
Unconstrained Dynamic Regret via Sparse Coding

Zhiyu Zhang∗

Harvard University
zhiyuz@seas.harvard.edu

Ashok Cutkosky
Boston University

ashok@cutkosky.com

Ioannis Ch. Paschalidis
Boston University
yannisp@bu.edu

Abstract

Motivated by the challenge of nonstationarity in sequential decision making, we study Online Convex
Optimization (OCO) under the coupling of two problem structures: the domain is unbounded, and the
comparator sequence u1, . . . , uT is arbitrarily time-varying. As no algorithm can guarantee low regret
simultaneously against all comparator sequences, handling this setting requires moving from minimax
optimality to comparator adaptivity. That is, sensible regret bounds should depend on certain complexity
measures of the comparator relative to one’s prior knowledge.

This paper achieves a new type of these adaptive regret bounds via a sparse coding framework. The
complexity of the comparator is measured by its energy and its sparsity on a user-specified dictionary,
which offers considerable versatility. Equipped with a wavelet dictionary for example, our framework
improves the state-of-the-art bound [JC22] by adapting to both (i) the magnitude of the comparator average
∥ū∥ = ∥

∑T
t=1 ut/T∥, rather than the maximum maxt ∥ut∥; and (ii) the comparator variability

∑T
t=1 ∥ut − ū∥,

rather than the uncentered sum
∑T

t=1 ∥ut∥. Furthermore, our analysis is simpler due to decoupling function
approximation from regret minimization.

1 Introduction

Nonstationarity is prevalent in sequential decision making, which poses a critical challenge to the vast majority
of existing approaches developed offline. Consider weather forecasting for example [SBG+21]. A meteorologist
typically starts from the governing physical equations and simulates them online using high performance
computing; the imperfection of this physical model can lead to time-varying patterns in its forecasting error.
Alternatively, a machine learning scientist may build a data-driven model from historical weather datasets, but
its online deployment is subject to distribution shifts. If the structure of such nonstationarity can be exploited
in our algorithm, then we may expect better forecasting performance. This paper investigates the problem
from a theoretical angle – we aim to improve nonstationary online decision making by incorporating temporal
representations.

Concretely, we study Online Convex Optimization (OCO), which is a repeated game between us (the player)
and an adversarial environment E . In each (the t-th) round, with a mutually known Lipschitz constant G,

1. We make a prediction xt ∈ Rd based on the observations before the t-th round.

2. The environment E reveals a convex loss function lt : Rd → R dependent on our prediction history x1, . . . , xt;
lt is G-Lipschitz with respect to ∥·∥2.

3. We suffer the loss lt(xt).

The game ends after T rounds, and then, our total loss is compared to that of an alternative sequence of
predictions u1, . . . , uT ∈ Rd. Without knowing the time horizon T , the environment E and the comparator
sequence {ut}t∈Z, our goal is to achieve low unconstrained dynamic regret

RegretT (u1:T) := sup
E

[
T∑

t=1

lt(xt)−
T∑

t=1

lt(ut)

]
. (1)

∗Work done at Boston University.

1

ar
X

iv
:2

30
1.

13
34

9v
5

 [c
s.L

G
]

25
 O

ct
 2

02
3

Fixing any comparator {ut}t∈Z: if such an expression can be upper-bounded by a sublinear function of T , then
asymptotically, in any environment, we perform at least as well as the {ut}t∈Z sequence.

The above setting deviates from the most standard setting of OCO [Haz16, Ora19] in two ways.

• Structure 1. The domain Rd is unbounded.

• Structure 2. The comparator is allowed to be time-varying.

While the latter has been studied extensively in the literature (since [Zin03]) to account for nonstationarity,
most existing approaches require a time-invariant bounded domain to set the hyperparameters properly, which,
to some extent, limits the amount of nonstationarity they can handle. One might argue that most practical
problems have a finite range, which could be heuristically estimated from offline datasets. However, such a
heuristic is not robust in nature, as underestimates will invalidate the theoretical analysis, and overestimates will
make the regret bound excessively conservative. It is thus important to study the more challenging unconstrained
dynamic setting1 combining the two problem structures, where algorithms cannot rely on pre-selected range
estimates at all.

Taking a closer look at their analysis, it is perhaps a little surprising that these two problem structures share
a common theme, despite being studied mostly separately. In either the unconstrained static setting [MO14,
OP16, CO18] or the bounded dynamic setting [Zin03, HW15, ZLZ18], the standard form of minimax optimality
[ABRT08, AABR09, RS14b] becomes vacuous, as it is impossible to guarantee that supu1:T

RegretT (u1:T) is
sublinear in T . Circumventing this issue relies on comparator adaptivity2 – instead of only depending on T , any
appropriate regret upper bound, denoted by BoundT (u1:T), should also depend on the comparator u1:T through
a certain complexity measure. Intuitively, despite the intractability of hard comparators, nonvacuous bounds can
be established against “easy ones”.3 A total loss bound then follows from the oracle inequality

T∑
t=1

lt(xt) ≤ inf
u1:T

[
T∑

t=1

lt(ut) + BoundT (u1:T)

]
. (2)

A crucial observation is that the complexity of u1:T is not uniquely defined: one could imagine bounding
RegretT (u1:T) by many different non-comparable functions of u1:T . Essentially, this complexity measure serves
as a Bayesian prior :4 choosing it amounts to assigning different priorities to different comparators u1:T ∈ Rd×T .
The associated algorithm guarantees lower BoundT (u1:T) against comparators with higher priority, and due to
Eq.(2), the total loss of our algorithm is low if some of these high priority comparators actually achieve low loss∑T

t=1 lt(ut). Such a Bayesian reasoning highlights the importance of versatility in this workflow: in order to
place an arbitrary application-dependent prior, we need a versatile algorithmic framework that adapts to a wide
range of complexity measures. This leads to the limitations of existing results, discussed next.

To our knowledge, [JC22] is the only existing work that considers our setting. Two unconstrained dynamic
regret bounds are presented based on three statistics of the comparator sequence, the maximum range M :=
maxt ∥ut∥2, the norm sum S :=

∑T
t=1 ∥ut∥2 and the path length P :=

∑T−1
t=1 ∥ut+1 − ut∥2. First, using a 1D

unconstrained static algorithm as a simple range scaler, the paper achieves [JC22, Lemma 10]

RegretT (u1:T) ≤ Õ
(√

(M + P)MT
)
. (3)

Then, by developing a customized mirror descent approach, most of the effort is devoted to improving MT to S
[JC22, Theorem 4], i.e., adapting to the magnitude of individual ut.

RegretT (u1:T) ≤ Õ
(√

(M + P)S
)
. (4)

Despite the strengths of these results and their nontrivial analysis, a shared limitation is that both bounds
depend explicitly on the path length P . Intuitively, it means that good performance is only guaranteed in almost

1It is known that unconstrained OCO algorithms can also handle time-varying (but not necessarily bounded) domains in a
black-box manner [Cut20, Section 4].

2In general, adaptivity means achieving near minimax optimality simultaneously for many restricted sub-classes of the problem,
where minimax optimality is well-defined [Joh19, Chapter 6].

3Related is the comparison of uniform consistency and universal consistency in [RS14b, Chapter 6.2].
4The prior can be selected on the fly, depending on the observation history. This brings key practical benefits: Appendix E

discusses how an empirical forecaster based on domain knowledge or deep learning could be “robustified” using our framework.

2

Algorithm P -dependent bound K-switching regret Example 1 Example 2

Ader [ZLZ18] (meta-expert OGD) Õ
(√

(D + P)DT
)

Õ
(
D
√

(1 +K)T
)

N/A Õ(T 3/4)

[JC22, Algorithm 6] (range scaling) Õ
(√

(M + P)MT
)

Õ
(
M

√
(1 +K)T

)
Õ(T) Õ(T 3/4)

[JC22, Algorithm 2] (centered MD) Õ
(√

(M + P)S
)

Õ
(√

(1 +K)MS
)

Õ(T 3/4) Õ(T 3/4)

Ours (Haar OLR) Õ
(
∥ū∥2

√
T +

√
PS̄

)
Õ
(
∥ū∥2

√
T +

√
KĒ

)
Õ(

√
T) Õ(

√
T)

Table 1: Comparison in almost static environments. Each row improves the previous row (omitting logarithmic
factors), c.f., Appendix A. The Ader algorithm requires a D-bounded domain, while the other three algorithms
are unconstrained. The rates in the two examples refer to the minimum of the P and K dependent bounds.

static environments: in the typical situation of S = Θ(T), these bounds are only sublinear when P = o(T), which
rules out important persistent dynamics such as periodicity. Moreover, even the second bound still depends on
MS instead of a finer characterization of each individual ut’s magnitude. That is, the mission of removing M is
not fully accomplished yet.5

The goal of this paper is to extend comparator adaptivity to a wider range of complexity measures. For
almost static environments in particular, quantitative benefits will be obtained from specific instances of this
general approach.

1.1 Contribution

The contributions of this paper are twofold.

1. First, we present an algorithmic framework achieving a new type of unconstrained dynamic regret bounds.
It is based on a conversion to vector-output Online Linear Regression (OLR): given a dictionary H of
orthogonal feature vectors spanning the sequence space RdT , we use an unconstrained static OCO algorithm
to linearly aggregate these feature vectors, which are themselves time-varying prediction sequences. Such a
procedure guarantees

RegretT (u1:T) ≤ Õ
(√

E · SparsityH
)
, (5)

where E =
∑T

t=1 ∥ut∥22 is the energy of the comparator u1:T , and SparsityH measures the sparsity of u1:T

on the dictionary H.6 Both E and SparsityH are unknown beforehand.

Compared to [JC22], the main advantage of this framework is its versatility. Prior knowledge on the
transform domain can be incorporated by pickingH, and favorable algorithmic properties can be conveniently
inherited from static online learning.

2. Our second contribution is quantitative: although [JC22] is specifically crafted to handle almost static
environments, we show that equipped with a Haar wavelet dictionary, our framework actually guarantees
better bounds (Table 1) in this setting, which is a surprising finding to us.

• With the comparator average ū :=
∑T

t=1 ut/T and the first order variability S̄ :=
∑T

t=1 ∥ut − ū∥2, our
Haar wavelet algorithm guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
.

It improves Eq.(4) by (i) a better dependence on the comparator magnitude (
√
MS → ∥ū∥2

√
T); and

(ii) decoupling the bias ū from the characterization of variability (
√
PS →

√
PS̄).

5The significance of this issue could be seen through an analogy to (static D-bounded domain) gradient adaptive OCO: although

there are algorithms achieving the already adaptive O

(
D
√

G
∑T

t=1 ∥gt∥2

)
static regret bound, the hallmark of gradient adaptivity

is the so-called “second-order bound” O

(
D
√∑T

t=1 ∥gt∥
2
2

)
, popularized by AdaGrad [DHS11]. In a rough but related sense, we

aim to achieve “second order comparator adaptivity”, which is only manifested in the less studied dynamic regret setting.
6For conciseness, we omit u1:T in the notation. Throughout this paper, the regularity parameters on the RHS of the regret

bound generally depend on u1:T . A list of these parameters is presented in Appendix A, including their relations.

3

• With the number of switches K :=
∑T−1

t=1 1[ut+1 ̸= ut] and the second order variability Ē :=∑T
t=1 ∥ut − ū∥22, the same Haar wavelet algorithm guarantees an unconstrained switching regret bound

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
,

which improves the existing Õ
(√

(1 +K)MS
)
bound resulting from Eq.(4) and P = O(KM).

Due to the local property of wavelets, our algorithm runs in O(d log T) time per round, matching that
of the baselines. As for the regret, our bounds are never worse than the baselines, and in two examples
corresponding to ∥ū∥2 ≪ M and S̄ ≪ S, they reduce to clearly improved rates in T . Furthermore, our
analysis follows from the generic regret bound Eq.(5) and the wavelet approximation theory, providing an
intriguing connection between disparate fields.

The paper concludes with an application in fine-tuning time series forecasters, where unconstrained dynamic
OCO is naturally motivated. Due to limited space, this is deferred to Appendix E, with experiments that support
our theoretical results.

1.2 Related work

Our paper addresses the connection between unconstrained OCO and dynamic OCO. Although they both
embody the idea of comparator adaptivity, unified studies have been scarce.

Unconstrained OCO To obtain static regret bounds in OCO, Online Gradient Descent (OGD) [Zin03] is

often the default approach. With learning rate η, it guarantees O(η−1 ∥u∥22 + ηT) regret with respect to any

unconstrained static comparator u ∈ Rd, and the optimal choice in hindsight is η = O(∥u∥2 /
√
T). Without the

oracle knowledge of ∥u∥2, it is impossible to tune η optimally. To address this issue, a series of works (also called
parameter-free online learning) [SM12, MA13, GY14, MO14, OP16, FKMS17, CO18, FRS18, MK20, CLW21,
ZCP22] developed vastly different strategies to achieve the oracle optimal rate O(∥u∥

√
T) up to logarithmic

factors. That is, the algorithm performs as if the complexity measure ∥u∥ is known beforehand.
There is certain flexibility in the choice of the norm ∥·∥: L1 and L2 norm bounds were presented in [SM12],

while Banach norm bounds were developed by [FRS18, CO18]. Historically, the connection between the L1 norm
and sparsity has powered breakthroughs in batch data science, including LASSO [Tib96] and compressed sensing
[CRT06]. However, the parallel path in online learning remains less studied: while the sparsity implication of the
L1 norm adaptive bounds has been discussed in the literature [SM12, Ger13, vdH19], there is in general a lack
of downstream investigations with concrete benefits. In this paper, we show that the sparsity of the comparator
can be naturally associated to the structural simplicity of a nonstationary environment.

Dynamic OCO Comparing against dynamic sequences is a classical research topic. It is clear that one cannot
go beyond linear regret in the worst case, therefore various notions of complexity should be introduced.

• The closest topic to ours is the universal dynamic regret, where the regret bound adapts to the complexity
of an arbitrary u1:T on a bounded domain with Lp-diameter D. In the most common framework, the
complexity measure is an Lp,q norm of the difference sequence {ut+1 − ut}, such as the Lp,1 norm,

i.e., the path length P =
∑T−1

t=1 ∥ut+1 − ut∥p [HW01].7 Omitting the dependence on the dimension

d (thus also the choice of p), the optimal bound under convex Lipschitz losses is Õ
(√

(D + P)DT
)

[Zin03, HW15, JRSS15, GS16, ZLZ18], while the accelerated rate8 Õ(P 2/3T 1/3 ∨ 1) can be achieved with
strong convexity [BW21, BW22]. Improvements have been studied under the additional smoothness
assumption [ZZZZ20, ZZZZ21]. These bounds subsume results in switching (a.k.a., shifting) regret, where
the complexity of u1:T is measured by its number of switches K, as P is dominated by DK.

