬁi? , where ¢2(7) = (1) and
L§T Y es(r)

c3(1) = Q(1) are specified later, there exists an (e, d)-DP algorithm A, such that for any Lo-Lipschitz,
convex, L1-smooth loss function w — f(w;x) for all &, with minimizer norm ||w*|| = D, its excess risk is

E4[F(A(S); ) — inf F(w)] =0 (D(A(n,d.2Lo, 2L, ¢/k,8/k)) 7 )

weR4

1 P
T—1 7 71
where k is the smallest integer larger that log (22T3A(;_d 21LL0?2L1 TESTR )

The main difference between above and the statement of [ALD21] is that unlike [ALD21], our reduction
is for unconstrained procedures and is tailored to the aforementioned choice of diameter D.

The proof uses the construction of [ALD21], verifying that for the provided parameter settings, the
assumptions hold. For simplicity of notation, let A = A(n, Lo, L1, €, ).

Let wy be the origin. For a sequence of {);}, to be instantiated later, define

1
- LO T—1
.= . — W, </
Wi {w lw — w1 < (27/\2272) }

Z:"i(w; S) = F(w, S) + )\;{-27’72 Hw — wi_1HT

where w; = A(F;, S). The function F; satisfies (/\Z-g(T’Q)/T, 7)-growth (over all of R%). We now inspect
its Lipschitzness and smoothness parameters over W;. By direct calculation, the Lipschitz parameter is
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bounded by Ly + Lo = 2L The smoothness parameter is at most,

o L =1
Li+ A 277%r(r = 1) Jw — wia |72 = Ly + A]27 ?r(r — 1) (WST”)

= L1+ ()7 (Lo) = ea(r),

r—1
T

-2 _1_ ‘
where ¢1 (1) = % = Tﬁ(T —1). In [ALD21], ), is set as \; = 2= ("=*)ix for A to be
=1

27
specified later. The above smoothness bound is a decreasing function in ¢, so what suffices is to show
that the above bound is smaller than 2L, for the largest \;, which is A\ = 2_(%1))\. From [AFKT21],
(r=1)

ro1)2
/\:4(71) (%) S , so we have,
/7 A1/7 1/7
s =2 71 T A =2 A =2
(07 (LT er) =47 (1) S5 aln = an) S5 @),

— 1/7 1 . 1/7 :—:2 .
where ¢y(7) = 4+ o 771 (7 — 1). The choice of D > %, ensures the above is at
most L, thereby establishing that the smoothness parameter is at most 2L;. The final condition we want
to ensure is that all the sets VV; contain a ball of radius at least B. Since )\; is decreasing in i, it suffices to

consider 7 = 1. We have,

=

Lo 71 1 -1 1 LD D
- — Lr—l — L.,-71
(2TAI2T—2> 27711( T ) 4= AT es(7)Lg Al/T

o 1 . 1/7 .
where ¢3(7) = —2— (Z=1)” —L+. The choice of D > —BF2"" ensures the above is at least B.
2 47 Ly tes(r)

The rest of the proof repeats the arguments in [ALD21], to get,

—1

E[F(A'(8); 8)] = min F(w; $) = o (D (A(n,d,2Lo, 2L, ¢/ k,8/k) )

We now instantiate A(n,d, Lo, L1,€,0) = L%_\E/E_ This gives us that E[F'(A’(S); S)] — min,, F(w;S) =
0 (%ﬁ). However, this contradicts our lower bound in Theorem 7 for unconstrained DP procedures for

convex, Lo-Lispchitz, \gnLEO < Lj-smooth (by our choice of D) losses. O

B.5 Additional Details for Corollary 1 (Lower Bound)

In Theorem 6 (in Appendix B.4), an extension of [ALD21, Theorem 6], we show that for 7 > 2 and
7 = O(1), the lower bound on the minimax optimal expected excess empirical risk, «, for (¢, §)-DP ERM
of functions which are smooth and Lipschitz over a ball of any finite radius B > 0 and globally satisfy

convexity and (A, 7)-growth, is
- 1 (Lovd\ ™"
a= -
(r)71 Ane
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Lemma 6 gives that (

7)-growth and convexity implies (7, x)-KL with A = v~ ! and 7 = . Further, if
k < 2,thenT = ﬁ 2

and if K = 1 + Q(1) then 7 = O(1). Thus we have the lower bound,

(] () ()

The last step uses the fact that K = 1 + 2(1). Finally, the existence of a p-zCDP algorithm with rate better

than O ((%) ) would imply the existence of an (¢, d)-DP algorithm (see [BS16, Proposition 1.3])

~ K
with rate better than O ((%ﬁ‘/&) ), a contradiction.

A,
>

B.6 Unconstrained Lower Bound for General Loss Functions

In this section, we provide an extension of the lower bound on excess risk of DP procedures for convex
Lipschitz functions in the constrained setting [BST14] to the unconstrained setting. The key idea in the proof
is to define a Lipschitz extension of the hard instance in [BST14] using the Huber regularizer. The dataset
for our construction, as in [BST14], leverages fingerprinting codes. The exact details of fingerprinting codes
are note needed for our proof below, but we defer the interested reader to [BUV14] for more details. The
following result is used in the proof of the lower bound for functions satisfying (\, 7)-growth for2 < 7 =
O(1) in Theorem 6.

