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Abstract

The early theory of actor-critic methods considered convergence using linear func-
tion approximators for the policy and value functions. Recent work has estab-
lished convergence using neural network approximators with a single hidden layer.
In this work we are taking the natural next step and establish convergence using
deep neural networks with an arbitrary number of hidden layers, thus closing a gap
between theory and practice. We show that actor-critic updates projected on a ball
around the initial condition will converge to a neighborhood where the average of
the squared gradients is Õ (1/

√
m) +O (ϵ), with m being the width of the neural

network and ϵ the approximation quality of the best critic neural network over the
projected set.

1 Introduction

Reinforcement Learning (RL) has emerged as a powerful tool for solving decision-making problems
in a model-free way. Among the various RL algorithms, the Actor-Critic (AC) method (Konda &
Tsitsiklis (1999); Barto et al. (1983)) has shown great success in various domains, including robotics,
game playing, and control systems (LeCun et al. (2015); Mnih et al. (2016); Silver et al. (2017)).
AC involves simultaneous updates of two networks: an actor network that employs policy gradient
(Sutton et al. (1999)) to update a parameterized policy, and a critic network which is driven by the
Temporal Differences (TD) in the estimated value function. While AC methods with neural networks
used for both actor and critic have achieved widespread use in practice, a fully satisfactory analysis
of their convergence guarantees is currently lacking.

In recent years, a number of theoretical studies of AC have obtained provable convergence rates and
performance analyses. Almost all works in this area assumed linear, rather than neural network-
based, approximators for both actor and critic. A “two-timescale” linear AC was analysed in Wu
et al. (2020), with a convergence rate of Õ(T−1/4), where T is the total number of iterations and
Õ (·) refers to potential logarithmic terms omitted from the notation; the term ”two-timescale” refers
to the fact that the stepsizes for the actor update and critic update are not proportional to each other,
but rather the actor steps are asymptotically negligible compared to the critic steps. A “single-
timescale” linear AC method was considered in Olshevsky & Gharesifard (2022); Chen et al. (2021)
and both works obtained a convergence rate of O

(
T−0.5

)
under an i.i.d. sampling assumption on

the underlying MDP. The more realistic Markov sampling case was analyzed in the recent paper
Chen & Zhao (2022), which also established a convergence rate of Õ

(
T−0.5

)
. All these results

relied on linear approximations.

To our knowledge, convergence rates for AC with neural approximators were analyzed only in two
recent works Wang et al. (2019); Cayci et al. (2022). Both of these papers considered neural net-
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works with a single hidden layer. The paper Wang et al. (2019) obtained a convergence rate of
O
(
T−0.5

)
with a final error of O

(
m−0.25

)
under i.i.d. sampling, where m is the width of hidden

layer. The case of Markov sampling was considered in Cayci et al. (2022) which improved this to
Õ
(
T−0.5

)
and Õ

(
m−0.5

)
, respectively. Further, both Wang et al. (2019); Cayci et al. (2022) con-

sidered ”double-loop” methods where, in the inner loop, the critic takes sufficiently many steps to
accurately estimate Q-values. Such double-loop methods do not match prevailing practice and are
considerably easier to analyze since they can be shown to approximate gradient descent.

Further, Cayci et al. (2022) required a projection onto a ball of radius O(m−1/2) around the initial
condition. Although a full representation theory for such neural networks is unknown, this is clearly
limiting as compared to Wang et al. (2019) which only required projection onto a ball of constant
radius. For nonlinear approximations, such projections are usually needed to stabilize the algorithm;
without them, AC can diverge both in theory and practice.

Table 1: Comparisons with previous work.

Reference Algorithm Sampling Approximation Projection Convergence rate
Radius w.r.t. T w.r.t. m

Wu et al. (2020) Two-timescale Markov Linear N/A Õ
(
T−0.4

)
N/ASingle-loop

Olshevsky & Gharesifard (2022) Single-timescale I.i.d. Linear N/A O
(
T−0.5

)
N/ASingle-loop

Chen et al. (2021) Single-timescale I.i.d. Linear N/A O
(
T−0.5

)
N/ASingle-loop

Chen & Zhao (2022) Single-timescale Markov Linear N/A Õ
(
T−0.5

)
N/ASingle-loop

Wang et al. (2019) Double-loop I.i.d. Single hidden layer Constant O
(
T−0.5

)
O
(
m−0.25

)
Cayci et al. (2022) Double-loop Markov Single hidden layer Decaying Õ

(
T−0.5

)
Õ
(
m−0.5

)
m sufficiently large

Ours Single-timescale Markov Any depth Constant Õ
(
T−0.5

)
Õ
(
m−0.5

)
Single-loop

The main contribution of this paper is to provide the first analysis of AC with neural networks of arbi-
trary depth. While replicating the earlier results of a Õ

(
T−0.5

)
convergence rate and Õ

(
m−0.5

)
er-

ror, our work considers a single-loop method with proportional step-sizes (sometimes called “single-
timescale”). We prove this result under Markov sampling and project onto a ball of constant radius
around the initial condition. An explicit comparison of our result to previous work is given in Table
1. A more technical comparison is also given later after the statement of our main result.

Our main technical tool is the so-called ”gradient splitting” view of TD learning. This idea began
with the paper Ollivier (2018) which observed that TD learning is exactly gradient descent when the
underlying policy is such that the state transition matrix is reversible. In Liu & Olshevsky (2021),
this was generalized to non-reversible policies by introducing the notion of a ”gradient splitting”
(discussed formally later in this work) and observing that, for linear approximation, TD updates are
an example of gradient splitting. Gradient splitting is closely related to gradient descent, and the
two processes can be analyzed similarly. A generalization to neural TD learning was given in Tian
et al. (2023), which argued for an interpretation of nonlinear TD as approximate gradient splitting.

The analysis of AC that we perform in this work is trickier because both actor and critic updates
rely on each other, and one must prove that the resulting errors in each process do not compound
in interaction with each other. This difficulty arises because we do not consider the “double loop”
case where the actor can effectively wait for the critic to converge, so that actor steps resemble gra-
dient steps with error; rather both actor and critic update simultaneously their (imperfect) estimates.
Similarly to what was done in Olshevsky & Gharesifard (2022), we show that we can draw on some
ideas from control theory to prove that the resulting process converges with a so-called “small-gain”
analysis.

2 Preliminaries

We begin by standardizing notation and stating the key concepts that will enable us to formulate our
results alongside all the assumptions they require.
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2.1 Markov Decision Processes (MDP)

A finite discounted-reward MDP can be described by a tuple (S,A, Penv, r, γ) where S is a finite
state-space whose elements are vectors, and we use s0 ∈ S to denote the starting state; A is a
finite action space with cardinality na; Penv = (Penv(s

′|s, a))s,s′∈S,a∈A is the transition probability
matrix, where Penv(s

′|s, a) is the probability of transitioning from s to s′ after taking action a;
r : S × A → R is the reward function, where r(s, a) stands for the expected reward at state s and
taking action a; and γ ∈ (0, 1) is the discount factor.

A policy π is a mapping π : S × A → [0, 1] where π(a|s) is the probability that the agent takes
action a in state s. Given a policy π, we can define the state transition matrix P ′

π = (P ′
π(s

′|s))s,s′∈S

and the state-action transition matrix Pπ = (Pπ(s
′, a′|s, a))(s,a),(s′,a′)∈S×A as

P ′
π(s

′|s) =
∑
a∈A

Penv(s
′|s, a)π(a|s), Pπ(s

′, a′|s, a) = Penv(s
′|s, a)π(a′|s′).

The stationary distribution over state-action pairs µπ is defined to be a nonnegative vector with
coordinates summing to one and satisfying µT

π = µT
πPπ , while the stationary distribution over

states µ′
π is defined similarly with µ′

π
T
= µ′

π
T
P ′
π . The Perron-Frobenius theorem guarantees that

such a µπ and µ′
π exist and are unique subject to some conditions on P ′

π, Pπ , e.g., aperiodicity and
irreducibility (Gantmacher (1964)). We use µπ(s, a) to denote each entry of µπ and µ′

π(s) each
entry of µ′

π . Clearly,
µπ(s, a) = µ′

π(s)π(a|s). (1)
The value function and the Q-function of a policy π is defined as:

V ∗
π (s) =

∑
a∈A

π(a|s)Q∗
π(s, a), Q∗

π(s, a) = Es,a,π

[
+∞∑
t=0

γtr(st, at)

]
. (2)

Here, Es,a,π stands for the expectation when action a is chosen in state s and all subsequent actions
are chosen according to policy π. Throughout the paper, if π can be parameterized by θ, then we
will use θ as a subscript instead of π, e.g., by writing V ∗

θ (s) instead of V ∗
πθ
(s).

If π is parameterized by θ, the Q-values satisfy the Bellman equation

Q∗
θ(s, a) = r(s, a) + γ

∑
s′,a′

Pθ(s
′, a′|s, a)Q∗

θ(s
′, a′), (3)

which can be stated in matrix notation as

Q∗
θ = R+ γPθQ

∗
θ, (4)

where Q∗
θ = (Q∗

θ(s, a))(s,a)∈S×A and R = (R(s, a))(s,a)∈S×A are vectors that stack up the Q-
values and rewards, respectively. We will assume rewards are bounded:
Assumption 2.1 (Bounded Reward). For any s, a ∈ S ×A, |r(s, a)| ≤ rmax.

This assumption is commonly adopted throughout the literature, e.g., among the previous literature
in Cayci et al. (2022); Wu et al. (2020). An obvious implication of this is an upper bound on the
Q-values for any policy:

|Q∗
θ(s, a)| ≤

rmax

1− γ
. (5)

2.2 The Policy Gradient Theorem

We introduce the quantity ϕθ(s), commonly called the discounted occupation measure which is
defined as

ϕθ(s) =
+∞∑
t=0

γtPθ(St = s),

where Pθ(St = s) is the probability of being in state s after t steps —- and recall that we always
begin in state s0. Next, we define ϕθ(s, a) as

ϕθ(s, a) = ϕθ(s)π(a|s, θ).
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Note that the sum of both ϕ(s) and ϕ(s, a) equal to (1− γ)−1 rather than 1:∑
s∈S

ϕθ(s) =
∑

(s,a)∈S×A

ϕθ(s, a) =
1

1− γ
. (6)

Now we are prepared to state the policy gradient theorem Sutton & Barto (2018).
Theorem 2.1. (Policy Gradient Theorem)

∇V ∗
θ =

∑
s∈S

ϕθ(s)
∑
a∈A

Q∗
θ(s, a)∇π(a|s, θ)

It is standard to write this as

∇V ∗
θ =

∑
(s,a)∈S×A

ϕθ(s, a)Q
∗
θ(s, a)∇ lnπ(a|s, θ),

which can be further rewritten in matrix form as

∇V ∗
θ = ∇ lnπ(θ)TΦθQ

∗
θ, (7)

where Φθ is a diagonal matrix stacking up the ϕθ(s, a) as its diagonal entries.

2.3 Parameterized Value Function and Policy

We will now state the various assumptions we have on the policies and their parametrizations. We
will say that a function f : R → R is L-Lipschitz if

|f(x)− f(y)| ≤ L|x− y|, ∀x, y,

and a differentiable function f : R → R is H-smooth if

|∇f(x)−∇f(y)| ≤ H|x− y|, ∀x, y.

We will be using a multi-layer neural network to approximate the Q values under a policy. We
basically follow the same setting as in Liu et al. (2020), with some changes as far as notation goes.
Specifically, we define the following recursion

x(k) =
1√
m
σ
(
w(k)x(k−1)

)
, for k ∈ {1, . . . ,K},

where σ is an activation function and x(k) stands for the value of k’th layer (x(0) ∈ S × A is the
input to this neural network). The neural network outputs Q(s, a, w), which is defined as

Q(s, a, w) =
1√
m
bTx(K).

Notice that the output is linear to x(K) as no activation function is applied here. While this formu-
lation does not have a bias, it is equivalent to a formulation with a bias if we pad all inputs with a
single 1, and add an additional node to every hidden layer that propagates this 1 to subsequent layers.
We will assume that all the hidden layers have the same width which we denote by m, i.e., all the
matrices w(k) have m rows and all the vector x(k), k ≥ 1 are m-dimensional. The total number of
layers in the neural network is denoted by K.

For simplicity, we will make the following assumption on the neural network. Throughout the paper,
we will use || · || for the standard l2-norm.
Assumption 2.2. (Neural architecture and initialization) Suppose the neural network satisfies the
following properties:

• (Input assumption) Any input to the neural network satisfies ||x(0)|| ≤ 1.

• (Activation function assumption) σ is Lσ-Lipschitz and Hσ-smooth.

• (Initialization assumption) Each entry of the vector b satisfies |br| ≤ 1, ∀r, and each entry
of w(k) is randomly chosen from N(0, 1), independently across entries.
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Liu et al. (2020) showed that with these assumptions, the following result holds with high probability
– which we state as an assumption for our work.

Assumption 2.3. The absolute value of each entry of x(k) (the output of layer k of the neural
network) is Õm(1) at initialization.

Next, we will stack up the weights of different layers into a column vector w consisting of the entries
of the matrices w(1), . . . , w(K), with its norm defined by

||w||2 =
K∑

k=1

||w(k)||2F ,

where || · ||F is the Frobenius norm. During the training process, only the weights w will be updated
while the final weights b will be left to their initial value. For convenience, we define the vector
Q(w) = (Q(s, a, w))(s,a)∈S×A which stacks up Q(s, a, w) over all state-action pairs (s, a). While
this vector will never be actually used in the execution of any algorithm we consider due to its high
dimensionality, it will be useful in some of the arguments we will make. Finally, we assume the
parametrization of the policy π is smooth.

Assumption 2.4 (Smooth parametrization). For all s, a, the quantities π(a|s, θ), lnπ(a|s, θ) are
Lπ-Lipschitz and L′

π-Lipschitz with respect to θ, respectively.

Note that this forces us to use a smooth activation function and rules out non-differentiable activa-
tion functions such as ReLU. If a RELU-like activation is needed, one could use a GeLU or ELU
activation (which are smooth versions of ReLU) and still satisfy the above assumption. Note, also,
that this assumption implicitly assumes that all policies are exploratory in the sense of assigning a
positive probability to each action, since the derivative of lnx blows up as x → 0.

2.4 Neural Actor-Critic

We will use ProjW {·} refer to projection onto a ball with constant radius around the initial condition
of the critic, where

W = {w | ||w − w0|| ≤ σw}, σw is a constant.

We now introduce the neural AC, which updates the actor and critic parameters as

wt+1 = ProjW {wt + αwδt∇wQ(st, at, wt)} , θt+1 = θt−
αθ

1− γ
Q(ŝt, ât, wt)∇θ lnπ(ât|ŝt, θt).

where δt is the TD error defined by

δt = r(st, at) + γQ(s′t, a
′
t, wt)−Q(st, at, wt), (8)

and the samples are obtained as follows:

1. the state st is generated by taking a step in the Markov chain Penv from st−1;

2. the action at is chosen according to the policy π(a|st, θt);
3. the next state s′t, i.e, s′t = st+1, is determined according to the transition probability Penv

of the MDP;

4. the action a′t is an action chosen at the next state according to the policy π(a|s′t, θt);
5. the state-action pair (ŝt, ât) is obtained by first sampling a geometric random variable T

with distribution {P (T = t) = (1 − γ)γt, t ≥ 0}, and second obtaining T transitions by
starting at s0 and taking actions according to π(a|s, θt). Note that this update has to be
re-done at every step, i.e., every t requires Geom(γ) steps.