7Motivated by nonparametric statistics, the Lp,q norm
(∑T−1

t=1 ∥ut+1 − ut∥qp
)1/q

with q > 1 is associated to more homogeneous

measures of comparator smoothness [BW19, BW21].
8Further omitting the dependence on the diameter D.

4

A notable exception is the dynamic model framework from [HW15, ZLZ18]. Still considering a bounded
domain, it takes a collection of dynamic models as input, which are mappings from the domain to itself.
Then, the complexity of a comparator u1:T is measured by how well it can be reconstructed by the best
dynamic model in hindsight. Essentially, the use of temporal representations is somewhat similar to the
dictionary in our framework. The important difference is that instead of using the best feature (or the best
convex combination of the features) to measure the comparator, we use linear combinations of the features
– this allows handling unconstrained domains through subspace modeling.

• Besides the universal dynamic regret, there are other notions of dynamic regret that do not induce oracle
inequalities like Eq.(2), including (i) the restricted dynamic regret [YZJY16, ZYY+17, BW19, BW20,
BZW21], which depends on the complexity of certain offline optimal comparators;9 and (ii) regret bounds

that depend on the functional variation
∑T−1

t=1 maxx |lt(x)− lt+1(x)| [BGZ15, CWW19]. They are not as
relevant to our purpose, due to being vacuous on unbounded domains under the linear losses – this is an
important setting in our investigation.

Unconstrained (universal) dynamic regret To our knowledge, [JC22] is the only work studying the universal
dynamic regret without a bounded domain, whose contributions have been summarized in our Introduction.
Here we survey some negative results in the literature, which will be revisited in Section 3.2.

• The restricted dynamic regret is a special case of the universal dynamic regret, therefore lower bounds for
the former apply to the latter as well. For convex Lipschitz losses [YZJY16] and strongly convex losses
[BW19], any algorithm should suffer the dynamic regret of Ω(P) and Ω(P 2), respectively.

• For dynamic OCO on bounded domains, a recurring analysis goes through the notion of strong adaptivity
[DGSS15]: one first achieves low static regret bounds on every subinterval of the time horizon [1 : T],
and then assembles these local bounds appropriately to bound the global dynamic regret [ZYZ18, Cut20,
BW21, BW22]. Following this route in the unconstrained setting appears to be challenging, as [JC22,
Section 4] showed that (a natural form of) strong adaptivity cannot be achieved there.

Additional discussions of related works are deferred to Appendix B, including the more general problem
of online nonparametric regression, the more specific problem of parametric time series forecasting, and other
orthogonal uses of sparsity in online learning.

1.3 Notation

For two integers a ≤ b, [a : b] is the set of all integers c such that a ≤ c ≤ b. The brackets are removed when on
the subscript, denoting a tuple with indices in [a : b]. Treating all vectors as column vectors, span(A) represents
the column space of a matrix A. log is natural logarithm when the base is omitted, and log+(·) := 0 ∨ log(·).
polylog denotes a poly-logarithmic function of its input. 0 represents a zero vector whose dimension depends on
the context.

2 The general sparse coding framework

This section presents our sparse coding framework, achieving the generic sparsity adaptive regret bound Eq.(5).
The key idea is to view online learning on the sequence space RdT , rather than the default domain Rd. Despite
its central role in signal processing (e.g., the Fourier transform), such a view is (in our opinion) under-explored
by the online learning community.10 Along this line, Section 2.1 converts our setting into a variant of Online
Linear Regression (OLR). Our main result and related discussions are presented in Section 2.2.

9Notably, [BW19, BW20] creatively employed wavelet techniques to detect change-points of the environment, which, to the best
of our knowledge, is the only existing use of wavelets in the online learning literature.

10Possibly due to the emphasis on the static regret: the sequence u1:T collapses into a time-invariant u, which is contained in Rd.

5

2.1 Setting

To begin with, we follow the conventions in online learning [Haz16, Ora19] to linearize convex losses. Consider
that instead of the full loss function lt, we only observe its subgradient gt ∈ ∂lt(xt) at our prediction xt. By using
the linear loss ⟨gt, ·⟩ as a surrogate, we can still upper bound the regret Eq.(1) due to lt(xt)− lt(u) ≤ ⟨gt, xt − u⟩.
The linear loss problem is also called Online Linear Optimization (OLO), where each observation gt is a d
dimensional vector satisfying ∥gt∥2 ≤ G.

Now, consider the length T sequences of predictions x1:T , gradients g1:T and comparators u1:T . Let us flatten
everything and treat them as dT dimensional vectors, concatenating per-round quantities in Rd. These are called
signals. The comparator statistics could be more succinctly represented using vector notations, e.g., the energy
E =

∑T
t=1 ∥ut∥22 = ∥u1:T ∥22.

Our framework requires a dictionary matrix H ∈ RdT×N , possibly revealed online, whose columns are
N nonzero feature vectors. We write H in an equivalent block form as [ht,n]1≤t≤T,1≤n≤N , where each block
ht,n ∈ Rd×1. The accompanied linear transform u = Hû relates a signal u ∈ RdT to a coefficient vector û ∈ RN

(if it exists). Adopting the convention in signal processing, we will call RdT the time domain, and RN the
transform domain. In general, symbols without hat refer to time domain quantities, while their transform domain
counterparts are denoted with hat.

Summarizing the above, we consider the following concise interaction protocol.11 Despite its parametric
appearance, our main focus is on the nonparametric regime, where the dictionary size N scales with the amount
of data T .

Vector-output OLR with linear losses In the t-th round, our algorithm observes a d-by-N feature matrix
Ht := [ht,n]1≤n≤N , linearly combines its columns into a prediction xt ∈ Rd, receives a loss gradient gt ∈ Rd,

and then suffers the linear loss ⟨gt, xt⟩. We assume that12 ∥ht,n∥2 ≤ 1,
∑T

t=1 ∥ht,n∥22 ≥ 1 and ∥gt∥2 ≤ G. The
performance metric is the unconstrained dynamic regret defined in Eq.(1).

2.2 Main result

In a nutshell, our strategy is to apply an unconstrained static OLO algorithm on the transform domain, and in a
coordinate-wise fashion. This is remarkably simple, but also contains a few twists. To make it concrete, let us
start with a single feature vector.

Size 1 dictionary Consider an index n ∈ [1 : N], which is associated to the feature h1:T,n := [h1,n, . . . , hT,n] ∈
RdT . We suppress the index n and write it as h1:T = [h1, . . . , hT]. For any comparator u1:T ∈ span(h1:T), there
exists û ∈ R such that u1:T = h1:T û. The cumulative loss of u1:T can be rewritten as

⟨g1:T , u1:T ⟩ = ⟨g1:T , h1:T ⟩ û =
T∑

t=1

⟨gt, ht⟩ û,

which is the loss of the coefficient û in a 1D OLO problem with surrogate loss gradients ⟨gt, ht⟩. Essentially,
to compete with a 1D comparator subspace span(h1:T), it suffices to run a 1D static regret algorithm A that
competes with û ∈ R. Such a procedure is presented as Algorithm 1.

It still remains to choose the static algorithm A. Technically, all known static comparator adaptive algorithms
can be applied. As an illustrative example, we adopt the FreeGrad algorithm [MK20], which simultaneously
achieves static comparator adaptivity and second order gradient adaptivity [DHS11].13 Its pseudocode and static
regret bound are presented in Appendix C.1 for completeness.

In summary, our single feature learner (Algorithm 1) has the following simplified guarantee, with the full
gradient adaptive version deferred to Appendix C.

11Despite also using features, the considered setting slightly differs from the standard notion of regression, as the loss function
here does not necessarily have a minimizer. We use the term OLR for cleaner exposition.

12The assumptions on the features are mild: an important special case is maxt ∥ht,n∥2 = 1, as in the Haar wavelet dictionary. We
impose these assumptions to apply unconstrained static algorithms verbatim.

13A gradient adaptive regret bound refines our definition Eq.(1) by depending on the actually encountered environment E as well.
FreeGrad enjoys another favorable property called scale-freeness : the predictions are invariant to any positive scaling of the loss
gradients and the Lipschitz constant G.

6

Algorithm 1 Sparse coding with size 1 dictionary.

Require: An algorithm A for static 1D unconstrained OLO with G-Lipschitz losses; and a nonzero feature
vector h1:T ⊂ RdT .

1: for t = 1, 2, . . . , do
2: Receive ht ∈ Rd.
3: If ht is nonzero, query A for its output, and assign it to x̂t ∈ R; otherwise, x̂t is arbitrary.
4: Predict xt = x̂tht ∈ Rd, and receive the loss gradient gt ∈ Rd.
5: If ht is nonzero, compute ĝt = ⟨gt, ht⟩ and send it to A as its surrogate loss gradient.
6: end for

Lemma 2.1. Let ε > 0 be an arbitrary hyperparameter for FreeGrad (Algorithm 3 in Appendix C.1). Applying
its 1D version as the static subroutine, for all T ∈ N+ and u1:T ∈ span(h1:T), Algorithm 1 guarantees

RegretT (u1:T) ≤ εG+ ∥u1:T ∥2 G · polylog
(
max

t
∥ut∥2 , T, ε

−1
)
.

Note that the hyperparameter ε can be arbitrarily small. Further neglecting poly-logarithmic factors, the
bound is essentially Õ (G ∥u1:T ∥2).

General dictionary Given the above single feature learner, let us turn to the general setting with N features.
We run N copies of Algorithm 1 in parallel, aggregate their predictions, and the regret bound sums Lemma 2.1,
similar to [Cut19] in the static setting. The pseudocode is presented as Algorithm 2, and the regret bound is
Theorem 1.

Algorithm 2 Sparse coding with general dictionary.

Require: A dictionary H = [ht,n], where ht,n ∈ Rd; and a hyperparameter ε > 0.
1: For all n ∈ [1 : N], initialize a copy of Algorithm 1 as An. It runs the 1D version of Algorithm 3 as a

subroutine, with hyperparameter ε/N .
2: for t = 1, 2, . . . , do
3: Receive Ht = [ht,n]1≤n≤N . For all n, send ht,n to An, and query its prediction wt,n.

4: Predict xt =
∑N

n=1 wt,n.
5: Receive loss gradient gt, and send it to A1, . . . ,AN as loss gradients.
6: end for

Theorem 1. Consider any collection of signals z(n) ∈ span(h1:T,n), ∀n. We define its reconstruction error (for

the comparator u1:T) as z(0) = u1:T −
∑N

n=1 z
(n) ∈ RdT . Then, for all T ∈ N+ and u1:T ∈ RdT , Algorithm 2

guarantees

RegretT (u1:T) ≤ εG+G

(
N∑

n=1

∥∥∥z(n)∥∥∥
2

)
· polylog

(
max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
+G

T∑
t=1

∥∥∥z(0)t

∥∥∥
2
,

where z
(n)
t ∈ Rd is the t-th round component of the sequence z(n) ∈ RdT .

To interpret this very general result, let us consider a few concrete settings.

• Static regret. If the size N = d and the dictionary Ht = Id, then for any static comparator (ut = u ∈ Rd),
we can let z(n) be the projection of the sequence u1:T onto span(h1:T,n). This leaves zero reconstruction

error, i.e., u1:T =
∑N

n=1 z
(n). Theorem 1 reduces to

RegretT (u1:T) ≤ εG+ ∥u∥1 G
√
T · polylog

(
∥u∥∞ , T, d, ε−1

)
, (6)

which recovers a standard Õ(∥u∥1
√
T) bound in coordinate-wise unconstrained static OLO [Ora19, Sec-

tion 9.3]. The gradient adaptive version yields a better Õ(∥u∥2
√
T) bound, c.f., Appendix C.2.

7

• Orthogonal dictionary. Entering the dynamic realm, we now consider the situation where feature vectors
are orthogonal (standard in signal processing), and the comparator u1:T ∈ span(H). Same as the static
setting, we are free to define z(n) as the projection

z(n) = ⟨h1:T,n, u1:T ⟩
h1:T,n

∥h1:T,n∥22
.

Due to orthogonality, the projection preserves the energy of the time domain signal, i.e, E = ∥u1:T ∥22 =∑N
n=1

∥∥z(n)∥∥2
2
. By further defining SparsityH := (

∑N
n=1

∥∥z(n)∥∥
2
)2/
∑N

n=1

∥∥z(n)∥∥2
2
(arbitrary when the

denominator is zero), Theorem 1 reduces to

RegretT (u1:T) ≤ Õ
(√

E · SparsityH
)
. (7)

Note that as the squared L1/L2 ratio, SparsityH is a classical sparsity measure [HR09] of the decomposed
signals {z(n)}1≤n≤N : if there are only N0 ≤ N nonzero vectors within this collection, then SparsityH ≤ N0

due to the Cauchy-Schwarz inequality. Therefore, the generic sparsity adaptive bound Eq.(7) depends on
(i) the energy of the comparator u1:T ; and (ii) the sparsity of its representation, without knowing either
condition beforehand. The easier the comparator is (low energy, and sparse on H), the lower the bound
becomes.

• Overparameterization. So far we have only considered N ≤ dT , where feature vectors can be orthogonal.
However, a key idea in signal processing is to use redundant features (N ≫ dT) to obtain sparser
representations. Theorem 1 implies a feature selection property in this context: since it applies to any
decomposition of u1:T , as long as u1:T can be represented by a subset H̃ of orthogonal features within H,
the regret bound adapts to SparsityH̃, the sparsity of u1:T measured on H̃. That is, we are theoretically
justified to assemble smaller dictionaries into a larger one – the regret bound adapts to the quality of the
optimal (comparator-dependent) sub-dictionary H̃.

How to choose the dictionary H? In practice, we may use prior knowledge on the dynamics of the environment.
For example, if the environment is periodic, such as the weather or the traffic, then a good choice could be
the Fourier dictionary. Similarly, wavelet dictionaries are useful for piecewise regular environments. Another
possibility is to learn the dictionary from offline datasets, which is also called representation learning. Overall,
such prior knowledge is not required to be correct – our algorithm can take any dictionary as input, and the
regret bound naturally adapts to its quality. The established connection between adaptivity and signal structures
is a key benefit of our framework.