Theorem 7. Let0 < e < 1,0< 9§ < %, D, Ly > 0. For any (¢,0)-DP algorithm, there exists a dataset S,
VdLgy

and a Lo-Lipschitz, =5 -smooth convex loss function w +— f(w;x) for all x, such that its unconstrained
minimizer, w* = argmin {F(w; S)}, has norm at most D, and
w

ne

EA[F(A(S);S) — F(w*;S)] =Q <L0Dmin{ﬂ,l}> .

Proof. Consider the loss function

n

F(w;8) = 3 (w,21) + M (w), ©

i=1

where H is the “Huber regularization” defined as

Jwl*  if|lw] < 4D
H(w) = . (6)
4D |lw|| otherwise
d
Note that if N of the x; vectors are vectors in {i%} and the rest are the zero vector, we have
I3, xi|]| < NLg. The empirical minimizer is w* = —% Thus we set A = 228 so that ||w*|| < D.

We also remark that under this setting of A that F' is Lipschitz with parameter Ly = Lo + 4\D < 5L.
Now we will show that any w which achieves small excess risk is close to w*. Then we will use a lower
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bound on this distance to lower bound the error (as in [BST14]). For any w such that ||w|| < 4D have
* * 1 - 2 * (12
F(w;§) = F(w's 8) = (w—w*, = > a5) + A (w]® = )
i=1
* * 2 %12
= 22w — w*, —w*) + A (Jlull” - [lo*|?)
= 22(jw* 2 = (w,w")) + A (Jfwll® = )
1 1 1
=2 (1 = 5 ol + 5w = w?) + 3 (ol = )
= Allw = w*|]

NEo 1y — w)?
= w —w
nD

where the fourth equality comes from (a, b) = %(HaHz—i- [[6]]> = |ja — b]|*). Now [BST14, Lemma 5.1] gives

of any (e, 0)-DP algorithm, A(S), must satisfy E[||.A(S) — w*||] = Q (‘/JgeD) Thus we have

that for N = min { \/3, n} there exists a construction of the non-zero dataset vectors such that the output

E[F(A(S);S) — F(w*;5)] = Q <L0Dmin {ﬁ, 1}) .

ne

This lower bounds the excess loss for any w such that ||w|| < 4D. Finally, note that any w’ such that
|lw'|| > 4D (i.e. a point outside the quadratic region of H) would also have high empirical risk because of
the regularization term. Specifically, we have for any such w’ that

'|LoN 4DLoN
Fw';8) > I ZeN AND|Jw'|| > 16AD? — ——=2
n n
Further since ||w*|| < D, we have F(w*; S) < &Le 4+ AD2. This gives
5LoDN dDL
F(w';8) — F(w*;§) > 15AD* — =202 — () (D>
n ne
where the last step follows from the setting of \. Combining the two cases finishes the proof. O
C Missing Results from Section 4
C.1 Proof of Lemma 4
For any t € [T, the stationarity conditions of F; imply ||V F (w};S)|| = 2L, ||wf — w;_1]|, and so by

Lipschitzness |Jw; — wi—1]| < QLTQ Further, we have by strong convexity and the accuracy guarantee of
1

A that with probability 1 — 3 for any ¢ € [T that ||w; — w}| = O (\/;LT\/Ft(wt; S) — Ft(w;‘;S)> =
1

0 Loy/Tdlog (n? log? (1/8")/dB’)
Ll’ﬂ\/ﬁ

) . Thus using the triangle inequality the overall magnitudes of the updates
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are bounded by ||w} — wi—1|| = O (L <L0 + Loy/Tdlog (nj\l;)igz (1/6/)/d6/))) . In the following, let 7 =

Tdl 2 1og2 (1 d
v/ Tdlog (n ncigf( /6')/dB') . Since at most 7" iterations occur, we have

v (|, Loy/Tdlog(tlog? 1/3)/a5)
e = woll = O | =
1

NG

(-
O(T 1+T>
(5

=0 L1 + ™) (1+ F0 2L1) {log(Fo) — klog (’YLO Zi;%(l/ﬂ/))D
=0 <(7L0(2:— ) + LOFO%Z”Y2) [1og(F0) — klog (FYLO il\j%(l/ﬁl))}> .

C.2 Proof of Theorem 2 (Convergence of PPM under the KL* Condition)

Proof of Theorem 2. In the following, we condition on the event that every run of .A obtains excess risk at
aLZdlog (n®log? (
Lin2p

least 1 — 8 by Lemma 3. Further, under this same event, the KL condition holds at every w;, t € [T], by
Lemma 4.