The above algorithm will be referred to as actor-critic with Markov sampling. It is also possible to
consider a simplified variant, where step 1 is slightly altered as follows: the state st is instead chosen
i.i.d. at every step from the stationary distribution of µθt of the policy πθt . This is referred to as
actor-critic with i.i.d. sampling.
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2.4.1 Approximation Assumptions

It is evident that any performance bound on AC will depend on how well the neural network used
for the critic can approximate the true value function. If we choose a neural network architecture for
which universal approximation theorems do not apply and it happens to poorly approximate the true
Q-functions, we will likely obtain poor results. Here, we will largely sidestep this issue by defining
ϵ to be the approximation quality of the critic; our final performance results will be in terms of ϵ.

Formally, we say that the vector Q is an ϵ-approximation to the true value function Q∗
θt

of the policy
πθt if

max
(s,a)∈S×A

|Q(s, a)−Q∗
θt(s, a)| ≤ ϵ. (9)

We then make the following assumption.
Assumption 2.5. (Approximation capabilities of critic) For all θ, there exists some set of weights
ŵθ which give rise to an ϵ-approximation of Q∗

θ .

Note that, since we do not say what ϵ is, this assumption could well be a definition of ϵ. Throughout
the paper we will use Q̂∗

θt
to denote an ϵ-approximation to Q∗

θt
guaranteed by the above assumption.

Thus,
Q(ŵθt) = Q̂∗

θt .

Further, we will assume that ŵθ is a smooth function of θ in the sense of its first and second deriva-
tives.
Assumption 2.6. (Smoothness of critic approximation) Suppose there exists scalars Lw(i) and
Hw(i) such that for all θ,

||∇ŵ∗
θ(i)|| ≤ Lw(i), λmax{∇2ŵ∗

θ(i)} ≤ Hw(i).

where λmax{·} stands for the largest eigenvalue.

For convenience, we define

Lw =

√∑
i

Lw(i)2, Hw =

√∑
i

Hw(i)2.

Finally, we need an additional assumption on the critic neural network. It should be obvious that
any analysis of actor-critic has to assume that the critic is capable of approximating the correct Q-
values. One part of this was already assumed earlier in Assumption 2.5, where we assumed that
an approximation exists. However, it should be clear that in the nonlinear case this is insufficient:
just because there exists an approximation which is good doesn’t follow that it will be found during
training, which is not known converge to the global minimizer in the nonlinear case, but rather only
to a critical point.

We thus need something to rule out the possibility that the critic training gets stuck at a bad crticial
point. It turns out that it suffices to assume (a quantitative version of the fact that) the critic is
one-to-one map from weights to value functions.
Assumption 2.7. (State regularity) There exists some constant λ′ > 0 such that

||Q(w)− Q̂∗
θ|| ≥ λ′||w − ŵ∗

θ ||.

Let us parse the meaning of this assumption. Because Q(ŵ∗
θ) = Q̂∗

θ , it is appropriately viewed as
a quantitative version of the statement that if w1 ̸= w2, then Q(w1) ̸= Q(w2). To see why this
makes sense, note that the number of states is typically many magnitudes larger than the number of
parameters in the critic. For example, in many applications the number of states often corresponds
to the number of images (when states are captured through images) which is astronomical. Thus
Q(w) will map w to a much higher dimensional space.

If the states s are generated from a probability distribution which has a continuous density, and the
activation functions are continuous and increasing, the chance that Qw1(s) = Qw2(s) even for one
state s is zero. That is why we label it “state regularity” as above (and recall that Q(w) stacks up
Qw(s) for every state s).
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On a technical level, this property ensures that critic actually finds a good critic approximation in
spite of the nonlinearity of the update. If the features are linear, this reduces to the assumption that
the features are linearly independent, an assumption which is made in all previous and related work
on AC method (Wu et al. (2020); Olshevsky & Gharesifard (2022); Chen & Zhao (2022); Kumar
et al. (2023)) and TD Learning (Liu & Olshevsky (2021); Xu & Gu (2020); Cai et al. (2019); Zou
et al. (2019)).

2.5 The Mixing of Markov Chains

It is standard to make an assumption to the effect that all the Markov chains that can arise satisfy a
mixing condition. Otherwise, it is possible under Markov sampling for the state to fail to explore
the entire state-space. This assumption, first introduced by Bhandari et al. (2018) in TD learning,
now is commonly used in AC analysis (Olshevsky & Gharesifard (2022); Wu et al. (2020); Chen &
Zhao (2022)).
Assumption 2.8 (Markov chain mixing). There exists constants C > 0 and β ∈ [0, 1) with the
following property: for all θ, if we consider a Markov chain generated by at ∼ π(·|st, θ), st+1 ∼
Penv(·|st, at) starting from state s, then

||pτ − µ′
θ||1 ≤ Cβτ , ∀τ ≥ 0, ∀s ∈ S,

where pτ is the probability distribution of the state of this Markov chain after τ steps.

To assure AC explores every possible state, we make the following assumption:
Assumption 2.9. (Exploration) Suppose there exists some constant µmin > 0 such that, for all θ,
µ′
θ is uniformly bounded away from 0. In other words,

µ′
θ ≥ µmin > 0, ∀θ.

Recall that µθ was defined earlier to be the stationary distribution of the transition matrix associated
with the policy πθ. A key point is that the constants C, β and µmin in the above assumptions do not
depend on θ.

We note that there is some redundancy in our assumptions. As discussed above, we require
lnπθ(a|s) to have a smooth gradient for all s, a, which ensures that πθ assigns a strictly positive
probability to every action. This implies Assumptions 2.8 and 2.9 which can therefore be made into
propositions. Nevertheless, we explicitly make Assumptions 2.8 and 2.9 (even though both of them
are actually implied by our earlier assumption) since the quantities appearing in them (specifically,
the mixing time β and the constant µmin) appear in various bounds we will derive.

More precisely, we follow the earlier literature by setting Cβτ to be proportional to T−0.5, the typi-
cal of stepsize in Stochastic Gradient Descent. We call the smallest τ such that Cβτ ≤ O

(
T−0.5

)
the mixing time and denote it by τmix. It is easy to see that τmix = O

(
(1− β)−1 log T

)
. The

quantity τmix will appear throughout our paper.

2.6 D-norm and Dirichlet Norm in MDPs

A key ingredient is our analysis is the choice of norm: we have found that a certain norm originally
introduced in Ollivier (2018) significantly simplifies analysis of the problem. We next introduce this
norm and state our assumptions about it.

Let Dθ = diag(µθ(s, a)) be the diagonal matrix whose elements are given by the entries of the
stationary distribution µθ associated with the policy πθ. Given a function f : S × A → R, its
D-norm is defined as

||f ||2D = fTDθf =
∑

(s,a)∈S×A

µθ(s, a)f(s, a)
2. (10)

The D-norm is similar to the Euclidean norm except each entry is weighted proportionally to the
stationary distribution. We also define the Dirichlet semi-norm of f :

||f ||2Dir =
1

2

∑
(s,a),(s′,a′)∈S×A

µθ(s, a)Pθ(s
′, a′|s, a)(f(s′, a′)− f(s, a))2. (11)
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A semi-norm satisfies the axioms of a norm except that it may be equal to zero at a non-zero vector.
Note that ||f ||Dir depends on the policy both through the stationary distribution µθ(s, a) as well as
through the transition matrix Pθ.

Finally, following Ollivier (2018), the weighted combination of the D-norm and the Dirichlet semi-
norm is denoted as Nθ(f) will be defined

Nθ(f) = (1− γ)||f ||2D + γ||f ||2Dir. (12)

Note that as long as µθ(s, a) > 0, which is stated in Assumption 2.9, for all s, a, we have that√
Nθ(f) is a valid norm.

3 Our Main Results

To simplify the expression that follow, we will adopt the notations ∆V and ∆Q for the two losses
that we want to bound in our paper:

∆V =
1

T

T∑
t=1

E
[
||∇V ∗

θt ||
2
]
, ∆Q =

1

T

T∑
t=1

E
[
Nθt(Q(wt)− Q̂∗

θt)
]
. (13)

Intuitively, ∆V corresponds to the actor error: ideally, we want to reach a point where the gradient
of the actor value function is zero. Note that, since the value function is not convex in general, the
actor error is measured in terms of distance to a stationary point as above.

Similarly, ∆Q is a measure of the critic error: it equals zero precisely if Q(wt), the approximator of
Q-function, equals Q̂θt . Of course, as discussed above, the critic neural network may not be able to
perfectly represent the true Q-function. Now we are ready to state our main results.

Theorem 3.1. Consider the neural AC algorithm mentioned in Section 2.4. Suppose Assumptions
2.1-2.9 hold and the step-sizes αθ and αw are both chosen to decay proportionally to O

(
T−0.5

)
.

1. In the i.i.d. sampling case,

∆V ≤ O

(
1√
T

)
+O(ϵ) + Õ

(
1√
m

)
, ∆Q ≤ O

(
1√
T

)
+O(ϵ) + Õ

(
1√
m

)
.

2. In the Markov sampling case,

∆V ≤ O

(
(log T )2√

T

)
+O(ϵ)+Õ

(
1√
m

)
, ∆Q ≤ O

(
(log T )2√

T

)
+O(ϵ)+Õ

(
1√
m

)
.

In all O(·) notations above, we treat factors that do not depend on T, ϵ,m as constants.

We next provide a more detailed comparison to the previous works of (Wang et al. (2019); Cayci
et al. (2022)). Our discussion partially reprises the discussion in the Introduction, but can now be
discussed at a greater level of detail:

• Arbitrary depth/single-timescale. The main contribution of this paper to provide an anal-
ysis that applies to neural networks of arbitrary depth. Moreover, we do so in a single-
loop/single-timescale method where the critic and actor iterate simultaneously, which is
matching what is typically done in practice. Such an analysis is inherently more techni-
cally challenging, since when the actor can wait for the critic to go through sufficiently
many iterations, one could argue that the resulting Q-values are approximately accurate
and the process resembles gradient descent.

• Representability. Both previous works for the single-layer case assume the Q-function lies
in some function class, which, as discussed after Assumption 6 in Farahmand et al. (2016),
is one kind of “no function approximation error” assumption. By contrast, we make no
such assumption: rather we allow any approximation error for the critic ϵ, and our final
result is given in terms of ϵ.
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• Lower bound on m. Previous works require m, the width of neural network, to be suf-
ficiently large. In Wang et al. (2019), given that m is sufficiently large, Section 3.1 and
Corollary A.3 argue that the gradient, denoted by ϕ̄θ and ϕ̄w, can be well approximated
by the “centered feature mapping corresponding to the initialization”, denoted by ϕ̄0. In
Cayci et al. (2022), this dependency is even more emphasised since the upper bound shown
in Theorem 2 could diverge with small m.

• Relation to NTK theory. NTK theory (Jacot et al. (2018)) tells us that neural networks get
more linear as m → ∞. The classic analyses of this proceed by arguing that as m → ∞,
the neural network stays close to its initialization during training Chizat et al. (2019). In
that sense, we should expect to get a convergence result for AC as m → ∞, but if the critic
neural network stays close to its initial condition, the algorithm will effectively be using
random linear features at initialization. For this reason, it is desirable not to argue that
the critic neural network always stays close to its initial condition. We do not use such an
argument in this work, whereas both Wang et al. (2019) and Cayci et al. (2022) obtain their
results by arguing that the critic neural network stays close to its initial condition. This
theoretical distinction is shown in Tian et al. (2023) to match what happens in simulations,
which shows empirically that even for projected neural TD, the critic neural network will
move to the boundary of the projection ball.

• Linearization. Previous works assume some kind of linearization around the initial point.
The objective is explicitly linearized in Wang et al. (2019).In Cayci et al. (2022), while the
objective is not linearized, the neural networks weights are projected onto a radius of size
O(1/

√
m) around the initial point.

4 Tools in Our Analysis

4.1 Choice of Norm and Gradient Splitting

Figure 1: Key
property of gradient
splitting: h(θ) has
the same inner
product with a − θ
as ∇f(θ) up to a
factor of 1/2.

A linear function h(θ) is said to be a gradient splitting of a convex quadratic
f(θ) minimized at θ = a if

1

2
∇f(θ)T (a− θ) = h(θ)T (θ − a). (14)

In other words, a splitting h(θ) has exactly the same inner product with the
“direction to the optimal solution” as the true gradient of f(θ) (up to the factor
of 1/2). The connection between this idea and RL was made in the following
papers:

• In Ollivier (2018) it was shown that in TD Learning, if the matrix P
corresponds to a reversible Markov chain, then E[ḡ(θt)] = ∇θN (f)
for some f . This makes Neural TD easy to analyze in the reversible
case as it is exactly gradient descent.

• In Liu & Olshevsky (2021), it was shown how to further use the func-
tion N (·) to analyze TD learning with linear approximation when
the policy is not necessarily reversible. In particular, it was shown
that the mean update of TD with linear approximation is a gradient
splitting of the function N (·). This is one of the crucial ideas we
build on in this paper.

4.2 Nonlinear Small-Gain Theorem

Inspired by Olshevsky & Gharesifard (2022), our second main tool is a nonlinear version of the
small-gain theorem . Because the actor and critic update simultaneously, we need to rule out the
possibility that errors in the actor compound with errors in the critic to create divergence. For
example, it is conceivable that, when the policy is fixed, the critic converges to a reasonable approx-
imation; when the critic is fixed, the actor converges to an approximate of the stationary point; but
both updating simultaneously results in divergence.

The core idea of small-gain is to write these updates in such a way so that one can argue that if certain
coefficients are small enough, this “interconnection” of the actor and critic systems converges. The
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small-gain theorem we use is a nonlinear version of the textbook version Drazin (1992). This is
a widely-used trick in control theory that avoids the necessity of explicitly finding a Lyapunov
function.

5 Conclusion

We have provided an analysis of Neural AC using a convex combination of the D-norm and the
Dirichlet semi-norm to describe the error. Our main result is an error rate of O

(
T−0.5 + ϵ

)
+

Õ
(
m−0.5

)
under the i.i.d. sampling and O

(
(log T )2 · T−0.5 + ϵ

)
+ Õ

(
m−0.5

)
under the Markov

sampling for neural networks of arbitrary depth. Crucially, our proof does not make assumptions
that force the neural networks to stay close to their initial conditions, relying instead on arguments
that show that neural networks which are not “too nonlinear” will still converge to an approximate
minimum.
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A Sketch of Proof

In this section we give a basic idea of how we prove Theorem 3.1. Briefly speaking, our idea contains
two directions: First, the Critic error (captured by ∆Q) can be upper-bounded by the Actor error
(captured by ∆V ); Next, the Actor error can also be upper-bounded by the Critic error. Therefore,
both errors are bounded and converge to 0. Based on this idea, our proof can be divided into three
steps:

Step 1: Analysis of Actor update.

