Convergence of Actor-Critic Methods with
Multi-Layer Neural Networks

Haoxing Tian, Ioannis Ch. Paschalidis, Alex Olshevsky
Department of Electrical and Computer Engineering
Boston University
Boston, MA 02215, USA
{tianhx, yannisp, alexols}@bu.edu

Abstract

The early theory of actor-critic methods considered convergence using linear func-
tion approximators for the policy and value functions. Recent work has estab-
lished convergence using neural network approximators with a single hidden layer.
In this work we are taking the natural next step and establish convergence using
deep neural networks with an arbitrary number of hidden layers, thus closing a gap
between theory and practice. We show that actor-critic updates projected on a ball
around the initial condition will converge to a neighborhood where the average of
the squared gradients is O (1/v/m) + O (¢), with m being the width of the neural
network and e the approximation quality of the best critic neural network over the
projected set.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful tool for solving decision-making problems
in a model-free way. Among the various RL algorithms, the Actor-Critic (AC) method (Konda &
Tsitsiklis (1999); Barto et al. (1983)) has shown great success in various domains, including robotics,
game playing, and control systems (LeCun et al. (2015); Mnih et al. (2016); Silver et al. (2017)).
AC involves simultaneous updates of two networks: an actor network that employs policy gradient
(Sutton et al. (1999)) to update a parameterized policy, and a critic network which is driven by the
Temporal Differences (TD) in the estimated value function. While AC methods with neural networks
used for both actor and critic have achieved widespread use in practice, a fully satisfactory analysis
of their convergence guarantees is currently lacking.

In recent years, a number of theoretical studies of AC have obtained provable convergence rates and
performance analyses. Almost all works in this area assumed linear, rather than neural network-
based, approximators for both actor and critic. A “two-timescale” linear AC was analysed in Wu
et al. (2020), with a convergence rate of O(T’l/ 4), where T is the total number of iterations and
O (-) refers to potential logarithmic terms omitted from the notation; the term “two-timescale” refers
to the fact that the stepsizes for the actor update and critic update are not proportional to each other,
but rather the actor steps are asymptotically negligible compared to the critic steps. A “single-
timescale” linear AC method was considered in Olshevsky & Gharesifard (2022); Chen et al. (2021)
and both works obtained a convergence rate of O (7~%°) under an i.i.d. sampling assumption on
the underlying MDP. The more realistic Markov sampling case was analyzed in the recent paper
Chen & Zhao (2022), which also established a convergence rate of O (T‘0'5). All these results
relied on linear approximations.

To our knowledge, convergence rates for AC with neural approximators were analyzed only in two
recent works Wang et al. (2019); Cayci et al. (2022). Both of these papers considered neural net-
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works with a single hidden layer. The paper Wang et al. (2019) obtained a convergence rate of
O (T7%5) with a final error of O (m™°2%) under i.i.d. sampling, where m is the width of hidden
layer. The case of Markov sampling was considered in Cayci et al. (2022) which improved this to
0] (T*O“r’) and O (m’o“r’), respectively. Further, both Wang et al. (2019); Cayci et al. (2022) con-
sidered “double-loop” methods where, in the inner loop, the critic takes sufficiently many steps to
accurately estimate ()-values. Such double-loop methods do not match prevailing practice and are
considerably easier to analyze since they can be shown to approximate gradient descent.

Further, Cayci et al. (2022) required a projection onto a ball of radius O(m’l/ 2) around the initial
condition. Although a full representation theory for such neural networks is unknown, this is clearly
limiting as compared to Wang et al. (2019) which only required projection onto a ball of constant
radius. For nonlinear approximations, such projections are usually needed to stabilize the algorithm;
without them, AC can diverge both in theory and practice.

Table 1: Comparisons with previous work.

. . . L Projection Convergence rate
Reference Algorithm Sampling Approximation Radius Wit T Wit
. Two-timescale ] . S 0.4
Wu et al. (2020) Single-loop Markov Linear N/A o(T ) N/A
Olshevsky & Gharesifard (2022) | Single-timescale |y ¢ Linear N/A 0 (T-03) N/A
Single-loop
Chen et al. (2021) Single-timescale |-y ; Linear N/A O (179%) N/A
Single-loop
Chen & Zhao (2022) Single-timescale | . 40 Linear N/A 0 (1-99) NA
Single-loop
Wang et al. (2019) Double-loop Lid. Single hidden layer | Constant O (T7°%) O (m=9%)
Cayci et al. (2022) Double-loop Markov | Single hidden layer | Decaying 0(1T7%%) O (m=°9)
i m sufficiently large )
Single-timescale A (—0.5 5005
Ours Single-loop Markov Any depth Constant O (T79%) O (m=%%)

The main contribution of this paper is to provide the first analysis of AC with neural networks of arbi-
trary depth. While replicating the earlier results of a O (T*O"S) convergence rate and O (m’O'S) er-
ror, our work considers a single-loop method with proportional step-sizes (sometimes called “single-
timescale”). We prove this result under Markov sampling and project onto a ball of constant radius
around the initial condition. An explicit comparison of our result to previous work is given in Table
1. A more technical comparison is also given later after the statement of our main result.

Our main technical tool is the so-called ”gradient splitting” view of TD learning. This idea began
with the paper Ollivier (2018) which observed that TD learning is exactly gradient descent when the
underlying policy is such that the state transition matrix is reversible. In Liu & Olshevsky (2021),
this was generalized to non-reversible policies by introducing the notion of a “gradient splitting”
(discussed formally later in this work) and observing that, for linear approximation, TD updates are
an example of gradient splitting. Gradient splitting is closely related to gradient descent, and the
two processes can be analyzed similarly. A generalization to neural TD learning was given in Tian
et al. (2023), which argued for an interpretation of nonlinear TD as approximate gradient splitting.

The analysis of AC that we perform in this work is trickier because both actor and critic updates
rely on each other, and one must prove that the resulting errors in each process do not compound
in interaction with each other. This difficulty arises because we do not consider the “double loop”
case where the actor can effectively wait for the critic to converge, so that actor steps resemble gra-
dient steps with error; rather both actor and critic update simultaneously their (imperfect) estimates.
Similarly to what was done in Olshevsky & Gharesifard (2022), we show that we can draw on some
ideas from control theory to prove that the resulting process converges with a so-called “small-gain”
analysis.

2 Preliminaries

We begin by standardizing notation and stating the key concepts that will enable us to formulate our
results alongside all the assumptions they require.



2.1 Markov Decision Processes (MDP)

A finite discounted-reward MDP can be described by a tuple (S, A, Peny, 7,y) Where S is a finite
state-space whose elements are vectors, and we use sg € S to denote the starting state; A is a
finite action space with cardinality 145 Penv = (Penv(8']$,a))s,57€5.ac 4 18 the transition probability
matrix, where Py, (s'|s,a) is the probability of transitioning from s to s’ after taking action a;
r: S x A — R is the reward function, where 7 (s, a) stands for the expected reward at state s and
taking action a; and 7y € (0, 1) is the discount factor.

A policy 7 is a mapping 7 : S x A — [0, 1] where 7(a|s) is the probability that the agent takes
action « in state s. Given a policy 7, we can define the state transition matrix P, = (P.(s'|s))
and the state-action transition matrix P = (Pr(s',d’|s,a))(s,a),(s',a’)eSx A @S

s,s’€S

PL(s'|s) = Z Py (8'|s,a)m(als), Pr(s',d'|s,a) = Poy(s']s,a)m(a’|s").
acA

The stationary distribution over state-action pairs u, is defined to be a nonnegative vector with
coordinates summing to one and satisfying uX = pI P, while the stationary distribution over

states 11/ is defined similarly with z/.” = /" P.. The Perron-Frobenius theorem guarantees that
such a ., and /. exist and are unique subject to some conditions on P., P, e.g., aperiodicity and
irreducibility (Gantmacher (1964)). We use (s, a) to denote each entry of p, and p (s) each
entry of y! . Clearly,

pir (s, a) = pi(s)m(als). (D)
The value function and the ()-function of a policy 7 is defined as:

+oo
Vi(s) = Z 7(a|s)Qr(s,a), Qi(s,a)=FEsan lz vtr(shat)] . ()
t=0

a€A

Here, E; . » stands for the expectation when action a is chosen in state s and all subsequent actions
are chosen according to policy . Throughout the paper, if 7 can be parameterized by 6, then we
will use 6 as a subscript instead of 7, e.g., by writing Vj(s) instead of V* (s).

If 7 is parameterized by 6, the Q-values satisfy the Bellman equation
Qi(s,a) =r(s,a) +7 Y Pols',d'|s,a)Q4(s',a"), 3)
which can be stated in matrix notation as
Qy = R+vPpQp, “)

where Q5 = (Q5(s,a)), ayesxa and R = (R(8,@))(5.0)c5x 4 are vectors that stack up the Q-
values and rewards, respectively. We will assume rewards are bounded:
Assumption 2.1 (Bounded Reward). For any s,a € S X A,

r(s,a)| < rmax-

This assumption is commonly adopted throughout the literature, e.g., among the previous literature
in Cayci et al. (2022); Wu et al. (2020). An obvious implication of this is an upper bound on the
@-values for any policy:

Qi(sa)l < 7 5)

2.2 The Policy Gradient Theorem

We introduce the quantity ¢g(s), commonly called the discounted occupation measure which is
defined as

+oo
do(s) =D 7' Po(S; = 9),
t=0

where Py(S; = s) is the probability of being in state s after ¢ steps —- and recall that we always
begin in state so. Next, we define ¢y(s,a) as

do(s,a) = pg(s)m(als, ).



Note that the sum of both ¢(s) and ¢(s, a) equal to (1 — )~ ! rather than 1:

D dels)= Y ¢e(s,a>:ﬁ- 6)

ses (s,a)eSxA
Now we are prepared to state the policy gradient theorem Sutton & Barto (2018).
Theorem 2.1. (Policy Gradient Theorem)

Vi =Y 0(s) D Qj(s.a)V(als, 0)

ses a€A

It is standard to write this as
VVy = Z Po(s,a)Qp(s,a)Vinn(als, ),
(s,a)eSxA
which can be further rewritten in matrix form as
VV; =Vinn(0)T®,Q;, (7

where @y is a diagonal matrix stacking up the ¢¢(s, a) as its diagonal entries.

2.3 Parameterized Value Function and Policy

We will now state the various assumptions we have on the policies and their parametrizations. We
will say that a function f : R — R is L-Lipschitz if

[f (@) = f(y)| < L]z —yl, Va,y,
and a differentiable function f : R — R is H-smooth if
IVf(x) =V [yl < Hlz —y|, Va,y.

We will be using a multi-layer neural network to approximate the () values under a policy. We
basically follow the same setting as in Liu et al. (2020), with some changes as far as notation goes.
Specifically, we define the following recursion

1
) = ﬁo (w(k)x(kfl)) Jfork e {1,...,K},
where ¢ is an activation function and z(*) stands for the value of k’th layer (z(°) € S x A is the
input to this neural network). The neural network outputs Q(s, a, w), which is defined as

Q(s,a,w) = %bTm(K).

Notice that the output is linear to (%) as no activation function is applied here. While this formu-
lation does not have a bias, it is equivalent to a formulation with a bias if we pad all inputs with a
single 1, and add an additional node to every hidden layer that propagates this 1 to subsequent layers.
We will assume that all the hidden layers have the same width which we denote by m, i.e., all the
matrices w'*) have m rows and all the vector x(k), k > 1 are m-dimensional. The total number of
layers in the neural network is denoted by K.

For simplicity, we will make the following assumption on the neural network. Throughout the paper,
we will use || - || for the standard /5-norm.

Assumption 2.2. (Neural architecture and initialization) Suppose the neural network satisfies the
following properties:

* (Input assumption) Any input to the neural network satisfies ||z(%|| < 1.
* (Activation function assumption) o is L,-Lipschitz and H,-smooth.

* (Inifialization assumption) Each entry of the vector b satisfies |b..| < 1,Vr, and each entry
of w*) is randomly chosen from N (0, 1), independently across entries.



Liu et al. (2020) showed that with these assumptions, the following result holds with high probability
— which we state as an assumption for our work.