L/B)/45) for some universal constant a. Since g = % this event happens w.p. at

most

-
Now definec =1+ F, ~ 32'7211 , &y = Fyand
i . ayLoy/Tdlog(n? log® (1/8') /') »
$; = max —@t,l,min{( ) ,FO} .
c n.\/p
We will first prove by induction that F'(w¢; S) — F(w*; S) < ®; under the assumption that F'(w;—1; S) —

F(w*;S) < Dy . Clearly the base case is satisfied for dy.
To prove the induction step, we will proceed by contradiction. That is, assume by contradiction that
F(w; S) — F(w*; ) > .
Note F} is fl-strongly convex since it is the sum of a L, weakly convex function and a 2L, strongly
convex function [DD19b]. Let 7 be an upper bound on the excess risk achieved by A on the strongly convex
objective F;. Then

(%)
F(wyg; §) = Fiy(wg; S) < Fy(wf;8) + 7 < Fwi-1;8) — — w1 —wi[|” + 7
Ll *
= F(wi—1;5) — F(wy; S) > — ||lwp—1 —wi||” — 7 %)

Inequality () uses the fact that Fy(w}; S) = F(w}; S) + %Hw;‘ —wi1]]? < Fy(wi—1;8) = F(wi—1; S),
which implies F;(w;; S) < F(wg_1; S)—%Hw{f—wt,lHQ. Recall we have 7 < aLgdlog (n* log” (1/6')/dB")T

Lin2p
by Lemma 3. Further, note by stationarity conditions for the regularized objective we have

IVE(w;; S)|| = 2L1 [|w] — wi—1]|. ®)
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By the assumption that F'(w;; §) — F(w*; S) > ®; and the KL condition we have |V F(w;}; S)|| > %fﬁ/“,

and thus by Eqn. (8) we have ||w} — w;—1]| > ﬁ‘ii/m' Applying Eqn. (7) gives
1

1 = K (Z) 1 = K
F(wi—1;8) — F(wy; S) > 7~<I>f/ -7 > _$%
1672L, 32721,

3

where inequality (i) comes from the setting P, > avLoy/Td log(:i/l;gz (1/8)/db /)) . Adding and subtract-
ing F'(w*; S) on the left hand side and rearranging obtains
1 22/kK
F(w; S) — F(w*;S) < F(wi—1;S) — F(w*;§) = ————=@
(wtv ) (w ) ) = (wt 1 ) (w ) ) 3202/5721;1 t—1
(@) . 1 ~ 9/
<O ) — ———— 511
32c2/r~y2 L
=1 39¢2/m2L e
(i) 2— 1 R 1 ~
< (1 —Fy" = ) -1 = Py < By
32¢y?L4 c

Step (i) uses the inductive assumption that F'(w;_1) — F(w*; §) < &;_,. Inequality (ii) uses the fact that
k>2,¢c>1,and ®,_1 < Fj. This establishes a cqntradiction and thus completes the induction argument.
We have now proven that F'(w; S) — F(w*;S) < &, forall ¢t € {0,...,T}.

vLoy/Tdlog(n” log? (1/5)/d5") ) " We have

All that remains to prove convergence is to show that by <

$p < max { L' R, (m\/ Tdlog(n? log? (1/6/)/d6/)> } and

NG

NG

[log(Fo) + k log ( ny/o )]

vLoV/ dlog(n?log? (1/8')/dB’)
log(c)

( 1 )T R < <7Lo\/dlog(n2 log? (1/8')/dB")

K
— T >
n\/p

2—k =2 ~

Using the fact that log(c) = log (1 + F,~ m) > (14 32F, " +*L1)~ !, the setting of T' = (1 +
K—2 ~

32F, "~ v?L1) [log(Fo) + klog (wz:)/\%” suffices to ensure convergence. O

C.3 Lower bound for < > 2

We give a lower bound on excess empirical risk for settings where the empirical risk satisfies (1, x)-KL for
k > 2, under approximate differential privacy.

Theorem 8. Let k > 2,0 < € < In2,0 < § < = (1—e),d € Nand B > 0. For any (¢,0)-DP
procedure A, there exists a data space X, a set W C R? containing a ball of radius B, a dataset S and a
convex loss function w — f(w; x) which is 1-Lipschitz over W, the empirical loss w — F(w; S) satisfies

(1,k)-KL, and

weRY ne

Eu |F(A(S);S) — inf FWS)} = i (i>
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Proof. The proof adapts the construction of [ALD21], Theorem 5 from a lower bound on excess population
risk under pure DP setting to that on excess empirical risk under approximate DP. We first prove a lower
bound for (1, 7)-growth functions, for 7 € (1,2]. We recall the one-dimensional, unconstrained (so W =
R?) construction in [ALD21], Theorem 5. The data space X = {—1,1}, and for a € [0, 1] to be specified
later, define functions

lw—al] w<a lw+al” w<—a
w;l) = - and w;—1) =
flwil) {|w—a| w>a 4 ) lw+al w>-—a

The functions above are 1-Lipschitz. Consider two datasets S and S’ such that .S contains (%p) fraction

of 1’s and the rest —1’s. Similarly, S’ contains (1;—’)) fraction of 1’s and the rest —1’s. The number of
points differing between S and S’ is thus np. We set p = 1/ne to get % differing points. The corresponding
empirical risk functions are,

P ) = (S52) rtws )+ (152 st
F(w;8") = (%p) flw; 1) + (HT”> flw; 1)

In the construction of [ALD21], Theorem 5, the above are their population risk functions “f1(x)” and