In Appendix B, we first bound ∆V by ∆Q through Actor update. On one hand, by considering Actor
update and comparing it with mean-path update (where we replace g by ḡ), one would have

E [θt+1 − θt|Ft] =− αθ∇V ∗
θt − αθDQ.

E
[
||θt+1 − θt||2|Ft

]
≤||αθ∇V ∗

θt + αθDQ||2 +
4

(1− γ)2
αθ2U2

g .

where DQ = ∇ lnπ(θt)
TΦθt

[
Q(wt)−Q∗

θt

]
, Ft = (wt, θt) and Ug is defined in Lemma C.13.

On the other hand, Lemma C.12 suggests V ∗
θ is smooth w.r.t. θ. Hence,

V ∗
θt+1

≤ V ∗
θt +∇V ∗

θt(θt+1 − θt) +
HV

2
||θt+1 − θt||2.

Our claim is a combination of the above facts and some simple calculations:

(αθ

2
− αθ

2HV

)
∆V ≤

E
[
V ∗
θ1

− V ∗
θT+1

]
T

+ c1

(
αθ

2HV +
αθ

2

)
∆Q

+ c2

(
αθ

2HV +
αθ

2

)
ϵ2 +

2HV

(1− γ)2
αθ2U2

g .

We successfully bound ∆V by ∆Q.

Step 2: Analysis of Critic update.

In Appendix C, we next bound ∆Q by ∆V through Critic update. Here we perform classical way of
analysis, which begins with

E
[
||wt+1 − ŵ∗

θt+1
||2
]

≤E
[
||wt − ŵ∗

θt + αwf(Ot, wt)||2
]︸ ︷︷ ︸

I1

+ E
[
2(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf(Ot, wt))

]
︸ ︷︷ ︸

I2

+E
[
||ŵ∗

θt − ŵ∗
θt+1

||2
]

︸ ︷︷ ︸
I3

.

We treat the above three terms respectively. To address I1, by comparing with mean-path update:

E
[
||wt − ŵ∗

θt + αwf(Ot, wt)||2
]

=E
[
||wt − ŵ∗

θt ||
2
]
+ E

[
2αw(wt − ŵ∗

θt)
T f̄(wt, θt)

]︸ ︷︷ ︸
I1,1

+ E
[
αw2||f(Ot, wt)||2

]
︸ ︷︷ ︸

I1,2

+E
[
2αw(wt − ŵ∗

θt)
T
[
f(Ot, wt)− f̄(wt, θt)

]]︸ ︷︷ ︸
I1,3

.

Now let us examine this equation carefully. I1,1 is the inner product between wt − ŵ∗
θt

and the
mean-path update f̄(wt, θt), which can be captured by gradient splitting; I1,2 decays as α2

t , so a
loose bound on ||f(Ot, wt)||2 is enough (See Lemma C.15); I1,3 is Markov sampling noise, which
is handled using the same procedure as in Bhandari et al. (2018).

To discuss more about how to address Markov sampling noise, the idea is to using Assumption 2.8 to
show that, after τmix steps, the distance between distribution of agent and the stationary distribution
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decaying geometrically, and thus I1,3 also decays geometrically. However, there is still a lot of
difficulties to apply the same analysis in our work since TD(0) is considered in Bhandari et al.
(2018) while Actor-Critic methods is considered here. The difficulties is induced by the constant
changing of policy in every time steps during training. We introduce an auxiliary chain (See the
definitions before Lemma C.10) to further address the changing of policy problem inspired by Zou
et al. (2019); Wu et al. (2020); Chen & Zhao (2022).

Now we move on to I2. we notice that the dominate term is E
[
2(ŵ∗

θt
− ŵ∗

θt+1
)T (wt − ŵ∗

θt
)
]

since

the remaining term E
[
2(ŵ∗

θt
− ŵ∗

θt+1
)Tαwf(Ot, wt)

]
decays as αθαw (αθ comes from ||ŵ∗

θt
−

ŵ∗
θt+1

|| which can be seen using Assumption 2.6). To handle the dominate term, we first view ŵ∗
θ

as a function of θ and use a second order expansion as follows. Then the problem get solved after
noticing that we already derive relationships on θt+1 − θt in Step 1.

ŵ∗
θt+1

(i) = ŵ∗
θt(i) +∇ŵ∗

θt(i)
T (θt+1 − θt) +

1

2
(θt+1 − θt)

T∇2ŵ∗
θ′
t
(i)(θt+1 − θt).

To address I3, we notice that it decays as αw2 as a direct result of Assumption 2.6.

Combine all of the above result we can finally arrive at the relationship between ∆Q and ∆V .

Step 3: Combine result from Step 1 and 2 by small-gain theorem.

Now we are ready to use the Small Gain theorem. We fit the results from Step 1 and Step 2 by the
following form:

x ≤ a1y + a2, y ≤ b1x+ b2 + b3
√
y.

Then, Small Gain theorem implies that y can be upper bounded by the following inequality:

y ≤ 2b2 + b23 + 2a2b1
1− 2a1b1

.

Once we have a bound for y, we can easily compute a bound for x.
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B Actor-Critic

In this section, we will review and clarify the AC algorithm being considered in this paper.

Recall that in Eq.(8), we defined the set W as W = {w | ||w − w0|| ≤ σw} and the TD error δt as

δt = r(st, at) + γQ(s′t, a
′
t, wt)−Q(st, at, wt).

With δt, we now define function f and g such that

f(Ot, wt) = δt∇wQ(st, at, wt), g(Ôt, wt, θt) = Q(ŝt, ât, wt)∇θ lnπ(ât|ŝt, θt), (15)

where we denote by Ot = (st, at, s
′
t, a

′
t) ∈ S × A × S × A the tuple of st, at, s

′
t, a

′
t and by

Ôt = (ŝt, ât) ∈ S ×A the ŝt, ât pair. The way of sampling Ot and Ôt is mentioned in Section 2.4.

With these notations, the AC update mentioned in Section 2.4 can be written as

wt+1 = ProjW {wt + αwf(Ot, wt)} , θt+1 = θt −
αθ

1− γ
g(Ôt, wt, θt).

We find it useful to talk about the “mean path update”. This just means that the functions f(·, ·) and
g(·, ·, ·) in Eq.(15) are replaced by their means, assuming that (st, at) is sampled from µθt while
(ŝt, ât) is sampled from (1 − γ)ϕθt . More formally, the mean-path update functions f̄(·, ·) and
ḡ(·, ·) are defined as

f̄(wt, θt) =
∑
st,at

µθt(st, at)∇Q(st, at, wt)Es′t,a
′
t|st,at

[r(st, at) + γQ(s′t, a
′
t, wt)−Q(st, at, wt)]

=∇Q(wt)
TDθt(γPθt − I)(Q(wt)−Q∗

θt),

ḡ(wt, θt) =
1

1− γ
EÔt

[g(Ôt, wt, θt)] =
1

1− γ
E[g(Ôt, wt, θt)|Ft] = ∇ lnπ(θt)

TΦθtQ(wt),

(16)
where Ft = (wt, θt) and EOt , EÔt

assume Ot follows µθt and Ôt follows (1− γ)ϕθt . To show the
latter one, as we discussed in Section 2.4, we first sample T such that P (T = t) = (1 − γ)γt. We
then perform T transition starting from s0. This mean that by total probability,

P (S = s) =
+∞∑
t=0

P (S = s|T = t) · P (T = t) = (1− γ)
+∞∑
t=0

γtP (St = s) = ϕ(s).

Thus, if the policy here is given by θt, it follows immediately that

P (Ôt = (s, a)) = (1− γ)ϕθt(s)π(a|s, θt) = (1− γ)ϕθt(s, a).

Notice that under these notations, we have EÔt
[g(Ôt, wt, θt)] = E[g(Ôt, wt, θt)|Ft].

Algorithm 1 details the algorithm considered in this paper.

Algorithm 1 Actor-Critic
Require: Numbers of iterations T , learning rate αw and αθ, projection set W .

Initialize θ0, br and w(k) such that |br| ≤ 1, ∀r and every entry of w(k) is chosen from N(0, 1).
Initialize the starting state-action pair s0, a0.
for t ∈ {1, 2, . . . , T} do

Sample st ∼ Penv(s|st−1, at−1), at ∼ π(a|st, θt), s′t ∼ Penv(s|st, at), a′t ∼ π(a|s′t, θt).
Sample Ôt by first sampling a random variable T with P (T = t) = (1 − γ)γt, and second

obtaining T transitions by starting at s0 and taking actions according to π(a|s, θt).
Compute δt, f(Ot, wt), g(Ôt, wt, θt), and update wt+1 and θt+1 as

wt+1 = ProjW {wt + αwf(Ot, wt)} , θt+1 = θt −
αθ

1− γ
g(Ôt, wt, θt).

end for

14



C Auxiliary Lemmas

In this section, we will present all the auxiliary lemmas needed to prove Theorem 3.1.

C.1 Properties of the Neural Network

In this section, we will show that the neural network has Lipschitzness and smoothness properties.
The following result is based on Liu et al. (2020) and has been talked about in Tian et al. (2023).
Lemma C.1. For any (s, a) ∈ S×A, there exists scalars LQ(s, a), HQ(s, a) such that for w1, w2 ∈
W ,

||Q(s, a, w1)−Q(s, a, w2)|| ≤LQ(s, a)||w1 − w2||.
||∇Q(s, a, w1)−∇Q(s, a, w2)|| ≤HQ(s, a)||w1 − w2||.

If we further define

LQ =

√∑
s,a

LQ(s, a)2, HQ =

√∑
s,a

HQ(s, a)2,

then LQ = O(1) and HQ = Õ
(

1√
m

)
with respect to m.

Proof. The Lipschitzness property is proved in Tian et al. (2023) while the smoothness property is
a direct result of Liu et al. (2020).

C.2 Properties of the Operator N

In this section, we will show several results about the operator Nθ defined in Eq.(12).
Lemma C.2. For any function f defined on S ×A,

−Nθ(f) = fTDθ(γPθ − I)f.

Proof. The proof is given by Lemma A.1 in Tian et al. (2023).

Lemma C.3. There exists λmin > 0 and λ′
min > 0 such that

Nθ

(
Q(w)− Q̂∗

θ

)
≥ λmin ∥w − ŵ∗

θ∥
2
,

and
Nθ

(
Q(w)− Q̂∗

θ

)
≥ λ′

min

∥∥∥Q(w)− Q̂∗
θ

∥∥∥2 ,
where λmin = (1− γ)µminλ

′2 and λ′
min is given by λ′

min = (1− γ)µminλ
′2L2

Q.

Proof. To show the first part,

Nθ

(
Q(w)− Q̂∗

θ

)
=(1− γ)||Q(w)− Q̂∗

θ||2D + γ||Q(w)− Q̂∗
θ||2Dir

≥(1− γ)||Q(w)− Q̂∗
θ||2D

≥(1− γ)µminλ
′2 ∥w − ŵ∗

θ∥
2
,

where the first line is the definition of N (·) while the last line uses Assumption 2.9. We can set
λmin = (1− γ)µminλ

′2 and we finish the proof for the first part.

The second part is an obvious result that simply combines the first part and Lemma C.1.

Lemma C.4. Suppose DQ = ∇ lnπ(θt)
TΦθt

[
Q(wt)−Q∗

θt

]
. The relationship between DQ and

Nθt(Q(wt)− Q̂∗
θt
) can be described as follows:

∥DQ∥2 ≤ c1 · Nθt(Q(wt)− Q̂∗
θt) + c2ϵ

2,

where c1 =
2L′

π
2

(1−γ)2λ′
min

and c2 =
2L′

π
2

(1−γ)2 .
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Proof. One can easily show that

(1− γ)DQ = E(s,a)∼(1−γ)ϕθt

[
lnπ(a|s, θt)(Q(s, a, wt)−Q∗

θt(s, a))
]
.

As assumed in Assumption 2.4, ||∇ lnπ(a|s, θt)|| ≤ L′
π . Hence,

(1− γ)||DQ|| ≤ L′
π · E(s,a)∼(1−γ)ϕθt

[
|Q(s, a, wt)−Q∗

θt(s, a)|
]
.

Using the facts that (E[X])2 ≤ E[X2],

(1− γ)2||DQ||2 ≤ L′
π
2 · E(s,a)∼(1−γ)ϕθt

[
|Q(s, a, wt)−Q∗

θt(s, a)|
2
]
.

On the other hand,

|Q(s, a, wt)−Q∗
θt(s, a)|

2 ≤ 2|Q(s, a, wt)− Q̂∗
θt(s, a)|

2 + 2ϵ2.

where we use Assumption 2.5 which tells us |Q̂∗
θt
(s, a)−Q∗

θt
(s, a)| ≤ ϵ. Hence,

(1− γ)2||DQ||2 ≤ 2L′
π
2 · E(s,a)∼(1−γ)ϕθt

[
|Q(s, a, wt)− Q̂∗

θt(s, a)|
2
]
+ 2L′

π
2
ϵ2.

Combine with Lemma C.3 and the fact that (1− γ)ϕθt(s, a) ≤ 1,

(1− γ)2||DQ||2 ≤ 2L′
π
2

λ′
min

Nθ

(
Q(w)− Q̂∗

θ

)
+ 2L′

π
2
ϵ2.

This finishes the proof.

C.3 Mean-value Theorem and Extensions

Lemma C.5. These following lemmas generalize the mean-value theorem to higher dimensional
input and output cases.

(a) Let h : R → R be any differentiable function. For any x, y ∈ R, there exists λ ∈ (0, 1) and
z = λx+ (1− λ)y such that

h(y)− h(x) = h′(z)(y − x).

(b) Let ξ : Ra → R be any differentiable function. For any x, y ∈ Ra, there exists λ ∈ (0, 1) and
z = λx+ (1− λ)y such that

ξ(y)− ξ(x) = ξ′(z)(y − x).

(c) Let f : Ra → Rb be any differentiable function and e ∈ Rb be any vector. For any x, y ∈ Ra,
there exists λ ∈ (0, 1) and z = λx+ (1− λ)y such that

eT (f(y)− f(x)) = eT f ′(z)(y − x),

where f ′(z) is the Jacobian at z.

Proof. This proof is given by Lemma A.2 in Tian et al. (2023).

C.4 The Mixing of Two Markov Chains

In this section, we argue that if two Markov chains satisfy Assumption 2.8, then the difference
between their distributions could be very small. This is inspired by and follows the same logic as
Chen & Zhao (2022); Zou et al. (2019). Before that, we will first introduce the total variation norm
for vectors and matrices, which can be used to measure a difference between distributions.

Denote f : X → R to be any real value function. We can define the total variation norm of f ,
denoted by ||f ||TV, as

||f ||TV =
∑
x∈X

|f(x)|.
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For matrix A, we can also define ||A||TV to be

||A||TV = sup
||f ||TV=1

||fTA||TV.