Assumption 2.3. The absolute value of each entry of x®) (the output of layer k of the neural
network) is O, (1) at initialization.

Next, we will stack up the weights of different layers into a column vector w consisting of the entries

of the matrices wV), ..., w), with its norm defined by
K
lel]* =D lw® |13,
k=1
where || - || ¢ is the Frobenius norm. During the training process, only the weights w will be updated

while the final weights b will be left to their initial value. For convenience, we define the vector
Q(w) = (Q(s,a,w)) (5 a)esx 4 Which stacks up Q(s, a,w) over all state-action pairs (s, a). While
this vector will never be actually used in the execution of any algorithm we consider due to its high
dimensionality, it will be useful in some of the arguments we will make. Finally, we assume the
parametrization of the policy 7 is smooth.

Assumption 2.4 (Smooth parametrization). For all s, a, the quantities 7(a|s,8), Inr(a|s,0) are
L-Lipschitz and L. -Lipschitz with respect to 0, respectively.

Note that this forces us to use a smooth activation function and rules out non-differentiable activa-
tion functions such as ReLLU. If a RELU-like activation is needed, one could use a GeLU or ELU
activation (which are smooth versions of ReLU) and still satisfy the above assumption. Note, also,
that this assumption implicitly assumes that all policies are exploratory in the sense of assigning a
positive probability to each action, since the derivative of In x blows up as z — 0.

2.4 Neural Actor-Critic

We will use Projy;, {-} refer to projection onto a ball with constant radius around the initial condition
of the critic, where

W ={w]| ||lw—wp|| < 0ow}, oy is a constant.
We now introduce the neural AC, which updates the actor and critic parameters as

0
a a A A~ ~
- 7Q(st, ar, wi) Vo In (a3, 0;).

w1 = Projy, {wy + a¥6, Vi Q(s¢, ar,wi)},  Opyp1 = 60— 1

where 9, is the TD error defined by

0 = 1(s¢, ar) +YQ(sy, ay, wy) — Q(s¢, ar, wy), ®

and the samples are obtained as follows:

1. the state s; is generated by taking a step in the Markov chain P, from s;_;;
2. the action a; is chosen according to the policy 7(a|s;, 6);

3. the next state s}, i.e, $; = Sty1, is determined according to the transition probability Pey,.
of the MDP;

4. the action a} is an action chosen at the next state according to the policy 7 (a|s}, 6;);

5. the state-action pair (§;, a;) is obtained by first sampling a geometric random variable T
with distribution {P(T" = t) = (1 — v)~*,t > 0}, and second obtaining T transitions by
starting at s and taking actions according to 7(als, §;). Note that this update has to be
re-done at every step, i.e., every t requires Geom(~y) steps.

The above algorithm will be referred to as actor-critic with Markov sampling. It is also possible to
consider a simplified variant, where step 1 is slightly altered as follows: the state s; is instead chosen
ii.d. at every step from the stationary distribution of g, of the policy mg,. This is referred to as
actor-critic with i.i.d. sampling.



2.4.1 Approximation Assumptions

It is evident that any performance bound on AC will depend on how well the neural network used
for the critic can approximate the true value function. If we choose a neural network architecture for
which universal approximation theorems do not apply and it happens to poorly approximate the true
Q-functions, we will likely obtain poor results. Here, we will largely sidestep this issue by defining
€ to be the approximation quality of the critic; our final performance results will be in terms of e.

Formally, we say that the vector Q) is an e-approximation to the true value function Q3. of the policy
7o, if

— O <e.
(S’glgnglQ(sva) Qp, (s,a)] <€ )

We then make the following assumption.

Assumption 2.5. (Approximation capabilities of critic) For all 0, there exists some set of weights
wg which give rise to an e-approximation of Q},.

Note that, since we do not say what e is, this assumption could well be a definition of €. Throughout
the paper we will use Qp, to denote an e-approximation to ()5, guaranteed by the above assumption.

Thus, .

Q(wg,) = Qg,-
Further, we will assume that wy is a smooth function of 8 in the sense of its first and second deriva-
tives.

Assumption 2.6. (Smoothness of critic approximation) Suppose there exists scalars L., (i) and
H,, (i) such that for all 0,

Va5 (i)|] < Luy(i),  Amax{ V205 (1)} < Hu(i).
where Amax{-} stands for the largest eigenvalue.

For convenience, we define

Finally, we need an additional assumption on the critic neural network. It should be obvious that
any analysis of actor-critic has to assume that the critic is capable of approximating the correct Q-
values. One part of this was already assumed earlier in Assumption 2.5, where we assumed that
an approximation exists. However, it should be clear that in the nonlinear case this is insufficient:
just because there exists an approximation which is good doesn’t follow that it will be found during
training, which is not known converge to the global minimizer in the nonlinear case, but rather only
to a critical point.

We thus need something to rule out the possibility that the critic training gets stuck at a bad crticial
point. It turns out that it suffices to assume (a quantitative version of the fact that) the critic is
one-to-one map from weights to value functions.

Assumption 2.7. (State regularity) There exists some constant X' > 0 such that
1Q(w) — Q5| = N'||w — wgll.

Let us parse the meaning of this assumption. Because Q(w}) = @), it is appropriately viewed as
a quantitative version of the statement that if w; # wa, then Q(wy) # Q(ws). To see why this
makes sense, note that the number of states is typically many magnitudes larger than the number of
parameters in the critic. For example, in many applications the number of states often corresponds
to the number of images (when states are captured through images) which is astronomical. Thus
Q(w) will map w to a much higher dimensional space.

If the states s are generated from a probability distribution which has a continuous density, and the
activation functions are continuous and increasing, the chance that Q.,, (s) = Qu,(s) even for one
state s is zero. That is why we label it “state regularity” as above (and recall that Q(w) stacks up
Q (s) for every state s).



On a technical level, this property ensures that critic actually finds a good critic approximation in
spite of the nonlinearity of the update. If the features are linear, this reduces to the assumption that
the features are linearly independent, an assumption which is made in all previous and related work
on AC method (Wu et al. (2020); Olshevsky & Gharesifard (2022); Chen & Zhao (2022); Kumar
et al. (2023)) and TD Learning (Liu & Olshevsky (2021); Xu & Gu (2020); Cai et al. (2019); Zou
et al. (2019)).

2.5 The Mixing of Markov Chains

It is standard to make an assumption to the effect that all the Markov chains that can arise satisfy a
mixing condition. Otherwise, it is possible under Markov sampling for the state to fail to explore
the entire state-space. This assumption, first introduced by Bhandari et al. (2018) in TD learning,
now is commonly used in AC analysis (Olshevsky & Gharesifard (2022); Wu et al. (2020); Chen &
Zhao (2022)).

Assumption 2.8 (Markov chain mixing). There exists constants C > 0 and 8 € [0,1) with the

Sollowing property: for all 0, if we consider a Markov chain generated by a; ~ 7(+|s¢,0), Sp41 ~
Ponv (+|8¢, ar) starting from state s, then

Hp‘r —,LL/0||1 < CBTaVT > 07VS € 57

where p, is the probability distribution of the state of this Markov chain after T steps.

To assure AC explores every possible state, we make the following assumption:

Assumption 2.9. (Exploration) Suppose there exists some constant iy, > 0 such that, for all 6,
ty is uniformly bounded away from 0. In other words,

,u:9 Z Hmin > O,VG

Recall that 119 was defined earlier to be the stationary distribution of the transition matrix associated
with the policy my. A key point is that the constants C, 8 and pi;, in the above assumptions do not
depend on 6.

We note that there is some redundancy in our assumptions. As discussed above, we require
In7g(als) to have a smooth gradient for all s, a, which ensures that 7y assigns a strictly positive
probability to every action. This implies Assumptions 2.8 and 2.9 which can therefore be made into
propositions. Nevertheless, we explicitly make Assumptions 2.8 and 2.9 (even though both of them
are actually implied by our earlier assumption) since the quantities appearing in them (specifically,
the mixing time 3 and the constant y,,,;,,) appear in various bounds we will derive.

More precisely, we follow the earlier literature by setting C'/37 to be proportional to 75, the typi-
cal of stepsize in Stochastic Gradient Descent. We call the smallest 7 such that C3" < O (T‘0'5)

the mixing time and denote it by Tyix. It is easy to see that 7, = O ((1 — 6)_1 log T) . The
quantity 7,3 Will appear throughout our paper.

2.6 D-norm and Dirichlet Norm in MDPs

A key ingredient is our analysis is the choice of norm: we have found that a certain norm originally
introduced in Ollivier (2018) significantly simplifies analysis of the problem. We next introduce this
norm and state our assumptions about it.

Let Dy = diag(ue(s,a)) be the diagonal matrix whose elements are given by the entries of the
stationary distribution ug associated with the policy mg. Given a function f : S x A — R, its
D-norm is defined as

IfllH=Ff"Dof = > po(s,a)f(s,a). (10)
(s,a)ESX A

The D-norm is similar to the Euclidean norm except each entry is weighted proportionally to the
stationary distribution. We also define the Dirichlet semi-norm of f:

WiBe=3 X mlsaPsdlsa(sa) - fsa)?  an

(s,a),(s",a’)ESXA



A semi-norm satisfies the axioms of a norm except that it may be equal to zero at a non-zero vector.
Note that || f||pir depends on the policy both through the stationary distribution u4(s, a) as well as
through the transition matrix Pp.

Finally, following Ollivier (2018), the weighted combination of the D-norm and the Dirichlet semi-
norm is denoted as Ny(f) will be defined

No(f) = (1 =NIAID + A F 1D (12)

Note that as long as ug(s,a) > 0, which is stated in Assumption 2.9, for all s, a, we have that
No(f) is a valid norm.

3 Our Main Results

To simplify the expression that follow, we will adopt the notations Ay, and Ag for the two losses
that we want to bound in our paper:

1 T 1 T ~
Ay = T ZE [||VV9";H2] ;Do = T ZE [Ngt(Q(wt) B Qs’)] ' (13)
t=1 t=1

Intuitively, Ay corresponds to the actor error: ideally, we want to reach a point where the gradient
of the actor value function is zero. Note that, since the value function is not convex in general, the
actor error is measured in terms of distance to a stationary point as above.

Similarly, Ag is a measure of the critic error: it equals zero precisely if Q(w,), the approximator of

Q@-function, equals Qet- Of course, as discussed above, the critic neural network may not be able to
perfectly represent the true @Q-function. Now we are ready to state our main results.

Theorem 3.1. Consider the neural AC algorithm mentioned in Section 2.4. Suppose Assumptions
2.1-2.9 hold and the step-sizes o and o are both chosen to decay proportionally to O (T70'5).

1. Inthe i.i.d. sampling case,

svzo(d) 00-0(5). o

2. In the Markov sampling case,

Ay <O ((log\/?Q>+O(e)+O <\/177z> , Ag<O ((k)g\/;’)?) +0(e)+0 (%) .

ﬂ‘“
N———
_l’_
°
>
_|_
(@]
VRS
3=
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In all O(+) notations above, we treat factors that do not depend on 7', €, m as constants.

We next provide a more detailed comparison to the previous works of (Wang et al. (2019); Cayci
et al. (2022)). Our discussion partially reprises the discussion in the Introduction, but can now be
discussed at a greater level of detail:

* Arbitrary depth/single-timescale. The main contribution of this paper to provide an anal-
ysis that applies to neural networks of arbitrary depth. Moreover, we do so in a single-
loop/single-timescale method where the critic and actor iterate simultaneously, which is
matching what is typically done in practice. Such an analysis is inherently more techni-
cally challenging, since when the actor can wait for the critic to go through sufficiently
many iterations, one could argue that the resulting ()-values are approximately accurate
and the process resembles gradient descent.

* Representability. Both previous works for the single-layer case assume the ()-function lies
in some function class, which, as discussed after Assumption 6 in Farahmand et al. (2016),
is one kind of “no function approximation error” assumption. By contrast, we make no
such assumption: rather we allow any approximation error for the critic €, and our final
result is given in terms of e.