Environment

Transform domain ℝ𝑁

𝑆𝑡 = 𝑆𝑡−1 − ො𝑔𝑡

ො𝑔𝑡 = ℋ𝑡
𝑇𝑔𝑡

Potential on ℝ𝑁

ො𝑥𝑡+1 = 𝜕Φ𝑡(𝑆𝑡)

𝑥𝑡+1 = ℋ𝑡+1 ො𝑥𝑡+1

Figure 1: Update from the dual space. 100 101 102 103 104 105

Indices (log)

100

102

104

106

Fo
ur

ie
r c

oe
ffi

cie
nt

s (
ab

s,
lo

g)

Data
Fitted, =0.68

Figure 2: Verifying the power law.

A view from the dual space Besides the primal space analysis so far, our algorithm has an equivalent
interpretation on the dual space, which leads to a possibly interesting intuition. Typically, in the t-th round,
the dual space maintains a summary St−1 of the past observations g1:t−1 (called a sufficient statistic), and
then passes it through a potential function Φt to generate predictions [CBL06, FRS18, Ora19]. While most

8

existing algorithms store the sum of past gradients
∑t−1

i=1 gi to handle the static regret, our algorithm stores an
N -dimensional transform of the entire sequence g1:t−1, illustrated in Figure 1. In this way, the dynamics of the
environment are “memorized”.

Power law For a more specific discussion, let us consider an empirically justified setup. In signal processing,
the study of sparsity has been partially motivated by the power law [Pri21]: under the standard Fourier or
wavelet transforms, the n-th largest transform domain coefficient of many real signals can have magnitude
roughly proportional to n−α, where α ∈ (0.5, 1). We also observe this phenomenon from a weather dataset,
with details presented in Appendix E.1. Figure 2 plots the sorted Fourier coefficients of an actual temperature
sequence, on a log-log scale. A fitted dashed line is shown in orange, with (negative) slope α = 0.68.

When the power law holds, our bound Eq.(7) has a more interpretable form. Assuming d = 1 and N = T ,

SparsityH =
(
∑T

n=1 n
−α)2∑T

n=1 n
−2α

= O
(
T 2−2α

)
.

In a typical setting of E = Θ(T), we obtain a sublinear Õ(T 1.5−α) dynamic regret bound.

3 The Haar OLR algorithm

This section presents the quantitative contributions of this paper: despite its generality, our sparse coding
framework can improve existing unconstrained dynamic regret bounds [JC22]. Our key workhorse is the ability
of wavelet bases to sparsely represent smooth signals. Section 3.1 introduces the necessary background, while
concrete bounds and proof sketches are presented in Section 3.2.

3.1 Haar wavelet

Wavelet is a fundamental topic in signal processing, with long lasting impact throughout modern data science.
Roughly speaking, the motivation is that a signal can simultaneously exhibit nonstationarity at different time
scales, such as slow drifts and fast jumps, therefore to faithfully represent it, we should apply feature vectors
with different resolutions. We will only use the simplest Haar wavelets, which is already sufficient. Readers are
referred to [Mal08, Joh19] for a thorough introduction to this topic.

Specifically, we start from the 1D setting (d = 1) with a dyadic horizon (T = 2m, for some m ∈ N+).
The Haar wavelet dictionary consists of T (unnormalized) orthogonal feature vectors, indexed by a scale
parameter j ∈ [1 : log2 T] and a location parameter l ∈ [1 : 2−jT]. Given a (j, l) pair, define a feature

h(j,l) = [h
(j,l)
1 , . . . , h

(j,l)
T] ∈ RT entry-wise as

h
(j,l)
t =


1, t ∈ [2j(l − 1) + 1 : 2j(l − 1) + 2j−1];

−1, t ∈ [2j(l − 1) + 2j−1 + 1 : 2j l];

0, else.

It means that h(j,l) is only nonzero on a length-2j interval, while changing its sign once in the middle of
this interval. Collecting all the (j, l) pairs yield T − 1 features; then, we incorporate an extra all-one feature
h∗ = [1, . . . , 1] to complete this size T dictionary.

The defined features can be assembled into the columns of a matrix Haarm. To help with the intuition,
Haar2 with T = 4 is presented in Eq.(8). The columns from the left to the right are h∗, h(2,1), h(1,1) and h(1,2).
Observe that they are orthogonal, and the norm assumption from Section 2.1 is satisfied. Therefore, our sparsity
adaptive regret bound Eq.(7) is applicable.

Haar2 =


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 . (8)

9

Given this 1D Haar wavelet dictionary, we apply a minor variant of Algorithm 2 to prevent the dimension d
from appearing in the regret bound. When d = 1, the algorithm is exactly Algorithm 2, where intuitions are
most clearly demonstrated. Then, the doubling trick [SS11, Section 2.3.1] is adopted to relax the knowledge of
T . The pseudocode is presented as Algorithm 5 in Appendix D.

Computation An appealing property is that most Haar wavelet features are supported on short local intervals.
Despite N = T , there are only log2 T active features in each round. Therefore, the runtime of our algorithm is
O(d log T) per round, matching that of all the baselines we compare to. This local property holds for compactly
supported wavelets, most notably the Daubechies family [Dau88, CDV93]. The latter can represent more general,
piecewise polynomial signals.

3.2 Main result

For almost static environments, our Haar OLR algorithm guarantees the following bounds, by relating comparator
smoothness to the sparsity of its Haar wavelet representation. Different from [JC22] which only contains P -
dependent bounds, we also provide a K-switching regret bound, in order to avoid using P = O(KM).14

Interestingly, the proofs of the following two bounds are quite different: the first uses exact sparsity, while the
second uses approximate sparsity.

Theorem 2 (Switching regret). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
. (9)

Theorem 3 (Path length bound). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
. (10)

It can be verified (Appendix A) that for all comparators u1:T , our bounds are at least as good as prior works
(Table 1). The optimality is a more subtle issue, as one should compare upper bound functions (of u1:T) to lower
bound functions in a global manner, rather than comparing the exponents of T in minimax online learning.

Nonetheless, we present two examples of u1:T , where the improvement can be clearly seen through better
exponents of T . To give it a concrete background, suppose we want to sequentially predict a 1D time series
z1, . . . , zT ∈ R. This could be formulated as a OCO problem where the decision xt there is our prediction of zt,
and the loss function is the absolute loss lt(x) = |x− zt|. A natural choice of the comparator is the ground truth
sequence z1:T , and due to Eq.(2), any upper bound on RegretT (z1:T) also upper-bounds the total forecasting
loss of our algorithm. Below we present specific 1D comparator sequences u1:T to demonstrate the strength of
our results, which could be intuitively thought as the true time series z1:T in this more restricted discussion.

Example 1 (Tracking outliers). Consider the situation where u1:T has a locally outlying scale: we set all
the instantaneous comparators ut to 1, except k ≤

√
T consecutive members which are set to

√
T . Crucially,

|ū| = O(1) and S̄ = O(k
√
T), while M =

√
T and S = Θ(T). With details deferred to Appendix D.7, both our

bounds, i.e., Eq.(9) and (10), are Õ(
√
kT), while the fine baseline Eq.(4) is Õ(T 3/4), and the coarse baseline

Eq.(3) is Õ(T). The largest gain is observed when k is a constant, i.e., the comparator is subject to a short but
large perturbation.

Example 2 (Persistent oscillation). Consider the situation where ū = 1, and all the instantaneous comparators
oscillate around ū: ut = ū+ αt/

√
T . αt = 1 or −1, and it only switches sign for k times. Notice that S̄ =

√
T ,

while S = Θ(T). All the baselines are Õ
(√

T + k1/2T 1/4
)
, while both our bounds are Õ(

√
T). The largest gain

is observed when k = T − 1, i.e., the comparator switches in every round.

In summary, we show that existing bounds are suboptimal, while the optimality of our results remains to be
studied. It highlights the importance of comparator energy and variability in the pursuit of better algorithms,
which have not received enough attention in the literature. Next, we briefly sketch the proofs of these bounds.

14Recall that one of our motivations is to remove M from the existing bounds.

10

Proof sketch The switching regret bound mostly follows from a very simple observation: if a sequence
is constant throughout the support of a Haar wavelet feature, then its transform domain coefficient for this
feature is zero. As features on the same scale j do not overlap, a K-switching comparator can only induce
K nonzero coefficients on the j-th scale. There are at most K log2 T nonzero coefficients in total, therefore
SparsityH = Õ(K). The bound Eq.(9) is obtained by applying this argument after taking out the average of
u1:T .

As for the path length bound, the idea is to consider the reconstructed sequences, using transform domain
coefficients on a single scale j. These are usually called detail sequences in the wavelet literature [Mal08]. Each
detail sequence has a relatively simple structure, whose path length and variability can be associated to the
magnitude of its transform domain coefficients. Moreover, as these detail sequences are certain “locally averaged”
and “globally centered” versions of the actual comparator u1:T , their regularities are dominated by the regularity
of u1:T itself. In combination, this yields a relation between PS̄ and the coefficients’ L1 norm, i.e.,

∑N
n=1

∥∥z(n)∥∥
2

in Theorem 1, from which the bound is established.
Compared to the analysis of [JC22], the key advantage of our analysis is the decoupling of function approxi-

mation from the generic sparsity-based regret bound. The former is algorithm-independent, while the latter can
be conveniently combined with advances in static online learning. With the help of approximation theory (e.g.,
Fourier features, wavelets, and possibly deep learning further down the line), intuitions are arguably clearer in
this way, and solutions could be more precise (compared to analyses that “mix” function approximation with
regret minimization).

MRA in online learning On a broader scope, wavelets embody the idea of Multi-Resolution Analysis (MRA),
which is reminiscent of the classical geometric covering (GC) construction in adaptive online learning [DGSS15].
Such a construction starts from a class of GC time intervals, which are equivalent to the support of Haar
wavelet features. On each GC interval, a static online learning algorithm is defined (corresponding to using an
all-one feature, c.f., Section 2.2); and then, the outputs of these “local” algorithms are aggregated by a sleeping
expert algorithm on top [LS15, JOWW17]. Algorithmically, our innovation is introducing sign changes in the
features, accompanied by a different, additive way to aggregate base algorithms. For tackling nonstationarity,
both approaches have their own strengths: the GC construction can produce strongly adaptive guarantees on
subintervals of the time horizon, while our algorithm does not need a bounded domain. Their possible connections
are intriguing.

Lipschitz vs strongly convex losses Finally, we comment on the choice of loss functions in unconstrained
dynamic OCO. Besides the Lipschitz assumption we impose, a fruitful line of works by Baby and Wang
[BW19, BW20, BW21, BZW21, BW22] considered an alternative setting with strong convexity, motivated by
the prevalence of the square loss in statistics. Their focus is primarily on bounded domains, as [BW19] showed
that evaluated under the square loss, a lower bound for the unconstrained dynamic regret is Ω(P 2). A sublinear
regret bound here requires P = o(

√
T), rather than P = o(T) with Lipschitz losses – that is, the environment is

required to be “more static” than the typical requirement in the Lipschitz setting.
Essentially, such a behavior is due to the large penalty that the square loss imposes on outliers. An adversary

in online learning can deliberately pick the loss functions such that some of the player’s predictions are large
outliers with “huge” (square) losses, while the offline optimal comparator sequence suffers zero losses. Using the
Lipschitz losses instead may offer an advantage on unbounded domains, due to being more tolerant to these
outliers. Furthermore, Lipschitz losses do not necessarily have minimizers – this is useful for decision problems
(as opposed to estimation), where a ground truth may not exist.15

4 Conclusion

This paper presents a unified study of unconstrained and dynamic online learning, where the two problem
structures are naturally connected via comparator adaptivity. Building on the synergy between static parameter-
free algorithms and temporal representations, we develop an algorithmic framework achieving a generic sparsity-
adaptive regret bound. Equipped with the wavelet dictionary, our framework improves the quantitative results
from [JC22], by adapting to finer characterizations of the comparator sequence.

15An example is financial investment without budget constraints: doubling the invested amount also doubles the return.

11

For future works, several interesting questions could stem from this paper. For example,

• Our regret bound is stated against individual comparator sequences. One could investigate the implication
of this result in stochastic environments, where the comparator statistics may take more concrete forms.

• Besides the sparsity and the energy studied in this paper, an interesting open problem is investigating
alternative complexity measures of the comparator, possibly drawing connections to statistical learning
theory.

• Our framework builds on pre-defined dictionary inputs. The quantitative benefit of using a data-dependent
dictionary is unclear.

• Beyond wavelets, one may investigate the combination of the sparse coding framework with other function
approximators, such as neural networks.

Acknowledgement

We thank Vivek Goyal for helpful pointers to the signal processing literature, and the anonymous reviewers
for their constructive feedback. This research was partially supported by the NSF under grants CCF-2200052,
DMS-1664644, and IIS-1914792, by the ONR under grant N00014-19-1-2571, by the DOE under grant DE-AC02-
05CH11231, by the NIH under grant UL54 TR004130, and by Boston University.

References

[AABR09] Jacob Abernethy, Alekh Agarwal, Peter L Bartlett, and Alexander Rakhlin. A stochastic view of
optimal regret through minimax duality. In Conference on Learning Theory, 2009.

[ABRT08] Jacob Abernethy, Peter L Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies and
minimax lower bounds for online convex games. In Conference on Learning Theory, pages 415–423,
2008.

[AHMS13] Oren Anava, Elad Hazan, Shie Mannor, and Ohad Shamir. Online learning for time series prediction.
In Conference on learning theory, pages 172–184. PMLR, 2013.

[AHZ15] Oren Anava, Elad Hazan, and Assaf Zeevi. Online time series prediction with missing data. In
International conference on machine learning, pages 2191–2199. PMLR, 2015.

[AM16] Oren Anava and Shie Mannor. Heteroscedastic sequences: beyond gaussianity. In International
Conference on Machine Learning, pages 755–763. PMLR, 2016.

[AW01] Katy S Azoury and Manfred K Warmuth. Relative loss bounds for on-line density estimation with
the exponential family of distributions. Machine Learning, 43(3):211–246, 2001.

[BGZ15] Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. Operations
research, 63(5):1227–1244, 2015.

[BW19] Dheeraj Baby and Yu-Xiang Wang. Online forecasting of total-variation-bounded sequences. Advances
in Neural Information Processing Systems, 32, 2019.

[BW20] Dheeraj Baby and Yu-Xiang Wang. Adaptive online estimation of piecewise polynomial trends.
Advances in Neural Information Processing Systems, 33:20462–20472, 2020.

[BW21] Dheeraj Baby and Yu-Xiang Wang. Optimal dynamic regret in exp-concave online learning. In
Conference on Learning Theory, pages 359–409. PMLR, 2021.

