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Abstract—The future of cellular networks is contingent on arti-
ficial intelligence (AI) based automation, particularly for radio
access network (RAN) operation, optimization, and troubleshoot-
ing. To achieve such zero-touch automation, a myriad of AI-based
solutions are being proposed in literature to leverage AI for
modeling and optimizing network behavior to achieve the zero-
touch automation goal. However, to work reliably, AI based
automation, requires a deluge of training data. Consequently,
the success of the proposed AI solutions is limited by a funda-
mental challenge faced by cellular network research community:
scarcity of the training data. In this paper, we present an exten-
sive review of classic and emerging techniques to address this
challenge. We first identify the common data types in RAN and
their known use-cases. We then present a taxonomized survey of
techniques used in literature to address training data scarcity for
various data types. This is followed by a framework to address
the training data scarcity. The proposed framework builds on
available information and combination of techniques including
interpolation, domain-knowledge based, generative adversarial
neural networks, transfer learning, autoencoders, few-shot learn-
ing, simulators and testbeds. Potential new techniques to enrich
scarce data in cellular networks are also proposed, such as by
matrix completion theory, and domain knowledge-based tech-
niques leveraging different types of network geometries and
network parameters. In addition, an overview of state-of-the art
simulators and testbeds is also presented to make readers aware
of current and emerging platforms to access real data in order
to overcome the data scarcity challenge. The extensive survey
of training data scarcity addressing techniques combined with
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proposed framework to select a suitable technique for given type
of data, can assist researchers and network operators in choosing
the appropriate methods to overcome the data scarcity challenge
in leveraging AI to radio access network automation.

Index Terms—Scarce data, training data, big data, emerg-
ing cellular networks, RAN, machine learning, synthetic data
generation, interpolation, simulators, testbeds.

I. INTRODUCTION

FUTURE cellular networks are envisioned to have big
data enabled network automation capabilities [1]. This

includes functionalities of self-optimization, self-healing and
self-configuration [2], [3] that are essential to ensure the
viability and sustainability of future cellular networks amid
challenges, such as amalgam of new technologies, growing
complexity, resource inefficiency and shrinking profit margins.
In order to enable these automation capabilities in next gen-
eration cellular networks, the process of heterogeneous base
station (BS) deployment, implementing existing and newly
proposed network features and tuning the associated network
parameters has to be meticulous. This is because the process of
selecting an optimal network configuration that can maximize
the vital key performance indicators, like coverage, capacity,
reliability or energy efficiency is a rather challenging task.
Identifying the optimal network configuration is necessary for
network operators to fulfill the promises made by much antic-
ipated 5G and beyond networks and to realize the efficacy of
several new use cases.

Research community heavily rely on mathematical yet
tractable analytical models [4], [5], [6], [7], [8], [9] to
propose planning, operation and optimization of different
aspects of network. They, however, are based on restrictive
assumptions and simplifications with respect to transceiver
architecture, base station and user distributions and propaga-
tion characteristics, to name a few. Furthermore, stochastic
geometry-based models are unable to capture the network
dynamics which include mobility management and transmis-
sion latency. Therefore, several machine learning (ML) based
techniques are proposed in current literature that leverage
training and tuning of ML based models to determine the
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Fig. 1. Types of data on which techniques to address data scarcity have been applied in literature according to (a) OSI-layer based categories (b) system/link
level categories (figure is based on Table IV).