“f—1(x)”. Their minimizers are w§ = a and wf, = —a, with values (1 — p)a and (1 + p)a respec-
1
tively. Note that the above functions are convex. Further, with ¢ = 2 (T; Do L [ALD21] showed
2(ne) 7—1

that both functions w — F'(w; S) and w — F'(w; S’) exhibit (1, 7)-growth over all of R. For any (e, §)-DP
algorithm 4, we have that,

_ sup EA[F(A(S); S) — inf F(w; S)]
Se{s,s"} v
> %EA [F(A(S); S) = F(wg; S) + F(A(S'); 8") = F(w§; ')

> Ea [JA(S) —ws|™ +[A(S) — wi[]

> 5 (BA[lA(S) - w] + JAGS") — wi )7
> 1 (Ballwg — wy )’

4

i)
> =
— 4 \ ne

where the second inequality uses the growth condition, the third uses that for 1 < 7 < 2, |u + v|” <
2(Ju|™ + |v|™) and Jensen’s inequality; the fourth uses Lemma 2 of [CH12] and the final inequality plugs in

computed distance between minimizers. Finally, the fact (Lemma 6) that convexity and | 1, ﬁ) -growth

implies (1, x)-KL establishes the 1 (l)N lower bound for (1, )-KL functions. O

ne

27



D Missing Results from Section 5

D.1 Gradient Error of Algorithm 3
Lemma 10. Let T + 1 denote the final value of t reached during the run of Algorithm 3. With probability at

least 1 — 23 under the randomness of Algorithm 3, for any t € [T] s.t. o = #\/ﬁ/ﬂ)’ it holds that
Lo/log(n\/p/B)
Vi = VE(w; S)|| < N < |[VF(wy; S)|| + N
Further, if for any t € [T), oy = 7213% then t = T and with probability at least 1 — 23 the above condition
holds as well as ||V1 — VF(wr; S)|| < Loy/dlosinyp/B) ”dlsf(ﬁw.

Proof. Condition on the high probability event that forall t € [T, ||b|| < +/ log(n./p/B)6¢ = Loylognyp/P) W

and ||b;|| < y/dlog(n./p/B)o: = N;. This event happens with probability at least 1 — 23 due to the con-
centration properties of Gaussian noise and the fact that at most n.,/p iterations are performed. Under this

event we then have the following bound on the gradient error,

Lo+/log(n\/p/B)
Vapt/t

ZL\/%, pt > & and the stopping

condition is triggered. The second error bound result again comes from the concentration of Gaussian
noise. O

Vi = VE(w; S)|| < N < [|[VF(wi; S)|| +

The second part of the lemma statement comes from the fact that when oy =

D.2 Proof of Theorem 3 (Privacy of Algorithm 3)

Proof. Denote T'+ 1 as the highest value attained by the variable ¢ during the run of the algorithm. Consider
any round ¢t € [T]. We consider the privacy of the round conditional on w;_;. Specifically, for the process
of generating the gradient and gradient norm estimates at the ¢’th step, the scale of Gaussian noise ensures
this process is p;-zCDP. Specifically,

= (L0>2+ (2)2 B @+min{Lgdlog(n\/ﬁ/ﬁ) B},

nog n n2N? 2

The £-zCDP guarantee of releasing the first 7' — 1 iterates is then certified by the stopping condition (i.e.
Z’;:O p: < %) and the fully adaptive composition properties of zCDP. That is, [WRRW22, Theorem 1]
guarantees the privacy of the overall process even if the privacy bound at each iteration is chosen adaptively
(rather than fixed a-priori as with standard composition theorems). Releasing the 7" th iterate is also §-zCDP
because o > SL\/% and the sensitivity of any gradient estimate is at most % Thus the overall algorithm is

p-zCDP by composition. O

D.3 Proof of Theorem 4 (Convergence of Adaptive GD under KL* Condition)

In the following we define T" + 1 as the highest attained value of ¢ during the run of Algorithm 3 and define
c.=1+ 8+.
v2 L1

28



Before proceeding with the main proof, it will be useful to first show that in the event that for some ¢ > 0

one has oy = nL\/Oﬁ, the algorithm has reached its convergence criteria and stops.
Lemma 11. Lett > 0 and assume o, = 25/% Then Algorithm 3 stops at iteration t and with probability at

least 1 — 23 one has

F(w; ) — F(ws; ) = O <<7L0 dlog("\/ﬁ/@)r" N (vQL?J 1og(nﬁ/ﬁ))”/2>

Importantly, this rate is strictly faster than the convergence claimed by Theorem 2. The proof is given in
Appendix D.5 and follows straightforwardly from the concentration of Gaussian noise and the KL condition.
Given this fact, we can proceed with the rest of the proof only considering the case where o; =

Ny for all t € {0,...T}. We will first prove (under the stated assumption) the following use-