[BW22] Dheeraj Baby and Yu-Xiang Wang. Optimal dynamic regret in proper online learning with strongly
convex losses and beyond. In International Conference on Artificial Intelligence and Statistics, pages
1805–1845. PMLR, 2022.

12

[BZW21] Dheeraj Baby, Xuandong Zhao, and Yu-Xiang Wang. An optimal reduction of TV-denoising to
adaptive online learning. In International Conference on Artificial Intelligence and Statistics, pages
2899–2907. PMLR, 2021.

[CBL06] Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

[CDV93] Albert Cohen, Ingrid Daubechies, and Pierre Vial. Wavelets on the interval and fast wavelet
transforms. Applied and computational harmonic analysis, 1993.

[CLW21] Liyu Chen, Haipeng Luo, and Chen-Yu Wei. Impossible tuning made possible: A new expert
algorithm and its applications. In Conference on Learning Theory, pages 1216–1259. PMLR, 2021.

[CO18] Ashok Cutkosky and Francesco Orabona. Black-box reductions for parameter-free online learning in
banach spaces. In Conference On Learning Theory, pages 1493–1529. PMLR, 2018.

[CRT06] Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions on information
theory, 52(2):489–509, 2006.

[Cut19] Ashok Cutkosky. Combining online learning guarantees. In Conference on Learning Theory, pages
895–913. PMLR, 2019.

[Cut20] Ashok Cutkosky. Parameter-free, dynamic, and strongly-adaptive online learning. In International
Conference on Machine Learning, pages 2250–2259. PMLR, 2020.

[CWW19] Xi Chen, Yining Wang, and Yu-Xiang Wang. Nonstationary stochastic optimization under Lp,q-
variation measures. Operations Research, 67(6):1752–1765, 2019.

[Dau88] Ingrid Daubechies. Orthonormal bases of compactly supported wavelets. Communications on pure
and applied mathematics, 41(7):909–996, 1988.

[DGSS15] Amit Daniely, Alon Gonen, and Shai Shalev-Shwartz. Strongly adaptive online learning. In
International Conference on Machine Learning, pages 1405–1411. PMLR, 2015.

[DHS11] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

[DSSST10] John C Duchi, Shai Shalev-Shwartz, Yoram Singer, and Ambuj Tewari. Composite objective mirror
descent. In Conference on learning theory, pages 14–26, 2010.

[FKK16] Dean Foster, Satyen Kale, and Howard Karloff. Online sparse linear regression. In Conference on
Learning Theory, pages 960–970. PMLR, 2016.

[FKMS17] Dylan J Foster, Satyen Kale, Mehryar Mohri, and Karthik Sridharan. Parameter-free online learning
via model selection. Advances in Neural Information Processing Systems, 30, 2017.

[FRS18] Dylan J Foster, Alexander Rakhlin, and Karthik Sridharan. Online learning: Sufficient statistics
and the Burkholder method. In Conference On Learning Theory, pages 3028–3064. PMLR, 2018.

[Ger13] Sébastien Gerchinovitz. Sparsity regret bounds for individual sequences in online linear regression.
The Journal of Machine Learning Research, 14(1):729–769, 2013.

[GG15] Pierre Gaillard and Sébastien Gerchinovitz. A chaining algorithm for online nonparametric regression.
In Conference on Learning Theory, pages 764–796. PMLR, 2015.

[GS16] Andras Gyorgy and Csaba Szepesvári. Shifting regret, mirror descent, and matrices. In International
Conference on Machine Learning, pages 2943–2951. PMLR, 2016.

[GW18] Pierre Gaillard and Olivier Wintenberger. Efficient online algorithms for fast-rate regret bounds
under sparsity. Advances in Neural Information Processing Systems, 31, 2018.

13

[GY14] Sébastien Gerchinovitz and Jia Yuan Yu. Adaptive and optimal online linear regression on L1-balls.
Theoretical Computer Science, 519:4–28, 2014.

[Haz16] Elad Hazan. Introduction to online convex optimization. Foundations and Trends® in Optimization,
2(3-4):157–325, 2016.

[HLS+18] Elad Hazan, Holden Lee, Karan Singh, Cyril Zhang, and Yi Zhang. Spectral filtering for general
linear dynamical systems. Advances in Neural Information Processing Systems, 31, 2018.

[HR09] Niall Hurley and Scott Rickard. Comparing measures of sparsity. IEEE Transactions on Information
Theory, 55(10):4723–4741, 2009.

[HW01] Mark Herbster and Manfred K Warmuth. Tracking the best linear predictor. The Journal of Machine
Learning Research, 1:281–309, 2001.

[HW15] Eric C Hall and Rebecca M Willett. Online convex optimization in dynamic environments. IEEE
Journal of Selected Topics in Signal Processing, 9(4):647–662, 2015.

[JC22] Andrew Jacobsen and Ashok Cutkosky. Parameter-free mirror descent. In Conference on Learning
Theory, pages 4160–4211. PMLR, 2022.

[Joh19] Iain M Johnstone. Gaussian estimation: Sequence and wavelet models. Unpublished lecture notes,
2019. https://imjohnstone.su.domains/GE_09_16_19.pdf.

[JOWW17] Kwang-Sung Jun, Francesco Orabona, Stephen Wright, and Rebecca Willett. Improved strongly
adaptive online learning using coin betting. In Artificial Intelligence and Statistics, pages 943–951.
PMLR, 2017.

[JRSS15] Ali Jadbabaie, Alexander Rakhlin, Shahin Shahrampour, and Karthik Sridharan. Online optimization:
Competing with dynamic comparators. In Artificial Intelligence and Statistics, pages 398–406. PMLR,
2015.

[Kal14] Satyen Kale. Open problem: Efficient online sparse regression. In Conference on Learning Theory,
pages 1299–1301. PMLR, 2014.

[KKLP17] Satyen Kale, Zohar Karnin, Tengyuan Liang, and Dávid Pál. Adaptive feature selection: Computa-
tionally efficient online sparse linear regression under rip. In International Conference on Machine
Learning, pages 1780–1788. PMLR, 2017.

[KM16] Vitaly Kuznetsov and Mehryar Mohri. Time series prediction and online learning. In Conference on
Learning Theory, pages 1190–1213. PMLR, 2016.

[LLZ09] John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient. Journal
of Machine Learning Research, 10(3), 2009.

[LS15] Haipeng Luo and Robert E Schapire. Achieving all with no parameters: Adanormalhedge. In
Conference on Learning Theory, pages 1286–1304. PMLR, 2015.

[MA13] Brendan McMahan and Jacob Abernethy. Minimax optimal algorithms for unconstrained linear
optimization. Advances in Neural Information Processing Systems, 26:2724–2732, 2013.

[Mal08] Stephane Mallat. A Wavelet Tour of Signal Processing: The Sparse Way. Academic Press, 2008.

[MK20] Zakaria Mhammedi and Wouter M Koolen. Lipschitz and comparator-norm adaptivity in online
learning. In Conference on Learning Theory, pages 2858–2887. PMLR, 2020.

[MO14] H Brendan McMahan and Francesco Orabona. Unconstrained online linear learning in hilbert
spaces: Minimax algorithms and normal approximations. In Conference on Learning Theory, pages
1020–1039. PMLR, 2014.

14

https://imjohnstone.su.domains/GE_09_16_19.pdf

[OP16] Francesco Orabona and Dávid Pál. Coin betting and parameter-free online learning. Advances in
Neural Information Processing Systems, 29, 2016.

[Ora19] Francesco Orabona. A modern introduction to online learning. arXiv preprint arXiv:1912.13213,
2019.

[Pri21] Eric Price. Sparse recovery. In Tim Roughgarden, editor, Beyond the Worst-Case Analysis of
Algorithms, page 140–164. Cambridge University Press, 2021.

[RS14a] Alexander Rakhlin and Karthik Sridharan. Online non-parametric regression. In Conference on
Learning Theory, pages 1232–1264. PMLR, 2014.

[RS14b] Alexander Rakhlin and Karthik Sridharan. Statistical learning and sequential prediction. Unpublished
lecture notes, 2014. http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf.

[SBG+21] Martin G Schultz, Clara Betancourt, Bing Gong, Felix Kleinert, Michael Langguth, Lukas Hubert
Leufen, Amirpasha Mozaffari, and Scarlet Stadtler. Can deep learning beat numerical weather
prediction? Philosophical Transactions of the Royal Society A, 379(2194):20200097, 2021.

[SM12] Matthew Streeter and Brendan Mcmahan. No-regret algorithms for unconstrained online convex
optimization. Advances in Neural Information Processing Systems, 25, 2012.

[SS11] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and trends in
Machine Learning, 4(2):107–194, 2011.

[SST11] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for L1-regularized loss minimization.
Journal of Machine Learning Research, 12:1865–1892, 2011.

[Tib96] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society: Series B (Methodological), 58(1):267–288, 1996.

[vdH19] Dirk van der Hoeven. User-specified local differential privacy in unconstrained adaptive online
learning. Advances in Neural Information Processing Systems, 32, 2019.

[Vov01] Volodya Vovk. Competitive on-line statistics. International Statistical Review, 69(2):213–248, 2001.

[Xia09] Lin Xiao. Dual averaging method for regularized stochastic learning and online optimization.
Advances in Neural Information Processing Systems, 22, 2009.

[YZJY16] Tianbao Yang, Lijun Zhang, Rong Jin, and Jinfeng Yi. Tracking slowly moving clairvoyant: Optimal
dynamic regret of online learning with true and noisy gradient. In International Conference on
Machine Learning, pages 449–457. PMLR, 2016.

[ZCP22] Zhiyu Zhang, Ashok Cutkosky, and Ioannis Paschalidis. PDE-based optimal strategy for uncon-
strained online learning. In International Conference on Machine Learning, pages 26085–26115.
PMLR, 2022.

[Zin03] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
International Conference on Machine Learning, pages 928–936, 2003.

[ZLZ18] Lijun Zhang, Shiyin Lu, and Zhi-Hua Zhou. Adaptive online learning in dynamic environments.
Advances in neural information processing systems, 31, 2018.

[ZYY+17] Lijun Zhang, Tianbao Yang, Jinfeng Yi, Rong Jin, and Zhi-Hua Zhou. Improved dynamic regret for
non-degenerate functions. Advances in Neural Information Processing Systems, 30, 2017.

[ZYZ18] Lijun Zhang, Tianbao Yang, and Zhi-Hua Zhou. Dynamic regret of strongly adaptive methods. In
International conference on machine learning, pages 5882–5891. PMLR, 2018.

[ZZZZ20] Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Dynamic regret of convex and smooth
functions. Advances in Neural Information Processing Systems, 33:12510–12520, 2020.

15

http://www.mit.edu/~rakhlin/courses/stat928/stat928_notes.pdf

[ZZZZ21] Peng Zhao, Yu-Jie Zhang, Lijun Zhang, and Zhi-Hua Zhou. Adaptivity and non-stationarity:
Problem-dependent dynamic regret for online convex optimization. arXiv preprint arXiv:2112.14368,
2021.

16

Appendix

Organization Appendix A summarizes a list of comparator statistics involved in our theoretical analysis.
Appendix B surveys additional related works. Appendix C, D and E respectively present details of our general
sparse coding framework, its special version with wavelet dictionaries, and applications in time series forecasting.

A List of comparator statistics

A major task in comparator adaptive online learning is finding suitable statistics to quantify the regularity of
a comparator sequence. Several such statistics are defined throughout this paper, which are summarized in
Table 2. Note that for the definition of sparsity on the last line, we assume the dictionary H is orthogonal, and
the sequence u1:T is contained in its span. Then, z(n) is defined as the projection of u1:T onto a feature vector
h1:T,n, i.e.,

z(n) = ⟨h1:T,n, u1:T ⟩
h1:T,n

∥h1:T,n∥22
.

This is well defined due to our assumption ∥h1:T,n∥2 ≥ 1 from Section 2.1.

Name Notation Definition

Maximum range M maxt ∥ut∥

Comparator average ū 1
T

∑T
t=1 ut

Path length P
∑T−1

t=1 ∥ut+1 − ut∥2
Norm sum S

∑T
t=1 ∥ut∥2

First order variability S̄
∑T

t=1 ∥ut − ū∥2
Energy E

∑T
t=1 ∥ut∥22

Second order variability Ē
∑T

t=1 ∥ut − ū∥22
Number of switches K

∑T−1
t=1 1[ut+1 ̸= ut]

Sparsity on a dictionary H SparsityH
(
∑N

n=1∥z(n)∥
2
)2∑N

n=1∥z(n)∥2
2

Table 2: A list of comparator statistics.

Next, let us discuss their relations, in order to interpret our quantitative contribution more clearly (Table 1).
It is clear that S ≤MT , therefore the fine baseline Eq.(4) from [JC22] improves the coarse one Eq.(3); comparing
their associated switching regret bounds follows the same reasoning.

To compare our results to the baselines, observe that

∥ū∥2
√
T =

∥∥∥∥∥ 1√
T

T∑
t=1

ut

∥∥∥∥∥
2

≤
T∑

t=1

1√
T
∥ut∥2 ≤

√
E ≤

√
MS,

S̄ =

T∑
t=1

∥ut − ū∥2 ≤
T∑

t=1

∥ut∥2 + T ∥ū∥2 =

T∑
t=1

∥ut∥2 +

∥∥∥∥∥
T∑

t=1

ut

∥∥∥∥∥
2

≤ 2S,

Ē =
T∑

t=1

∥ut − ū∥22 ≤ 2MS̄ ≤ 4MS.

Therefore,

∥ū∥2
√
T +

√
PS̄ ≤

√
MS + 2

√
2PS = O

(√
(M + P)S

)
,

17

∥ū∥2
√
T +

√
KĒ ≤

√
MS + 2

√
KMS = O

(√
(1 +K)MS

)
.

That is, both our path-length-dependent bound and the switching regret bound are at least as good as the
results from [JC22]. Concrete benefits are demonstrated in Example 1 and 2.

Finally, as a sanity check, our path-length-dependent bound does not violate the lower bound Ω(P): even
when ū = 0,

P =
T−1∑
t=1

∥ut+1 − ut∥2 ≤
T−1∑
t=1

∥ut+1 − ū∥2 +
T−1∑
t=1

∥ut − ū∥2 ≤ 2S̄,

therefore our bound is never better than Õ(P).