* Lower bound on m. Previous works require m, the width of neural network, to be suf-
ficiently large. In Wang et al. (2019), given that m is sufficiently large, Section 3.1 and
Corollary A.3 argue that the gradient, denoted by ¢y and ¢,,, can be well approximated
by the “centered feature mapping corresponding to the initialization”, denoted by ¢. In
Cayci et al. (2022), this dependency is even more emphasised since the upper bound shown
in Theorem 2 could diverge with small m.

* Relation to NTK theory. NTK theory (Jacot et al. (2018)) tells us that neural networks get
more linear as m — oo. The classic analyses of this proceed by arguing that as m — oo,
the neural network stays close to its initialization during training Chizat et al. (2019). In
that sense, we should expect to get a convergence result for AC as m — oo, but if the critic
neural network stays close to its initial condition, the algorithm will effectively be using
random linear features at initialization. For this reason, it is desirable not to argue that
the critic neural network always stays close to its initial condition. We do not use such an
argument in this work, whereas both Wang et al. (2019) and Cayci et al. (2022) obtain their
results by arguing that the critic neural network stays close to its initial condition. This
theoretical distinction is shown in Tian et al. (2023) to match what happens in simulations,
which shows empirically that even for projected neural TD, the critic neural network will
move to the boundary of the projection ball.

* Linearization. Previous works assume some kind of linearization around the initial point.
The objective is explicitly linearized in Wang et al. (2019).In Cayci et al. (2022), while the
objective is not linearized, the neural networks weights are projected onto a radius of size
O(1/+/m) around the initial point.

4 Tools in Our Analysis

4.1 Choice of Norm and Gradient Splitting

A linear function h(6) is said to be a gradient splitting of a convex quadratic
f(0) minimized at § = a if

1

SVIO)T (= 0) = h(6)7 (60 - a).
In other words, a splitting ~(#) has exactly the same inner product with the
“direction to the optimal solution” as the true gradient of f(6) (up to the factor
of 1/2). The connection between this idea and RL was made in the following
papers:

(14)

* In Ollivier (2018) it was shown that in TD Learning, if the matrix P
corresponds to a reversible Markov chain, then F[g(6;)] = VN (f)
for some f. This makes Neural TD easy to analyze in the reversible
case as it is exactly gradient descent.

* InLiu & Olshevsky (2021), it was shown how to further use the func-
tion A/(+) to analyze TD learning with linear approximation when
the policy is not necessarily reversible. In particular, it was shown
that the mean update of TD with linear approximation is a gradient
splitting of the function N'(-). This is one of the crucial ideas we
build on in this paper.

4.2 Nonlinear Small-Gain Theorem

-ivs) |

Figure 1: Key
property of gradient
splitting: () has
the same inner
product with a — 6
as Vf(0) up to a
factor of 1/2.

Inspired by Olshevsky & Gharesifard (2022), our second main tool is a nonlinear version of the
small-gain theorem . Because the actor and critic update simultaneously, we need to rule out the
possibility that errors in the actor compound with errors in the critic to create divergence. For
example, it is conceivable that, when the policy is fixed, the critic converges to a reasonable approx-
imation; when the critic is fixed, the actor converges to an approximate of the stationary point; but

both updating simultaneously results in divergence.

The core idea of small-gain is to write these updates in such a way so that one can argue that if certain
coefficients are small enough, this “interconnection” of the actor and critic systems converges. The



small-gain theorem we use is a nonlinear version of the textbook version Drazin (1992). This is
a widely-used trick in control theory that avoids the necessity of explicitly finding a Lyapunov
function.

5 Conclusion

We have provided an analysis of Neural AC using a convex combination of the D-norm and the
Dirichlet semi-norm to describe the error. Our main result is an error rate of O (T‘O'5 + e) +
O (m~%) under the i.i.d. sampling and O ((log T)? - T~%% + ¢) + O (m~°%) under the Markov
sampling for neural networks of arbitrary depth. Crucially, our proof does not make assumptions
that force the neural networks to stay close to their initial conditions, relying instead on arguments
that show that neural networks which are not “too nonlinear” will still converge to an approximate
minimum.
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A Sketch of Proof

In this section we give a basic idea of how we prove Theorem 3.1. Briefly speaking, our idea contains
two directions: First, the Critic error (captured by Ag) can be upper-bounded by the Actor error
(captured by Ay/); Next, the Actor error can also be upper-bounded by the Critic error. Therefore,
both errors are bounded and converge to 0. Based on this idea, our proof can be divided into three
steps:

Step 1: Analysis of Actor update.

In Appendix B, we first bound Ay by Ag through Actor update. On one hand, by considering Actor
update and comparing it with mean-path update (where we replace g by g), one would have

E[0¢41 — 04| 7] = — o’ VVy — o’ Dy.

4 027712
7(1_7)20( Ug.

where Do = Vinm(6y)' @, [Q(w:) — Qj,]. Ft = (we,0;) and Uy, is defined in Lemma C.13.

On the other hand, Lemma C.12 suggests V" is smooth w.r.t. 6. Hence,

E [[|0:41 — 0:]*| 7] <|la”V V5 +a’Dall* +

* * * H
Voro S Vo, + VVg, (0141 — 01) + 7V||9t+1 — 041,
Our claim is a combination of the above facts and some simple calculations:
E V5, = Vi)
T

2 @9\ 2 2Hy g2 5
+62(a0 HV"‘?)E +WOZ Ug.

(% - QGQHV) Ay < + ¢ (a92HV + %) Ag

We successfully bound Ay by Ag.
Step 2: Analysis of Critic update.

In Appendix C, we next bound Ag by Ay through Critic update. Here we perform classical way of
analysis, which begins with

B [llwss — 5,1
<E [llw — @}, + " f(Or,w)]?]
Iy

+E [2(05, - 05,,,)" (w — @, +a” f(Or,w)]| +E [|lo5, — 0,17

Iy I3
We treat the above three terms respectively. To address /7, by comparing with mean-path update:
E [[[we — w5, + a® f(Or, we)||’]
=E [[|we — w5, |I*] + E [20" (w, — w5,)" f(we, 0)]

I

+E [0 £(Orwn)|[2] +E [20” (w, — ;)" [£(Or,we) = Fluwr, 0,)]]

I 2 T

Now let us examine this equation carefully. I is the inner product between w; — wy, and the
mean-path update f(w;,;), which can be captured by gradient splitting; I 1,2 decays as a?, so a
loose bound on || f(Oy, w;)||? is enough (See Lemma C.15); I; 5 is Markov sampling noise, which
is handled using the same procedure as in Bhandari et al. (2018).

To discuss more about how to address Markov sampling noise, the idea is to using Assumption 2.8 to
show that, after T« steps, the distance between distribution of agent and the stationary distribution

12



decaying geometrically, and thus I; 3 also decays geometrically. However, there is still a lot of
difficulties to apply the same analysis in our work since TD(0) is considered in Bhandari et al.
(2018) while Actor-Critic methods is considered here. The difficulties is induced by the constant
changing of policy in every time steps during training. We introduce an auxiliary chain (See the
definitions before Lemma C.10) to further address the changing of policy problem inspired by Zou
et al. (2019); Wu et al. (2020); Chen & Zhao (2022).

Now we move on to I>. we notice that the dominate term is E [Q(w;t — g, ) (wy — wg, )} since
the remaining term E [Q(w;t - ﬁ;;tﬂ)Tawf(Ot,wt)} decays as a’a® (af comes from |y, —
w;m || which can be seen using Assumption 2.6). To handle the dominate term, we first view 0}

as a function of § and use a second order expansion as follows. Then the problem get solved after
noticing that we already derive relationships on 6,41 — 6, in Step 1.

s ax g ks 1 kg
Wy, (1) = wp, (6) + Vg, (1) (G4 — ) + 5 (O — 0,)" Vg, (i) (01 — 0y).-

To address I3, we notice that it decays as o2 as a direct result of Assumption 2.6.
Combine all of the above result we can finally arrive at the relationship between Ag and Ay .
Step 3: Combine result from Step 1 and 2 by small-gain theorem.

Now we are ready to use the Small Gain theorem. We fit the results from Step 1 and Step 2 by the
following form:

r<ay+az, y<biw+by+b3/y.
Then, Small Gain theorem implies that y can be upper bounded by the following inequality:

2bo + b% + 2a2bq
¥y= 1-— 2(11b1

Once we have a bound for y, we can easily compute a bound for x.
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B Actor-Critic

In this section, we will review and clarify the AC algorithm being considered in this paper.

Recall that in Eq.(8), we defined the set W as W = {w | ||w — wy|| < 04} and the TD error ; as
O = 1(st, ar) +YQ(8}, ay, we) — Q(st, ar, we).

With 6;, we now define function f and g such that

[(Og,wi) = 6:V 4 Q(8¢, g, wy), g(Ot»wtaat) = Q(8¢, at, wy) Vo Inm(ar|3¢, 0;), (15)
where we denote by O; = (s¢,a¢,8;,a;) € S x A xS x A the tuple of s, ay, s;,a; and by
O; = (84,a4) € S x A the &, a; pair. The way of sampling O; and O; is mentioned in Section 2.4.
With these notations, the AC update mentioned in Section 2.4 can be written as

0

o N
g(Otawtv ot)

-

Wi1 = PI'OjW {th -+ Oéwf(Ot, wt)} s 9t+1 = Gt — 1

We find it useful to talk about the “mean path update”. This just means that the functions f(-,-) and
g(+,-,-) in Eq.(15) are replaced by their means, assuming that (s;, a;) is sampled from pg, while
(8¢, a¢) is sampled from (1 — ~y)¢g,. More formally, the mean-path update functions f(-,-) and
g(-,-) are defined as

f(wn et) = Z Met(su at)vQ(Sta atawt)Esi,aHs“at [T(St, at) + ’YQ(S;, a,/g,wt) - Q(Suat,wt)]

:vQ(wt)TD‘gt (7P9t - I)(Q(wt) - ta)7
301 80) =1, la(Ory01,0)) = 7= Elg O, w1, 0) 1] = ¥ In (8" 00, Q)

(16)
where 7 = (w¢, ;) and Eo,, E5 assume O; follows pp, and O; follows (1 — v)¢g,. To show the

latter one, as we discussed in Section 2.4, we first sample 7" such that P(T = t) = (1 — v)~*. We
then perform 7" transition starting from so. This mean that by total probability,

+o00 too
P(S=s)=> P(S=sT=t)-P(T=t)=(1-9)> 7"P(S; =s) = ¢(s).
t=0 t=0

Thus, if the policy here is given by 6,, it follows immediately that
P(Oy = (s,a)) = (1= 7)do, (s)m(als, ) = (1 —)ds, (5, a).
Notice that under these notations, we have E, [9(Or, wy, 0,)] = Elg(Oy, wy, 0,)| F).

Algorithm 1 details the algorithm considered in this paper.

Algorithm 1 Actor-Critic

Require: Numbers of iterations 7', learning rate o and oY, projection set .
Initialize 6, b, and w*) such that |b,.| < 1,Vr and every entry of w(¥) is chosen from N (0, 1).
Initialize the starting state-action pair sq, ag.
fort € {1,2,...,7T} do
Sample s; ~ Popy(8|St—1,a:-1), ar ~ 7(a|st, 0t), 8 ~ Pony(8|8t, at), a} ~ w(als}, 0;).
Sample O; by first sampling a random variable T with P(T = t) = (1 — ~)~', and second
obtaining T transitions by starting at sy and taking actions according to 7(als, 6;).
Compute 0, f(Oy,wy), g(Ot, wy, 6;), and update w1 and 0,41 as

0 A
g(Ot7wt79t)-

. w o
Wi41 = Prq]W {’LUt +« f(Ot,wt)}, 9t+1 = Ht — 1

end for
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C Auxiliary Lemmas

In this section, we will present all the auxiliary lemmas needed to prove Theorem 3.1.

C.1 Properties of the Neural Network

In this section, we will show that the neural network has Lipschitzness and smoothness properties.
The following result is based on Liu et al. (2020) and has been talked about in Tian et al. (2023).

Lemma C.1. Forany (s,a) € S x A, there exists scalars Lo(s, a), Hg(s, a) such that for wy, we €
Wy

1Q(s; a,w1) = Q(s, @, wa)|| <Lg(s; a)|[wr — wal|.
IVQ(s, a,w1) = VQ(s, a, ws)|| <Hgq (s, a)[[wr — ws].