V/d1og(n/p/B)

ful lemma which roughly states that the excess risk is monotonically nonincreasing up to a certain threshold.
Note in the following, we use ®, to denote exact excess loss quantities. This in contrast to the analysis of
Section 3 where ® was used to indicate target excess risk loss thresholds. For the rest of this section, we

assume w < /p, as per the statement of Theorem 4.
Lemma 12. Define &, = F(wy; S)—F(w¥; S). Assume F(-; S) is L1-smooth. Assume o, = ﬁ
og(n./p
forallt € [T). Then with probability at least 1 — 25 we have for all t € [T that
1 2 Llog(ny/p/B)
F(wy; S)— F 18) > — I[VF(w; 9)||" — ————= 9
(wi; §) = Fwig1;5) 2 S, IVE(we; S)|| Linyp ©

and if F(+; S) is also (v, k)-KL then

max {72, 1} L¢log(n\/p/p) "2
Lln\/ﬁ

(I)t+1 S max (I)t, 2 <

Proof. Throughout the following we condition on the high probabity event that
Lo+/log(n./p/B
IV = VE (s S)| < No < [V )] + 2V E0VPI0)
Vnp!/t

which happens with probability at least 1 — 5 by Lemma 10 (given in Appendix D.1). Now, standard descent
lemma analysis yields

L
F(w; 8) — F(weg1;8) > (VF(wy; S), wy — wig1) — 71 w1 —we)?
_ 1 a2 oo N
1 LZlog(n B
> |[VE(wg; 8)|® - M'
8L1 8L1n\/ﬁ

This establishes the first claim of the lemma.
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ax{~? 2log(n ~/2
Continuing to the second claim, the above implies that if &, > (mﬂl {21} L8 tos( ﬁ/ﬂ)) , we have

Lln\/ﬁ
by the KL condition that
1 o/ L21
[V F (s 8)? = a3/ > LULBOVAR) (10)
~2 Lin./p
Thus we have
1 L log(n/p/B)
Py — @py1 = Fwy; S) — F(wig135) > SL, IVE(w; S)||” - W >0 (11)

- 1213 log(ny5/8) |/ - .
On the other hand, if ®; < Lingp then because using Eqn. (11) and the fact that ||V F'(w; S)|| >

0 we obtain

Dy <Py +

L3log(ny/p/f) _ (max {7,1} 13 og(ny/5/5) ) "

Lln\/ﬁ - Lln\/ﬁ
2 .
Above we use the assumption that %\/\/ﬁﬁ/ﬂ) < 1. Thus combining these two inequalities we have
K/2
max{~2,1} L2 log(n B
Dy < max{¢t72( b gli\/ﬁg( o )> } L]

The next lemma establishes how quickly the loss decreases. Specifically, we show that the loss decreases
by a constant fraction after a certain number of steps. The smaller the excess risk is, the more steps are
required to achieve this decrease. Recall ¢ := 1 + WlLl'

Lemma 13. Let K > 0 and t € [T and assume the high probability event of Lemma 12 holds. Then for

—

K > (19,)"% — Lit holds that

max {72, 1} L§log(n./p/B) ) /2

1
P < -0, 2
rHK S ax g P < min{Ly, 1}n./p

Proof. We here condition on the high probability event that Lemma 12 holds (i.e. that the gradient error is
bounded for the entire trajectory). We proceed with a proof by contradiction. Assume by contradiction that

max {12, 1} L3 log(ny/p/5) ) i

1
P > — Dy, 2 -
tHK > max c ! < min{Ly, 1}n./p

By Lemma 12, this assumption implies the above inequality also holds for all &, ;,j € {0, ..., K},

fax {%q)“ . (max {727 1} & welnyp/P) > K/z} < &y x < max {®t+j7 2 (max {72’ 1} L3 IOg(n\/ﬁ/ﬂ))K/z}

min{L1, 1}n,/p Lin\/p

2 2 w/2
= max{%@tQ (max{7 1} L3 log(n\/ﬁ/ﬁ)> } <Dy, 12)

min{Ly, 1}n./p
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min{Ly,1}n\/p Liny/p
We now sum over K steps and using the descent lemma (see Lemma 12, Eqn (9)). We have

ax 2 2 og(n K/Q max 2 2 ogn K/Q
The implication above uses the fact that 2 (md (2?1} los(n/p/8) £ 2 {01} los( \/ﬁ/ﬁ)) .

K 2
1 Lilog(ny/p/B)
F(w: §) = Pl )2 3 (g3 IVF(wiy: $)|F — T8V
= 1 114/p
@i( 1 q)g/ﬁ__L%logmﬁ/ﬁ))
- = 4’}/2L1 t+J 4L1n\/ﬁ
i) K1 2/x
> "
= j; 2721/1 t+j
G (L) 1, 1
> le TV 7 2 /6 —
Z oL, (C‘I’t) 5y7L, Py (13)

Step (i) uses the KL condition. Step (i¢) uses the fact that Eqn. (12) implies that for all j € {0,..., K},

K/2
by > ( %) . The second inequality uses the KL condition. Step (#i) uses the fact that ;4 ; >

%fl)t, by Eqn. (12), and the setting of K. Manipulating Inequality (13) above we have

1
F(wt;S) — F(’LUH_K;S) = (I)t — (I)t-l-K 2 20")/2L1(I)t
— b < (1— ) = 2
t+K > 20’_}/21—/1 t— c te

max 2 2 ogln K//2
This establishes the contradiction and thus ®;; x < max {%fbt, 2 ( {Zli;ll{}floll}i(\/ﬁﬁ/m) } O
We can now prove Theorem 4 itself. With the above two lemmas established, our primary concern is
analyzing how the stopping conditions affect the convergence of the algorithm.