If f is some probability measure, since f(x) ∈ [0, 1], it is easy to conclude that ||f ||TV = 1.
Likewise, if A is a Markov transition matrix, we can show that ||A||TV = 1.

The following lemma establishes the relationship between the total variation norm with the more
familiar 1-norm and ∞-norm.
Lemma C.6. The following statements are true:

a. For any vector f , ||f ||TV = ||f ||1.

b. For any matrix A, ||A||TV = ||A||∞.

Proof. The lemma is obvious so we omit the proof here.

Based on Assumption 2.8, we have the following result:
Lemma C.7. If the Markov chain has transition probability matrix A, then we have

||At||TV ≤ 1, ∀t.

Further, if the Markov chain satisfies Assumption 2.8, then we have

||At||TV ≤ Cβt, ∀t ≥ τmix.

Proof. The first part of this lemma is obvious because A is a stochastic (Markov) matrix and by
Lemma C.6, || · ||TV is just the same as || · ||∞.

For the second part, by the definition of total variation norm,

||A||TV = sup
||f ||TV =1

||fTA||TV =
1

2
sup
i,j

||(ei − ej)
TA||TV,

where ei means the all-zero vector except a 1 at the i’th entry. By Assumption 2.8,

||At||TV ≤ 1

2
sup
i,j

(
||(ei − µ′)TAt||TV + ||(ej − µ′)TAt||TV

)
≤ Cβt, ∀t ≥ τmix.

The following theorem, which is inspired by Theorem 3.1 in Mitrophanov (2005), is very important
in many analyses of AC that take Markov sampling into consideration (i.e., Wu et al. (2020); Chen
& Zhao (2022)). However, since our settings are slightly different, we provide our own version.
Lemma C.8. Suppose we have the following two Markov Chains which of both satisfy Assumption
2.8,

pA0
A−→ pA1

A−→ . . .
A−→ pAt ,

pB0
B−→ pB1

B−→ . . .
B−→ pBt ,

where pAi , p
B
i stand for the probability at step i under transition matrix A,B, respectively. The

following inequality holds:

||pAt − pBt ||1 ≤ Cβt||pA0 − pB0 ||1 + (τmix + C
1

1− β
)||A−B||∞, ∀t ≥ τmix + 1.

Proof. First, we prove that

pAt
T − pBt

T
=
(
pA0 − pB0

)T
Bt +

t−1∑
i=0

pA0
T
(A−B)Bt−i−1.
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by induction. If t = 1, by definition we know

pA1
T − pB1

T
= pA0

T
A− pB0

T
B =

(
pA0 − pB0

)T
B + pA0

T
(A−B).

If the result holds for t = k, then when t = k + 1,

pAk+1

T − pBk+1

T
=pAk

T
A− pBk

T
B

=
(
pAk − pBk

)T
B + pAk

T
(A−B)

=
(
pA0 − pB0

)T
Bk+1 +

k−1∑
i=0

pA0
T
(A−B)Bk−i + pAk

T
(A−B)

=
(
pA0 − pB0

)T
Bk+1 +

k∑
i=0

pA0
T
(A−B)Bk−i,

where the third line is because we assume the result holds for the t = k case. Now, we can take the
total variation norm on both sides:∥∥pAt − pBt

∥∥
TV

≤
∥∥∥(pA0 − pB0

)T
Bt
∥∥∥
TV

+

∥∥∥∥∥
t−1∑
i=0

pA0
T
(A−B)Bt−i−1

∥∥∥∥∥
TV

≤
∥∥pA0 − pB0

∥∥
TV

·
∥∥Bt

∥∥
TV

+
∥∥pA0 ∥∥TV

· ∥A−B∥TV ·
t−1∑
i=0

∥∥Bt−i−1
∥∥
TV

≤Cβt
∥∥pA0 − pB0

∥∥
1
+ ∥A−B∥∞

(
τmix +

t−1∑
i=τmix

Cβi

)

=Cβt
∥∥pA0 − pB0

∥∥
1
+ ∥A−B∥∞

(
τmix + C

βτmix − βt

1− β

)
≤Cβt||pA0 − pB0 ||1 + (τmix + C

1

1− β
)||A−B||∞,

where the third line utilizes Lemma C.6 and Lemma C.7.

With Lemma C.8, we can derive many useful results. The following result is similar to Lemma 3 in
Zou et al. (2019), Lemma B.1 in Wu et al. (2020), and Lemma B.4 in Chen & Zhao (2022), which
shows that both of µ′

θ, the stationary distribution over states, and µθ, the stationary distribution over
state-action pairs, are Lipschitz with respect to θ.
Lemma C.9. The following statements hold:

a.
||µ′

θ1 − µ′
θ2 ||1 ≤ (τmix + C

1

1− β
)naLπ||θ1 − θ2||.

b.
||µθ1 − µθ2 ||1 ≤ (1 + τmix + C

1

1− β
)naLπ||θ1 − θ2||,

where na is the number of actions. In other words, na = |A|.

Proof. Recall the state transition matrix P ′
θ is defined by Pθ(s

′|s) =
∑

a Penv(s
′|s, a)π(a|s, θ) and

corresponding stationary distribution µ′
θ
T
= µ′

θ
T
P ′
θ. Use Lemma C.9, we know that

||µ′
θ1 − µ′

θ2 ||1 ≤ Cβt||µ′
θ1 − µ′

θ2 ||1 + (τmix + C
1

1− β
)||P ′

θ1 − P ′
θ2 ||∞.

Notice that
||P ′

θ1 − P ′
θ2 ||∞ =sup

s

∑
s′

∑
a

Penv(s
′|s, a) |π(a|s, θ1)− π(a|s, θ2)|

≤ sup
s

∑
s′

∑
a

Penv(s
′|s, a)Lπ||θ1 − θ2||

=naLπ||θ1 − θ2||,
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where we use Assumption 2.4 in the second line. Hence,

||µ′
θ1 − µ′

θ2 ||1 ≤ Cβt||µ′
θ1 − µ′

θ2 ||1 + (τmix + C
1

1− β
)naLπ||θ1 − θ2||.

Taking limt→∞ on both sides, we derive

||µ′
θ1 − µ′

θ2 ||1 ≤ (τmix + C
1

1− β
)naLπ||θ1 − θ2||.

This finishes the proof of the first part.

Now, Eq.(1) implies

||µθ1 − µθ2 ||1 =
∑
s,a

|µ′
θ1(s)π(a|s, θ1)− µ′

θ2(s)π(a|s, θ2)|

≤
∑
s,a

[
|µ′

θ1(s)π(a|s, θ1)− µ′
θ1(s)π(a|s, θ2)|+ |µ′

θ1(s)π(a|s, θ2)− µ′
θ2(s)π(a|s, θ2)|

]
≤
∑
s,a

µ′
θ1(s)Lπ||θ1 − θ2||+ ||µ′

θ1 − µ′
θ2 ||1

≤(1 + τmix + C
1

1− β
)naLπ||θ1 − θ2||.

In order to show the following lemmas, we need to introduce the following auxiliary Markov chain:

st−τmix−1

π(θt−τmix−1)−−−−−−−−→ at−τmix−1
Penv−−−→ st−τmix

π(θt−τmix
)

−−−−−−−→ at−τmix

Penv−−−→ st−τmix+1

π(θt−τmix
)

−−−−−−−→

ãt−τmix+1
Penv−−−→ s̃t−τmix+2

π(θt−τmix
)

−−−−−−−→ ãt−τmix+2
Penv−−−→ . . .

Penv−−−→ s̃t
π(θt−τmix

)
−−−−−−−→ ãt

Penv−−−→ s̃t+1.

For reference, the original Markov chain around t is

st−τmix−1

π(θt−τmix−1)−−−−−−−−→ at−τmix−1
Penv−−−→ st−τmix

π(θt−τmix
)

−−−−−−−→ at−τmix

Penv−−−→ st−τmix+1

π(θt−τmix+1)−−−−−−−−→

at−τmix+1
Penv−−−→ st−τmix+2

π(θt−τmix+2)−−−−−−−−→ at−τmix+2
Penv−−−→ . . .

Penv−−−→ st
π(θt)−−−→ at

Penv−−−→ st+1.

For the consistency of notations, we will denote Oτ = (sτ , aτ , s
′
τ , a

′
τ ) and Õτ = (s̃τ , ãτ , s̃

′
τ , ã

′
τ )

where in this case we have s′τ = sτ+1, s̃′τ = s̃τ+1 and a′τ ∼ π(a|s, θτ ), ã′τ ∼ π(a|s, θt−τmix
). This

kind of notations will immediately implies P (Õt−τmix−1 ∈ ·) = P (Ot−τmix−1 ∈ ·).
The following lemma claims that the distribution difference between the two Markov chains above
will be very small.

Lemma C.10. The following statements are true:

a. For any possible τ ∈ {t− τmix, t− τmix + 1, . . . , t},

||P (Sτ+1 ∈ ·)− P (S̃τ+1 ∈ ·)||1 ≤ ||P (Oτ ∈ ·)− P (Õτ ∈ ·)||1.

b. For any possible τ ∈ {t− τmix, t− τmix + 1, . . . , t},

||P (Oτ ∈ ·)− P (Õτ ∈ ·)||1 ≤ 2naLπE [∥θτ − θt−τmix
∥] + ||P (Sτ ∈ ·)− P (S̃τ ∈ ·)||1.

c. Consider P (Ot ∈ ·) and P (Õt ∈ ·),

||P (Ot ∈ ·)− P (Õt ∈ ·)||1 ≤ 2naLπ

t∑
i=t−τmix

E [∥θi − θt−τmix
∥] .
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Proof. For the first part,
||P (Sτ+1 ∈ ·)− P (S̃τ+1 ∈ ·)||1

=
∑
s′

∣∣∣P (Sτ+1 = s′)− P (S̃τ+1 = s′)
∣∣∣

≤
∑

s,a,s′,a′

∣∣∣P (Sτ = s,Aτ = a, Sτ+1 = s′Aτ+1 = a′)− P (S̃τ = s, Ãτ = a, S̃τ+1 = s′, Ãτ+1 = a′)
∣∣∣

=||P (Oτ ∈ ·)− P (Õτ ∈ ·)||1.
For the second part, conditioned on θt−τmix

and st−τmix+1, we denote
M1 =P (Sτ = s)P (θτ = zτ |Sτ = s)π(a|s, zτ )Penv(s

′|s, a)π(a′|s′, zτ )
M2 =P (Sτ = s)P (θτ = zτ |Sτ = s)π(a|s, zτ )Penv(s

′|s, a)π(a′|s′, θt−τmix
)

M3 =P (Sτ = s)P (θτ = zτ |Sτ = s)π(a|s, θt−τmix)Penv(s
′|s, a)π(a′|s′, θt−τmix)

M4 =P (S̃τ = s)P (θτ = zτ |Sτ = s)π(a|s, θt−τmix
)Penv(s

′|s, a)π(a′|s′, θt−τmix
),

which will be useful later. Using notations from the original Markov Chain,
P (Sτ = s,Aτ = a, Sτ+1 = s′, Aτ+1 = a′)

=

∫
P (Sτ = s,Aτ = a, Sτ+1 = s′, Aτ+1 = a′, θτ = zτ )dzτ

=

∫
P (Sτ = s)P (θτ = zτ |Sτ = s)π(a|s, zτ )Penv(s

′|s, a)π(a′|s′, zτ )dzτ

=

∫
M1dzτ .

Similarly, the auxiliary Markov Chain gives us
P (S̃τ = s, Ãτ = a, S̃τ+1 = s′, Ãτ+1 = a′)

=P (S̃τ = s)π(a|s, θt−τmix)Penv(s
′|s, a)π(a′|s′, θt−τmix)

=

∫
P (S̃τ = s)P (θτ = zτ |Sτ = s)π(a|s, θt−τmix

)Penv(s
′|s, a)π(a′|s′, θt−τmix

)dzτ

=

∫
M4dzτ .

We now rephrase the left-hand side term we want to prove,
||P (Oτ ∈ ·)− P (Õτ ∈ ·)||1

≤
∑

s,a,s′,a′

∣∣∣P (Sτ = s,Aτ = a, Sτ+1 = s′, Aτ+1 = a′)− P (S̃τ = s, Ãτ = a, S̃τ+1 = s′, Ãτ+1 = a′)
∣∣∣

≤
∑

s,a,s′,a′

∫
|M1 −M4|dzτ

≤
∑

s,a,s′,a′

∫
|M1 −M2|dzτ︸ ︷︷ ︸
I1

+
∑

s,a,s′,a′

∫
|M2 −M3|dzτ︸ ︷︷ ︸
I2

+
∑

s,a,s′,a′

∫
|M3 −M4|dzτ︸ ︷︷ ︸
I3

.

For I1,

I1 =
∑

s,a,s′,a′

∫
P (Sτ = s)P (θτ = zτ |Sτ = s)π(a|s, zτ )Penv(s

′|s, a)

· |π(a′|s′, zτ )− π(a′|s′, θt−τmix)| dzτ

≤
∑

s,a,s′,a′

∫
P (Sτ = s)P (θτ = zτ |Sτ = s)π(a|s, zτ )Penv(s

′|s, a)Lπ ∥zτ − θt−τmix
∥ dzτ

=naLπ

∑
s

∫
P (Sτ = s)P (θτ = zτ |Sτ = s) ∥zτ − θt−τmix∥ dzτ

=naLπE [∥θτ − θt−τmix
∥] .
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For I2,

I2 =
∑

s,a,s′,a′

∫
P (Sτ = s)P (θτ = zτ |Sτ = s) [π(a|s, zτ )− π(a|s, θt−τmix

)]Penv(s
′|s, a)

· π(a′|s′, θt−τmix
)dzτ

≤
∑

s,a,s′,a′

∫
P (Sτ = s)P (θτ = zτ |Sτ = s)Lπ ∥zτ − θt−τmix

∥Penv(s
′|s, a)π(a′|s′, θt−τmix

)dzτ

=naLπ

∑
s

∫
P (Sτ = s)P (θτ = zτ |Sτ = s) ∥zτ − θτ−τmix

∥ dzτ

=naLπE [∥θτ − θt−τmix∥] .
For I3,

I3 =
∑

s,a,s′,a′

∫ ∣∣∣P (Sτ = s)− P (S̃τ = s)
∣∣∣P (θτ = zτ |Sτ = s)π(a|s, θt−τmix

)Penv(s
′|s, a)

· π(a′|s′, θt−τmix
)dzτ

=
∑
s

∣∣∣P (Sτ = s)− P (S̃τ = s)
∣∣∣

=||P (Sτ ∈ ·)− P (S̃τ ∈ ·)||1.
Hence,

||P (Oτ ∈ ·)− P (Õτ ∈ ·)||1 ≤ 2naLπE [∥θτ − θt−τmix∥] + ||P (Sτ ∈ ·)− P (S̃τ ∈ ·)||1,
which finishes the proof for part b.