behavior of different configuration and optimization param-
eters (COPs), such as antenna tilt, transmit power, cell load
in relation to different key performance indicators (KPIs),
like coverage, capacity or energy efficiency [10], [11], [12].
These COP-KPI relationships can then be used for COP-KPI
optimization. Moreover, in cellular networks context, aware-
ness about radio environment in a wireless system is crucial
given that the radio spectrum is a limited resource [13].
Ample data is required for constructing radio environment
maps (REMs) which can be used for operations such as spec-
trum management, to construct interference maps, to make
decisions about spectrum availability for enabling dynamic
spectrum access, for assessing/monitoring network health,
minimizing signalling, interference management, optimization
of radio resources allocation, dynamic spectrum allocation,
identify bad-signal areas, automatic neighbor relation, min-
imize drive tests, handovers optimization and coexistence
of various technologies [14], [15]. However, all such tech-
niques face a common key challenge that undermine their
utility: scarcity/sparsity of the training data. This fundamen-
tal problem has two facets: (i) Data scarcity: Obtaining large
amounts of pertinent training data from the operators is not a
trivial task. Furthermore, as most of the data remain trapped
in silos, even if willing, a single operator may not be able to
provide the deluge of real data needed for developing mod-
els, e.g., user (traffic, mobility pattern, QoE expectations) and
network behavior (spatio-temporally robust COP-KPI) models.
(ii) Data sparsity: Network operators only try a limited range
of COPs in live networks due to high probability of signifi-
cant network performance impairment of live mobile network
during the trial phase. Therefore, only a limited range of COP-
KPI data can be obtained. Given that operators only try a
limited range of COPs in live networks, despite sourcing from
multiple operators, even when not scarce, the real data are
expected to be sparse or unevenly distributed. In other words,
term scarcity refers to problem when data is too little to train
a model. Sparsity on the other hand refers to problem when
there is some data, but it is thinly or unevenly distributed mak-
ing reliable training of AI difficult. For sake of clarity, in rest
of the manuscript we use only one term, scarcity to represent

this problem irrespective of the reason behind data being not
enough to train AI.

To illustrate the type of data in cellular networks which is
scarce, Fig. 1 shows the data on which data augmentation tech-
niques have been applied in literature according to OSI layers
and system/link level categorization. Link level data corre-
sponds to the point-to-point communication link, for example
RSRP, and system level data takes the notion of data involving
a large number of network elements including several links,
for example REM. The use cases of these data are elaborate
in later sections and are summarized in last two columns of
Table IV.

To address the data scarcity challenge, one solution can be to
obtain data from field trials. However, conducting independent
field trials on a large scale is costly and time-consuming, espe-
cially in dynamic scenarios, where the number and locations
of measurements change, and it is infeasible to measure the
radio frequency field strength values at every point of interest.
Another way to obtain data is through mathematical models.
However, they are based on too many assumptions and simpli-
fications, that fail to depict real world scenarios. Moreover, in
ultra-dense deployments, small cells contain far fewer users
compared to macro cells. This makes user measurements at
the base station of small cells scarce, which particularly poses
a problem for automation solutions that leverage minimization
of drive test (MDT) [16], [17], [18]. This problem is further
aggravated if smaller bin size is used to reduce quantization
error, attributing to the fact that many bins might not be visited
by even a single user during the reporting period [18].

Deploying the new 5G and beyond network functionali-
ties in a real world cannot be done arbitrarily. If the training
data is poorly distributed or scarce, it might not represent the
actual network scenario very well, which could lead to over-
fitting during the model training stage. In order to develop
accurate models, machine learning algorithms require large
amounts of true training data since a model based on scarce
data would rely on assumptions and weak correlations [19].
In turn, unscrupulous network design and sub-optimal param-
eter configuration will hamper not only the capability of future
networks that will impact the user experience negatively but
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Fig. 2. This figure presents one possible taxonomy for classifying the techniques to address data scarcity in RAN.

will also increment the capital and operational expenditure
(CAPEX/OPEX) of mobile operators [20].

A. Related Work

Data scarcity challenge has been addressed in the domain
of environment sciences field, such as ecology, marine, agri-
culture, soil science, elevation, precipitation, and chemical
concentrations, through review papers in [21], [22], [23], [24].
However, to the best of authors’ knowledge, a survey paper
on addressing the training data scarcity challenge in cellular
networks is not present.

In cellular networks context, the closest survey papers to
this work are [25], [26] and [27]. Authors in [25] focus on
the task of radio environment map (REM) construction tech-
niques. Advantages, disadvantages, and asymptotic complexity
comparison of seven interpolation techniques (inverse distance
weighted, nearest neighbor, spline, natural neighbor, modi-
fied Shepard’s method, gradient plus inverse distance squared
method and Kriging). They also discuss some indirect con-
struction methods that combine interpolation with transmitter
parameter information. However, since work in [25] is from
2014, many indirect methods developed after 2014 are not
covered in it. Moreover, [25] is limited to the task of REM con-
struction only. Several methods that have gained popularity in
past recent years to enrich scarce data, like advanced machine
learning techniques and synthetic data generation, that are a
part of this survey, are also not included in [25].