Proof of Theorem 4. Condition on the high probability event that Lemma 12 holds (i.e. that the gradient
error is bounded for the entire trajectory). We will assume for the rest of the proof we assume that for all
t € [T that

min{Ly, 1}n./p

Note that if for any ¢ € [T'] the above inequality is not satisfied, by Lemma 12 the convergence guarantee of
Theorem 4 is satisfied.

We now argue that the algorithm does not stop before convergence is reached by analyzing the stopping
condition. It will be helpful to split the run of the algorithm into phases. We denote the first phase as the
set of iterates W1 = wo, w1, ..., wx,, where K7 is the largest integer such that F'(wk,; S) — F(w%; S) >
%CDO. Similarly define Wy = wg,, Wi, +1, .., Wk, Where Ko is the largest integer such that F'(wg,; S) —
F(w§; S) > %(I)Kp and so on for W3, Wy, ..., W,. Our aim is to show the algorithm does not stop before
convergence.

5o <max )13 1og<m/ﬂ>>“” "
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First, we bound the largest value p can obtain without convergence. By Lemma 13 and Eqn. (14) we have

P log(Fo)+ 27"}{ log(n L
P, < & Fo. Thus for p > pmax := (14+87%L1) {bg(Fo) - 1og(n\/ﬁ/[vLo])} > et log(§§ Vo el)

we have

2K 2K
1 Pmax L I—r L XdA 1—r
b, < (_) B < (u) - (0707 vpm) .
c n./p n./p
Thus if the algorithm has not converged it must be the case that p < pmax. Let us thus assume p < ppayx for
the following analysis.
The algorithm stops when ZtT:o p+ > p. We observe (denoting Ky = 0 for convenience)

zT:p_T\/_ L2dlogn\/_/ﬁ G

M
2@

t=0 J=1t=K,_,
K; -1
75, Lidlog nf/ﬂ ] < ) L%log(nﬁ/ﬂ))
VF(wy; )| — VA
- n j;t2271 H t )H 4L1n\/ﬁ
g T\/_ L2dlog( n\/_/ﬁ Zp: & 2
- = IV 9)|

The last step uses the fact that the KL condition and the loss lower bound assumed in Eqn. (14) implies

|V F(wy; S)|)* > Llcngn\f/B) Continuing, by the KL condition we have,

2/k
: K Kj

T K;
Z T Lgdlog (ny/p/B) Zp L0292
=0

T\/_ L2dlog(n\/_/ﬁ Zp:‘b 72
2 K
n’ j=1 K/J

T\/_ L3dlog( n\/_/ﬂ Zp:
‘I)Krf
=

2/&
T 2~v2L2d]1 r—4
< Ve 2L Oi(nﬁ/ﬁ)pmaxmax{fblg }
n n Jj€(p] 7

Thus, if T < %n\/_ , the algorithm has not stopped unless for some ¢ € [T] we have that &; =

2k
0 <<7Lg\/dlog(n\/ﬁ/ﬁ)Pmax> 4'{)

ny/p
To finish the proof, we consider the convergence when the algorithm stops after 7' > %n\/ﬁ Recall
we are assuming the algorithm has run for at most p < pmax number of phases (as otherwise the algorithm

has converged). The number of iterations during each of each of these phases is at most <I> .~ . Thus the
algorithm has not stopped unless

oo > L o < (Zme )T
Pmax K, _in\/ﬁ — Pk, = n\/ﬁ .
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To summarize, we now have three different bounds on the excess depending on three possible events.

max{'yz,l}Lg log(n+/p/B)
min{Ly,1}n./p

max 2 2 (0] n K//2 N 427%
2 ( {7%1} 28 los( ﬁ/ﬁ)) andT < %n\/—, in which case we have shown &7 = O <(07L° v dlog(nﬁ/ﬁ)pm) .

K/2
The first case is simply when &7 < 2 ( ) . The second case is when &7 >

min{Lq,1}n./p n\/p

max{'yz,l}Lg log(n\/p/B
min{Ly,1}n./p

/2
The final case is when & > 2 ( ) ) and T > %n\/_, in which case we have shown

K

dr < (%}%) . Combining these results yields the theorem statement. O

D.4 Proof of Lemma 5

Proof. We will prove the lemma result by induction. For any ¢ € 0,...,7 — 1, assuming w; € S, we will
show that w1 € S. The base case for wy holds because S is defined to contain wy.
Before proceeding, we condition on the event that for all ¢ € {0, ...,T — 1} we have that |V, — VF (w; S)|| <

IV F(we; )| + Loyloslnyb/P) W, which happens with probability at least 1 — 23 by Lemma 10 in Appendix
D.1.

To prove the induction step, let w, € S. We divide the proof into two cases, depending on ||V F(w; S)||.