It is easy to check that part a implies the following:

||P (Sτ ∈ ·)− P (S̃τ ∈ ·)||1 ≤ ||P (Oτ−1 ∈ ·)− P (Õτ−1 ∈ ·)||1.
The above fact, along with the result from part b, tells us the following:

||P (Oτ ∈ ·)− P (Õτ ∈ ·)||1 ≤ 2naLπE [∥θτ − θt−τmix∥] + ||P (Oτ−1 ∈ ·)− P (Õτ−1 ∈ ·)||1.
Repeat the inequality above over t to t− τmix we have

||P (Ot ∈ ·)− P (Õt ∈ ·)||1 ≤ 2naLπ

t∑
i=t−τmix

E [∥θi − θt−τmix
∥] .

C.5 Smoothness of the State-Value Function

The following two lemmas show that the state value function is actually smooth with respect to θ.
The idea here is inspired by Olshevsky & Gharesifard (2022). The first lemma requires the following
basic identity from Zwillinger (2018): for matrix Aθ,

∂
(
A−1

θ

)
∂θi

= −A−1
θ

∂Aθ

∂θi
A−1

θ .

Lemma C.11. For two vectors u, v ∈ Rn whose entries are bounded. Suppose

qθ = uT (I − γPθ)
−1v.

Then, there exists a constant Lq such that

||∇qθ|| ≤ Lq.

Similarly, if
q′θ = uT (I − γP ′

θ)
−1v.

Then, there exists a constant L′
q such that

||∇q′θ|| ≤ L′
q.
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Proof. The proof can be found in Olshevsky & Gharesifard (2022).

The following lemma, which is our goal in this section, claims that V ∗
θ is smooth with respect to θ.

Lemma C.12. V ∗
θt

is HV -smoothness with respect to θt.

Proof. Using Theorem 2.1, we obtain the following result:∥∥∇V ∗
θ1 −∇V ∗

θ2

∥∥
=

∥∥∥∥∥∥
∑

(s,a)∈S×A

ϕθ1(s, a)Q
∗
θ1(s, a)∇ lnπ(a|s, θ1)−

∑
(s,a)∈S×A

ϕθ2(s, a)Q
∗
θ2(s, a)∇ lnπ(a|s, θ2)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑

(s,a)∈S×A

ϕθ1(s, a)Q
∗
θ1(s, a)∇ lnπ(a|s, θ1)−

∑
(s,a)∈S×A

ϕθ1(s, a)Q
∗
θ1(s, a)∇ lnπ(a|s, θ2)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

(s,a)∈S×A

ϕθ1(s, a)Q
∗
θ1(s, a)∇ lnπ(a|s, θ2)−

∑
(s,a)∈S×A

ϕθ1(s, a)Q
∗
θ2(s, a)∇ lnπ(a|s, θ2)

∥∥∥∥∥∥
+

∥∥∥∥∥∥
∑

(s,a)∈S×A

ϕθ1(s, a)Q
∗
θ2(s, a)∇ lnπ(a|s, θ2)−

∑
(s,a)∈S×A

ϕθ2(s, a)Q
∗
θ2(s, a)∇ lnπ(a|s, θ2)

∥∥∥∥∥∥
≤

∑
(s,a)∈S×A

ϕθ1(s, a)Q
∗
θ1(s, a) ∥∇ lnπ(a|s, θ1)−∇ lnπ(a|s, θ2)∥︸ ︷︷ ︸

I1

+
∑

(s,a)∈S×A

ϕθ1(s, a)
∣∣Q∗

θ1(s, a)−Q∗
θ2(s, a)

∣∣∇ lnπ(a|s, θ2)︸ ︷︷ ︸
I2

+
∑

(s,a)∈S×A

|ϕθ1(s, a)− ϕθ2(s, a)|Q∗
θ2(s, a)∇ lnπ(a|s, θ2)︸ ︷︷ ︸

I3

.

We now show that all I1, I2, I3 can be bounded by a multiple of ||θ1 − θ2||.
For I1, by Assumption 2.4 we know that ∇ lnπ(a|s, θ) is Lipschitz, which, together with ϕθ(s, a) ≤
1

1−γ and Q∗
θ(s, a) ≤

rmax

1−γ , implies that I1 can be upper bounded by a multiple of ||θ1 − θ2||.

For I2 , since Q∗
θ satisfies Bellman equation, we can write Q∗

θ using matrix multiplication, which is

Q∗
θ = (1− γPθ)

−1R.

By Lemma C.11, this implies

Q∗
θ(s, a) = eTs,a(1− γPθ)

−1R,

where es,a has only one non-zero entry of one corresponding to the pair (s, a). Hence, Q∗
θ(s, a) is

Lipschitz with respect to θ.

For I3, by definition,
Pθ(St = s|S0 = s0) = eTs0P

′
θ
t
es.

Thus,
ϕθ(s, a) = ϕθ(s)π(a|s, θ) = eTs0(I − γP ′

θ)
−1esπ(a|s, θ),

where es has only one non-zero entry of one corresponding to s. Again, by Lemma C.11, ϕθ(s, a)
is Lipschitz with respect to θ.
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C.6 Properties of the Actor Update

The following lemma shows that the incremental in actor update is bounded.

Lemma C.13. For g(Ôt, wt, θt) and ḡ(wt, θt), we have the following properties:

a. For g(Ôt, wt, θt),

||g(Ôt, wt, θt)|| ≤ Ug

where Ug = 2L′
πLQσw + L′

πϵ+ L′
π
rmax

1−γ .

b. For ḡ(wt, θt),

||ḡ(wt, θt)|| ≤
1

1− γ
Ug

where Ug = 2L′
πLQσw + L′

πϵ+ L′
π
rmax

1−γ .

Proof. Recall that in Eq.(15), g(Ôt, wt, θt) is defined to be

g(Ôt, wt, θt) = Q(ŝt, ât, wt)∇θ lnπ(ât|ŝt, θt).

To bound ||g(Ôt, wt, θt)||, by Assumption 2.4 and Lemma C.1, we can do the following manipula-
tions

||g(Ôt, wt, θt)|| =
∥∥∇θ lnπ(ât|ŝt, θt)

(
Q(ŝt, ât, wt)−Q(ŝt, ât, ŵ

∗
θt) +Q(ŝt, ât, ŵ

∗
θt)
)∥∥

≤
∥∥∇θ lnπ(ât|ŝt, θt)

(
Q(ŝt, ât, wt)−Q(ŝt, ât, ŵ

∗
θt)
)∥∥

+
∥∥∇θ lnπ(ât|ŝt, θt)Q(ŝt, ât, ŵ

∗
θt)
∥∥

≤L′
πLQ||wt − ŵ∗

θt ||+
∥∥∇θ lnπ(ât|ŝt, θt)Q(ŝt, ât, ŵ

∗
θt)
∥∥

≤2L′
πLQσw +

∥∥∇θ lnπ(ât|ŝt, θt)
(
Q(ŝt, ât, ŵ

∗
θt)−Q∗(ŝt, ât) +Q∗(ŝt, ât)

)∥∥
=2L′

πLQσw +
∥∥∇θ lnπ(ât|ŝt, θt)

(
Q(ŝt, ât, ŵ

∗
θt)−Q∗(ŝt, ât)

)∥∥
+ ∥∇θ lnπ(ât|ŝt, θt)Q∗(ŝt, ât)∥

≤2L′
πLQσw + L′

πϵ+ L′
π

rmax

1− γ
.

Because Eq.(16) implies that ḡ(wt, θt) is some expectation of g(Ôt, wt, θt) with a coefficient 1
1−γ ,

the second part of this lemma is a direct result of the first part in Lemma C.13.

C.7 Properties of the Critic Update

In this section, we will introduce some properties that we find useful in analyzing critic update.

Notice that, as defined in Eq.(8), δt actually depends on Ot and wt. Here we make this dependency
explicitly and thus write δt as δt = δ(Ot, wt). In this following lemma, we explore some properties
of δt.

Lemma C.14. For δt, we have the following two results:

a. δ(Ot, w) is Lδ-Lipschitz with respect to w,

|δ(Ot, w1)− δ(Ot, w2)| ≤ Lδ||w1 − w2||,

where Lδ = (1 + γ)LQ.

b. |δ(Ot, w)| is upper bounded by Uδ ,

|δ(Ot, w)| ≤ Uδ,

where Uδ = 2(1 + γ)LQσw + (1 + γ)ϵ+ 2
1−γ rmax.
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Proof. Using Eq.(8),

|δ(Ot, w1)− δ(Ot, w2)|
= |(r(st, at) + γQ(s′t, a

′
t, w1)−Q(st, at, w1))− (r(st, at) + γQ(s′t, a

′
t, w2)−Q(st, at, w2))|

= |γ (Q(s′t, a
′
t, w1)−Q(s′t, a

′
t, w2))− (Q(st, at, w1)−Q(st, at, w2))|

≤(1 + γ)LQ||w1 − w2||,
where the last line uses Lemma C.1. On the other hand,

|δ(Ot, w)| = |r(st, at) + γQ(s′t, a
′
t, w)−Q(st, at, w)|

=
∣∣∣r(st, at) + γ

(
Q(s′t, a

′
t, w)− Q̂∗

θ(s
′
t, a

′
t)
)
−
(
Q(st, at, w)− Q̂∗

θ(st, at)
)

+γ
(
Q̂∗

θ(s
′
t, a

′
t)−Q∗

θ(s
′
t, a

′
t)
)
−
(
Q̂∗

θ(st, at)−Q∗
θ(st, at)

)
+ γQ∗

θ(s
′
t, a

′
t)−Q∗

θ(st, at)
∣∣∣

≤rmax + (1 + γ)LQ||w − ŵ∗
θ ||+ (1 + γ)ϵ+

1 + γ

1− γ
rmax

≤2(1 + γ)LQσw + (1 + γ)ϵ+
2

1− γ
rmax,

where the second equation uses Assumption 2.1, Lemma C.1, Eq.(9) and Eq.(5).

With the above properties of δt, now we can further consider f , f̄ , and F defined in Lemma C.17.
Lemma C.15. For f(Ot, w) defined in Eq.(15), we have the following two results:

a. f(Ot, w) is Lf -Lipschitz with respect to w,

||f(Ot, w1)− f(Ot, w2)|| ≤ Lf ||w1 − w2||,

where Lf = (1 + γ)L2
Q +HQUδ .

b. ||f(Ot, w)|| can be upper bounded by Uf ,

||f(Ot, w)|| ≤ Uf ,

where Uf = LQUδ .

Proof. By definition,
f(Ot, w) = δ(Ot, w)∇Q(st, at, w).

Hence,

f(Ot, w1)− f(Ot, w2)

=δ(Ot, w1)∇Q(st, at, w1)− δ(Ot, w2)∇Q(st, at, w2)

=δ(Ot, w1)∇Q(st, at, w1)− δ(Ot, w2)∇Q(st, at, w1)

+ δ(Ot, w2)∇Q(st, at, w1)− δ(Ot, w2)∇Q(st, at, w2)

= [δ(Ot, w1)− δ(Ot, w2)]∇Q(st, at, w1)︸ ︷︷ ︸
I1

+ δ(Ot, w2) (∇Q(st, at, w1)−∇Q(st, at, w2))︸ ︷︷ ︸
I2

.

For I1, by Lemma C.14 and Lemma C.1, we perform the following manipulations:

∥[δ(Ot, w1)− δ(Ot, w2)]∇Q(st, at, w1)∥ ≤LδLQ||w1 − w2||
=(1 + γ)L2

Q||w1 − w2||.
For I2, by Lemma C.14 and Lemma C.1, we derive

∥δ(Ot, w2) (∇Q(st, at, w1)−∇Q(st, at, w2))∥ ≤ UδHQ||w1 − w2||.
Combining I1 and I2 we prove the first part of this lemma.

For the second part, by Lemma C.14 and Lemma C.1,

||f(Ot, w)|| = ||δ(Ot, w)∇Q(st, at, w)|| ≤ UδLQ.
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Lemma C.16. For f̄(w, θ) defined in Eq.(16), we have the following results:

a. ||f̄(w, θ)|| can be upper bounded by Uf ,

||f̄(w, θ)|| ≤ Uf ,

where Uf = LQUδ .

b. f̄(w, θ) is Lf -Lipschitz with respect to w,

||f̄(w1, θ)− f̄(w2, θ)|| ≤ Lf̄ ||w1 − w2||,

where Lf = (1 + γ)L2
Q +HQUδ .

c. f̄(w, θ) is Lf̄ -Lipschitz with respect to θ,

||f̄(w, θ1)− f̄(w, θ2)|| ≤ Lf̄ ||θ1 − θ2||,

where Lf̄ = LQUδ(2 + τmix + C 1
1−β )naLπ .

Proof. Because of Eq.(16), the first and second part of this lemma is a direct result of Lemma C.15.

For the third part,

∥∥f̄(w, θ1)− f̄(w, θ2)
∥∥

=

∥∥∥∥∥∥
∑
s,a

µθ1(s, a)
∑
s′,a′

Penv(s
′|s, a)π(a′|s′, θ1)f(O,w)

−
∑
s,a

µθ2(s, a)
∑
s′,a′

Penv(s
′|s, a)π(a′|s′, θ2)f(O,w)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑
s,a

∑
s′,a′

[µθ1(s, a)Penv(s
′|s, a)π(a′|s′, θ1)− µθ2(s, a)Penv(s

′|s, a)π(a′|s′, θ2)] f(O,w)

∥∥∥∥∥∥
≤

∑
s,a,s′,a′

Penv(s
′|s, a) |µθ1(s, a)π(a

′|s′, θ1)− µθ2(s, a)π(a
′|s′, θ2)| · ||f(O,w)||

≤Uf

∑
s,a,s′,a′

Penv(s
′|s, a) |µθ1(s, a)π(a

′|s′, θ1)− µθ2(s, a)π(a
′|s′, θ2)| ,

where the last line is by Lemma C.15. Further notice that

|µθ1(s, a)π(a
′|s′, θ1)− µθ2(s, a)π(a

′|s′, θ2)|
≤ |µθ1(s, a)π(a

′|s′, θ1)− µθ1(s, a)π(a
′|s′, θ2)|

+ |µθ1(s, a)π(a
′|s′, θ2)− µθ2(s, a)π(a

′|s′, θ2)|
=µθ1(s, a) |π(a′|s′, θ1)− π(a′|s′, θ2)|+ π(a′|s′, θ2) |µθ1(s, a)− µθ2(s, a)| .
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Hence, ∑
s,a,s′,a′

Penv(s
′|s, a) |µθ1(s, a)π(a

′|s′, θ1)− µθ2(s, a)π(a
′|s′, θ2)|

≤
∑

s,a,s′,a′

Penv(s
′|s, a)µθ1(s, a) |π(a′|s′, θ1)− π(a′|s′, θ2)|

+
∑

s,a,s′,a′

Penv(s
′|s, a)π(a′|s′, θ2) |µθ1(s, a)− µθ2(s, a)|

≤Lπ||θ1 − θ2||
∑

s,a,s′,a′

Penv(s
′|s, a)µθ1(s, a)

+
∑

s,a,s′,a′

Penv(s
′|s, a)π(a′|s′, θ2) |µθ1(s, a)− µθ2(s, a)|

=naLπ||θ1 − θ2||+ ||µθ1 − µθ2 ||1

≤(2 + τmix + C
1

1− β
)naLπ||θ1 − θ2||,

where the last line is by Lemma C.9. This implies∥∥f̄(w, θ1)− f̄(w, θ2)
∥∥ ≤Uf (2 + τmix + C

1

1− β
)naLπ||θ1 − θ2||

=LQUδ(2 + τmix + C
1

1− β
)naLπ||θ1 − θ2||.