B More on related work

Online regression Our sparse coding framework converts unconstrained dynamic OCO to a special form of
online regression. The standard setting of the latter [RS14a] considers a repeated game as well: in each round,
we observe a covariate xt ∈ Rd, make a prediction ŷt ∈ R (which depends on xt), and then observe a label yt ∈ R.
The performance metric is the minimax regret under the square loss

RegretT (F) =
T∑

t=1

(ŷt − yt)
2 − inf

f∈F

T∑
t=1

(f(xt)− yt)
2.

Roughly, the problem is of a nonparametric type if the complexity of the function class F is not fixed a priori,
but grows with T (i.e., the amount of data).

Overall, such an online regression problem is highly general, as static OCO is recovered if xt is time-invariant.
The setting we utilize is a variant with (i) vector output; (ii) general convex losses; (iii) xt specified by the
dictionary, possibly being sparse itself (e.g., wavelets); and (iv) the function class F being linear, but unbounded.
As discussed in Footnote 11, our setting deviates from the conventional definition of regression, as a general convex
loss function does not necessarily have minimizers. We adopt the terminology of “regression” for streamlined
exposition.

Existing works on online nonparametric regression [RS14a, GG15] have established the relation of this
problem to certain path length characterizations of dynamic regret. However, the generality of this setting
makes the analysis challenging, and especially, algorithms can be computationally expensive. With a bounded
domain assumption (on predictions ŷt), a recent breakthrough [BW21] simultaneously achieved several notions
of optimality for path-length-dependent bounds, with efficient computation. Readers are referred to [BW21,
Appendix A] for a thorough discussion of this line of works.

For the special case of Online Linear Regression (OLR) with square losses, the celebrated VAW forecaster
[AW01, Vov01] guarantees O(N log T) regret against any unbounded coefficient vector û ∈ RN , where N is the
dimension of the feature space. Such a fast rate becomes vacuous in the nonparametric regime (when N > T)
[GY14], therefore [Ger13] proposed a sparsity regret bound Õ(∥û∥0) and an accompanying inefficient algorithm
as its high dimensional generalization. Efficient computation was addressed by [GW18], but the obtained result
only applies to bounded û. In a rough sense, such sparsity regret bounds are the square loss and feature-based
analogue of the L1-norm parameter-free bounds in OLO [Ora19, Chapter 9]. They are also closely related to
sparsity oracle inequalities in statistics, as reviewed by [Ger13].

Parametric time series models For time series forecasting, most prior works are devoted to parametric
strategies with strong inductive bias, such as the ARMA model, state space models, and more recent deep learning
models. Online learning has been applied to such models as well [AHMS13, AHZ15, AM16, KM16, HLS+18],
leading to forecasting guarantees under mild statistical assumptions. When convexity is present, some of these
problems could be reframed as special cases of our OLR problem, with a constant-size dictionary that does
not grow with T ; for example, learning the autoregressive model corresponds to defining the features as the
fixed-length observation history. Also, Appendix E shows that given a parametric time series forecaster (possibly
without performance guarantees), our algorithm can be applied on top of it, in order to provably correct its
nonstationary bias.

18

Other sparsity topics in OL Finally, we review other sparsity-related topics in online learning, which do not
fit into the scope of this paper. [LLZ09, Xia09, DSSST10, SST11] considered using online learning to solve batch
L1 regularized problems. The goal is to achieve sparse predictions instead of sparsity adaptive regret bounds.
[Kal14, FKK16, KKLP17] studied online sparse regression, where only a subset of features are available in each
round. The challenge is to handle bandit feedback in OLR.

C Detail on the general framework

This section presents details on our general sparse coding framework. Appendix C.1 introduces the static
subroutine we adopt from [MK20]. Appendix C.2 proves our main results, but with additional gradient adaptivity
compared to the main paper.

C.1 Unconstrained static subroutine

The following static OCO algorithm and its guarantee are due to [MK20, Section 3.1]. We assume that ∥ĝt∥2 ≤ Ĝ,

and Ĝ > 0.

Algorithm 3 FreeGrad [MK20, Definition 4]: scale-free and gradient adaptive unconstrained static OLO.

Require: A hyperparameter ε > 0; dimension d; Lipschitz constant Ĝ.
1: Initialize a gradient sum counter s = 0 ∈ Rd and a variance counter v = Ĝ2.
2: for t = 1, 2, . . . do
3: Predict

x̂t = −εs ·
(2v + Ĝ ∥s∥2)Ĝ2

2(v + Ĝ ∥s∥2)2
√
v
· exp

(
∥s∥22

2v + 2Ĝ ∥s∥2

)
.

4: Observe the loss gradient ĝt.
5: Update s← s+ ĝt, and v ← v + ĝ2t .
6: end for

Lemma C.1 (Theorem 20 of [MK20]). With any hyperparameter ε > 0, for all T ∈ N+ and û ∈ R, Algorithm 3
guarantees

T∑
t=1

⟨ĝt, x̂t − û⟩ ≤ εĜ+

[
2 ∥û∥2

√
VT log+

(
2 ∥û∥2 VT

εĜ2

)]
∨
[
4 ∥û∥2 Ĝ log

(
4 ∥û∥2

√
VT

εĜ

)]
,

where

VT = Ĝ2 +
T∑

t=1

∥ĝt∥22 .

C.2 Proof of the main result

We now present the analysis of our general sparse coding framework. The following lemma is a slightly more
general version of Lemma 2.1 in the main paper, which characterizes the performance of our single direction
learner (Algorithm 1). Recall that gt ∈ ∂lt(xt) from the OCO-OLO reduction.

Lemma C.2 (Lemma 2.1, full). Let ε > 0 be an arbitrary hyperparameter for Algorithm 3. Applying its 1D
version as the static subroutine, for all T ∈ N+ and u1:T ∈ span(h1:T), against any adversary E, Algorithm 1
guarantees

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ εG+

G
∥u1:T ∥2
∥h1:T ∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog (max

t
∥ut∥2 , T, ε

−1
)
.

19

The simplified form (Lemma 2.1) is recovered by using ∥h1:T ∥2 ≥ 1 and ∥gt∥2 ≤ G.

Proof of Lemma 2.1. Subsuming poly-logarithmic factors, the static regret bound of our static subroutine
(Algorithm 3) can be written as

T∑
t=1

ĝt (x̂t − û) ≤ εĜ+ |û|

Ĝ+

√√√√ T∑
t=1

ĝ2t

 · polylog (|û| , T, ε−1
)
,

where û is any 1D static comparator that the subroutine handles.
Now, for any single-directional comparator u1:T ∈ span(h1:T) considered in this lemma, there exists û ∈ R

such that u1:T = ûh1:T . The dynamic regret can be rewritten as

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤
T∑

t=1

⟨gt, xt − ut⟩ =
T∑

t=1

⟨gt, htx̂t − htû⟩ =
T∑

t=1

ĝt(x̂t − û),

and the RHS can be bounded using the static regret bound above. Note that |ĝt| = |⟨gt, ht⟩| ≤ G, therefore the
surrogate Lipschitz constant Ĝ from the static regret bound can be assigned to G.

In summary,

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ εG+ |û|

G+

√√√√ T∑
t=1

⟨gt, ht⟩2
 · polylog (|û| , T, ε−1

)

= εG+

G
∥u1:T ∥2
∥h1:T ∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog(∥u1:T ∥2

∥h1:T ∥2
, T, ε−1

)

≤ εG+

G
∥u1:T ∥2
∥h1:T ∥2

+

√√√√ T∑
t=1

⟨gt, ut⟩2
 · polylog (max

t
∥ut∥2 , T, ε

−1
)
,

where the last line is due to our assumption that ∥h1:T ∥2 ≥ 1.

Next, we prove the unconstrained dynamic regret bound with general dictionaries (Theorem 1).

Theorem 4 (Theorem 1, full). Consider any collection of signals z(n) ∈ span(h1:T,n), ∀n. We define its

reconstruction error (for the comparator u1:T) as z(0) = u1:T −
∑N

n=1 z
(n) ∈ RdT . Then, for all T ∈ N+ and

u1:T ∈ RdT , against any adversary E, Algorithm 2 guarantees

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ εG+

G
N∑

n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)

−
T∑

t=1

〈
gt, z

(0)
t

〉
,

where z
(n)
t ∈ Rd is the t-th round component of the sequence z(n) ∈ RdT .

Proof of Theorem 4. The idea of this theorem is a dynamic analogue of [Cut19] to aggregate the regret bound of

single direction learners. For all decomposition u1:T =
∑N

n=0 z
(n) such that z(n) ∈ span(h1:T,n) for all n ∈ [1 : T],

we have

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ ⟨g1:T , x1:T − u1:T ⟩ =
〈
−g1:T , z(0)

〉
+

N∑
n=1

〈
g1:T , w1:T,n − z(n)

〉
.

20

For the first term on the RHS,
〈
−g1:T , z(0)

〉
= −

∑T
t=1

〈
gt, z

(n)
t

〉
. As for the rest, we plug in Lemma C.2,

with hyperparameter ε/N .

N∑
n=1

〈
g1:T , w1:T,n − z(n)

〉

≤
N∑

n=1

εN−1G+

G

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog (max
t

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
≤ εG+

G
N∑

n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)
.

Next, we show how this dynamic regret bound recovers the static regret bound in Rd. As discussed in
Section 2.2, the static setting amounts to picking N = d and Ht = Id, and the decomposed signals z(n) are
determined by orthogonal projection of the static comparator sequence u1:T = [u, . . . , u].

Specifically, z
(n)
t is a d-dimensional vector which is zero except the n-th entry; its n-th entry equals the n-th

entry of the static comparator u. If we index the gradient as gt = [gt,1, . . . , gt,d] ∈ Rd and the static comparator

as u = [u1, . . . , ud] ∈ Rd, then
〈
gt, z

(n)
t

〉
= gt,nun. Applying Theorem 4, against static u1:T ,

T∑
t=1

lt(xt)−
T∑

t=1

lt(ut) ≤ εG+

G
N∑

n=1

∥∥z(n)∥∥
2

∥h1:T,n∥2
+

N∑
n=1

√√√√ T∑
t=1

〈
gt, z

(n)
t

〉2 · polylog(max
t,n

∥∥∥z(n)t

∥∥∥
2
, T,N, ε−1

)

≤ εG+

G
d∑

i=1

|ui|
√
T√

T
+

d∑
i=1

|ui|

√√√√ T∑
t=1

g2t,i

 · polylog (∥u∥∞ , T,N, ε−1
)

≤ εG+

G ∥u∥1 + ∥u∥2

√√√√ T∑
t=1

∥gt∥22

 · polylog (∥u∥∞ , T,N, ε−1
)
. (Cauchy-Schwarz)

In the asymptotic regime with large T , RegretT (u1:T) = Õ(∥u∥2
√
T).

D Detail on the wavelet algorithm

This section presents details of our wavelet algorithm. The pseudocode is presented in Appendix D.1. Ap-
pendix D.2 introduces the wavelet-specific notations for our analysis. Appendix D.3 presents a generic sparsity
based bound for our algorithm. Appendix D.4 and D.5 prove our main results. Auxiliary lemmas are contained
in Appendix D.6. Finally, Appendix D.7 works out the details of the two examples from the main paper.

D.1 Pseudocode

For all m ∈ N+, let T = 2m, and let Haarm be the T ×T Haar dictionary matrix defined in Section 3.1, for d = 1.
We apply the following variant (Algorithm 4) of our sparse coding framework, in order to remove all d dependence
from the final regret bound. It adopts the d dimensional version of the static subroutine (FreeGrad), instead
of the 1D version in Section 2. The pseudocode mirrors the combination of Algorithm 1 and 2.

It is equivalent to view Algorithm 4 as operating on a dT × dT “master” dictionary matrix H, defined
block-wise as the following: for all (i, j) ∈ [1 : T]2, the (i, j)-th block of H is the product of the (i, j)-th entry of
Haarm (which is a scalar) and the d-dimensional identity matrix Id. That is, H is a block matrix; each block is a
diagonal matrix with equal diagonal entries determined by Haarm. Roughly, the algorithm measures distances in
Rd by the L2 norm, while measuring RT by the L1 norm.

Algorithm 4 alone is not sufficient for our purpose: it must take an integer m and run for a fixed T = 2m

rounds. We apply a meta algorithm (Algorithm 5), which simply restarts the known T algorithm using the
classical doubling trick, c.f., [SS11, Section 2.3.1].

21

Algorithm 4 Haar OLR with known time horizon.

Require: A time horizon T = 2m; the T × T Haar dictionary matrix Haarm; and a hyperparameter ε > 0
(default is 1).

1: Let N = T . For all n ∈ [1 : N], initialize a copy of the d dimensional version of Algorithm 3 (FreeGrad) as
An, with hyperparameter ε/N .

2: for t = 1, 2, . . . , do
3: Receive the t-th row of Haarm, and index it as [ht,1, . . . , ht,N]; note that ht,n ∈ R.
4: for n = 1, 2, . . . , N do
5: If ht,n ̸= 0, query An for its output, and assign it to x̂t,n ∈ Rd; otherwise, x̂t,n is arbitrary.
6: Define wt,n = ht,nx̂t,n ∈ Rd.
7: end for
8: Predict xt =

∑N
n=1 wt,n ∈ Rd, receive loss gradient gt ∈ Rd.

9: for n = 1, 2, . . . , N do
10: If ht,n ̸= 0, compute ĝt,n = ht,ngt and send it to An as its surrogate loss gradient.
11: end for
12: end for

Algorithm 5 Anytime Haar OLR (Algorithm 4 with doubling trick).

1: for m = 1, 2, . . . , do
2: Run Algorithm 4 for 2m rounds, which uses the matrix Haarm. The hyperparameter is set to 1.
3: end for

D.2 More background

Although the analysis of our framework is simpler than [JC22], a challenge is carefully indexing all the quantities
to account for the vectorized setting. It is thus important to introduce a few notations to streamline the
presentation. Haarm is the T × T Haar dictionary matrix defined in Section 3.1, with T = 2m. Recall the
statistics of the comparator sequence, summarized in Appendix A.

Local interval Given any scale-location pair (j, l), let the support I(j,l) be the time interval where the feature
h(j,l) is nonzero. That is,

I(j,l) := [2j(l − 1) + 1 : 2j l].

Moreover, let I
(j,l)
+ denote the first half of this interval, and I

(j,l)
− for the second half. h(j,l) is 1 on I

(j,l)
+ , and −1

on I
(j,l)
− .

Normalization Let ˜Haarm be the orthonormal matrix obtained by scaling the columns of Haarm. The
normalized feature vectors are also denoted by tilde, i.e., instead of h∗ and h(j,l), the normalized features are h̃∗

and h̃(j,l). They are vectors in RT , with the t-th component denoted by h̃∗
t and h̃

(j,l)
t , in R.