2 1/2
In the first case, assume |V F(wy; S)|| < (%W

is in S because it has not moved too far from w;. Since w; € S, the KL condition holds at w;. Thus
os(n K/2
the gradient norm bound and the KL condition imply F(w;; S) — F(w%; S) < ( M) . Let

. In this case, we will roughly prove that w; 4 ;

np
1/2
R=2 ( %’L\‘gm)) and recall we define the level set threshold as o = max { F(wo; S), F(w}; S) +
1
1/2
max { F(wo; S), F(wk; S) +2(y"/? + Lo) (L‘Q)loi(iggp/m) }}. For any point w’ € B(wy; R), by Lips-

chitzness one has
F(w'; 8) < F(wi; ) = Fwg; s) + F(ws; S) + Lo(|VF (we; S)|| + Ve = VE(w; S)I)
< F(wj:S) +2 <M)/ I <<M>/ L Lo 1og<nﬁ/ﬁ>>

n\/ﬁ n\/ﬁ \/ﬁpl/4
L3 1og(n\/ﬁ/ﬁ))l/2 <a
n./p -

Thus B(w,; R) C Z. Since B(wy; R) is path connected and w;, € S, we have B(w;; R) C S by the definition
of S. Further, with probability at least 1 — 5 we have

< P(wh; S) +2(%/2 + Lo) (

|we — wepr || < n([[VE(we; S)|| + Ve = VE(wy; S)))

i og(n i og(n 1/2
o219y + DY TEYPI O . (LRE R T

- 2L

— W41 € BR(wt)

Above, step (i) uses that the scale of noise in Algorithm 3 guarantees with high probability that ||V, —
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1/2
VF(we; S)||. Step (i) uses the assumption that ||V F(wy; S)|| < (%\/W) , the setting of R

(above) and n = i As we have previously show, Br(w;) C S, so we have shown w11 € S.
Lg log(n\/p/8)
ny/p
ized by | € [0, 1] defined by w(l) = w; + l(wi4+1 — wy). By the update rule of Algorithm 3 and standard

descent lemma analysis we have (using the smoothness of F'(+; S))

We now consider the second case where ||V F(wy; S)|| > . Consider the path parameter-

L
F(wy; §) = F(w(1): 8) > (VF(w;: §),w, = w(l)) = = [Jwy = w(D)|
2L, 9
> UV F(wg; S), wp — wig1) — — [we — wepa ||

l 2 l 2
= [|VF(w: — ||V, — VF(w,:

l 12L2log(n I5}
4L1 8L17’L\/ﬁ
O 71 ,  L3log(n/p/B)
S| — IVF(w: _ Z0OS\WATE)

(i) ] 5
> — ||VE(wy; > 0.
> 1 IVF@iS)* =0

Step (7) uses the fact that I < 1. Step (i) uses the assumption that | VF (w;; S)|| > Lglog+/%/’s/m. We have
shown F(wy; S) = F(w(l); S) for every | € [0,1]. Thus {w(l)},c(o 1) € Z, and because {w(l)},c(q 1) is
path connected and contains w; € S, we have {w(l)},c(0 ;; € S and specifically wi1 € S. O

D.5 Proof of Lemma 11

Proof. First note that when o; =

Loy/d10g(n/p/B)
G

n\/_
also have N, < , and thus by the concentration of the noise we have with probability at

least 1 — S that

IV F(wn: 8)] < Lo+/dlog( nf/ﬁ Loy/log(n\/p/B)
’ ny/p Vnpt/t

The KL condition then implies that

~vLg dlog(nﬁ/ﬁ))K n (”YQL(QJ log(n\/ﬁ/ﬁ))m/2>

F(w;S)—F(w};S)zO(( /b np

D.6 Proof of Theorem 5 (Adaptive Gradient Descent without KL. Condition)

In the following, we let 7"+ 1 denote the largest value attained by ¢ during the run of the algorithm.
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Privacy Proof The prove privacy we will use the following lemma.
Lemma 14. [BSI6, Proposition 1.4] Any algorithm which is (¢,0)-DP is also (3€?)-zCDP.

The process of releasing wy, ..., wr is p-zCDP by Theorem 3. We thus only need to handel the additional
privacy loss incurred via the use of the exponential mechanism to select t*. Specifically, the exponential
mechanism guarantees (/p,0)-DP and is thus —p -zCDP by Lemma 14. The overall privacy is then 2p-
zCDP.

Convergence Proof Recall t* € [T] is the index sampled by the exponential mechanism. Let N* =
mi%l {||[VF(wy; S)||}. Note that the guarantees of the exponential mechanism (used to sample ¢*) and scale
te

of noise added to the gradient norm estimates we have with probability at least 1 — 2/ that,
IVF (w5 S)|| = [|VE (wes; S)|| — Ny« + Np» — N* + N*
LO log(n\/_/ﬁ) 4Lglog(n./p/B)

N* 15

N b (15)

We will now proceed to bound N*. First, if for any ¢ one has o; = = f’ then V; < Lno\‘//pg and thus
N* < Lno\/‘/__ The convergence guarantees are then satisfied by Eqn. (15).