The other relevant study to this work is the study in [26],
where authors survey the use of interference maps. However,
the study in [26] focuses on spectrum occupancy measurement
data only while reviewing studies till 2016. In contrast, in
this survey, we cover variety of RAN data. Like [25], popular
methods in recent years to augment scarce data, like advanced
machine learning techniques and synthetic data generation are
also not included in [26] as addressing data scarcity problem
is not the focus of the work in [26].

Simulators are another promising way to address the
data scarcity challenge. Two existing surveys on simulators

include [28] and [29]. Authors in [28] compare 4G and 5G
simulators and authors in [29] provide a summary of the most
significant 5G simulators. However, these works are restricted
only to simulators as a tool for generating data.

Testbeds can also be used to generate real data to aug-
ment available scarce data. The work in [30] compares key
testbeds around the world in terms of location, scale of
deployment, type of access, key features, and supported exper-
iments. However, these works are restricted to testbeds only,
whereas this survey aims to address data sparsity challenge by
considering additional techniques as identified in Fig. 2.

A more recent study from 2019 [27] surveyed the applica-
tions of deep learning-based techniques, like transfer learning,
autoencoders, generative adversarial networks techniques for
wireless networks. The authors introduce the basics of deep
learning and then identify wireless applications where those
techniques can be used, for instance, mobile data analysis,
mobility analysis, wireless sensor network, network con-
trol, network security, signal processing, and other emerging
wireless applications. While some of the techniques discussed
in [27] can also be exploited to address data scarcity challenge
in RANs to some extent for limited data types, the work in [27]
is not focused on addressing the training data scarcity chal-
lenge in RAN. In contrast, this survey not only provides a
comprehensive review of techniques that can address training
data sparsity for a variety of RAN data but also it provides
the first of its kind systematic framework to select the most
suitable techniques for given data types.

To the best of authors’ knowledge, there is no existing work
that presents a consolidated survey and framework that aims to
solve the training data scarcity challenge in cellular networks.
This article presents the techniques in literature to address the
training data scarcity problem over the period of 1991 to 2021 as
they apply to radio access networks in wireless communications.

B. Contributions and Organization

The key contributions in this paper can be summarized as
follows:
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• To address the training data scarcity challenge, we present
an overview of existing techniques, and potential new
and emerging techniques, such as matrix completion the-
ory (Section II-A) leveraging different types of network
geometries (Section III-A), and advanced machine learn-
ing techniques such as the use of generative adver-
sarial networks (GANs) (Section IV-A), autoencoders
(Section IV-B), transfer learning (Section IV-C) and few-
shot learning (Section IV-D) to enrich scarce data in
cellular networks. We also highlight the pros and cons
of these approaches analyzed in context of different
RAN focused use cases. A taxonomy of training data
enrichment techniques is developed by grouping these
techniques into various categories as shown in Fig. 2.

• We present a comparison of existing and emerging simu-
lators (Section V-A) as tools for generating synthetic data
to overcome the data scarcity issue which can greatly
benefit researchers as the characterization and compar-
ison among features of different simulators will enable
them to identify publicly accessible simulators and use
them for their specific problems.

• An overview of state-of-the-art current and emerging
testbeds for next generation cellular networks is presented
in Section VI-B that will make readers aware of current
and emerging platforms to access real data in order to
overcome data scarcity challenge. Most of these testbeds
are available to external experiments, which will foster
collaboration among different academic institutions as
well as with industry. This will in turn enable the utiliza-
tion of these existing facilities to the fullest and accelerate
quality research in the field of cellular networks.

• We propose a decision tree diagram, that will enable
researchers and operators to choose appropriate methods
to solve the training data scarcity challenge, based on the
available information and network scenario.

It should be noted that measured data can be scarce and
still be representative. On the other hand, data can be big
but not representative. We begin by presenting an overview
of techniques that will work best in the first case. In the
case when data is scarce and representative, but the only
information known are the measured data points and their loca-
tion, interpolation methods in Section II are likely to perform
best.

Moving forward, when some additional information beyond
the data points and their locations is known, we can utilize
the methods using contextual information or domain knowl-
edge in Section III. Several machine learning techniques can
also be leveraged to address the data scarcity challenge. These
include generative adversarial networks, autoencoders, transfer
learning and few-shot learning techniques (Section IV).