If we further define
LQ: /ZLQ(S,G)Q, HQ: IZHQ(S,CL)Q,

then Lo = O(1) and Hg = O (T%) with respect to m.

Proof. The Lipschitzness property is proved in Tian et al. (2023) while the smoothness property is
a direct result of Liu et al. (2020). O]

C.2 Properties of the Operator \/
In this section, we will show several results about the operator Ny defined in Eq.(12).

Lemma C.2. For any function f defined on S x A,
—No(f) = f"Do(vPy — D) .

Proof. The proof is given by Lemma A.1 in Tian et al. (2023). O

Lemma C.3. There exists Amin > 0 and \._._ > 0 such that

N (Q(w) = Q5) = Awin lhw = 0511,

and
2
b

No (Q(w) = Q5) = Mg | @) — @5
2 . 2
where Amin = (1 — ¥) pmin N~ and X, is given by X/ . = (1 — ) timin N LQQ.

min

Proof. To show the first part,

No (Q(w) = Q3) =1 = IIQ(w) = Q5lH +1Q(w) - 3l
>(1-7)IQ(w) — Q%
>(1 =) pinin X' — @5 ||,

where the first line is the definition of N(-) while the last line uses Assumption 2.9. We can set
Amin = (1 =) bmin N % and we finish the proof for the first part.

The second part is an obvious result that simply combines the first part and Lemma C.1. O
Lemma C.4. Suppose Do = VInm(60,)T®y, [Q(w;) — Q;J. The relationship between Dg and
N, (Q(wy) — Q;t) can be described as follows:

IDo|* < 1 - No, (Q(wr) — Q3,) + ea€,

2L/2 2L/2
where Cc1 = W and Cy = W
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Proof. One can easily show that

(1—7)Dg = E(s,a)~(1-7)g0, [lnﬂ(a|s,9t)(Q(s,a,wt) —Qg, (s, a))] .
As assumed in Assumption 2.4, ||V Inn(als, 8,)|| < L,. Hence,

(1 - 7)||DQH < L;r ']E(S,G)N(l*’v)%t UQ(S’ a, wt) - ta (87 a)” .

Using the facts that (E[X])? < E[X?],

(1=7)1Dql* < L2* - Egsapmt1-sn, [1Qs,a,w0) = @, (5,0) ]
On the other hand,

|Q(Sa a’wt) - Q;, (S, a)|2 < 2‘@(57 a7wt) - sz (Sa a)|2 + 262'

where we use Assumption 2.5 which tells us |Q§t (s,a) — Qp, (s,a)| < e. Hence,
2 A 2
(1= 721Dl < 2L,% - B ami—en, [|Qs:a,w0) = Q5 (s, 0) 2| + 2147
Combine with Lemma C.3 and the fact that (1 — )¢y, (s,a) < 1,

2L/,
N

2/\/9 (Q(w) — Q;) +2L %

min

(1 =7)?IIDell* <

This finishes the proof.

C.3 Mean-value Theorem and Extensions

Lemma C.5. These following lemmas generalize the mean-value theorem to higher dimensional
input and output cases.

(a) Let h : R — R be any differentiable function. For any x,y € R, there exists A € (0,1) and

z =Xz + (1 — \)y such that
h(y) = h(z) = W' (2)(y — ).

(b) Let & : R* — R be any differentiable function. For any x,y € R?, there exists A € (0,1) and
z = Ax + (1 — )y such that
€(y) = &(x) =€)y — @)

(c) Let f : R* — R? be any differentiable function and e € R® be any vector. For any x,y € R?,
there exists A € (0,1) and z = Az + (1 — \)y such that

eI (f(y) = fx)) = " f'(2)(y — 2),

where f'(2) is the Jacobian at z.
Proof. This proof is given by Lemma A.2 in Tian et al. (2023). O

C.4 The Mixing of Two Markov Chains

In this section, we argue that if two Markov chains satisfy Assumption 2.8, then the difference
between their distributions could be very small. This is inspired by and follows the same logic as
Chen & Zhao (2022); Zou et al. (2019). Before that, we will first introduce the total variation norm
for vectors and matrices, which can be used to measure a difference between distributions.

Denote f : X — R to be any real value function. We can define the total variation norm of f,
denoted by || f||Tv, as

1fllev = 1f(@)].

reX

16



For matrix A, we can also define || A||Tv to be

[Allrv = sup [[fAllrv.

[Ifllrv=1

If f is some probability measure, since f(z) € [0,1], it is easy to conclude that ||f||rv = 1.
Likewise, if A is a Markov transition matrix, we can show that || A||tv = 1.

The following lemma establishes the relationship between the total variation norm with the more
familiar 1-norm and co-norm.

Lemma C.6. The following statements are true:

a. For any vector f, ||fllrv = || f]]1-

Proof. The lemma is obvious so we omit the proof here. O

Based on Assumption 2.8, we have the following result:

Lemma C.7. If the Markov chain has transition probability matrix A, then we have
[|AY|ry < 1,V¢
Further, if the Markov chain satisfies Assumption 2.8, then we have

|A ||ty < CBYYE > T

Proof. The first part of this lemma is obvious because A is a stochastic (Markov) matrix and by
Lemma C.6, || - ||7v is just the same as || - || o-

For the second part, by the definition of total variation norm,
1
[Allrv = sup[|fTAllrv = 5 supl[(ei — ¢5)" Allrv,
Tv=1 ,]

where e; means the all-zero vector except a 1 at the ¢’th entry. By Assumption 2.8,
1A |lrv < ;Siujp (ll(ei = )T A [rv + [[(e — )T A'lrv) < OB, VE 2 Tnix.
O
The following theorem, which is inspired by Theorem 3.1 in Mitrophanov (2005), is very important

in many analyses of AC that take Markov sampling into consideration (i.e., Wu et al. (2020); Chen
& Zhao (2022)). However, since our settings are slightly different, we provide our own version.

Lemma C.8. Suppose we have the following two Markov Chains which of both satisfy Assumption
2.8,

where pl ,pP stand for the probability at step i under transition matrix A, B, respectively. The
following inequality holds:

P = P71 < CBIpg = 20’111 + (Tmix + C1— 1A = Blloo, ¥ 2 Tanixc + 1.

Proof. First, we prove that

T T i
pi" —p = (05 —t) BWZ "(A-B)BiL,
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by induction. If ¢ = 1, by definition we know

T T T T
pit =P =p A pE B = (pt —pF) B+pi (A-B).
If the result holds for ¢ = k, then when ¢ = k£ + 1,

A T B T _ AT BT
Pri1 —Prks1 =Pk A—py B

=(p;2‘—pE)TB+ AT<A—B>

= (pi} B’““+Z (A-B)B* i +pAT (A - B)

T T .
= (o —»y) B+ Zpé‘ (A-B)B*,
i=0
where the third line is because we assume the result holds for the ¢ = k case. Now, we can take the
total variation norm on both sides:

ot = pP I <]\ —25)" B, +

1
AT (A _ B) Bt—i—l

TV
t—1
< ||p64 ||TV HBtHTv + HpO ||TV [A = Blpy - Z HBtﬂilHTv
i=0
-1 .
Scﬁt Hpo — Po Hl + HA - B”oo <Tmix + Z Cﬁy>
1 =Tmix

Tmix t
:Cﬁt Hpo — Po ||1 + 14— B”oo (Tmix + Cﬁ 1 — ﬁﬁ )

<CBIlps — po 11 + (Tanixe + Ci)IIA Bllso,

where the third line utilizes Lemma C.6 and Lemma C.7. O

With Lemma C.8, we can derive many useful results. The following result is similar to Lemma 3 in
Zou et al. (2019), Lemma B.1 in Wu et al. (2020), and Lemma B.4 in Chen & Zhao (2022), which
shows that both of 1), the stationary distribution over states, and /19, the stationary distribution over
state-action pairs, are Lipschitz with respect to 6.

Lemma C.9. The following statements hold:

a.

YnaLr||01 — 62]].

1
11, — byl < (Tmix + Cm

|lpto, — poyll1 < (1 + Tiix +C JnaLx|0h — 02|,

1
1-p
where n, is the number of actions. In other words, n, = |A.
Proof. Recall the state transition matrix Py is defined by Py(s'|s) = Y_, Penv(8'|s,a)m(als, #) and
corresponding stationary distribution M'OT = ,u/gTPé Use Lemma C.9, we know that

H/llel _N/02H1 Scﬁt\lu'el NGQHI"'(THHX"‘C )HP01 PéQHOO‘

Notice that
|1Pg, — Po,lloo —Supzzpenv Is,a) |m(als,01) — 7(als, 02)]

s’ a

<sup Y Y Penv(s's,a) Ly |61 — 62|

:naLﬂ'Hal - 92”7

18



where we use Assumption 2.4 in the second line. Hence,

1
||k, — mp, 1 < CB[I1g, — tp,ll1 + (Tmix + Cm)naLwH@l — 02].
Taking lim;_, ., on both sides, we derive
1
H/llel - N/62H1 < (Tmix + Cm)naLﬂH‘Ql — Ba.

This finishes the proof of the first part.
Now, Eq.(1) implies

i = ol = 32 i (5l 1) = (sl )
<Z 15, () (als, 61) — i, (s)(als, 62)] + |y, (5)m(als, 62) — i, (s)m(als, 6)]
<Zu91 ) Lel6s — 0al] + 11, — p, I

<1+ Tmix + C )na Ly |61 — 62]|.

b
1-p
0

In order to show the following lemmas, we need to introduce the following auxiliary Markov chain:

7T(et*ﬂnixfl) Penv 7T(et*Tmix) Penv 7T(et*Tmix)
B S d -1 —— _— S _—
St—Tmix—1 A —Tmix—1 St—Tmix At —Tmix St—Tmix+1

Peny (Gt*Tmix) ~ Peny Penyv  ~ 7r(et*ﬂnix) ~ Penv  ~
At Tniset ] =7 St k2~ Ui 42 St at St+1-

For reference, the original Markov chain around ¢ is

70— rpi—1) Penv T(Or—rin) Peny T (01— rint1)
St =1 T Q=1 T St T Qe o St ] T
Peny (04— rinix+2) Peny Peny 7(0:) Peny
Ot Tmitl] — 7 St—Tniet2 T Ui t2 St at St4+1-
. . . _ o
For the consistency of notations, we will denote O, = (sT, ar,s.,a.) and O, = (5,,a,,5,,d.)

where in this case we have s} = s;41, & = §-41 and a}. ~ m(als, 0;), @} ~ 7r(a|s 0t—r,...)- This
kind of notations will immediately implies P (Ot—fm;x—l €:)=PO—rp—1 € ).

The following lemma claims that the distribution difference between the two Markov chains above
will be very small.

Lemma C.10. The following statements are true:
a. For any possible T € {t — Tmix,t — Tmix + 1, ..., t},
|1P(Sr11 € ) = P(Sri1 € 4)[l1 <||P(O; € ) = P(O7 € )|
b. For any possible T € {t — Tmix,t — Tmix + 1,...,t},

IP(Or € -) — P(OT € )l < 2no LB (|07 = Op—r,p,

I+ IP(S; € ) = P(S: € )l

c. Consider P(O; € -) and P(O; € -),

t
HP(Ot € ) - P(Ot € )”1 < 2nqLx Z E[”9i = Ot

t=t—Tmix

].
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Proof. For the first part,
HP(ST-H € ) - P(ST-H € )||1

=S [P(Se =) = P =)

< Z ‘ (Sr=s8,A,=a,S-y1=54,11=d)—P( L =8A =a,5.41 =5 A4 =
:HP(OT €) _P(O‘r € )l
For the second part, conditioned on 6;_,_, and s;_._, 11, we denote
=P(S; = 5)P(0, = 2,|S, = s)m(als, 2;) Pony (5|5, a)w(d’ |8, ;)

My =P(S; = s)P(0; = z:|S, = s)m(als, ;) Peny (|3, a)7(d|s', 04—,

Ms =P(S; = s)P(0; = 2;|S; = s)7(als, O4—r,,,) Penv (s'|3, @) ('] 8", 01— 7,,,)

M,y :P(S'r = 5)P(0, = z;|S: = s)m(als, Htf'rm;x)PeHV(quva)ﬂ(a/lslv Ot —rrmix )
which will be useful later. Using notations from the original Markov Chain,

P(S;=sA,=a,S:41=5,4,11=4d)

:/P(ST =s8,A,=a,8;11=5,A,11=d,0, =2 )dz

:/P(ST = $)P(0, = z,|S; = s)m(als, z;) Pony (5|5, @) (d' |8, 27 )d2,

:/MleT.