We now turn towards the more difficult case where 0, = ——t— for all ¢ € [T]. We start by

dlog(n\/p/B)
analyzing the convergence of the algorithm in terms of the number of rounds 7". By Lemma 12, Eqn. (9),

we have with probability at least 1 — [ that,

Ljlog(ny/p/B) '

1 2
. _ : > — ; -
F(’IUt,S) F(wt-i-lvs) =8I, HVF(’UJt,S)H 8L1n\/ﬁ

Summing over all iterates and rearranging gives,

T
8FyL Lg+/1
ijm ) (16)

We now consider the worst case guarantee for Algorithm 3. Recall N* = ItnlﬂI} {|IVF (w; S)||}. We can
€

use N* to lower bound the number of iterations made by the algorithm. We have,

r T L2d1 d
Zpt— 2\7{_ og n\/_/ﬁ Z 1
t=0 =1
T\/_ TLleog(n\/_/ﬁ)
~ 2n + n2(N*)2

Further by the stopping condition we have,

Lidlog(ny/p/B) P\ _ p
(P ) 2

=2
n*(N*)%p
L3dlog(ny/p/B)’

1
— TZ—min{

] i)
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By Eqn. (16) we also have,

T
L 1 |8FoLy  Lolog(ny/p/f)
N* < — g F ; < .
>~ Tt:1 Hv (wtaS)” — T + \/ﬁpl/4

Applying the above lower bound on 7' to the upper bound on N* we obtain,

. < 3Lo\/FoL1dlog(n./p/p) n Lolog(ny/p/B)

v nN*y/p Vnp!/t
. Nt <6Lo\/FoL1dlog(n\/ﬁ/ﬁ)>l/2 . 2Lolog(ny/p/B)
/P Vnp!/t

Combining this bound with Eqn. (15) we have with probability at least 1 — 3 that,

_ . 8FyL1  Loy/log(n\/p/f)
IV F(w;S)| Smm{q/ ; Ly NaPL )

N <6L0\/F0L1d10g(”\/5/ﬁ)> 7 3Lolos(nyp/8) Lo log(nﬁ/ﬁ)}

ny/p Vnpt/t ny/p
o] JRLL (LovFLid Y2\ Lo\/Tog(ny/p/B)
‘O< {V () }+ g )

E Regularized Lipschitz Optimization

In this section, we consider a function f(w;z) = f(w;z) + Ly |jw — wol|®, where w — f(w;z) is Lo-
Lipschitz, El-weakly convex forall x € X, and wy € R9. Tt is well known that in such case, the function
w— f (w;x) is L strongly convex (see, e.g. [DD19a, BGM21]). We denote the corresponding empirical
risk as F'(w; S) = IS fwiz) + Ly Jlw — wo .

The following result is a rate of 0 ( ELg;ip) on excess empirical risk via Noisy Gradient Descent, Algo-
1mn

rithm 4. Multiple works have investigated closely related settings [FKT20, AFKT21], but due to our specific

requirements (i.e. unconstrained setting and only assuming convexity of the regularized loss function) we

provide a more tailored result here.

Algorithm 4 Noisy Gradient Descent

Require: Dataset .S, zCDP paramter p, initial point wo € R?, probability 3, Lipschitz parameter Lo, Weak
convexity L, step size sequence {nt}t, number of iterations 7°, noise standard deviation o.
1. fort=1...T —1do
2: & NN(O,O'2H)
3: Wiyl = HB& (wo) (’U}t — Nt (VF(’UJ, S) + &))
2L
4: end for '
5. Return w = ﬁ Zthl twy
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Theorem 9. Let p > 0. Algorithm 4 with T = M, N = ﬁ and 02 = % satisfies p-zCDP.
1

Further, with probability at least 1 — (3, the excess empirical risk of its output, W, is bounded as,
- . L3dlog (n?log® (2/B)/d
Lin2p

Proof. The privacy proof is based on the observation that, even though the function w — f (w; x) may not be
Lispchitz, the sensitivity of the gradient, in every iteration, is controlled, since it is a sum of a Lipschitz and
(data-independent) regularizer. In particular, the sensitivity of gradient at every iteration is bounded by %
With the stated noise variance, applying the guarantee of Gaussian mechanism for zCDP and composition
[BS16], completes the privacy analysis.

The utility proof is based on standard high-probability convergence analysis of (S)GD for strongly con-
vex optimization [HLR19]. We first show that the unconstrained minimizer, w*, lies in the constrained set

B 1, (wo). From the optimality criterion for unconstrained convex optimization, we have that 2L, ||w* — wg|| =
2L

IVE(w*;S)|| < Lo. This implies that || w* — wo|| < QLTOI This also gives us that the function w — F(w; S)
is 2Lg-Lipschitz over the constrained set.

From Gaussian concentration [JNG™19], we have that, with probability, at least 1 — 3 /2, forallt € [T],
lI€| < +/dlog (2T'//)o. Further, conditioned on the above, we have from Lemma 4 in [HLR19], that with
probability at least 1 — 3,

T
N L
> (6w~ w) = 0 ( £V alog R Ao og (2/9)T ).
t=1 1
The rest of the analysis is repeating the proof of Theorem 3.1 in [HLR19]. We get,
N N L3 o%dlog (2T/8) R
F(w;8) — F(w*;S) =0 | =~ + = )—|— ,wg — w*
(0:5) - Fu's5) = 0 (75 + THEE FD )
o 13, o*dlog(21/8) | Loy/dlog 2T B)olog (2/5)
LiT LiT LiT
0 (L%dlog (n? log” (2/6)/d6)>
Lin2p
where the last step follows by setting of o and 7. o
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