On the contrary, when the available data is big and non-
representative or scarce and non-representative, the solution
lies in either resorting to generate synthetic data (Section V)
or get real data (Section VI). In addition, for scenarios with no
starting real data, for example, for new or anticipated scenarios
which are not yet deployed in a real network, simulators, and
testbeds to generate real data are most likely going to be the
best option for wireless communications community.

Other classifications of data augmentation techniques, such
as those based on OSI layer based, or system and link level
grouping of the data streams are also possible. However, many
data scarcity techniques can be applied to the data correspond-
ing to multiple layers and levels. Therefore, the rest of the
paper is structured by organizing the techniques based on their
technical grouping as shown in this tree diagram. i.e., each
branch represents a section, and each leaf represents a sub-
section of the paper. Moreover, while it is intuitive to assume
that data from different layers may require different gener-
ation techniques, but the suitability of a technique depends
mainly on the characteristics of the data, e.g., availability of
latent distribution, completeness, representativeness, temporal
or spatial nature and context and so on. For example, traffic
variation at base station data at the application level can be
modelled as time series data, and same can be done for the
packet error data at link level, and bit error data at physi-
cal layer. Similarly, data on traffic variation in space (system
level data) bears similarity with, for instance, RSRP/SINR-
based REM data (physical layer) and thus same techniques
such as kriging, inverse distance weighted, nearest neighbor
interpolation can be used. While in most cases, the character-
istics and contexts of the data may suffice to choose the best
technique, in some cases, additional knowledge that can be
extracted from knowing which layer the data belongs to may
be helpful in improving the data augmentation. However, so far
in literature there does not exist examples of where knowledge
of layer level mapping is exploited for data augmentation.

II. INTERPOLATION METHODS

When the only information required from cellular network
are the measurement values (location-value pair) in order to
recover the missing values, we classify such methods as ‘inter-
polation methods’, which assume that the data are spatially
dependent and continuous over space [31], [32], [33].

Interpolation methods are widely used in literature for radio
environment map (REM) augmentation. REM for a coverage
area consists of radio information, such as signal strength, sig-
nal quality or interference [25]. Constructing REMs is done
through manual drive tests, which leads to collection of data
from scarce locations due to time and cost constraints. REM
supports a variety of use cases, such as spectrum access
management, identification of poor signal areas, automatic
neighbor relation, power management, interference mitigation
and management, optimization of radio resources allocation,
radio resource management, dynamic spectrum allocation,
handovers optimization, automated networks planning, mainte-
nance and optimization of network parameters [25]. Therefore,
complete REMs from the available scarce REMs are required
to support these use cases.

Another type of widely used data on which interpola-
tion techniques are applied is the minimization of drive test
(MDT) data [34]. 3GPP has standardized MDT that allows
network performance estimation at a base station by leverag-
ing measurement reports gathered at the user equipment (UE)
without the need for drive tests [35]. The MDT reports con-
tain network coverage related performance indicators (such as
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Fig. 3. Comparison of coverage map reconstruction techniques [34].

RSRP) measured at the UE. These reports are tagged with
UEs’ geographical location information and sent to their serv-
ing base stations [18]. MDT data can be scarce in areas of low
user density, which will lead to inaccurate or sub-optimal cov-
erage estimation models [34]. To address this problem, authors
in [34] applied several interpolation algorithms, including the
ones discussed in this section. Their results are illustrated in
Fig. 3 and will be discussed further in the subsection per-
taining to data enrichment technique used in each of the
subfigures.

Different interpolation techniques can be applied in the
cellular network context to address the data scarcity chal-
lenge. Each technique has its own set of advantages and
disadvantages; we elaborate these techniques in this section.

A. Matrix Completion Theory

A recent work [34] applied matrix completion theory to
cellular network data context. Assuming the coverage area is
divided into bins, a coverage matrix C containing coverage
indicator (such as RSRP measurements) is observed. A scheme
that jointly exploits matrix factorization theory and convex
optimization is used to recover the missing data in C [34].