Similarly, the auxiliary Markov Chain gives us
P(STfs A, =a, ST+1fs ATHfa)

:P(S‘r = $)m(als, O—rpi) Penv (s'|s, a)m (][5, 0r—7,,.)
:/P(ST = $5)P(0; = 2,|S, = s)m(als, O4—r,,. ) Penv (8|5, a)m(d' |8, 01—+, )d2r

= / M4dZT.

We now rephrase the left-hand side term we want to prove,
IP(O7 € ) = P(O7 € )|y

< Z ‘P(ST:‘S’AT:G?ST"Fl:S/?AT+1:a’/)_P( 7'257;17':@7 T+1:S/7AT+1:

< Y /|M1 My|dz,
s,a,s’,a’
< Z /|M1 M2|dZ7—+ Z /|M2—M3|dz7-+ Z /|M3—M4|dZT
I I I3
For I,
Z / PO, = z:|S; = s)m(als, zr) Penv (5|5, a)

~|7T( 18", 2r) = m(a'|8, O —ripy)| d2r

Z / P8, = z;|S; = s)m(als, zr) Penv (s'|8,a) Ly || 27 — Op— s,

s,a,s’,a’

L Y / P(S, = $)P(8, = /]S, = 5) |2 — b1
l.

dz,

dz,

=1 Lz E[[|07 — 0t—r,,..
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For I,

Z [ P(S: = )P0 = 15, = 5) n(als. 27) = w(als 1y )] Pers (515, )
( "8 0i—r . )z,
> J P(S: = 5P = 2018, = )L 20 = 1y | Pl 5,000 01, )
=ngLx Z/ PO, = z:|Sr = 3) |20 — Or—rp || d2r
—naLiE [0 — 6—r._|I].
For I3,
Z /‘P ~P(§, = s)‘ PO, = 2,|S, = 8)1(als, 0r_r. . )Pone(s']5, a)
( 18", 01— i )21
= 'P(ST — )~ P(S, = s)
=|[P(S; € ) = P(S; €)1
Hence,

1P(O7 € ) = P(O7 € )l < 206 LaE [0 — iy ] + [|1P(S- € 1) = P(S: € )1,

which finishes the proof for part b.

It is easy to check that part a implies the following:
||P(ST € ) - P(S‘r € )Hl < HP(O‘rfl € ) - P(O~‘rfl € )Hl
The above fact, along with the result from part b, tells us the following:
||P(OT € ) - P(OT € )”1 < 2naLﬂE[”9'F - atf'rmix ] + HP(OT,1 € ) - P(O'rfl € )||1

Repeat the inequality above over ¢ to t — Ty, We have

t
[P0 € ) — P(Ot € )l < 2neLx Z Efl0; — 0:—r,pi

1=t —Tmix

].

C.5 Smoothness of the State-Value Function

The following two lemmas show that the state value function is actually smooth with respect to 6.
The idea here is inspired by Olshevsky & Gharesifard (2022). The first lemma requires the following
basic identity from Zwillinger (2018): for matrix Ay,
-1
M — Al 044
00; o o8,

Lemma C.11. For two vectors u,v € R™ whose entries are bounded. Suppose

go =u’ (I —vPy) 0,
Then, there exists a constant Ly such that
IVgsl| < Lg.
Similarly, if
gy =u' (I —vPg)~"
Then, there exists a constant L; such that

IVayl| < L
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Proof. The proof can be found in Olshevsky & Gharesifard (2022). O

The following lemma, which is our goal in this section, claims that V" is smooth with respect to 6.

Lemma C.12. Vé’; is Hy -smoothness with respect to 0.

Proof. Using Theorem 2.1, we obtain the following result:

[VVe = V|

=l D do(s0)Qp (s,)Vinm(als,00) = Y du,(5,0)Qp,(s,a)V In(als, 0s)

(s,a)eSxA (s,a)eSxA
< Z ¢91 (8704)@21 (S7G)VIH7T(O’|S791) - Z 92591 (Sva)Qzl (8,&)V1H7T(CL|S792)
(s,a)eSxA (s,a)eSxA
+ Z ¢91 (Sva)le (S,CL)VIHTF(CLL&QQ) - Z ¢91(5,a)QZQ(s,a)Vlnw(a\s,GQ)
(s,a)ESX A (s,a)ESX A
+ Z ¢91 (S7CL)Q;2(S,CL)VIHW(GLS,QQ) - Z ¢92(8,G)QZQ(S,G)VIHW(G‘S,GQ)
(s,a)ESX A (s,a)ESX A
< Y $a(s,0)Q5(s,0) [VIn(als,61) — VIn(als, 6s)|
(s,a)eSxA
I
+ Z 0o, (s,a) |Q§1(s,a) — ng(s,a)’ Vinw(als,62)
(s,a)eSxA
I
+ Z |po, (5,a) — Po,(s,a)| Qp,(s,a)VInn(als,bs).
(s,a)eSxA
g

We now show that all I, I5, I3 can be bounded by a multiple of || — 65]|.

For I, by Assumption 2.4 we know that V In 7 (al|s, #) is Lipschitz, which, together with ¢4 (s, a) <
L and Q}(s,a) < "=2x implies that I; can be upper bounded by a multiple of ||, — 6s]|.
1—v 0 1—v

For I , since )} satisfies Bellman equation, we can write () using matrix multiplication, which is

Q5 = (1—~P)"'R.
By Lemma C.11, this implies
Q;(S’ Cl) = €sT,a(1 - 7P9)_1R7
where e, , has only one non-zero entry of one corresponding to the pair (s, a). Hence, Q}(s,a) is
Lipschitz with respect to 6.
For I3, by definition,
Py(S; = sSg = s0) = eZOPétes.
Thus,
(s, a) = do(s)m(als, 0) = 5, (I —7P5)~ ‘esm(als, b),

where e, has only one non-zero entry of one corresponding to s. Again, by Lemma C.11, ¢y(s, a)
is Lipschitz with respect to 6.

O
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C.6 Properties of the Actor Update

The following lemma shows that the incremental in actor update is bounded.

Lemma C.13. For g(Oy,ws,0;) and §(wy, 0;), we have the following properties:

a. For g(Og, wy, 0y),
19(Or,wy,0)]] < U,
where Uy = 2L, Looy, + Lie+ L;%

b. For g(wy, 6y),

1
g(we, 01)|| < ——U,
|g(we, )] < T Us
where Ug = 2L] Lqoy, + Lye + L7 e

Proof. Recall that in Eq.(15), g(Ot, wy, 0) is defined to be
Q(Otth, 9t) = Q(§t,&t,wt)ve lﬂﬂ(dt\§t79t)-

To bound ||g(Oy, wy, 0;)||, by Assumption 2.4 and Lemma C.1, we can do the following manipula-
tions

1g(Or, we, 00)]] = || Vo Inm(ae|3e, 00) (Q(31, e, we) — Q(S¢, d, 5,) + Q(S¢, au, 05,)) |
< || Vo lnm(alse, 0:) (Q(8¢, au,we) — Q(34, au,03,)) ||
+ Hve lnﬂ—(&t|‘§t;at)Q(gtvdtvw;t)H
<Ll Lg||lwy — g || + || Vo Inm(ae|3e, 0)Q (3¢, a, ) ||
<2L Lqow + || Vo Inm(a$e, 0:) (Q(5¢, G, 5,) — Q* (31, ar) + Q* (8¢, a0)) ||
=21 Lqoy + ||Velnm(ase, ;) (Q(5¢, ar, w5,) — Q" (3¢, ar)) ||
+ Vo Inm(ae|e, 00)Q (8¢, ae) |

<2L' Looy, + Lie+ L. 1”““ .
—

Because Eq.(16) implies that g(w,, 6;) is some expectation of g(ét, wy, 0¢) with a coefficient ﬁ,
the second part of this lemma is a direct result of the first part in Lemma C.13. O

C.7 Properties of the Critic Update

In this section, we will introduce some properties that we find useful in analyzing critic update.

Notice that, as defined in Eq.(8), d; actually depends on O; and w,. Here we make this dependency
explicitly and thus write 0; as §; = §(Oy, w;). In this following lemma, we explore some properties
of 5t .

Lemma C.14. For §;, we have the following two results:
a. §(Oy,w) is Ls-Lipschitz with respect to w,
10(0r,w1) = 0(0p, w2)| < Ls|fwr = wal|,
where Ls = (14 ) Lq.
b. |6(O¢,w)| is upper bounded by Us,
0(0s, w)| < Us,

where Us = 2(1 + v)Lgo, + (1 +7)e + %rmax.
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Proof. Using Eq.(8),
[0(O¢, w1) — §(Or, w3)]
= |(r($ta at) + VQ(Sivaivwl) - Q(Stvatvwl)) - (T(Stvat) + PYQ(S; aéa w2) - Q(sta at7w2))‘

:|’Y(Q(S:‘,7a’:‘,7wl) stvatva) stvatvwl) _Q(st7at7w2))|
<(I+7)Lallwy — wsl,

where the last line uses Lemma C.1. On the other hand,
0(0, w)| = |r(ss,ar) +~7Q(sy, ay, w) — Q(st, ar, w)]
=[r(se.a) ++ (Q(s;,a;,m ~ Qi(shap) - (Q(st,at,m ~ Qilsi,ar))
+ (Qa(stat) = Qa(shan)) = (Qalserar) = Qplsesar) ) +1Qa(s}at) — Qs an)
(

<rmax + (1 + 'V)LQHw Wyl + (1 +7v)e+ zrmax

§2(1+'}’)LQ0w (1""‘/) + 1 ,Y'rmaxv
where the second equation uses Assumption 2.1, Lemma C.1, Eq.(9) and Eq.(5). O
With the above properties of §;, now we can further consider f, f ,and F defined in Lemma C.17.
Lemma C.15. For (O, w) defined in Eq.(15), we have the following two results:
a. f(Oy,w) is Ly-Lipschitz with respect to w,
1 (Or, w1) = f(Or, w2)| < Ly||wy — wall,
where Ly = (1 +v)L¢, + HQUs.
b. ||f(Oy,w)|| can be upper bounded by Uy,
1f (O, w)l| < Uy,
where Uy = LqUs.

Proof. By definition,
F(Or,w) = 6(04, w)VQ(8¢, as, w).

Hence,
f(Ot, wl) - f(Ot,UJQ)
:5(Ot7w1)vQ St, atawl) - 5(Otaw2)vQ(5t7at7w2)

(
:5(Ot,w1)vQ(8t7 atawl) - 5(0t,w2)vQ(3t,at,w1)
+ 0(0, wa)VQ(8¢,at, w1) — 6(O, w2)VQ(S¢, ar, wa)
=[6(O, w1) — 8(O, w2)] VQ(8t, ag, w1) + 6(O¢, wa) (VQ(8¢, ar, w1) — VQ(s¢, ar, w2)) .

11 12

For I, by Lemma C.14 and Lemma C.1, we perform the following manipulations:
16(0¢, w1) = 6(O, w2)] VQ(st, ag, wr)|| <LsLqllwy — ws|
=(1+ )Lyl lwr — wal|.
For I, by Lemma C.14 and Lemma C.1, we derive
16(0¢, w2) (VQ(st, ar, wi) = VQ(sy, ap, w2))|| < UsHgl|lwy — wall-
Combining I; and I; we prove the first part of this lemma.