Coordinate sequence Consider any comparator sequence u1:T ∈ RdT . For all coordinate i ∈ [1 : d], we define

its i-th coordinate sequence as u
(i)
1:T ∈ RT : the t-th entry of this coordinate sequence u

(i)
1:T , denoted by u

(i)
t , is the

i-th coordinate of ut.

Transform domain coefficient We will also use the transform domain coefficients of u1:T , under the Haar
wavelet transform. Recall that in the single-feature, generic setting (Section 2.2), we denoted a single transform
domain coefficient by û ∈ R. With wavelets, the transform domain encodes dT -dimensional vectors. According
to our convention so far, we will denote them by scale-location pairs (j, l): given a (j, l) pair, the “coefficient”
û(j,l) is a d-dimensional vector. There are T − 1 pairs of (j, l) in total; complementing the representation, we use
another û∗ ∈ Rd to represent the “coefficient” for the all-one feature.

22

Given any scale parameter j ∈ [1 : log2 T] and location parameter l ∈ [1 : 2−jT], let

û(j,l) :=
[〈

h̃(j,l), u
(1)
1:T

〉
, . . . ,

〈
h̃(j,l), u

(d)
1:T

〉]
,

and for the all-one feature,

û∗ :=
[〈

h̃∗, u
(1)
1:T

〉
, . . . ,

〈
h̃∗, u

(d)
1:T

〉]
.

That is, each entry is the inner product between the normalized feature and a coordinate sequence from u1:T .
Due to the orthonormality of the applied transform (specified by the normalized features h̃∗ and h̃(j,l)), the

energy is preserved between the time domain and the transform domain, i.e.,

E = ∥u1:T ∥22 = ∥û∗∥22 +
∑
j,l

∥∥∥û(j,l)
∥∥∥2
2
,

and also the second order variability (the energy of the centered dynamic component within u1:T),

Ē =

T∑
t=1

∥ut − ū∥22 =
∑
j,l

∥∥∥û(j,l)
∥∥∥2
2
. (11)

Moreover, since h̃∗ equals 1/
√
T times the all-one vector,

∥û∗∥22 =
d∑

i=1

〈
h̃∗, u

(i)
1:T

〉2
=

d∑
i=1

(
1√
T

∑
t

u
(i)
1:T

)2

= T
d∑

i=1

(
1

T

∑
t

u
(i)
1:T

)2

= ∥ū∥22 T. (12)

Detail reconstruction Given the transform domain coefficients, we can reconstruct details of the comparator
u1:T on the time domain. Similar to our notation in the generic framework (Section 2.2), we keep the letter z,
but replace the index n by (j, l), which is more suitable for indexing wavelets.

Let z(j,l) ∈ RdT be the detail of u1:T along the (j, l)-th feature. It is the concatenation of T vectors in Rd,
and for all t, the t-th of these vectors is defined by

z
(j,l)
t := û(j,l)h̃

(j,l)
t ∈ Rd.

Similarly, we can define the detail z∗ along the feature h̃∗. Its t-th component is

z∗t := û∗h̃∗
t ,

and clearly, the RHS does not depend on t since h̃∗ is the normalization of the all-one feature h∗.
Let us also sum the details across different locations. Given a scale j, let

z(j) :=
∑
l

z(j,l) ∈ RdT .

Note that the summands are sequences that do not overlap: at each entry, only one of the summand sequence is
nonzero. The full reconstruction is obtained by summing all the details,

u1:T := z∗ +

log2 T∑
j=1

z(j).

Statistics of the detail sequence We can define statistics of the detail sequences just like the statistics of
the comparator u1:T . Specifically, define the first order variability of the (j, l)-th detail as

S̄(j,l) :=
T∑

t=1

∥∥∥z(j,l)t

∥∥∥
2
.

23

Note that since the z
(j,l)
t sequence is centered (with average being equal to 0), its first order variability equals its

norm sum, c.f., Appendix A. Summing over the locations, the first order variability at the j-th scale is

S̄(j) :=
T∑

t=1

∥∥∥z(j)t

∥∥∥
2
,

which equals
∑

l S̄
(j,l).

Similarly, we can define the path length of the detail sequences. A caveat is that we only count the path
length within the support I(j,l) of the feature h(j,l),

P (j,l) :=
2j l−1∑

t=2j(l−1)+1

∥∥∥z(j,l)t+1 − z
(j,l)
t

∥∥∥
2
.

The comparator’s movement when the support changes does not count. Summing over the locations,

P (j) :=
∑
l

P (j,l).

D.3 Generic sparsity adaptive bound

With the notation from the previous subsection, we now present a generic sparsity adaptive regret bound for
Algorithm 4 (fixed T Haar OLR). Since the latter is a variant of our main sparse coding framework (Section 2),
the result can be analogously derived, although the notations need to be treated carefully.

Lemma D.1. For any m, T = 2m and u1:T ∈ RdT , with any hyperparameter ε > 0, Algorithm 4 guarantees

RegretT (u1:T) ≤ εG+G

∥z∗∥2 + log2 T∑
j=1

2−jT∑
l=1

∥∥∥z(j,l)∥∥∥
2

 · polylog (M,T, ε−1
)
.

The proof sums the regret bound of the d-dimensional version of the static subroutine (Lemma C.1), across
T different copies. It is very similar to Theorem 1, therefore omitted.

It might be more convenient to use the transform domain coefficients û(j,l) in the bound, rather than the
reconstructed details z(j,l). In this case, we have∥∥∥z(j,l)∥∥∥2

2
=
∑
t

∥∥∥z(j,l)t

∥∥∥2
2
=
∑
t

[∥∥∥û(j,l)
∥∥∥2
2

∣∣∣h̃(j,l)
t

∣∣∣2] = ∥∥∥û(j,l)
∥∥∥2
2

∑
t

∣∣∣h̃(j,l)
t

∣∣∣2 =
∥∥∥û(j,l)

∥∥∥2
2
.

Similarly,
∥z∗∥22 = ∥û∗∥22 .

Therefore,

RegretT (u1:T) ≤ εG+G

∥û∗∥2 +
log2 T∑
j=1

2−jT∑
l=1

∥∥∥û(j,l)
∥∥∥
2

 · polylog (M,T, ε−1
)
. (13)

D.4 Unconstrained switching regret

In the K-switching regret, the complexity of the comparator is characterized by its amount of switches. The
idea is that, if the comparator u1:T is static on a support I(j,l) for some (j, l), then the corresponding transform
domain coefficient û(j,l) = 0 ∈ Rd. We have the following bound for the fixed T algorithm (Algorithm 4).

Lemma D.2. For any m, T = 2m and u1:T ∈ RdT , Algorithm 4 with the hyperparameter ε = 1 guarantees

RegretT (u1:T) = Õ
(
∥ū∥2

√
T +

√
KĒ

)
.

24

Proof of Lemma D.2. Consider any scale j. Since the supports {I(j,l)}l do not overlap, if u1:T shifts K times,
then there are at most K choices of location l such that the transform domain coefficient û(j,l) is nonzero.
Furthermore, since there are log2 T scales in total, there are at most K log2 T pairs of (i, l) such that û(j,l) is
nonzero. Therefore, using Cauchy-Schwarz and Eq.(11),∑

j,l

∥∥∥û(j,l)
∥∥∥
2
≤
√
K log2 T

√∑
j,l

∥∥û(j,l)
∥∥2
2
=
√
KĒ log2 T .

Plugging this into Eq.(13), and further using Eq.(12) for ∥û∗∥2 complete the proof.

The anytime bound in general follows from the classical doubling trick. A twist is that the analysis is
slightly more involved than the standard one, e.g., [SS11, Section 2.3.1], as we also need to relate the comparator
statistics on each block to those for the entire signal u1:T .

Theorem 2 (Switching regret). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
. (9)

Proof of Theorem 2. First, assume T can be exactly decomposed into m∗ segments with dyadic lengths
21, . . . , 2m

∗
. We use ūm, Km and Ēm to represent the statistics of the comparator sequence on the length 2m

block, and let Im denote the time interval that this block operates on. ū, K and S denote the statistics of the
entire signal u1:T , c.f., Appendix A. From Lemma D.2,

RegretT (u1:T) ≤
m∗∑
m=1

Õ
(
∥ūm∥2

√
2m +

√
KmĒm

)
≤ Õ

[
∥ū∥2

(
m∗∑
m=1

√
2m

)
+

m∗∑
m=1

∥ūm − ū∥2
√
2m +

m∗∑
m=1

√
KmĒm

]
. (14)

The first term follows from the standard doubling trick analysis [SS11, Section 2.3.1],

m∗∑
m=1

√
2m ≤

√
2√

2− 1

√
2m∗ = O

(√
T
)
. (15)

As for the second term in Eq.(14), using Cauchy-Schwarz,

m∗∑
m=1

∥ūm − ū∥2
√
2m ≤

√√√√m∗

(
m∗∑
m=1

2m ∥ūm − ū∥22

)
.

m∗ = O(log T), and also observe that the sum (in the parenthesis) on the RHS equals the second order variability
of the following signal: for any time t in the m-th block, the signal’s component is ūm ∈ Rd. This signal is a
locally averaged version of the original comparator u1:T , and the key idea is that local averaging decreases the
variability. Formally, due to Lemma D.7, we have

m∗∑
m=1

∥ūm − ū∥2
√
2m ≤ Õ

(√
Ē
)
. (16)

For the third term in Eq.(14), using Cauchy-Schwarz again,

m∗∑
m=1

√
KmĒm ≤

√√√√(m∗∑
m=1

Km

)(
m∗∑
m=1

Ēm

)
≤
√

KĒ.

The sum of Km is straightforward. The inequality for the sum of Ēm follows from the observation that on the
m-th block, ūm minimizes

∑
t∈Im ∥ut − x∥22 with respect to x ∈ Rd.

25

Also, notice that the second term in Eq.(14) is dominated by the third term. If K = 0, then both
√
Ē and√

KĒ equal 0. If K ≥ 1, then
√
Ē ≤

√
KĒ. Therefore, Eq.(14) can be written as

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
KĒ

)
.

As for the general setting where T cannot be exactly decomposed into dyadic blocks: consider the smallest
T ∗ > T such that T ∗ can be decomposed. Due to doubling intervals, T ∗ ≤ 2T . Let us consider a hypothetical
length T ∗ game with the rounds t > T constructed as follows: the loss gradient gt = 0 ∈ Rd, and ut = ū. In this
case, with K and Ē still representing the statistics of the length T sequence u1:T , the number of switches on the
entire time interval [1 : T ∗] is at most K + 1, and the second order variability on [1 : T ∗] is Ē; furthermore, it is
clear that (K + 1)Ē ≤ 2KĒ. The regret of any algorithm on this hypothetical length T ∗ game is the same as
the length T game, therefore bounding the latter follows from bounding the former.

D.5 Path-length-based bound

Next, we turn to bounds that depend on the path length P of the comparator u1:T . Similar to the switching
regret analysis, we will first consider the setting with fixed dyadic T (Algorithm 4), and then extend its guarantee
through a doubling trick.

D.5.1 Fixed dyadic horizon

In the following, we consider Algorithm 4; assume T = 2m for some m. The static component (i.e., z∗) and the
dynamic component (i.e., u1:T − z∗) of u1:T are analyzed separately; the former is fairly standard, while the
latter is more challenging. We will first consider the dynamic component, and proceed in three steps.

Step 1 Considering any scale j, we aim to show
∑

l

∥∥û(j,l)
∥∥
2
≤
√
P (j)S̄(j), which relates the transform domain

coefficients to the regularity of the reconstructed signals.

Lemma D.3. For all (j, l) pair, ∥∥∥û(j,l)
∥∥∥
2
= 2−1/2

√
P (j,l)S̄(j,l),

and ∑
l

∥∥∥û(j,l)
∥∥∥
2
≤ 2−1/2

√
P (j)S̄(j).

Proof of Lemma D.3. Let us start from the first part of this lemma, and express the detail sequence z(j,l), and
equivalently z(j), more explicitly on its support I(j,l).

z
(j)
t =

{
2−j/2û(j,l), t ∈ I

(j,l)
+ ;

−2−j/2û(j,l), t ∈ I
(j,l)
− .

Rewriting P (j,l) and S̄(j,l),

P (j,l) =
2j l−1∑

t=2j(l−1)+1

∥∥∥z(j)t+1 − z
(j)
t

∥∥∥
2
= 21−j/2

∥∥∥û(j,l)
∥∥∥
2
.

S̄(j,l) =
∑

t∈I(j,l)

∥∥∥z(j)t

∥∥∥
2
= 2−j/2

∥∥∥û(j,l)
∥∥∥
2
· 2j = 2j/2

∥∥∥û(j,l)
∥∥∥
2
,

which yields the equality in the lemma. The second part follows from Cauchy-Schwarz.

26

Step 2 Showing that P (j) ≤ P and S̄(j) ≤ S̄. That is, the reconstructed signals are easier than the original
comparator u1:T . Here, P and S̄ should be considered separately.

Lemma D.4. For any u1:T and any scale parameter j∗, P (j∗) ≤ P .

Proof of Lemma D.4. From the definition of P and the reconstruction of u1:T from detail sequences,

P =
T−1∑
t=1

∥ut+1 − ut∥2 =
T−1∑
t=1

∥∥∥∥∥∥z∗t+1 − z∗t +
∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

=
T−1∑
t=1

∥∥∥∥∥∥
∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

,

where the last equality is due to z∗ being a constant sequence.
Consider removing “shorter” scales with 1 ≤ j < j∗, which is equivalent to local averaging, c.f., Appendix D.6.

Due to Lemma D.7, the path length does not increase, i.e,

T−1∑
t=1

∥∥∥∥∥∥
∑
j

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

≥
T−1∑
t=1

∥∥∥∥∥∥
∑
j≥j∗

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

.

Then, we can further remove the rounds where the path length is not counted in P (j∗), i.e., when a time t ∈ I(j
∗,l)

but t+ 1 ∈ I(j
∗,l+1).

RHS ≥
∑
l

2j
∗
l−1∑

t=2j∗ (l−1)+1

∥∥∥∥∥∥
∑
j≥j∗

(
z
(j)
t+1 − z

(j)
t

)∥∥∥∥∥∥
2

.