Lemma C.17. Denote F (O,w, θ) = (w − ŵ∗
θ)

T
[
f(O,w)− f̄(w, θ)

]
. The following results hold:

a. F (O,w, θ) is LFθ
-Lipschitz with respect to θ,

|F (O,w, θ1)− F (O,w, θ2)| ≤ LFθ
||θ1 − θ2||,

where
LFθ

= 2
(
UfLw + σwLf̄

)
.

b. F (O,w, θ) is LFw
-Lipschitz with respect to w,
|F (O,w1, θ)− F (O,w2, θ)| ≤ LFw

||w1 − w2||,
where

LFw
= 4σwLf + 2Uf .

c. Conditioned on θt−τmix
and st−τmix+1,∣∣∣E [F (Ot, wt−τmix

, θt−τmix
)− F (Õt, wt−τmix

, θt−τmix
)|θt−τmix

, st−τmix+1

]∣∣∣
≤4σwUfnaLπ

t∑
i=t−τmix

E [∥θi − θt−τmix
∥ |θt−τmix

, st−τmix+1] .

d. Conditioned on θt−τmix
and st−τmix+1,∣∣∣E [F (Õt, wt−τmix

, θt−τmix
)|θt−τmix

, st−τmix+1

]∣∣∣ ≤ 2σwUfCβτmix−1.

Proof. First, we observe that
|F (O,w, θ1)− F (O,w, θ2)|

=
∣∣(w − ŵ∗

θ1)
T
[
f(O,w)− f̄(w, θ1)

]
− (w − ŵ∗

θ2)
T
[
f(O,w)− f̄(w, θ2)

]∣∣
≤
∣∣(w − ŵ∗

θ1)
T
[
f(O,w)− f̄(w, θ1)

]
− (w − ŵ∗

θ2)
T
[
f(O,w)− f̄(w, θ1)

]∣∣
+
∣∣(w − ŵ∗

θ2)
T
[
f(O,w)− f̄(w, θ1)

]
− (w − ŵ∗

θ2)
T
[
f(O,w)− f̄(w, θ2)

]∣∣
=
∣∣(ŵ∗

θ2 − ŵ∗
θ1)

T
[
f(O,w)− f̄(w, θ1)

]∣∣︸ ︷︷ ︸
I1

+
∣∣(w − ŵ∗

θ2)
T
[
f̄(w, θ2)− f̄(w, θ1)

]∣∣︸ ︷︷ ︸
I2

.
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For I1, we have ∣∣(ŵ∗
θ2 − ŵ∗

θ1)
T
[
f(O,w)− f̄(w, θ1)

]∣∣ ≤2UfLw||θ1 − θ2||,

which is by Lemma C.15 and Assumption 2.6.

For I2, we have ∣∣(w − ŵ∗
θ2)

T
[
f̄(w, θ2)− f̄(w, θ1)

]∣∣ ≤ 2σwLf̄ ||θ1 − θ2||,

which is by Lemma C.16. Combining the above two facts we end the proof of the first part.

For the second part,

|F (O,w1, θ)− F (O,w2, θ)|
=
∣∣(w1 − ŵ∗

θ)
T
[
f(O,w1)− f̄(w1, θ)

]
− (w2 − ŵ∗

θ)
T
[
f(O,w2)− f̄(w2, θ)

]∣∣
≤
∣∣(w1 − ŵ∗

θ)
T
[
f(O,w1)− f̄(w1, θ)

]
− (w1 − ŵ∗

θ)
T
[
f(O,w2)− f̄(w2, θ)

]∣∣
+
∣∣(w1 − ŵ∗

θ)
T
[
f(O,w2)− f̄(w2, θ)

]
− (w2 − ŵ∗

θ)
T
[
f(O,w2)− f̄(w2, θ)

]∣∣
=
∣∣(w1 − ŵ∗

θ)
T
[
(f(O,w1)− f(O,w2))−

(
f̄(w1, θ)− f̄(w2, θ)

)]∣∣
+
∣∣(w1 − w2)

T
[
f(O,w2)− f̄(w2, θ)

]∣∣
≤4σwLf ||w1 − w2||+ 2Uf ||w1 − w2||,

where the last line is by Lemma C.15 and Lemma C.16.

For the third part, conditioned on θt−τmix
and st−τmix+1,∣∣∣E [F (Ot, wt−τmix

, θt−τmix
)− F (Õt, wt−τmix

, θt−τmix
)
]∣∣∣

=
∣∣∣E [(wt−τmix

− ŵ∗
θt−τmix

)T
[
f(Ot, wt−τmix

)− f̄(wt−τmix
, θt−τmix

)
]

−(wt−τmix
− ŵ∗

θt−τmix
)T
[
f(Õt, wt−τmix

)− f̄(wt−τmix
, θt−τmix

)
]]∣∣∣

=
∣∣∣E [(wt−τmix

− ŵ∗
θt−τmix

)T
[
f(Ot, wt−τmix

)− f(Õt, wt−τmix
)
]]∣∣∣

≤2σw

∥∥∥E [f(Ot, wt−τmix
)− f(Õt, wt−τmix

)
]∥∥∥

≤2σwUf ||P (Ot ∈ ·)− P (Õt ∈ ·)||1

≤4σwUfnaLπ

t∑
i=t−τmix

E [∥θi − θt−τmix
∥] ,

where we use Lemma C.15 and Lemma C.10.

For the fourth part, we first denote O+ = (s+, a+, s+
′
, a+

′
) such that (s+, a+) ∼ µθt−τmix

, s+′ ∼
Penv(s

′|s, a) and a+
′ ∼ π(a′|s′, θt−τmix). Under this definition, we have

E
[
F (O+, wt−τmix , θt−τmix)|θt−τmix , st−τmix+1

]
= 0.

By Assumption 2.8, we have

||P (S̃t ∈ ·|θt−τmix
, st−τmix−1)− µ′

θt−τmix
||1 ≤ Cβτmix−1.

Hence, conditioned on θt−τmix
and st−τmix+1,∣∣∣E [F (Õt, wt−τmix

, θt−τmix
)
]∣∣∣

=
∣∣∣E [F (Õt, wt−τmix

, θt−τmix
)− F (O+, wt−τmix

, θt−τmix
)
]∣∣∣

=
∣∣∣E [(wt−τmix

− ŵ∗
θt−τmix

)T
[
f(Õt, wt−τmix

)− f(O+, wt−τmix
)
]]∣∣∣

≤2σwUf ||P (Õt ∈ ·)− P (O+ ∈ ·)||1,
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where the last line is because of Lemma C.15. However,

||P (Õt ∈ ·)− P (O+ ∈ ·)||1
=

∑
s,a,s′,a′

|P (S̃t = s, Ãt = a, S̃t+1 = s′, Ãt+1 = a′)− P (S+
t = s,A+

t = a, S+
t+1 = s′, A+

t+1 = a′)|

=
∑

s,a,s′,a′

|P (S̃t = s)π(a|s, θt−τmix)Penv(s
′|s, a)π(a′|s′, θt−τmix)

− P (S+
t = s)π(a|s, θt−τmix

)Penv(s
′|s, a)π(a′|s′, θt−τmix

)|
=||P (S̃t ∈ ·)− P (S+

t ∈ ·)||1
≤Cβτmix−1.

Hence, conditioned on θt−τmix and st−τmix+1,∣∣∣E [F (Õt, wt−τmix
, θt−τmix

)
]∣∣∣ ≤ 2σwUfCβτmix−1.

The following lemma, which reveals a useful property for critic update, is inspired by Olshevsky &
Gharesifard (2022).
Lemma C.18. For critic update, we have the following two results:

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf̄(wt, θt))|Ft

]
≤

(
√
2αθLw||ḡ(wt, θt)||+

αθ2HwU
2
g√

2(1− γ)2

)
·
∥∥wt − ŵ∗

θt + αwf̄(wt, θt)
∥∥ ,

and

E
[
(ŵ∗

θt − ŵ∗
θt+1

)Tαw
[
f(Ot, wt)− f̄(wt, θt)

]]
≤ 2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
.

Proof. If we use x(i) to denote the i’th entry of vector x,

(ŵ∗
θt − ŵ∗

θt+1
)T (wt− ŵ∗

θt +αwf̄(wt, θt)) =
∑
i

(ŵ∗
θt(i)− ŵ∗

θt+1
(i)) · (wt− ŵ∗

θt +αwf̄(wt, θt))(i).

We can view ŵ∗
θ as a function of θ. Using a second order expansion,

ŵ∗
θt+1

(i) = ŵ∗
θt(i) +∇ŵ∗

θt(i)
T (θt+1 − θt) +

1

2
(θt+1 − θt)

T∇2ŵ∗
θ′
t
(i)(θt+1 − θt).

If we take expectation conditioned on Ft,

E
[
ŵ∗

θt(i)− ŵ∗
θt+1

(i)|Ft

]
=E

[
∇ŵ∗

θt(i)
T (θt − θt+1)|Ft

]
− E

[
1

2
(θt+1 − θt)

T∇2ŵ∗
θ′
t
(i)(θt+1 − θt)|Ft

]
=αθ∇ŵ∗

θt(i)
T ḡ(wt, θt)−

αθ2

2(1− γ)2
E
[
g(Ôt, wt, θt)

T∇2ŵ∗
θ′
t
(i)g(Ôt, wt, θt)|Ft

]
.

This leads to

E
[
ŵ∗

θt(i)− ŵ∗
θt+1

(i)|Ft

]2
≤2αθ2

(
∇ŵ∗

θt(i)
T ḡ(wt, θt)

)2
+

αθ4

2(1− γ)4
E
[
g(Ôt, wt, θt)

T∇2ŵ∗
θ′
t
(i)g(Ôt, wt, θt)|Ft

]2
≤2αθ2Lw(i)

2||ḡ(wt, θt)||2 +
αθ4Hw(i)

2U4
g

2(1− γ)4
.
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where in the last line we use Assumption 2.6 and Lemma C.13. Now we go back to what we really
care about,

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf̄(wt, θt))|Ft

]
=
∑
i

E
[
(ŵ∗

θt(i)− ŵ∗
θt+1

(i)) · (wt − ŵ∗
θt + αwf̄(wt, θt))(i)|Ft

]
=
∑
i

E
[
ŵ∗

θt(i)− ŵ∗
θt+1

(i)|Ft

]
·
[
(wt − ŵ∗

θt + αwf̄(wt, θt))(i)
]

≤
√∑

i

E
[
ŵ∗

θt
(i)− ŵ∗

θt+1
(i)|Ft

]2
·
√∑

i

[
(wt − ŵ∗

θt
+ αwf̄(wt, θt))(i)

]2

≤

√√√√∑
i

(
2αθ2Lw(i)2||ḡ(wt, θt)||2 +

αθ4Hw(i)2U4
g

2(1− γ)4

)
·
∥∥wt − ŵ∗

θt + αwf̄(wt, θt)
∥∥

≤

(
√
2αθLw||ḡ(wt, θt)||+

αθ2HwU
2
g√

2(1− γ)2

)
·
∥∥wt − ŵ∗

θt + αwf̄(wt, θt)
∥∥ ,

where the third line is because the second term is constant conditioned on Ft.

For the second part, notice that we already have the following result

E
[
ŵ∗

θt(i)− ŵ∗
θt+1

(i)|Ft

]2
≤2αθ2Lw(i)

2||ḡ(wt, θt)||2 +
αθ4Hw(i)

2U4
g

2(1− γ)4

≤
2αθ2Lw(i)

2U2
g

(1− γ)2
+

αθ4Hw(i)
2U4

g

2(1− γ)4
,

where we simply bound ||ḡ(wt, θt)|| by Ug (this result is from Lemma C.13). On the other hand, by
Lemma C.15 and Lemma C.16, a rough bound for f(Ot, wt)− f̄(wt, θt) would be simply∥∥f(Ot, wt)− f̄(wt, θt)

∥∥ ≤ 2Uf .

Now we go back to what we really care about,

E
[
(ŵ∗

θt − ŵ∗
θt+1

)Tαw
[
f(Ot, wt)− f̄(wt, θt)

]
|Ft

]
=αw

∑
i

E
[
(ŵ∗

θt(i)− ŵ∗
θt+1

(i)) ·
(
f(Ot, wt)− f̄(wt, θt)

)
(i)|Ft

]
=αw

∑
i

E
[
ŵ∗

θt(i)− ŵ∗
θt+1

(i)|Ft

]
· E
[(
f(Ot, wt)− f̄(wt, θt)

)
(i)|Ft

]
≤αw

√∑
i

E
[
ŵ∗

θt
(i)− ŵ∗

θt+1
(i)|Ft

]2
·
√∑

i

E
[(
f(Ot, wt)− f̄(wt, θt)

)
(i)|Ft

]2

≤αw

√√√√∑
i

(
2αθ2Lw(i)2U2

g

(1− γ)2
+

αθ4Hw(i)2U4
g

2(1− γ)4

)
·

√√√√E

[∑
i

(
f(Ot, wt)− f̄(wt, θt)

)
(i)2|Ft

]

≤2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
,

where the third line is because the two terms are independent when conditioned on Ft. The second
part of this lemma is proved after we take expectation on both sides.
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D Actor Update Analysis

Lemma D.1. (αθ

2
− αθ

2HV

)
∆V ≤

E
[
V ∗
θ1

− V ∗
θT+1

]
T

+ c1

(
αθ

2HV +
αθ

2

)
∆Q

+ c2

(
αθ

2HV +
αθ

2

)
ϵ2 +

2HV

(1− γ)2
αθ2U2

g .

Proof. Actor update says the following:

θt+1 =θt −
αθ

1− γ
g(Ôt, wt, θt)

=θt − αθ ḡ(wt, θt) + αθ ḡ(wt, θt)−
αθ

1− γ
g(Ôt, wt, θt).

By the definition of ḡ(wt, θt) in Eq.(16),
ḡ(wt, θt) =∇ lnπ(θt)

TΦθtQ(wt)

=∇ lnπ(θt)
TΦθt

[
Q∗

θt +Q(wt)−Q∗
θt

]
=∇V ∗

θt
T +∇ lnπ(θt)

TΦθt

[
Q(wt)−Q∗

θt

]
,

where we use the fact in Eq.(7) .

For simplicity, denote DQ = ∇ lnπ(θt)
TΦθt

[
Q(wt)−Q∗

θt

]
. So far we have the following result:

θt+1 − θt = −αθ∇V ∗
θt − αθDQ + αθ ḡ(wt, θt)−

αθ

1− γ
g(Ôt, wt, θt).