For the second part, by Lemma C.14 and Lemma C.1,
£ (O, w)|| = [|6(Or, w)VQ(st, ar, w)|| < UsLq.
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Lemma C.16. For f(w, ) defined in Eq.(16), we have the following results:
a. ||f(w,0)|| can be upper bounded by Uy,
1 (w,0)| < Uy,
where Uy = LqoUs.

b. f(w,0) is Ly-Lipschitz with respect to w,
1 (w1,0) — fws, 0)|| < Lg|lwi — wsll,
where Ly = (1 + ’}/)Lé + HqUs.

c. f(w,0) is L-Lipschitz with respect to 0,
||.f(wa61) - f_(waGQ)H < Lf”ol - 92”5

where L = LQUs (24 Tmix + C1=3 ﬁ)naLTr

Proof. Because of Eq.(16), the first and second part of this lemma is a direct result of Lemma C.15.
For the third part,

£ (w,61) = f(w,62)]]

- Z“"l (5,0) Y Penv(s'|s,a)(d|s',61) (O, w)

s’,a’l

—Z,ugz (s,a) ZPenv (s'|s,a)m(a’|s’, 602) (O, w)

s’,a’

= Z Z [/L91 (87 a)PenV(8/|S’ a)ﬂ(a/‘slv 91) — Mo, (Sv a)PenV(S/|sv a)ﬂ—(a/|8/7 92)} f(ov w)

s,a s’,a’
< Z Penv(s']s, a) o, (s, a)m(a’|s",01) — po, (s, a)m(a’|s’, 02)] - || £ (O, w)|
U S Pane(15:0) oy (5 (a1 01) — iy (5 (e} )]
s,a,s’,a’

where the last line is by Lemma C.15. Further notice that

|1, (s, a)m(a’|s",01) — o, (s, a)m(d’|s', 0)]
< |po, (s,a)m(a’|s’, 01) — po, (s, a)m (|5, 62))|
+ |1, (s, a)m(a’|s", 02) — o, (s, a)m(d’]s’, 02)]
=to, (5,0) [w(a'|s', 01) = 7(a'|s", 62)] + 7(d|s', 0) |no, (5, @) — o, (s, @)} .
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Hence,

’7 !
s,a,s’,a

> Pe(ls,a) |ua, (s, a)m(a’|s', 01) — o, (s, a)m(a’] s, 02)]
Z Ponv (8|8, a) g, (s,a) |m(d’|s’,01) — w(d’|s, 02)]

s,a,s’,a’

£ Y Pa(sls.a)m(@|5',02) 19, (5.0) — i (5. 0)

SGS a

<Lr|[01 — o] Z PEHV(S/|3’G)N01(S»G)

s,a,s’,a’

Y Panls'ls,a)n(a]s",02) s, (5. 0)

S(IS a

=nq Lr||01 — 02| + || 10, — 110,11

— Mo, (Sva)|

1
S(2 + Tmix + Cm)naLﬂ'Hel - 92”

where the last line is by Lemma C.9. This implies

Hf_(wa 91) - f_(w702)|| SU}‘(2 + Tmix + Ci)naLwngl - 92”
1-p

1
:LQU5(2 + Tmix + Cm)nal/ﬁ”el - 92”
L]

Lemma C.17. Denote F(O,w, ) ,0)]. The following results hold:

= (w—w3)" [f(O,w) — f(w
F(O,w,0) is Lg,-Lipschitz with respect to 0,
|F(O, w, 91) —

where

F(O7w762)| S LF9||01 - 92”7

LFQ =2 (UfLw + O'wLJE) .
F(O,w,0) is Lp, -Lipschitz with respect to w,
[F (O, w1,0) = F(O,ws,0)| < L

=~ L,
where

wl*’w2|\7

LFw = 40‘wa + 2Uf.
¢. Conditioned on 0;_._, and s;_r_, +1,

‘E{ (O, Wty s Ot—7i) — F(Ot7wt7rmixa9t7rm;x)|9t7rmixaStfrm;xﬂ}‘
t

<40,Usng L Z E[|6; — 6;—r...

1=t —Tmix

|0t—7—mix’ st_'rn—nix"'l} .

d. Conditioned on 0y__, and sy__, 11,

|: (Ot7 wt—ijX; at—TmiX)|9t—ijxa St—T,niX+1:| ‘ S 20’11)UfC/BTmiX71
Proof. First, we observe that
|F(O w 91) - F‘(O,UJ7 02)
| w — w91 [f(O,’LU) - f
<|(w—@5,)" [f(O,w) — f

01
= |(@g, — )" [f(O,w) — f(w,01)]] +|( 0g

I

26



For I, we have

(@5, — w5,)" [f(O,w) = f(w,01)]| <2U7Ly||01 — b2,
which is by Lemma C.15 and Assumption 2.6.

For I, we have
|(w — @5,)" [F(w,02) — F(w,01)]] < 20, L]0 — 6o

which is by Lemma C.16. Combining the above two facts we end the proof of the first part.
For the second part,
(O,w1,0) — F(O,ws, 0)]

wg)T [f(Oawl) f(wla )] ( ) [f(O’wz) - f(wg,é’)”
—ﬁfek)T [f(O»UH) f('wh )] (w1 —we) [f(07w2)—f(w2,9)]|

1| (wi — @) [£(O,ws) — Flws, 0)] — (wn — )" [£(O,wn) — F(ws,0)]|

= |(U/1 - @E)T [(f(O,wl) - f(07w2)) - (f(wl, ) f(w2, ))”

+ |('LU1 —wg)” [f(vaQ) — f(wo, 9)”
<doy, Ly|lwy — ws|| + 2Ug||lwy — wel|,

wy —
w1

|F
=|(
<

where the last line is by Lemma C.15 and Lemma C.16.

For the third part, conditioned on 6;_,_, and s;__, +1,

E {F(Ot; Wt —Tmix s Ht—Tm;x) - F(Ot, Wt—Timix s 9t—rmix)] ‘
=|E {(wtf‘rmix - wzt,,mix )T [f(On Wi i) = (Wi 91:77@,()]
—(Wi—ry — w;t—fmax )T [f(Om Wi ) — f_(wtf'rmix, etf'rmix)}} ‘
=B (e rse = 5, )T [F(Or 01 rs) = FOrwir,)]]
<20y HE [f(ot; Wi—re) — (Ot wtf‘l'mix>i| H

<20, Uf||P(O; € -) = P(O; € -)|la
t
<doyUsnaLz Y E[|0; = 0;r,,,

1=t—Tmix

I,

where we use Lemma C.15 and Lemma C.10.

For the fourth part, we first denote Ot = (s*,a™, s, a™’) such that (s*,a®) ~ pg, s ~

mix

Powo(s'|s,a) and at’ ~ 7(a’|s’,0;_r,..). Under this definition, we have

E [F(O+7 Wt —T i 9 ot_"—mix)'at_"—mix? St_Tmix"l'l} = 0.
By Assumption 2.8, we have

||P(gt € .‘at_Tmix’st_Tn—nix ) /LG, P ||1 < Oﬂﬂmx
Hence, conditioned on 6;_,_, and s;_,_ , 41,
‘E [ (ORI ——G Tm,x)”
‘E [ Otth T Ot —Tiin) — F(O+th—7mix79t—‘rmix)”

= B [ =5, )T [F(Or w1 r) = FOF w001,

mix

<20,Uy||P(O; € -) — P(OT € 1)||1,
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where the last line is because of Lemma C.15. However,
|P(O; € -) — P(O* € 1)y
= Z |P(Se =5, As = a, 41 =", A1 = d') = P(S) = s, Af = a,5, =5, AF, =d)|

= D |P(S = s)m(als, Op—r,py) Pene (5|5, )], 1 1,,5,)

- ]D(St+ = 8)71'((1‘8, gthmix)PenV(s/‘sv a)w(a’|s’, gtf‘rmix)‘
=|IP(S; € ) = P(S;" € )|k
<O

Hence, conditioned on 6, and s;_,_, +1,

’E |:F(O~t’ Wt —Tmixe > at—‘rmix):| ‘ S QO'wUfCﬁTmix_l.

O

The following lemma, which reveals a useful property for critic update, is inspired by Olshevsky &
Gharesifard (2022).

Lemma C.18. For critic update, we have the following two results:
E | (@, — 5,,,)" (w, — @, + o [(wi, 0))|F]

2
af Hng

-
< (ﬁa Lullglns 001l + =

) e — 5, + 0 P, 80

and

2
V20 LuU, a’"H,U? )

. [(ﬁ’& = w5,,,) " [f(Or,wn) - f(wt’ot)ﬂ < 20y ( 1—y V2(1 - )2

Proof. If we use z(i) to denote the i’th entry of vector x,

(5, —d5,,,) " (we =g, +a* flwy, 00) = (@5, (0) =5, ., (1) - (wp — @5, +a* f(wr, 0,)) (i)
i

We can view 0 as a function of 6. Using a second order expansion,

1

W, (1) = wg, (i) + Vg, (1) (641 — 0) + 5 (O — 0.)" Vg, (i) (041 — 0:).-

If we take expectation conditioned on F,

kg i s ax g 1 kg
E th (Z) — w9t+1 (Z)|]:t] =K [Vwet (Z)T(Gt — 0t+1)|]:t] —E |:2(9t+1 — et)TVQwGQ (Z>(9t+1 — 9,5)]:,5:|
af?
=a’Vig, (i) g(wy, 0;) — WE [Q(Ot, we, 0:)T Vg, (i)g(Otthvetﬂ}—t} :

This leads to

E [i5,() — o5,,, ()F,]

04 2
2 kST~ 2 « A ok o A
SQO&Q (Vwet(z)Tg(wt,Gt)) *‘27(1_,}/)415: Q(Ot”wt,et)TVQU’a;(Z)Q(Ot,wt,at)‘ft}
04 2774
H, (1)U,
<2021 (211G 2 @ g
<20 L P10, 001+~
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where in the last line we use Assumption 2.6 and Lemma C.13. Now we go back to what we really
care about,

E (5, - 5,,,)7 (e — @, +a* Fw, 0,))|F]

—ZEhe'wmm»w—%+wﬁm@mm}

=ZEW@%%MMW]WrM%me&MM

JZE[%() 5., (017 \/Z — j, + av f(wn,00)) ()]

WO H (204 _
S\J > (20‘92 w(@)?[|g(we, 62)]* + 2(1(,3)4U> e — 5, + 0 f(w, 0,)]]

6’2HwU2

a _
< | vV2aPLy||g(wy, 0:)|| + ——— | - — w5+ a¥ flwy, 0,)],
—< 11g(we, 04)] \@(177)2 Hwt 0, f(wy t)”

where the third line is because the second term is constant conditioned on F;.

For the second part, notice that we already have the following result

4
e 7 . . 2 2 N of Hw(i>2U4
E |5, 9) = @, ()17 <20 Lo (i) lg(we 001 + —57
2 . 4 .
2a¢ Ly (i)?U}7 af H,(i)*Uy
(1—7)? 2(1—y)* 7

where we simply bound ||g(w¢, 0;)|| by Uy (this result is from Lemma C.13). On the other hand, by
Lemma C.15 and Lemma C.16, a rough bound for f(Oy, w;) — f(w¢, 8;) would be simply

1704 we) = Flawe, 0,)]| < 2U5.

Now we go back to what we really care about,
E (5, - ,,,)"” [£(Ow) = f(w,6,)] 17|

—a" B[ (0, () — ,,, () - (F(Orwi) = Flwn,00)) (0)|F2]

—av ZE [wg (i) — @5, (i)\]—}] E[(£(Or,we) — F(ws,0,)) ()| F]

9W¢Z)EWMQ@%JMEF~¢Zﬁﬂwﬂhw0ﬂwﬂ0MMEF

4 i

y 209" L, ())2U2 o' H,(i)2U? _ .
. Ej( -7 1 2y >' E[E:U“%wﬂ—fwn@»m%ﬂ

2
L“,U 056 HwU2
<20"Uy \[OL + S,
V2(1 —7)?
where the third line is because the two terms are independent when conditioned on F;. The second
part of this lemma is proved after we take expectation on both sides. O
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D Actor Update Analysis

Lemma D.1.

E [V}, - Vi,..]

(% - aa2Hv) Ay < +cp (aeQHv + %) Ag

2 T
+ co (a(,QHV + %) e+ %aer;
Proof. Actor update says the following:
Or11 =0; — fvj,yg(ot,wt,ot)
=0, — a?G(wy, 0;) + P G(wy, 0;) — . nyg(OAt,wt, 6:).