Now, consider any location l, which determines the time interval I(j
∗,l) = [2j

∗
(l − 1) + 1 : 2j

∗
l]. Any detail

sequence z(j) with scale j > j∗ is constant on this time interval, thus removing it does not change the path
length at all. Therefore,

P ≥
∑
l

2j
∗
l−1∑

t=2j∗ (l−1)+1

∥∥∥z(j∗)t+1 − z
(j∗)
t

∥∥∥
2
= P (j∗).

As for the first order variability,

Lemma D.5. For any u1:T and any scale parameter j∗, S̄(j∗) ≤ S̄.

Proof of Lemma D.5. From the definition, noticing that ū is entirely captured by the all-one feature,

S̄ =

T∑
t=1

∥ut − ū∥2 =

T∑
t=1

∥∥∥∥∥∥
log2 T∑
j=1

z
(j)
t

∥∥∥∥∥∥
2

.

Due to Lemma D.7, removing short scales amounts to local averaging, which decreases the variability.

S̄ ≥
T∑

t=1

∥∥∥∥∥∥
∑
j≥j∗

z
(j)
t

∥∥∥∥∥∥
2

=
∑
l

∑
t∈I(j∗,l)

∥∥∥∥∥∥z(j∗)t +
∑
j>j∗

z
(j)
t

∥∥∥∥∥∥
2

.

For any l, consider the support of the (j∗, l)-th feature, I(j
∗,l). Observe that

∑
j>j∗ z

(j)
t is time invariant

throughout I(j
∗,l), let us denote it as v ∈ Rd. Meanwhile, for some w ∈ Rd, z

(j∗)
t equals w on I

(j∗,l)
+ , the first

half of this interval, while being −w on the second half I
(j∗,l)
− of this interval. Therefore,

∑
t∈I(j∗,l)

∥∥∥∥∥∥z(j∗)t +
∑
j>j∗

z
(j)
t

∥∥∥∥∥∥
2

= 2j
∗−1 (∥v + w∥2 + ∥v − w∥2) ≥ 2j

∗
∥w∥2 =

∑
t∈I(j∗,l)

∥∥∥z(j∗)t

∥∥∥
2
.

Combining the above,

S̄ ≥
∑
l

∑
t∈I(j∗,l)

∥∥∥z(j∗)t

∥∥∥
2
= S̄(j∗).

27

Step 3 Summarizing the above relations, and using the property that there are only log2 T scales.

Lemma D.6. For any m, T = 2m and u1:T ∈ RdT , Algorithm 4 with the hyperparameter ε = 1 guarantees

RegretT (u1:T) = Õ
(
∥ū∥2

√
T +

√
PS̄
)
.

Proof of Lemma D.6. Starting from the generic regret bound, Eq.(13) for Algorithm 4.

RegretT (u1:T) ≤ εG+G

∥û∗∥2 +
∑
j,l

∥∥∥û(j,l)
∥∥∥
2

 · polylog (M,T, ε−1
)
.

Due to Eq.(12), ∥û∗∥2 = ∥ū∥2
√
T . Then, combining Lemma D.3, D.4 and D.5,∑

j,l

∥∥∥û(j,l)
∥∥∥
2
≤ O

(√
PS̄ log2 T

)
.

Plugging it into the generic bound completes the proof.

D.5.2 Anytime bound

Now we are ready to prove an anytime unconstrained dynamic regret bound that depends on the path length.

Theorem 3 (Path length bound). For all T ∈ N+ and u1:T ∈ RdT , Algorithm 5 guarantees

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
PS̄
)
. (10)

Proof of Theorem 3. Similar to the analysis of the switching regret (Theorem 2), we first consider the situation
where the time horizon T can be exactly decomposed into m∗ segments with dyadic lengths 21, . . . , 2m

∗
. In this

situation, we have

RegretT (u1:T) ≤ Õ

[
m∗∑
m=1

∥ūm∥2
√
2m +

m∗∑
m=1

√
PmS̄m

]

≤ Õ

[
∥ū∥2

√
T +

√
Ē +

m∗∑
m=1

√
PmS̄m

]
,

where the second line follows from the proof of Theorem 2, specifically Eq.(15) and Eq.(16).
Now let us consider the remaining sum on the RHS. Using Cauchy-Schwarz,

m∗∑
m=1

√
PmS̄m ≤

√√√√(m∗∑
m=1

Pm

)(
m∗∑
m=1

S̄m

)
≤

√√√√P

(
m∗∑
m=1

2m+1−2∑
t=2m−1

∥ut − ūm∥2

)
,

where
m∗∑
m=1

2m+1−2∑
t=2m−1

∥ut − ūm∥2 ≤
m∗∑
m=1

2m+1−2∑
t=2m−1

(∥ut − ū∥2 + ∥ūm − ū∥2) = S̄ +
m∗∑
m=1

2m ∥ūm − ū∥2 .

The last sum on the RHS is the first order variability of a locally averaged version of u1:T . Due to Lemma D.7,

m∗∑
m=1

2m ∥ūm − ū∥2 ≤ S̄.

Combining everything above,

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T +

√
Ē +

√
PS̄
)
.

28

It remains to show that
√
Ē ≤

√
PS̄, thus the former can be absorbed into the latter. Plugging in the

definitions, this is equivalent to showing

T∑
t=1

∥ut − ū∥22 ≤
T∑

t=1

P ∥ut − ū∥2 ,

and it suffices to prove ∥ut − ū∥ ≤ P for all t ∈ [1 : T]. This is completed in Lemma D.8. Till this point, we
have shown the desirable result in the situation of “exact dyadic partitioning”.

To complete the proof, we turn to the general situation where T cannot be partitioned into dyadic blocks.
This follows from a similar “padding” construction from the proof of Theorem 2. Let T ∗ = 2⌈log2 T⌉, and by
definition, T ∗ ≤ 2T . Let us consider a hypothetical length T ∗ game with the rounds t > T constructed as follows:
the loss gradient gt = 0 ∈ Rd, and ut = ū. Then, the regret of any algorithm on the length T ∗ hypothetical game
equals its regret on the actual length T game, and the regret bound for the former applies to the latter as well:
if we write P ∗ and S̄∗ as the statistics of the extended length T ∗ comparator, then

RegretT (u1:T) ≤ Õ
(
∥ū∥2

√
T ∗ +

√
P ∗S̄∗

)
.

Clearly, S̄∗ = S̄ and T ∗ ≤ 2T . As for the path length, P ∗ = P + ∥uT − ū∥2, and due to Lemma D.8,
∥uT − ū∥2 ≤ P . Plugging it back completes the proof.

D.6 Useful lemma

Our analysis uses two auxiliary lemmas. First, we show that local averaging makes a signal “more regular”.
Consider any signal u1:T ∈ RdT , with the t-th round component ut ∈ Rd. Local averaging refers to replacing any
k consecutive components of u1:T by their average, i.e., setting

uτ+1, . . . , uτ+k = k−1
k∑

i=1

uτ+i,

for some τ ∈ [0 : T − k].

Lemma D.7. Let a signal w1:T ∈ RdT be the result of u1:T after local averaging, and w̄ = T−1
∑T

t=1 wt ∈ Rd.
Then, the path length, the norm sum and the energy of w1:T , including their centered versions, are all dominated
by those of u1:T . That is,

1.
∑T−1

t=1 ∥wt+1 − wt∥2 ≤
∑T−1

t=1 ∥ut+1 − ut∥2;

2.
∑T

t=1 ∥wt − w̄∥2 ≤
∑T

t=1 ∥ut − ū∥2;

3.
∑T

t=1 ∥wt − w̄∥22 ≤
∑T

t=1 ∥ut − ū∥22.

4.
∑T

t=1 ∥wt∥2 ≤
∑T

t=1 ∥ut∥2, and
∑T

t=1 ∥wt∥22 ≤
∑T

t=1 ∥ut∥22.

Proof of Lemma D.7. Starting from the first part of the lemma, we prove for the general case of 0 < τ < T − k.
The boundary cases (τ = 0 and τ = T − k) are analogous.

Local averaging only affects the path length caused by the averaged entries uτ+1, . . . , uτ+k, and the
two entries uτ and uτ+k+1 right besides averaging boundary; this original path length quantity in u1:T is

29

∑k
i=0 ∥uτ+i+1 − uτ+i∥2. After averaging, the path length among these entries becomes∥∥∥∥∥uτ − k−1

k∑
i=1

uτ+i

∥∥∥∥∥
2

+

∥∥∥∥∥k−1
k∑

i=1

uτ+i − uτ+k+1

∥∥∥∥∥
2

= k−1

∥∥∥∥∥
k∑

i=1

(uτ − uτ+i)

∥∥∥∥∥
2

+ k−1

∥∥∥∥∥
k∑

i=1

(uτ+i − uτ+k+1)

∥∥∥∥∥
2

≤ k−1
k∑

i=1

(∥uτ − uτ+i∥2 + ∥uτ+i − uτ+k+1∥2)

≤ k−1
k∑

i=1

 k∑
j=0

∥uτ+j+1 − uτ+j∥2


=

k∑
i=0

∥uτ+i+1 − uτ+i∥2 .

Now consider the second part of the lemma. After local averaging, w̄ = ū. The affected part of the signal
contributes to the following first order variability

k∑
t=1

∥wτ+i − w̄∥2 = k

∥∥∥∥∥k−1
k∑

i=1

uτ+i − ū

∥∥∥∥∥
2

=

∥∥∥∥∥
k∑

i=1

uτ+i − kū

∥∥∥∥∥
2

≤
k∑

t=1

∥uτ+i − ū∥2 .

As for the third part of the lemma,

k∑
t=1

∥wτ+i − w̄∥22 = k

∥∥∥∥∥k−1
k∑

i=1

uτ+i − ū

∥∥∥∥∥
2

2

≤ k−1

(
k∑

i=1

∥uτ+i − ū∥2

)2

≤
k∑

t=1

∥uτ+i − ū∥22 ,

where the last inequality is due to AM-QM inequality.
The final part of the proof is the uncentered version of Part 2 and 3, which follows the same steps. In fact,

any fixed reference point (for the variability) works, i.e., for all v ∈ Rd,

T∑
t=1

∥wt − v∥2 ≤
T∑

t=1

∥ut − v∥2 ,

T∑
t=1

∥wt − v∥22 ≤
T∑

t=1

∥ut − v∥22 .

We also use another simple lemma.

Lemma D.8. Consider any comparator sequence u1:T . For all t, we have ∥ut − ū∥2 ≤ P .

Proof of Lemma D.8. Starting from the definition,

∥ut − ū∥2 =

∥∥∥∥∥ut −
T∑

i=1

T−1ui

∥∥∥∥∥
2

≤ T−1
T∑

i=1

∥ut − ui∥2 ,

and for all i, t ∈ [1 : T], ∥ut − ui∥2 ≤ P due to triangle inequality.

D.7 Quantitative example

This subsection presents details of our two quantitative examples, Example 1 and 2.

30

Tracking outliers We first calculate the relevant statistics of the comparator u1:T . Note that we assume
k ≤
√
T , and in this way, there is only a small amount of ut with large magnitude, which can then be called

outliers.

ū =
1

T

(
k
√
T + T − k

)
,

|ū| = Θ(1), M =
√
T , K = 1 or 2, P = Θ(

√
T), Ē ≤ E = kT + T − k = Θ(kT). As for S and S̄,

S = k
√
T + T − k = Θ(T),

S̄ = k(
√
T − ū) + (T − k)(ū− 1)

= 2kT−1(T − k)(
√
T − 1)

≤ O(k
√
T).

Intuitively, we have |ū| = Θ(1) while M =
√
T ; S̄ = O(k

√
T) while S = Θ(T). This explains the improvements

detailed next. For each algorithm considered in Table 1, we evaluate both its switching regret bound and its
path-length-dependent bound.

• The minimax algorithm Ader [ZLZ18] is not applicable, as M grows with T and can be larger than any
fixed diameter D.

• The P -dependent bound of the coarse baseline [JC22, Algorithm 6], c.f., Eq.(3), is

Õ
(√

(M + P)MT
)
= Õ(T).

With P = O(KM), the resulting K-dependent bound is

Õ
(
M
√
(1 +K)T

)
= Õ(T).

• The P -dependent bound of the fine baseline [JC22, Algorithm 2], c.f., Eq.(4), is

Õ
(√

(M + P)S
)
= Õ

(
T 3/4

)
.

With P = O(KM), the resulting K-dependent bound is

Õ
(√

(1 +K)MS
)
= Õ(T 3/4).

• Our path length bound is

Õ
(
|ū|
√
T +

√
PS̄
)
= Õ

(√
kT
)
.

Same for our switching regret bound,

Õ
(
|ū|
√
T +

√
KĒ

)
= Õ

(√
kT
)
.

Persistent oscillation Again, we calculate the statistics of the comparator u1:T . ū = 1, M ≤ 2, K = k,
P = Θ(k/

√
T). Crucially, S̄ =

√
T and Ē = Θ(1), while S = Θ(T) and E = Θ(T). Here the K-dependent

bounds of the baselines are loose compared to their corresponding P -dependent bounds, due to using the relation
P = O(KM). Therefore we will only evaluate their P -dependent bounds.

• Suppose one knows that M ≤ 2 beforehand, then Ader can be applied with D = 2. The regret bound is

Õ
(√

(D + P)DT
)
= Õ

(√
T + k1/2T 1/4

)
.

31

• One could check that the P -dependent bounds of the coarse and the fine baselines are also

Õ
(√

(M + P)MT
)
= Õ

(√
T + k1/2T 1/4

)
,

Õ
(√

(M + P)S
)
= Õ

(√
T + k1/2T 1/4

)
.

• For our algorithm, the P -dependent bound is

Õ
(
|ū|
√
T +

√
PS̄
)
= Õ

(√
T
)
.

The K-dependent bound is

Õ
(
|ū|
√
T +

√
KĒ

)
= Õ

(√
T
)
.

E Application: Fine-tuning time series forecaster

This section presents an application of our framework in time series forecasting.16 Roughly speaking, we aim to
address the following question:

Given a black box forecaster, can we make it provably robust against (structured) nonstationarity?

Along the way, our objective is to show that

• Simultaneously handling unconstrained domains and dynamic comparators in online learning brings
downstream benefits in time series forecasting.

• Our sparse coding framework can enhance empirically developed forecasting strategies.

Setting Let us consider the following forecasting problem, which resembles the online learning game introduced
at the beginning of this paper. The difference is that, here, we further assume access to a black box forecaster A.
In each (the t-th) round,

1. The black box forecaster A produces a prediction at ∈ Rd based on the observed history (z1:t−1 and l1:t−1).

2. After observing at, we make a prediction xt ∈ Rd.

3. The environment reveals a true value zt ∈ Rd and a convex loss function lt : Rd → R. lt is G-Lipschitz
with respect to ∥·∥2, and zt is one of its minimizers satisfying lt(zt) = 0.