On one hand, if we take expectation (conditioned on Ft) on both sides, we get
E [θt+1 − θt|Ft] = −αθ∇V ∗

θt − αθDQ.

where we use the fact in Eq.(16) that E
[

1
1−γ g(Ôt, wt, θt)

]
= ḡ(wt, θt). On the other hand,

E
[
||θt+1 − θt||2|Ft

]
=||αθ∇V ∗

θt + αθDQ||2 + E
[
||αθ ḡ(wt, θt)−

αθ

1− γ
g(Ôt, wt, θt)||2|Ft

]
≤||αθ∇V ∗

θt + αθDQ||2 +
4

(1− γ)2
αθ2U2

g .

where we keep using E
[

1
1−γ g(Ôt, wt, θt)

]
= ḡ(wt, θt). Using Lemma C.12,

V ∗
θt+1

≤ V ∗
θt +∇V ∗

θt(θt+1 − θt) +
HV

2
||θt+1 − θt||2.

Taking expectation (conditioned on Ft) on both sides and we obtain

E
[
V ∗
θt+1

|Ft

]
≤ V ∗

θt +∇V ∗
θt · E [θt+1 − θt|Ft] +

HV

2
E
[
||θt+1 − θt||2|Ft

]
.

Plug in the facts about θt+1 − θt, we know

E
[
V ∗
θt+1

|Ft

]
≤ V ∗

θt −αθ||∇V ∗
θt ||

2−αθ∇V ∗
θtDQ+

HV

2
||αθ∇V ∗

θt
T +αθDQ||2+

2HV

(1− γ)2
αθ2U2

g .

We can use the facts that 2ab ≤ a2 + b2 and (a+ b)2 ≤ 2a2 + 2b2 to obtain

E
[
V ∗
θt+1

|Ft

]
≤V ∗

θt − αθ||∇V ∗
θt ||

2 +
αθ

2
||∇V ∗

θt ||
2 +

αθ

2
||DQ||2

+ αθ2HV ||∇V ∗
θt ||

2 + αθ2HV ||DQ||2 +
2HV

(1− γ)2
αθ2U2

g

=V ∗
θt +

(
αθ

2HV − αθ

2

)
||∇V ∗

θt ||
2 +

(
αθ

2HV +
αθ

2

)
||DQ||2 +

2HV

(1− γ)2
αθ2U2

g

≤V ∗
θt +

(
αθ

2HV − αθ

2

)
||∇V ∗

θt ||
2 +

2HV

(1− γ)2
αθ2U2

g

+
(
αθ

2HV +
αθ

2

)
·
[
c1Nθt(Q(wt)− Q̂∗

θt) + c2ϵ
2
]
,
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where the last inequality we uses the fact from LemmaC.4. We can rewrite it as(αθ

2
− αθ

2HV

)
||∇V ∗

θt ||
2 ≤V ∗

θt − E
[
V ∗
θt+1

|Ft

]
+

2HV

(1− γ)2
αθ2U2

g

+
(
αθ

2HV +
αθ

2

)
·
[
c1Nθt(Q(wt)− Q̂∗

θt) + c2ϵ
2
]
.

Taking expectation on both sides and telescoping sum:(αθ

2
− αθ

2HV

) 1

T

T∑
t=1

E
[
||∇V ∗

θt ||
2
]
≤
E[V ∗

θ1
− V ∗

θT+1
]

T
+ c2

(
αθ

2HV +
αθ

2

)
ϵ2 +

2HV

(1− γ)2
αθ2U2

g

+ c1

(
αθ

2HV +
αθ

2

) 1

T

T∑
t=1

E
[
Nθt(Q(wt)− Q̂∗

θt)
]
.

If we use notations from Eq.(13), the above fact can be rewritten as

(αθ

2
− αθ

2HV

)
∆V ≤

E
[
V ∗
θ1

− V ∗
θT+1

]
T

+ c1

(
αθ

2HV +
αθ

2

)
∆Q

+ c2

(
αθ

2HV +
αθ

2

)
ϵ2 +

2HV

(1− γ)2
αθ2U2

g .
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E Critic Update Analysis under the Markov Sampling Case

Lemma E.1. In the Markov sampling case,(
2αw − 1√

2
αθLw

(
1

λmin
− 2αw

)
−

√
2αθLw

√
c1

(
1

λmin
− 2αw

)
− 2αθ2L2

wc1

)
·∆Q

≤
E
[
||w1 − ŵ∗

θ1
||2
]

T
+

(
1√
2
αθLw + 2αθ2L2

w

)
∆V

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
∆Q

+ Cw,1 + Cw,2 +
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2

+ 2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
+ 2αθ2L2

wc2ϵ
2 +

4L2
w

(1− γ)2
αθ2U2

g ,

where, for simplicity, we denote

Cw,1 = 16αw(1 + γ)LQHQσ
3
w + 4αw(1 + γ)LQϵσw + αw2U2

f ,

and

Cw,2 = 2αwαθτmix (LFθ
+ 4σwUfnaLπ(τmix − 1))Ug+2αw2τmixLFw

σw+4αwσwUfCβτmix−1.

Proof. Recall the critic update is

wt+1 = ProjW {wt + αwf(Ot, wt)} ,
which implies

||wt+1 − ŵ∗
θt+1

||2 =||ProjW {wt + αwf(Ot, wt)} − ŵ∗
θt+1

||2

≤||wt + αwf(Ot, wt)− ŵ∗
θt+1

||2

=||wt − ŵ∗
θt + ŵ∗

θt − ŵ∗
θt+1

+ αwf(Ot, wt)||2

≤||wt − ŵ∗
θt + αwf(Ot, wt)||2

+ 2(ŵ∗
θt − ŵ∗

θt+1
)T (wt − ŵ∗

θt + αwf(Ot, wt)) + ||ŵ∗
θt − ŵ∗

θt+1
||2.

We can take expectation on both sides,

E
[
||wt+1 − ŵ∗

θt+1
||2
]

≤E
[
||wt − ŵ∗

θt + αwf(Ot, wt)||2
]︸ ︷︷ ︸

I1

+ E
[
2(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf(Ot, wt))

]
︸ ︷︷ ︸

I2

+E
[
||ŵ∗

θt − ŵ∗
θt+1

||2
]

︸ ︷︷ ︸
I3

.

(17)

To analyze I1, we derive

E
[
||wt − ŵ∗

θt + αwf(Ot, wt)||2
]

=E
[
||wt − ŵ∗

θt ||
2 + 2αw(wt − ŵ∗

θt)
T f(Ot, wt) + αw2||f(Ot, wt)||2

]
=E

[
||wt − ŵ∗

θt ||
2
]
+ E

[
2αw(wt − ŵ∗

θt)
T f̄(wt, θt)

]︸ ︷︷ ︸
I1,1

+ E
[
αw2||f(Ot, wt)||2

]
︸ ︷︷ ︸

I1,2

+E
[
2αw(wt − ŵ∗

θt)
T
[
f(Ot, wt)− f̄(wt, θt)

]]︸ ︷︷ ︸
I1,3

.

(18)

32



To analyze I1,1, we perform the following of manipulations:

2αw(wt − ŵ∗
θt)

T f̄(wt, θt)

=2αw(wt − ŵ∗
θt)

T∇Q(wt)
TDθt(γPθt − I)(Q(wt)−Q∗

θt)

=2αw(wt − ŵ∗
θt)

T∇Q(wt)
TDθt(γPθt − I)(Q(wt)− Q̂∗

θt + Q̂∗
θt −Q∗

θt)

=2αw
[
(Q(wt)− Q̂∗

θt)
T + (wt − ŵ∗

θt)
T∇Q(wt)

T − (Q(wt)− Q̂∗
θt)

T
]
Dθt(γPθt − I)(Q(wt)− Q̂∗

θt)

+ 2αw(wt − ŵ∗
θt)

T∇Q(wt)
TDθt(γPθt − I)(Q̂∗

θt −Q∗
θt)

=− 2αwNθt(Q(wt)− Q̂∗
θt) + 2αw(wt − ŵ∗

θt)
T (∇Q(wt)−∇Q(wmid))

TDθt(γPθt − I)(Q(wt)− Q̂∗
θt)

+ 2αw(wt − ŵ∗
θt)

T∇Q(wt)
TDθt(γPθt − I)(Q̂∗

θt −Q∗
θt)

≤− 2αwNθt(Q(wt)− Q̂∗
θt) + 2αw(1 + γ)LQHQ||wt − ŵ∗

θt ||
3 + 2αw(1 + γ)LQϵ||wt − ŵ∗

θt ||
≤ − 2αwNθt(Q(wt)− Q̂∗

θt) + 16αw(1 + γ)LQHQσ
3
w + 4αw(1 + γ)LQϵσw,

where the second line is by the definition in Eq.(16), the sixth line is by Lemma (C.2) and Lemma
C.5, and the eighth line is by Lemma C.1. Here, λ ∈ [0, 1] is some scalar and wmid = λwt + (1 −
λ)ŵ∗

θt
. So we arrive at the final bound for I1,1:

2αw(wt − ŵ∗
θt)

T f̄(wt, θt) ≤− 2αwNθt(Q(wt)− Q̂∗
θt)

+ 16αw(1 + γ)LQHQσ
3
w + 4αw(1 + γ)LQϵσw.

To analyze I1,2, we conclude

E
[
αw2||f(Ot, wt)||2

]
≤ αw2U2

f .

To analyze I1,3, for simplicity, we denote F (Ot, w, θ) = (w − ŵ∗
θ)

T
[
f(Ot, w)− f̄(w, θ)

]
. We

have

F (Ot, wt, θt) =F (Ot, wt, θt)− F (Ot, wt, θt−τmix
)︸ ︷︷ ︸

J1

+ F (Ot, wt, θt−τmix)− F (Ot, wt−τmix , θt−τmix)︸ ︷︷ ︸
J2

+ F (Ot, wt−τmix
, θt−τmix

)− F (Õt, wt−τmix
, θt−τmix

)︸ ︷︷ ︸
J3

+ F (Õt, wt−τmix
, θt−τmix

)︸ ︷︷ ︸
J4

.

For J1, we have

|F (Ot, wt, θt)− F (Ot, wt, θt−τmix)| ≤LFθ
||θt − θt−τmix ||

≤αθτmixLFθ
Ug

1− γ
.

For J2, we have

|F (Ot, wt, θt−τmix
)− F (Ot, wt−τmix

, θt−τmix
)| ≤LFw

||wt − wt−τmix
||

≤αwτmixLFw
σw.

For J3, by Lemma C.17, we have∣∣∣E [F (Ot, wt−τmix , θt−τmix)− F (Õt, wt−τmix
, θt−τmix

)|θt−τmix
, st−τmix+1

]∣∣∣
≤4σwUfnaLπ

t∑
i=t−τmix

E [∥θi − θt−τmix
∥ |θt−τmix

, st−τmix+1]

≤4αθσwUfnaLπτmix(τmix − 1)Ug

1− γ
,
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which means∣∣∣E [F (Ot, wt−τmix , θt−τmix)− F (Õt, wt−τmix , θt−τmix)
]∣∣∣ ≤ 4αθσwUfnaLπτmix(τmix − 1)Ug.

For J4, by Lemma C.17, we have∣∣∣E [F (Õt, wt−τmix
, θt−τmix

)|θt−τmix
, st−τmix+1

]∣∣∣ ≤ 2σwUfCβτmix−1,

which means ∣∣∣E [F (Õt, wt−τmix
, θt−τmix

)
]∣∣∣ ≤ 2σwUfCβτmix−1.

Hence, for I1,3, we have

E [F (Ot, wt, θt)] ≤
αθτmix (LFθ

+ 4σwUfnaLπ(τmix − 1))Ug

1− γ
+αwτmixLFw

σw+2σwUfCβτmix−1,

which implies

E
[
2αw(wt − ŵ∗

θt)
T
[
f(Ot, wt)− f̄(wt, θt)

]]
≤2αwαθτmix (LFθ

+ 4σwUfnaLπ(τmix − 1))Ug

1− γ

+ 2αw2τmixLFwσw + 4αwσwUfCβτmix−1.

Hence, for I1,

E
[
||wt − ŵ∗

θt + αwf(Ot, wt)||2
]
≤− 2αwE

[
Nθt(Q(wt)− Q̂∗

θt)
]
+ E

[
||wt − ŵ∗

θt ||
2
]

+ 16αw(1 + γ)LQHQσ
3
w + 4αw(1 + γ)LQϵσw

+ αw2U2
f +

2αwαθτmix (LFθ
+ 4σwUfnaLπ(τmix − 1))Ug

1− γ

+ 2αw2τmixLFw
σw + 4αwσwUfCβτmix−1

=− 2αwE
[
Nθt(Q(wt)− Q̂∗

θt)
]
+ E

[
||wt − ŵ∗

θt ||
2
]
+ Cw,1 + Cw,2,

(19)
where, for simplicity, we denote

Cw,1 = 16αw(1 + γ)LQHQσ
3
w + 4αw(1 + γ)LQϵσw + αw2U2

f

and

Cw,2 =
2αwαθτmix (LFθ

+ 4σwUfnaLπ(τmix − 1))Ug

1− γ
+2αw2τmixLFw

σw+4αwσwUfCβτmix−1.

To analyze I2, we derive

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf(Ot, wt))

]
=E

[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf̄(wt, θt))

]
︸ ︷︷ ︸

I2,1

+E
[
(ŵ∗

θt − ŵ∗
θt+1

)Tαw
[
f(Ot, wt)− f̄(wt, θt)

]]
︸ ︷︷ ︸

I2,2

.

To analyze I2,1 first, by lemma C.18, we already know

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf̄(wt, θt))|Ft

]
≤

(
√
2αθLw||ḡ(wt, θt)||+

αθ2HwU
2
g√

2(1− γ)2

)
︸ ︷︷ ︸

I2,1,1

·
∥∥wt − ŵ∗

θt + αwf̄(wt, θt)
∥∥︸ ︷︷ ︸

I2,1,2

.

For I2,1,2, a rough bound would be∥∥wt − ŵ∗
θt + αwf̄(wt, θt)

∥∥2 = ||wt − ŵ∗
θt ||

2 + 2αw(wt − ŵ∗
θt)

T f̄(wt, θt) + αw2||f̄(wt, θt)||2.
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Notice that this term is very similar to what we have in Eq.(18). The two difference are (a) all the f
in Eq.(18) are replaced by f̄ and (b) expectation is removed. In this case, I1,3 will be 0 and a similar
bound for I1,1 and I1,2 will also hold. This implies the following result:

∥∥wt − ŵ∗
θt + αwf̄(wt, θt)

∥∥2 ≤− 2αwNθt(Q(wt)− Q̂∗
θt) + ||wt − ŵ∗

θt ||
2 + 16αw(1 + γ)LQHQσ

3
w

+ 4αw(1 + γ)LQϵσw + αw2U2
f

≤
(

1

λmin
− 2αw

)
Nθt(Q(wt)− Q̂∗

θt) + Cw,1,

(20)
where the last line uses Lemma C.3.

For I2,1,1, recall that

∥ḡ(wt, θt)∥ ≤
∥∥∇V ∗

θt

∥∥+ ∥DQ∥

≤
∥∥∇V ∗

θt

∥∥+√c1Nθt(Q(wt)− Q̂∗
θt
) + c2ϵ2.