By the definition of g(wy, 6;) in Eq.(16),
g(w,0;) =Vin W(et)T‘POtQ(wt)
=Vnm(6,)" @9, [Q5, + Qwi) — Q3]

=VV; "+ Vina(0) @, [Qw:) — Q3] .
where we use the fact in Eq.(7) .

For simplicity, denote Do = V In7(6;)7 @y, [Q(w;) — Q;t]. So far we have the following result:
0
* — « A
9t+1 - 9t = —aQVV:gt — OéeDQ + aeg(wt, Gt) — :g(Ot,wt,Ht).

On one hand, if we take expectation (conditioned on ;) on both sides, we get
E [0i11 — 0| F:] = —a’VVy —a’Dqg.

where we use the fact in Eq.(16) that E {ﬁg(OAt, Wy, Ht)} = g(wy, 0). On the other hand,

0
* — « A
E [||0:11 — 0:[[*|F:] =[la’VVg +a’ Dol + E [Haeg(wt,@t) 1= ,yg(Otawtvet)HQ\]:t
<| ﬁvv* GD ||2 4 L 92U2
<l 0, T Dgq (1_7)20‘ g-

where we keep using E [ﬁg(ét, Wy, Gt)] = g(wy, 0;). Using Lemma C.12,

* * * H
Vo, < Vo, +VVg (0141 — 0:) + 7V||9t+1 — 04
Taking expectation (conditioned on ;) on both sides and we obtain
* * * H
E [vgm \]-'t] < Vi, + Vi - E B2 — 01 + ZCE [[16041 — 61l 217]
Plug in the facts about ;1 — 0, we know

H 2H 2
E | Vi 1] < Vi, = oIV P = VY5 Dq + 10" VVi T +a” Doll* + 10U,
We can use the facts that 2ab < a? + b? and (a + b)? < 2a® + 2b? to obtain
* * * a@ * aG
E Vi, 1] <Vii = o IV 112 + SIVVGI 2 + Sl Doll?
2 2 2H 2
+ o Hy ||V |2 + af HV||DQH2+ﬁa9 U2
Vi + (ao*Hy = S2) IVVa |2 + (eoHy + 2 ) || Dl 2 + 2l e
04 D) 0, 9 Q (1—7)2 g
* (&7 * 12 2HV 92 2
<V ( 2Hy — —) 1% 2V 0y
<Vp, + (@ Hy — 5 IVVgi||* + (177)204 P
(e ~
+ (ao?Hy +37) - |eaNo (@) = Q3,) + o]
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where the last inequality we uses the fact from LemmaC.4. We can rewrite it as

Qg 2 * |2 * * 2HV 0272
(? — ag Hv) IVVEIF <V, —E {VeHJFt} T U
« A%
+ (aggHV + 7") : [clN’gt (Qwy) — Q3,) + czeﬂ .
Taking expectation on both sides and telescoping sum:
T * *
E[Vy — Vg ] 2H
Qg 2 ) 1 %112 01 0741 ( 2 Oée) 2 |4 02772
— —ap Hy ) =) E|||VV, <— H - o U,
(5 —ac*Hy T; 19V |P] <= e (a0 Hy + 5 ) € 4+ 7550”0

T
2 (&%) 1 Ak
o (o®Hy + ) = ;le (Vo (@) - @3]
If we use notations from Eq.(13), the above fact can be rewritten as

E [‘/:9*1 - V;;H}

(% - aesz) Ay < +a (aasz + %> A

2 T 2
2 AP 2Hy 42,9
+CQ (060 HV+7)€ —‘rm@ Ug'
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E Critic Update Analysis under the Markov Sampling Case

Lemma E.1. In the Markov sampling case,

1 1 1
<2a“’ — ﬁang <)\min — 204“’) —V24°L, \/01 (Amin — 2a’“’) — 20492L72ﬂq> WAY)
E [|Jwi — w;, [1?] (
<t el Ly, +2a’ L2> A
= T \/§ 4
[, U2

1 [ w 1
+ [ V2P Loy | c1Cuw 1 + ¢ 62< —2aw>+ g — 2% | /A
( \/ ! ! 2 >\min \/5(1 — )2 )\min @
\/ w, af H U2
—a’L Cwl—l—\[aL,/cQC’wle—%- !

+ Cw’l + ng +

f —)?
V20 L,U, o H,U? 4L2 2
+ 22U it + 20’ L2C e+ — _of7 U2,
f( T—7 V31— )2 T Iy

where, for simplicity, we denote
Cuw,1 = 160" (14 v)LoHqgos + 40" (1 + 7)Lgeow, + o U7,
and

Cuwa2 =2a Wl i (Lp, +40uUfngLa(Tmix — 1)) Ug+2aw27mixLFwUw+4awawUfCﬂT“‘“‘_1

Proof. Recall the critic update is
wir1 = Projy, {wr + ' f(Or, wy)},
which implies
lwers — w5, |I* =|[Projy, {we + a* f(Or, we)} — w5, , [I”
<||w; + " f(Or, wy) — i, | |I?
=[|wy — 1wy, + by, — bp,,, + " f(Or,wy)|[?
<|Jwy — b, + @ f(Op, wy)|?
+2(dg, —wp,.,)" (wy — b5, +a® f(Op, wy)) + ||, — @5, |I*
We can take expectation on both sides,
E llwesr - @,., |1
<E[[Jwe — w5, + " f(O, wy)||?]
I A7)
+E 2005, - 05,,,)" (wi — @, +a” f(Or,w)]| +E [|lo5, - 0,,,11%]

12 IS

To analyze I, we derive
E [|[we — g, + ™ (O, we)|[?]
=E [[Juwy — w5, |2 + 20" (w, — 5,) F(Or, wr) + 02| f(Op, w)| 2]
=E [[|we — w5, |I*] + E [20" (w, — w5,)" f(we, 0)]
I
+E {Oéw2||f(0tawt)\|2} +E [2a% (w; — w5,)" [f(Os,we) = fwy, 6)]] -

11,2 11,3

(18)
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To analyze I ;, we perform the following of manipulations:
20" (wy — w;t)Tf(wt, ;)

=20 (w; — 5,)" VQ(w,)" Do, (vPs, — I)(Q(wr) — Q5,)

=20" (w; — },)"VQ(wi)" Dy, (vPy, — I)(Qwe) — Qp, + Qp, — @5,)

=20" | (Q(wr) = Q5,)" + (wy —w5)TVQw)" — (Qwe) = Q5,)" | Do, (vPo, — 1)(Qwe) — Q5,)
+ 20 (wy — ;,) "V Q(we)" Dy, (vPy, — 1)(Q, — Q3,)

= — 20" Np, (Q(wy) — Qp,) + 20" (wy — )" (VQ(wr) — VQ(wiia))” Do, (vPs, — ) (Q(wy) — Qp,)
+ 20" (wy = 5,)"VQ(wy)T Do, (vPs, — 1)(Q5, — Q5,)

< — 20N, (Q(we) — Q3,) + 20" (1 +7) LoHollwe — @3, |I° + 20 (1 + ) Laellwy — @3, |

< — 20N, (Q(wy) — Q) + 160 (1 + ) LoHgod + 4a® (1 + ) Lgeo,

where the second line is by the definition in Eq.(16), the sixth line is by Lemma (C.2) and Lemma
C.5, and the eighth line is by Lemma C.1. Here, A € [0, 1] is some scalar and wyijq = Aw; + (1 —
)\)w;‘t. So we arrive at the final bound for I ;:

20" (wy — 5,) " f(we, 0;) < — 20N, (Q(wr) — Q3,)
+ 160" (1 + ) LoHgos + 4a™ (1 + v) Lgeo.,.

To analyze I o, we conclude

E [a"2)|£(00, wi)[[?] < a0},

To analyze Iy 3, for simplicity, we denote F'(O;,w,0) = (w — o3)T [f(Or, w) — f
have

(w,0)]. We
F(Os,wy,0;) = F(Og,wy, 0y) — F(Og,we, 07,
J1
+ F(Op, we, 047, ) — F(Oy, wi—ry o, Ot ry)
Jz
+ F(Op, We—rpys 01— i) — F(Or, wi—ris 0= 7
J3
+ F(Ot7 Wt — Ty s ‘gtffmix) .

Jy

For J;, we have
|[F'(O, wi, 0;) — F(Op,wi, 07, )| SLE |10 — 017, ||
<0497—mixLF9 Ug
S, 5
For J5, we have
|F (Ot wi, Or—r,i) = F(Op, Wy Or— 7 )| <Lp, [[we — wi—r, ||
SameixLFwo-w~

For J3, by Lemma C.17, we have

‘]E {F(Ot, Wi—rps Ot—rin) — F(Op, 01— ry O —r Ot —rs Stfrmixﬂ} ‘
t
<oy UpnaLe Y E[l0; = 0 rop |10+ ris St—rt1]

1=t—Tmix
<4Oé90'wUfnaL7rTmix(Tmix - l)Ug

)
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which means
B [F(O1 0081 5i) = F(Ots01 7, 17,) | | £ 407000 Lo (e = DU,
For J, by Lemma C.17, we have
‘E [F(Ot; (P | [ — St—Tm;x-&-l} ‘ < 20, U CA™ 1,

which means
’E |:F(Ot7 Wt —Trmix s ot_‘rmix )} ‘ S 2O—wUf05TmiX71'

Hence, for I; 3, we have

0 mix L 4 ;U Lﬂ— mix — 1)U,
E[F(Oy, wy, 04)] < o Tmi (L, Uul faLa(n ) 0" Tinix Ly, 020, U C 1,
-

which implies
20’ Tix (L, + 400 Usna Ly (Tmix — 1)) Uy
1—7v
I 2aw27'mixLFwa + 4awO'wUfC/37'xnix_l.

E (20" (wy —15,)" [£(Or,wi) = f(wr,01)]] <

Hence, for I,
E [|Jwy — @5, +a” (04, wp)]2] < = 20"E [ No, (Q(we) — Q5,)] +E [[[wn — i, |2]
+ 160" (1 + ) LoHgo3 + 4a™ (1 + v)Loeo,
20 i (Lr, + 400U g L (Timix — 1)) U,
L=y
+ 2a“’27'miXLFw Ow + 40/”0wUfC'BTm"‘_1

= — 20"E [Ny, (Q(wy) — Q5,)] +E [[[we — w5,|2] + Cuvs + Cuz,
(19)

+a"?U? +

where, for simplicity, we denote
C’w,l = 16@“’(1 + ’y)LQHQO'i) + 40{“1(1 + ’V)LQGUUJ 4 OKU)ZUJ%
and

20" ¥ Ty (L 40U g Ly (Tmix — 1)) U, , , _
0 Tinix (L, + 10 m (7 ) g+2aw2TmixLFwJw+4a“’0wUfCﬁT““"_1.
-7

Cypo=
To analyze I, we derive

E [(@5, = 5,.,)" (wi = 5, +a” f(Or,wr))]
=B (@5, — 5,,,)" (we — 5, + " [(wr, 0)| +E | (@5, - @5,,,)7a” [f(Or,wn) = Flun, 01)]]

I Iz 2

To analyze I ; first, by lemma C.18, we already know
E (5, — )7 (we — @, +a® Flw, 01))| 7]

ozezHu,Ug2
V2(1 —7)?

S (\/iaeLw|g(’UJt,0t)|| + ) . ||’LUt — ’Utl;t + o/“”f(wt,Gt)H .

I31,2

I211

For I5 1,2, a rough bound would be

Ak w 2 A~k w A%k r w £
[Jwy =g, + @ f(we, 00)||" = [Jwe — 5,1 + 2 (wy — 1b5,)" F(wr, 00) + || F(wr, 0)| >
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Notice that this term is very similar to what we have in Eq.(18). The two difference are (a) all the f
in Eq.(18) are replaced by f and (b) expectation is removed. In this case, I; 3 will be 0 and a similar
bound for I; ; and I; » will also hold. This implies the following result:

Ak w F 2 w Nk ~ w
(|we — g, + a flw, 0,)||” < = 20" No, (Q(we) — Q5,) + |Jwy — g, ||> + 160 (1 + ) Lo Hgo,
+4a“ (1 +v)Lgeo, + asz?

1 .
< <>\ — = 204“’) ,/\/gt (Q(wt) - ta) + Cw,la

(20)
where the last line uses Lemma C.3.