Our goal is to achieve low total loss
∑T

t=1 lt(xt). Since trivially picking xt = at already achieves a total loss of∑T
t=1 lt(at), our goal is to improve it in certain situations, by designing a more sophisticated prediction rule

based on at.

Intuition In the above setting, A can be any algorithm that predicts z1:T in a reasonable, but non-robust
manner. Taking the weather forecasting for example, there are a few notable cases.

• A is a simulator of the governing meteorological equations, which uses the online observations z1:t−1 as
boundary conditions.

• A is an autoregressive model, which predicts a linear combination of the past observations. The coefficients
are determined by statistical modeling.

• A is a large deep learning model trained on offline datasets (e.g., the weather history at geographically
similar locations).

Even though such forecasters typically lack performance guarantees, their predictions can be used to construct
time-varying Bayesian priors (see our discussion in the Introduction): given at, we will apply a fine-tuning
adjustment δt to predict xt = at + δt. Intuitively, the total loss is low if at is close to the true value zt, i.e., when
the prior is good.

16Code is available at https://github.com/zhiyuzz/NeurIPS2023-Sparse-Coding.

32

https://github.com/zhiyuzz/NeurIPS2023-Sparse-Coding

Reduction to unconstrained dynamic regret Concretely, if xt = at + δt, then due to convexity, for all
subgradients gt ∈ ∂lt(xt) we have lt(xt)− lt(zt) ≤ ⟨gt, δt⟩ − ⟨gt, zt − at⟩. The RHS is the instantaneous regret of
δt in an OLO problem with loss gradient gt and comparator zt − at. Applying our unconstrained dynamic OLO
algorithm, the total loss in forecasting can be bounded as

T∑
t=1

lt(xt) ≤ RegretT (z1:T − a1:T).

That is, the total loss bound adapts to the complexity of the error sequence z1:T − a1:T (of the given black box
forecaster). This contains a1:T = 0 as a special case, where no side information is assumed.

Let us compare this bound to the baseline
∑T

t=1 lt(at), which corresponds to trivially picking xt = at.

• If z1:T = a1:T , i.e., the black box A is perfect, then the baseline loss is
∑T

t=1 lt(at) = 0. In this case, due to

Theorem 4, our general sparse coding framework guarantees
∑T

t=1 lt(xt) ≤ εG, where ε > 0 is an arbitrary
hyperparameter. That is, our algorithm is worse than the baseline by at most a constant.

• If z1:T ̸= a1:T , then in general, the baseline loss
∑T

t=1 lt(at) is linear in T . In contrast, our algorithm
could guarantee a sublinear RegretT (z1:T − a1:T), thus also a sublinear total loss, when the error sequence
z1:T − a1:T is structurally simple (e.g., sparse under a transform, or low path length) with respect to our
prior knowledge.

In summary, the idea is that by sacrificing at most a constant loss when A is perfect (z1:T = a1:T), we could
robustify A against certain structured unseen environments, improving the linear total loss to a sublinear rate.

Importance of unconstrained domain The above application critically relies on the ability of our algorithm
to handle unconstrained domains. To demonstrate this, suppose we instead use the bounded domain algorithm
from [ZLZ18] to pick the fine-tuning adjustment δt. Then, the above analysis only holds if an upper bound D of
the maximum error maxt ∥zt − at∥2 is known a priori – this is a stringent requirement in practice. Furthermore,

when z1:T = a1:T , such an alternative approach only guarantees
∑T

t=1 lt(xt) ≤ Õ(D
√
T), which is considerably

worse than the baseline 0. In other words, the alternative fine-tuning strategy could ruin the black box forecaster
A, when the latter performs well.

In the rest of this section, we present experiments for this time series application. Appendix E.1 demonstrates
the power law phenomenon, which shows that both the time series z1:T and the error sequence z1:T − a1:T
could exhibit exploitable structures. This implies good performance guarantees using our theoretical framework.
Appendix E.2 goes one step further by actually testing the fine-tuning performance of our algorithm.

E.1 Power law phenomenon

This subsection further verifies the power law phenomenon discussed in Section 2.2, with both wavelet and
Fourier dictionaries. The goal is to present concrete examples where signal structures can be exploited by our
framework, generating more interpretable, sublinear regret bounds.

Wavelet dictionary We first verify the power law on the Haar wavelet dictionary. Intuitively it is suitable
when the dynamics of the environment exhibits switching behavior. To this end, consider the following stochastic
time series model

zt = zt−1βt + ζt, (17)

where {βt} and {ζt} are iid random variables satisfying ζt ∼ Uniform(−q, q) and

βt =

{
−1, w.p. p,

1, w.p. 1− p.

Picking T = 215 = 32768, p = 0.0005 and q = 0.005, we generate four sample paths of z1:T using four arbitrary
random seeds (2020, 2021, 2022 and 2023), and the obtained time domain signals are plotted in the first row of
Figure 3. As the switching probability p is chosen to be low enough, all the sample paths exhibit a small amount

33

of sharp switches, corrupted by the noise term ζt. According to our intuition from signal processing, the Haar
wavelet transform of these signals is sparse.

Now let us verify this intuition. We take the Haar wavelet transform of these signals, sort the transform
domain coefficients and plot the results on log-log scales – these are shown as the solid blue lines in the second
row of Figure 3. Using the largest 100 transform domain coefficients on each plot, we fit a liner model using
least square, which is shown as the dashed orange line. The slope of each line is −α, where α is displayed in the
legend. It can be seen that for all four sample paths, the fitted α is within (0.5, 1), thus justifying the power law
phenomenon [Pri21]. Given α, the regret of our Haar wavelet algorithm is Õ(T 1.5−α), as shown in Section 2.2.

As for the implication in time series forecasting, let us consider forecasting z1:T with a1:T = 0, i.e., without
the external forecaster A. Given the power law, the total forecasting loss of our fine-tuning approach is∑T

t=1 lt(xt) ≤ Õ(T 1.5−α).
We also remark that although only four sample paths are demonstrated, we observe the power law phenomenon

on all random seeds we tried in the experiment.

0 5000 10000 15000 20000 25000 30000
Time

1.0

0.5

0.0

0.5

1.0

Si
gn

al

0 5000 10000 15000 20000 25000 30000
Time

1.0

0.5

0.0

0.5

1.0

Si
gn

al

0 5000 10000 15000 20000 25000 30000
Time

1.0

0.5

0.0

0.5

1.0

Si
gn

al
0 5000 10000 15000 20000 25000 30000

Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Si
gn

al

100 101 102 103 104

Indices (log)

10 6

10 4

10 2

100

102

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.90

(a) Seed= 2020.

100 101 102 103 104

Indices (log)

10 5

10 3

10 1

101

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.83

(b) Seed= 2021.

100 101 102 103 104

Indices (log)

10 6

10 4

10 2

100

102

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.89

(c) Seed= 2022.

100 101 102 103 104

Indices (log)

10 6

10 4

10 2

100

102

W
av

el
et

 c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.66

(d) Seed= 2023.

Figure 3: Verifying the power law on the Haar Wavelet dictionary. First row: time domain signals. Second row:
sorted transform domain coefficients on a log-log plot. The dashed orange line is the best linear fit on the log-log
plot, using the largest 100 transform domain coefficients. From left to right: four arbitrary random seeds.

Fourier dictionary Next, we verify the power law on the Fourier dictionary. Here we use the Jena weather
forecasting dataset,17 which records the weather data at a German city, Jena, every 10 minutes. We take the
data from Jan 1st, 2010 till July 1st, 2022, consisting of T = 656956 time steps. Two different modalities, namely
the temperature and the humidity, are considered. The actual temperature and humidity sequences are plotted
in Figure 4.

For the sequence of temperature z1:T , we perform its Discrete Fourier Transform (DFT), which returns T
complex number as the frequency domain coefficients. We discard the second half of the coefficients due to
symmetry, since the input of the transform is real. For the remaining coefficients, we take their absolute values,
sort them and plot the result on a log-log plot. Similar to the wavelet experiment, we also fit a linear model
using the largest 100 transform domain coefficients. These are shown as Figure 5 (Left), which exhibit the power
law phenomenon.

Furthermore, we perform the same procedure on the temperature difference sequence {zt+1 − zt}, where the
t-th entry is the change of temperature from the t-th time step to the t+ 1-th time step. The result is shown
as Figure 5 (Right). Although the tail is heavier, we can still observe similar power-law phenomenon for large
transform domain coefficients.

Now, let us discuss again the implication of the observed power law in time series forecasting. First, consider
forecasting z1:T without A. Given the power law of z1:T itself, the Fourier version of our forecaster guarantees

17Available at https://www.bgc-jena.mpg.de/wetter/.

34

https://www.bgc-jena.mpg.de/wetter/

2010 2012 2014 2016 2018 2020 2022
Time

20

10

0

10

20

30

40
Te

m
pe

ra
tu

re
 (°

C)

2010 2012 2014 2016 2018 2020 2022
Time

20

40

60

80

100

Re
la

tiv
e

hu
m

id
ity

 (%
)

Figure 4: Time domain behavior of the weather data.

100 101 102 103 104 105

Indices (log)

100

102

104

106

Fo
ur

ie
r c

oe
ffi

cie
nt

s (
ab

s,
lo

g)

Data
Fitted, =0.68

100 101 102 103 104 105

Indices (log)

100

101

102

103

104

Fo
ur

ie
r c

oe
ffi

cie
nt

s o
f d

iff
 (a

bs
, l

og
) Data

Fitted, =0.69

Figure 5: Verifying the power law on the Fourier dictionary. Left: the DFT of the temperature sequence. Right:
the DFT of the temperature difference sequence.

sublinear total loss. Next, consider forecasting z1:T with A being the zeroth-order hold forecaster, i.e, at = zt−1.
The power law of the difference sequence {zt+1 − zt} implies good forecasting performance of our framework in
this context.

Parallel results on the humidity sequence are reported in Figure 6, with a similar qualitative behavior. It
illustrates the prevalence of the power law across different types of the data.

E.2 Fine-tuning forecaster

Finally, we test the performance of our forecasting framework on the synthetic switching data and the actual
temperature sequence. For the first case, our framework is equipped with the Haar wavelet dictionary. The
Fourier dictionary is adopted in the second case. In both cases, we compare our algorithm against the baseline
from [JC22]. More specifically, we take our online learning algorithm (Algorithm 2) and the algorithm from
[JC22], plug them both into the time series forecasting workflow introduced at the beginning of this section, and
then compare their total forecasting loss.

Concretely, let us start from the wavelet dictionary.

Wavelet dictionary In this case, consider the setting without the external forecaster A. We run both online
learning algorithms (our Algorithm 2 and the baseline [JC22, Algorithm 2]), and use their outputs directly as
the time series predictions. Our Algorithm 2 is equipped with the Haar wavelet dictionary defined in Section 3.1.

35

100 101 102 103 104 105

Indices (log)

101

103

105

107
Fo

ur
ie

r c
oe

ffi
cie

nt
s (

ab
s,

lo
g)

Data
Fitted, =0.73

100 101 102 103 104 105

Indices (log)

100

101

102

103

104

105

Fo
ur

ie
r c

oe
ffi

cie
nt

s o
f d

iff
 (a

bs
, l

og
) Data

Fitted, =0.70

Figure 6: Verifying the power law on the Fourier dictionary. Left: the DFT of the humidity sequence. Right:
the DFT of the humidity difference sequence.

The configurations of the time series model are the same as the previous subsection, with T = 215 = 32768,
p = 0.0005 and q = 0.005. The loss functions lt are the absolute loss.

Both algorithms require a confidence hyperparameter ε, and we set it to 1. Since the time series data Eq.(17)
is random, we run both algorithms on 10 random seeds, and calculate their total loss. Our algorithm achieves a
total loss of 44048, which is considerably lower than the baseline’s total loss 62465. This is consistent with the
theoretical results developed so far.

Fourier dictionary Next, we turn to the task of temperature forecasting. The data is reported in the previous
subsection. We take its first T = 50000 entries, and assign it to the true time series z1:T ; the loss functions lt are
the absolute loss. The black box forecaster A is assigned to the zeroth-order hold forecaster, i.e., at = zt−1.

For our framework, we need to specify the dictionary. Although using the entire DFT matrix could lead
to low regret guarantees (as demonstrated by the power law), this is computationally challenging. Instead, we
exploit the fact that the weather is naturally periodic, with the period of one day. Picking the base frequency ω
accordingly, we define features indexed by k (the harmonic order) as

ht,2k−1 = cos(kωt),

ht,2k = sin(kωt).

By specifying the maximum order K, we obtain 2K features {ht,2k−1, ht,2k}k∈[1:K] from this construction. An
all-one feature is further added, making the dictionary size N = 2K + 1.

Again, we set the confidence hyperparameter ε = 1 for our algorithm. The total loss as a function of the
dictionary size N is plotted in Figure 7. Notably, the case of N = 0 is equivalent to trivially following the advice
of the given forecaster A: xt = at = zt−1. It can be seen that our fine-tuning framework (N > 0) actually results
in better performance, due to exploiting the structures in the error sequence z1:T − a1:T .

We also test the fine-tuning performance of the algorithm from [JC22]. Same as the above, we set ε = 1. The
total loss achieved by this alternative algorithm is 8238, which is around the same as A itself, and significantly
higher than the total loss of our algorithm with moderate amount of features (N > 5). This fits the intuition
from this paper: the environment contains persistent dynamics, which the algorithm from [JC22] cannot handle.

36

0 1 3 5 7 9 11 13 15 17 19
Number of features

7.2

7.4

7.6

7.8

8.0

8.2

To
ta

l l
os

s

1e3

Figure 7: Testing our algorithm for temperature forecasting.

37

	Introduction
	Contribution
	Related work
	Notation

	The general sparse coding framework
	Setting
	Main result

	The Haar OLR algorithm
	Haar wavelet
	Main result

	Conclusion
	List of comparator statistics
	More on related work
	Detail on the general framework
	Unconstrained static subroutine
	Proof of the main result

	Detail on the wavelet algorithm
	Pseudocode
	More background
	Generic sparsity adaptive bound
	Unconstrained switching regret
	Path-length-based bound
	Fixed dyadic horizon
	Anytime bound

	Useful lemma
	Quantitative example

	Application: Fine-tuning time series forecaster
	Power law phenomenon
	Fine-tuning forecaster