Hence, we have the following bound for I2,1,1:

√
2αθLw||ḡ(wt, θt)||+

αθ2HwU
2
g√

2(1− γ)2

≤
√
2αθLw

∥∥∇V ∗
θt

∥∥+√
2αθLw

√
c1Nθt(Q(wt)− Q̂∗

θt
) + c2ϵ2 +

αθ2HwU
2
g√

2(1− γ)2
.

Hence, we have the following result:

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf̄(wt, θt))|Ft

]
≤

(
√
2αθLw

∥∥∇V ∗
θt

∥∥+√
2αθLw

√
c1Nθt(Q(wt)− Q̂∗

θt
) + c2ϵ2 +

αθ2HwU
2
g√

2(1− γ)2

)

·

√(
1

λmin
− 2αw

)
Nθt(Q(wt)− Q̂∗

θt
) + Cw,1

≤ 1√
2
αθLw

∥∥∇V ∗
θt

∥∥2 + 1√
2
αθLw

(
1

λmin
− 2αw

)
Nθt(Q(wt)− Q̂∗

θt) +
1√
2
αθLwCw,1

+
√
2αθLw

√[
c1Nθt(Q(wt)− Q̂∗

θt
) + c2ϵ2

]
·
[(

1

λmin
− 2αw

)
Nθt(Q(wt)− Q̂∗

θt
) + Cw,1

]

+
αθ2HwU

2
g√

2(1− γ)2

√(
1

λmin
− 2αw

)
Nθt(Q(wt)− Q̂∗

θt
) + Cw,1

≤ 1√
2
αθLw

∥∥∇V ∗
θt

∥∥2
+

(
1√
2
αθLw

(
1

λmin
− 2αw

)
+

√
2αθLw

√
c1

(
1

λmin
− 2αw

))
· Nθt(Q(wt)− Q̂∗

θt)

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
Nθt(Q(wt)− Q̂∗

θt
)

+
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2
.
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After taking expectation on both sides, we know

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf̄(wt, θt))

]
≤ 1√

2
αθLwE

[∥∥∇V ∗
θt

∥∥2]
+

(
1√
2
αθLw

(
1

λmin
− 2αw

)
+

√
2αθLw

√
c1

(
1

λmin
− 2αw

))
· E
[
Nθt(Q(wt)− Q̂∗

θt)
]

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
E
[
Nθt(Q(wt)− Q̂∗

θt
)
]

+
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2
,

which is the bound for I2,1.

For I2,2, by Lemma C.18, we have

E
[
(ŵ∗

θt − ŵ∗
θt+1

)Tαw
[
f(Ot, wt)− f̄(wt, θt)

]]
≤ 2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
.

This ends the bound for I2, which, after combining the bound for I2,1 and I2,2, will be

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf(Ot, wt))

]
≤ 1√

2
αθLwE

[∥∥∇V ∗
θt

∥∥2]
+

(
1√
2
αθLw

(
1

λmin
− 2αw

)
+

√
2αθLw

√
c1

(
1

λmin
− 2αw

))
· E
[
Nθt(Q(wt)− Q̂∗

θt)
]

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
E
[
Nθt(Q(wt)− Q̂∗

θt
)
]

+
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2
+ 2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
.

To analyze I3, we have

E
[
||ŵ∗

θt − ŵ∗
θt+1

||2|Ft

]
≤L2

wE
[
||θt+1 − θt||2|Ft

]
.

Recall that

θt+1 − θt = −αθ∇V ∗
θt − αθDQ + αθ ḡ(wt, θt)−

αθ

1− γ
g(Ôt, wt, θt),

which implies

E
[
||θt+1 − θt||2|Ft

]
≤||αθ∇V ∗

θt + αθDQ||2 +
4

(1− γ)2
αθ2U2

g

≤2αθ2
(
||∇V ∗

θt ||
2 + c1 · Nθt(Q(wt)− Q̂∗

θt) + c2ϵ
2
)
+

4

(1− γ)2
αθ2U2

g ,

where we use the fact that E
[
ḡ(wt, θt)− 1

1−γ g(Ôt, wt, θt)|Ft

]
= 0. Hence,

E
[
||ŵ∗

θt − ŵ∗
θt+1

||2|Ft

]
≤ 2αθ2L2

w

(
||∇V ∗

θt ||
2 + c1 · Nθt(Q(wt)− Q̂∗

θt) + c2ϵ
2
)
+

4L2
w

(1− γ)2
αθ2U2

g .

After taking expectation on both side, we will arrive at the bound for I3, which is

E
[
||ŵ∗

θt − ŵ∗
θt+1

||2
]
≤ 2αθ2L2

w

(
E
[
||∇V ∗

θt ||
2
]
+ c1 · E

[
Nθt(Q(wt)− Q̂∗

θt)
]
+ c2ϵ

2
)
+

4L2
w

(1− γ)2
αθ2U2

g .
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Now, go back to Eq.(17) and we obtain

E
[
||wt+1 − ŵ∗

θt+1
||2
]

≤E
[
||wt − ŵ∗

θt ||
2
]
+

(
1√
2
αθLw + 2αθ2L2

w

)
E
[∥∥∇V ∗

θt

∥∥2]
+

(
1√
2
αθLw

(
1

λmin
− 2αw

)
+

√
2αθLw

√
c1

(
1

λmin
− 2αw

)
+ 2αθ2L2

wc1 − 2αw

)
· E
[
Nθt(Q(wt)− Q̂∗

θt)
]

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
E
[
Nθt(Q(wt)− Q̂∗

θt
)
]

+ Cw,1 + Cw,2 +
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2

+ 2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
+ 2αθ2L2

wc2ϵ
2 +

4L2
w

(1− γ)2
αθ2U2

g .

Now, we can do a telescoping sum for i to T :(
2αw − 1√

2
αθLw

(
1

λmin
− 2αw

)
−

√
2αθLw

√
c1

(
1

λmin
− 2αw

)
− 2αθ2L2

wc1

)
·

(
1

T

T∑
t=1

E
[
Nθt(Q(wt)− Q̂∗

θt)
])

≤
E
[
||w1 − ŵ∗

θ1
||2
]

T
+

(
1√
2
αθLw + 2αθ2L2

w

)(
1

T

T∑
t=1

E
[∥∥∇V ∗

θt

∥∥2])

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√√√√ 1

T

T∑
t=1

E
[
Nθt(Q(wt)− Q̂∗

θt
)
]

+ Cw,1 + Cw,2 +
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2

+ 2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
+ 2αθ2L2

wc2ϵ
2 +

4L2
w

(1− γ)2
αθ2U2

g ,

which, if we adopt notations from Eq.(13), can be rewritten as(
2αw − 1√

2
αθLw

(
1

λmin
− 2αw

)
−

√
2αθLw

√
c1

(
1

λmin
− 2αw

)
− 2αθ2L2

wc1

)
·∆Q

≤
E
[
||w1 − ŵ∗

θ1
||2
]

T
+

(
1√
2
αθLw + 2αθ2L2

w

)
∆V

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
∆Q

+ Cw,1 + Cw,2 +
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2

+ 2αwUf

(√
2αθLwUg

1− γ
+

αθ2HwU
2
g√

2(1− γ)2

)
+ 2αθ2L2

wc2ϵ
2 +

4L2
w

(1− γ)2
αθ2U2

g .
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F Critic Update Analysis under the i.i.d. Sampling Case

Lemma F.1. In the i.i.d. sampling case,

(
2αw − 1√

2
αθLw

(
1

λmin
− 2αw

)
−

√
2αθLw

√
c1

(
1

λmin
− 2αw

)
− 2αθ2L2

wc1

)
·∆Q

≤
E
[
||w1 − ŵ∗

θ1
||2
]

T
+

(
1√
2
αθLw + 2αθ2L2

w

)
∆V

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
∆Q

+ Cw,1 +
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2

+ 2αθ2L2
wc2ϵ

2 +
4L2

w

(1− γ)2
αθ2U2

g .

Proof. The i.i.d. assumption implies that f(Ot, wt) is replaced by f̄(wt, θt). This will bring a
change in both the analysis for I1 and I2.

First, we will figure out how the i.i.d. sampling effect I1. Now we know that I1,3 in Eq.(18) is 0.
That means, for I1 in Eq.(17),

E
[
||wt − ŵ∗

θt + αwf(Ot, wt)||2|Ft

]
≤− 2αwNθt(Q(wt)− Q̂∗

θt) + ||wt − ŵ∗
θt ||

2

+ 16αw(1 + γ)LQHQσ
3
w + 4αw(1 + γ)LQϵσw + αw2U2

f

=− 2αwNθt(Q(wt)− Q̂∗
θt) + ||wt − ŵ∗

θt ||
2 + Cw,1,

where Cw,1 is defined the same as before:

Cw,1 = 16αw(1 + γ)LQHQσ
3
w + 4αw(1 + γ)LQϵσw + αw2U2

f .

Next, after a removal of I2,2 term (I2,2 will just be 0 if we replace f by f̄ ), we can derive the new
bound for I2, which is

E
[
(ŵ∗

θt − ŵ∗
θt+1

)T (wt − ŵ∗
θt + αwf(Ot, wt))

]
≤ 1√

2
αθLwE

[∥∥∇V ∗
θt

∥∥2]
+

(
1√
2
αθLw

(
1

λmin
− 2αw

)
+

√
2αθLw

√
c1

(
1

λmin
− 2αw

))
· E
[
Nθt(Q(wt)− Q̂∗

θt)
]

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
E
[
Nθt(Q(wt)− Q̂∗

θt
)
]

+
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2
.
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Based on the new bounds for I1 and I2, the critic update now gives the following:(
2αw − 1√

2
αθLw

(
1

λmin
− 2αw

)
−

√
2αθLw

√
c1

(
1

λmin
− 2αw

)
− 2αθ2L2

wc1

)
·∆Q

≤
E
[
||w1 − ŵ∗

θ1
||2
]

T
+

(
1√
2
αθLw + 2αθ2L2

w

)
∆V

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
∆Q

+ Cw,1 +
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2

+ 2αθ2L2
wc2ϵ

2 +
4L2

w

(1− γ)2
αθ2U2

g .
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G Small Gain Theorem and Small Gain Analysis

G.1 Small Gain Theorem

Now we introduce the small gain theorem.
Lemma G.1. Suppose x and y satisfy the following two inequalities:

x ≤a1y + a2,

y ≤b1x+ b2 + b3
√
y,

where all coefficients are non-negative. Then, y can be upper bounded by the following inequality:

y ≤ 2b2 + b23 + 2a2b1
1− 2a1b1

.

Proof. Proof of this lemma can be found in Olshevsky & Gharesifard (2022).

G.2 Small Gain Analysis under i.i.d. Sampling

Now recall the result from Actor analysis is(αθ

2
− αθ

2HV

)
∆V ≤

E
[
V ∗
θ1

− V ∗
θT+1

]
T

+ c1

(
αθ

2HV +
αθ

2

)
∆Q

+ c2

(
αθ

2HV +
αθ

2

)
ϵ2 +

2HV

(1− γ)2
αθ2U2

g .

and the one from Critic analysis is(
2αw − 1√

2
αθLw

(
1

λmin
− 2αw

)
−

√
2αθLw

√
c1

(
1

λmin
− 2αw

)
− 2αθ2L2

wc1

)
·∆Q

≤
E
[
||w1 − ŵ∗

θ1
||2
]

T
+

(
1√
2
αθLw + 2αθ2L2

w

)
∆V

+

(
√
2αθLw

√
c1Cw,1 + c2ϵ2

(
1

λmin
− 2αw

)
+

αθ2HwU
2
g√

2(1− γ)2

√
1

λmin
− 2αw

)√
∆Q

+ Cw,1 +
1√
2
αθLwCw,1 +

√
2αθLw

√
c2Cw,1ϵ2 +

√
Cw,1α

θ2HwU
2
g√

2(1− γ)2

+ 2αθ2L2
wc2ϵ

2 +
4L2

w

(1− γ)2
αθ2U2

g .

What we really care about is the relationship between T, ϵ and m. So from now on, we will use
O(·) and Õ(·) (Õ(·) hides the potential logarithm factor of m) notations and only consider these
variables. First, observe the following dependency on T,m and ϵ:

LQ =O(1),

HQ =Õ(
1√
m
),

Lδ =O(1),

Uδ =O(ϵ) +O(1),

Lf =Õ

(
1√
m
(ϵ+ 1)

)
+O(1),

Uf =O(ϵ) +O(1),

Ug =O(ϵ) +O(1),

Lf̄ =O ((log T + 1)(ϵ+ 1)) ,

LFθ
=O ((log T + 1)(ϵ+ 1)) ,

LFw
=Õ

((
1√
m

+ 1

)
(ϵ+ 1)

)
.
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If we choose αw = αθ = 1√
T

and given that all other coefficients are independent with ϵ, T and m,
we conclude

Cw,1 = Õ

(
1√
T

· 1√
m

)
+O

(
1√
T
ϵ

)
+O

(
1√
T
ϵ2
)
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(
1

T

)
.

We can set

x =∆V ,

y =∆Q,

a1 =
c1
(
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2HV + αθ

2

)
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2HV

= O(1),
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]
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2

)
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(1−γ)2α
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g

αθ

2 − αθ
2HV

= O

(
1√
T

)
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(
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)
,
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1√
2
αθLw + 2αθ2L2

w

2αw − 1√
2
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(
1
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)
−
√
2αθLw

√
c1

(
1
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− 2αw

)
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wc1

= O (1) ,
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E[||w1−ŵ∗
θ1

||2]
T + Cw,1 +
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2
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√
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√
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2
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(
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−
√
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√
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1
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√
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g

2αw − 1√
2
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(
1
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)
−

√
2αθLw

√
c1

(
1
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− 2αw
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(
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T

)
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,
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2(1−γ)2
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1
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)
− 2αθ2L2

wc1

=O

(
1√
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)
+O(ϵ) + Õ

(
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)
.

Now we can apply Small Gain Theorem, where we conclude

y ≤ O

(
1√
T

)
+O(ϵ) + Õ

(
1√
m

)
.

and

x ≤ a1y + a2 = O

(
1√
T

)
+O(ϵ) + Õ

(
1√
m

)
.

G.3 Small Gain Analysis in the Markov Sampling Case

Now recall the result from Actor analysis is

(αθ

2
− αθ

2HV

)
∆V ≤

E
[
V ∗
θ1

− V ∗
θT+1

]
T

+ c1

(
αθ

2HV +
αθ

2

)
∆Q

+ c2

(
αθ

2HV +
αθ

2

)
ϵ2 +

2HV

(1− γ)2
αθ2U2

g ,
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and the one from Critic analysis is(
2αw − 1√

2
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(
1
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If we choose αw = αθ = 1√
T

and given that all other coefficients are independent with ϵ, T and m,
we conclude

Cw,1 = Õ
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1√
T

· 1√
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We can set
x =∆V ,
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Now we can apply Small Gain Theorem, where we conclude

y = O

(
(log T )2√

T

)
+O(ϵ) + Õ

(
1√
m

)
,

and

x ≤ a1y + a2 = O

(
(log T )2√

T

)
+O(ϵ) + Õ

(
1√
m

)
.
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