For I5 1,1, recall that

|g(we. 0)|] < [[VVa || + [ Dl

1N, (Q(wy) — ta) + co€2.

<|vvi,

Hence, we have the following bound for I 7 ;:

°H,U2
V2(1 = )2

021 172
~ «
<\/§(¥‘9Lw V'V +\/§(19Lw N (;) —(Q* + 2—‘!—71” g_.
= A \/Cl 0 (Qwr) = Q5,) Feae V2(1 —7)?

V20’ L, [|g(ws, 6,)|| +

Hence, we have the following result:

E | (@, — ,,,)" (w, — @5, + o [(w,,0))|F]

ox X - o’ H,U?
< | V208 Ly, [|[VVg || + V208 L[ c1 NG, - Q)+ a2+ ——
< o INAZAL el 1Ny, (Q(we) — Qp,) + cae V()

\/ (5 20 Aou(@Cur) = @3) + Cu

<50 L |9V + e’ (5 20 ) A6, (QUun) - G3) + 5o LuCins
" ﬂa%w\/ 8 (@) - @)+ eaet] | (5= = 207 ) A6 (@) = )+
o’ H, U2 1 N
RRVCTEeTE \/(Amin 207 o @000 = @)+ o
i 0 1
O

¥ (;Eam (5o -2av)+ ﬁam\/cl (5 - w)) N (Qwn) — @3,)

1 H, U2 1 -
+ (\/iaeLw\/Clcw,l + co€? (/\min — 2aw> + \%(1 — 7?2 o 2aw> \/Ngt(Q(wt) - ta)

2

1 0 0 AV Cu; 1049 HwU2

+ —« Lwc’w,l + \/505 Lu) C2Cw,162 + 7 ¢ .
V2 v V21— )2
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After taking expectation on both sides, we know
E [(uv; =, )7 (wp — 05, + a® Flw,00))]

<o L[|V

+ (}f”m ( Ai - zaw) + ﬁmw\/cl ( Ai - w)) B [N, (Q(uwr) - Q)]

. 1 P’ H,UZ 1 -
+ (\/ia Lw\/Clcm + co€? (/\min — 2aw> + \/5(1 — ’Y;Q \/)\min — 204“’) \/]E [Ne,,(Q(wt) - Q;t)]

2

1 /] /] \V Cw 1049 I_Iw(]2

+ —« LwaJ + \[20& Lw 620w7162 + : g 5
V3 v VE(1—7)?

which is the bound for /5 ;.

For I5 », by Lemma C.18, we have

02
V2a°L,U, L H,U? _
L=y V2(1—9)?

This ends the bound for I, which, after combining the bound for I ; and I5 o, will be
E [(ua; =, ) " (wy — @, + a” f(O4, wy))]

<o L[|V ]

n (\}Emw ( r— zaw) + ﬁmw\/cl ( —- zaw)) E [No,(Q(wr) - Q)]

E [(w;t — @) @ [f(Or,wr) — flwr, 9t)ﬂ < 2a%Uy (

1 o’ HL U2 [T -
' (ﬁa%”\/clc”’l reae (- )+ e W) Ve et -03)

1/ 10" H, U2 V2l LU, o H,U?
+—ozLC’u, V200 Loy feaCy 162 + Y22 + 207U wv9 4 9.
V2 ' st —7)? L—n V2(1 = 7)?

To analyze I3, we have

E [ll5, — w5, P17 <LZE (001 — 61217 -

Recall that

o ~
0t+1 — 9t = —QOVV(;; - OZODQ + aeg(wt, Gt) - — fyg(Ohwt,@t),

which implies

* 4 2
E [[|6e+1 = 0:]1%|F:] <[la”V V5, + o’ Dol[* + Wa(’ Uy
A 4
<20” (IVV5 I+ e Mo (@wn) = @3) + 26) + 5500},

where we use the fact that £ { (wy, 0;) — Lyg(OAt, Wy, Gt)|.7-'t} = 0. Hence,

. % 2 0272 - Ak 2 AL, 02772
E |I[05, = @, P17 < 20005 (0GP + e o, Q) = Q5) + 6 )20 U
After taking expectation on both side, we will arrive at the bound for I3, which is

. o N A 4LZ, 2
E {Hwef, - wem”ﬂ < 207" L2 ( [[IVVell?] + 1 -E [Net(Q(wt) - Qet)] + 6262)+mae U.
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Now, go back to Eq.(17) and we obtain

E [llwss — ,,,1%]

]

1
<E [[|wy — wp,|*] + (\/iaeLw + 2a92L30) E [vaej

1 1 1 R
+ (\/iaaLw (Amin - 204'”) + \/iaaLw\/Cl ()\min - 2aw> + 20492L721)61 - Qaw> B [N9t (Q(we) — Q;t)}

+ [ V2oL Cuw + 2( L 1>+ aoQHng\/ L \/E[N (Q(wy)
a” Lyt [c1Cy Co€ — 2aV¥ — 2V . wy) —
! ! ? )\min \/5(1 — ’}/)2 )\min 0 !

\/ w, af H U2
—a’L Cwl‘i‘\/»aL\/CQCw]E‘i‘ !

+Cw1+cw2+

\f —7)?
20°L,,U, a?’H, Uz 4L2
+2a"Uy V20! 4 +2a9°12 2 coe® + 7w2a‘92U92.
: 1—~ \/5(1—7) (1=1)

Now, we can do a telescoping sum for ¢ to 7"

1 1 1
(W et () - ﬁL\/ o (20 - QL) | ( 3 e ot

QGJ})

Ll =@l (L o et 1iE[HW* ’
- T \/§ Tt:l "
02 U2

1 e} 1
0 2 _ w vy — w
(fa L, \/cl w1 T C2€ <>\min 2 )—l— \/5(1_ 22V X 2c0 ) ZE{N@:
/Cypia? H}U2
+Ow1+cw2+7aL Cwl"'\[a Lw\/CQC(wl6 + v .

V2 V(1 —7)?
V2a? L, U, af HwU2 2 412 2
+2a%U w-9 9 4209 L2 coe® + ——2 U2
f( — VA T T

which, if we adopt notations from Eq.(13), can be rewritten as

1 1 1

E[le _UAJG H ] ( 0 92 )
<— % 4 (——aL,+2L3 ) A
>~ T \/5 14
°H,U2

1 « w 1
+ | V2P Lyy | c1Cw 1 + ¢ €2< 2a“’>+ g —2a% | /A
( \/ ! ! 2 )\min \/5(1 — )2 )\min @
\/ af? H U2
—a’L Cw1+faL1/CQCw1€+ Wl

+Cw1+cw2+

\f —)?
2a° L, U, af HUU 4L2
+ 22Uy V20°L, J 4 AR, 20&62Li,8262 + 7w2a92U92.
1—~ V2(1 = )2 (1-7)
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F Critic Update Analysis under the i.i.d. Sampling Case

Lemma F.1. In the i.i.d. sampling case,

1 1 1

E[le—lﬁ; H2] ( 1 0 2
<" | —a Lw—|—2a9 Li)A
= T \/i |4

+ (V208 Ly [e1Cun + 2< ! 2w>+a92HwU3,/ L _oaw) VA
o Ly c1Cy Co€ — 2 — 2«
! ! 2 )\min \/5(1 — ’}/)2 )\min @

2
1 \V Cw 1049 }Iw(]2
+ Cw,l + 7049[/1110117,1 + \/iaeLw CQCw,IGQ + : !
V2 v V2(1 = 7)?

+ 20402L12002€2 +

AL

02772
a—p® Y

Proof. The i.i.d. assumption implies that f(Oy,w;) is replaced by f(wy,6;). This will bring a
change in both the analysis for I; and /.

First, we will figure out how the i.i.d. sampling effect I;. Now we know that I; 3 in Eq.(18) is 0.
That means, for I; in Eq.(17),

E [|lw; — @, + o f(Or, wo)|P|Fe] < — 20" No, (Qwe) — Q5,) + ||we — i, ||
+16a™ (1 +v)LoHgol +4a™ (1 +v)Lgeo, + OzW2U;
= — 20" Ny, (Q(wr) = Q,) + [|we — @5, || + Cu 1,

where (), 1 is defined the same as before:
Cuw,1 = 160" (14 v)LqoHqgos + 4™ (1 +7)Lgeow, + a2U7.

Next, after a removal of I5 5 term (I3 2 will just be 0 if we replace f by f ), we can derive the new
bound for /5, which is

B [(@5, = 5,,.,)7 (we = 5, + 0" f(Op,wy))]
1 12
<L, E [|[vV; ]

+ (}f”w ( Ai - zaw) + ﬁmw%l ( Ai - zaw)) B [N, (Q(wr) - Q)]

. 1 a’H,UZ 1 -
+ (\/ia Lw\/Clcm + cq€? (/\min — 2aw> + V- 7?2 \/)\min — 204“’) \/]E {No,(Q(wt) - Q;t)]

2

1 0 0 AV Cu; 1049 I_Iw(]2

+ —« Lwc’w,l + \/505 Lu) C2Cw,162 + 7 ¢ .
V2 v V21— )2
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Based on the new bounds for I; and I, the critic update now gives the following:

1 1 1
<20[w — EOZGLW <)\ o 20éw> - \/iaeLw\/Cl <)\ - 2aw> - 2a02L121161> ’ AQ

E [|Jwi — w;, [|?] ( 1 2
<0y aeLw%Qae_Li>‘A
I T \/i 14

2
1 a() HwU2 1
+ | V2P Ly [eiC —|—C€2< —20[“’)—!— Y —2a% | /A
( “ \/ et 2 )\min \/5(1 — ’}/)2 Amin @

2
1 /Cpia? H,U?
+—C@J<+4;§aﬂLwcuhl+-v§a9Luﬂ/c26%J62+_ 1 g

V2(1 - 7)?
2 4L g2,
+ 2040 L,LQUCQGQ + ﬁa Uq‘
- £
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G Small Gain Theorem and Small Gain Analysis

G.1 Small Gain Theorem

Now we introduce the small gain theorem.
Lemma G.1. Suppose x and y satisfy the following two inequalities:
r <a1y + az,
y <bix + b2 + b3/y,
where all coefficients are non-negative. Then, y can be upper bounded by the following inequality:
2by + bg + 2a9bq
V=TT a0

Proof. Proof of this lemma can be found in Olshevsky & Gharesifard (2022). O

G.2 Small Gain Analysis under i.i.d. Sampling

Now recall the result from Actor analysis is
E [Ve*l - ‘/9*7‘-%—1:|

(% - aagHv) Ay < T

2 ta (0‘92HV - %) Aa

2H
+ e (0402Hv + %) e+ (7‘/

and the one from Critic analysis is

1 1 1
(W‘ 75 (s —2) - NL\/ (Amin‘Qa’“’)‘QQQQLE“Cl)'AQ

E [|jw; — @, ||?] (1 ) 02 )
<t el L, +2a°7L2 ) A
T V2 v
92H U2

1 « w 1
+ | V2aP Loy | c1Cw 1 + c2€2 ( — 2aw> + g — 2% | /A
( \/ ! ! 2 >\min \/i(l — )2 )\min @
\/ w, ao H, U2
+ Cyw 1+7O£L Cuw 1+\[OLGL \/CQC 16 + !

V2 —7)?
412
+ 2069 L121)62€2 =+ ﬁOZGQUz

What we really care about is the relationship between T, e and m. So from now on, we will use

O(-) and O(-) (O(-) hides the potential logarithm factor of m) notations and only consider these
variables. First, observe the following dependency on 7', m and e:

Lq =0(1),

Hq :O(im),

Ls =0(1),

Us =0(e) + O(1),

Ly =0 (1m(e + 1)) +0(1),
Ur =0(e) + O(1),

U, =0(e) + O(1),

Ly =0 ((logT +1)(e+1)),
Lp, =0 ((logT +1)(e + 1)),



If we choose o = of

we conclude

= % and given that all other coefficients are independent with €, 7' and m,
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Now we can apply Small Gain Theorem, where we conclude
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G.3 Small Gain Analysis in the Markov Sampling Case
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and the one from Critic analysis is
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Now we can apply Small Gain Theorem, where we conclude
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