This leads to the following optimization problem in order
to find the missing values in matrix C:

minimize rank{P}
subject to Pij = Cij (i , j ) ∈ Ψ (1)

where P is the decision variable in the optimization problem,
the pair (i, j) denotes the i-th row and j-th column of the
matrices C and p and Ψ is the set of locations correspond-
ing to the observed entries ((i , j ) ∈ Ψ if Cij is observed).
However, the problem in (1) is known to be not only NP-hard,
but also all known algorithms that provide exact solutions
require time doubly exponential in the dimension n in both the-
ory and practice [36]. However, the analysis presented in [36]
proves that the coverage values in vacant bins can be obtained
with high accuracy by solving the following alternate convex
optimization problem:

minimize ||P ||∗
subject to Pij = Cij (i , j ) ∈ Ψ (2)

where ||P ||∗ is the nuclear norm and is given as:

||P ||∗ =

n∑

k=1

σk (P) (3)

In (3), σk (P) denotes the kth largest singular value of P.
Equation (2) therefore aims to determine the matrix with
minimum nuclear norm that fits the data.

The problem in (2) can be solved with the singular value-
based threshold (SVT) algorithm presented in [37]. The SVT
algorithm solves the following problem:

minimize η||P ||∗ + 1

2
||P ||2F

subject to OΨ(P) = OΨ(C ) (4)
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where OΨ is the orthogonal projector onto the span of matri-
ces vanishing outside of Ψ so that the (i, j)th component of
OΨ(P) is equal to Pij if (i , j ) ∈ Ψ and zero otherwise. It
is shown in [37] that the solution of the problem of (4) con-
verges to that of (2) as η → ∞. The SVT algorithm is iterative
and produces a sequence of matrices {p, Q}. At each step, a
soft-thresholding operation is performed on the singular val-
ues of the matrix Q t . Thus, by selecting a large value of
the parameter, η in (4), the sequence of iterates, {P t} con-
verges to a matrix which nearly minimizes (2). Starting with
Q0 = 0 ∈ R

(n×n), the algorithm inductively defines

P t = shrink
(
Q t−1, η

)
(5)

Q t = Q t−1 +ΔiOΨ

(
C −P t) (6)

where {Δi}, i ≥ 1 is a sequence of scalar step sizes, until a
stopping criteria is reached. The shrink function in (5) applies
a soft-thresholding rule at level η to the singular values of the
input matrix. It is defined as

shrink
(
Q t−1, η

)
= Sη

(
Q t−1

)
:= USη(Σ)V ∗ (7)

Sη(Σ) = diag
({

(σk − η)+
})

(8)

where f+ = max(0, f ). Equivalently, this operator is the posi-
tive part of f and simply applies a soft-thresholding rule to the
singular values of P, shrinking them towards zero. U, V are
matrices with orthonormal columns and the singular values Σ
are positive. U, V and Σ are obtained from the singular value
decomposition of matrix P of rank r:

P = UΣV ∗, Σ = diag({σk}), 1 ≤ k ≤ r (9)

In case of the presence of random shadowing in the model, the
stopping criteria of the algorithm can be modified as follows:

||OΨ

(
P t −C

)||2F ≤ (1 + ζ)mφ2 (10)

where ζ is a fixed tolerance. The SVT algorithm is stopped
when Pr is consistent with the data and obeys (10). Therefore,
the reconstruction matrix, Ĉ is the first P t obeying (10).

Another similar rank minimization based algorithm used to
recover the matrix C is the fixed point continuation (FPC)
algorithm [38]. While SVT is efficient for large matrix com-
pletion problems, it only works well for very low rank matrix
completion problems. For problems where the matrices are not
of very low rank, SVT is slow and not robust and therefore,
often fails [38]. To solve this problem, FPC-based algorithm
is proposed in [38]. FPC-based algorithm has some similarity
with the SVT algorithm in that it makes use of matrix shrink-
age as in (5)-(8). However, it solves (4) by leveraging operator
splitting technique [39].

Authors in [34] use matrix completion for the task of
interpolating missing RSRP values from MDT-based data.
Fig. 3(e), (f) is an illustrative example of their result. Authors
in [34] conclude that this scheme is more likely to work well in
small cells environments since matrix C will naturally be low
ranked in such scenarios. This observation stems from the fact
that propagation conditions are mostly dominated by line of
sight in small cells and the standard deviation of shadowing is
generally small. Moreover, the shadowing phenomenon that

Algorithm 1: Singular Value Thresholding Algorithm for
Finding Missing Coverage Values

Input : sampled set Ψ and sampled entries OΨ(C ),
tolerance ζ, parameter η, step size Δ, increment
α, number of maximum iterations, IM ,
shadowing standard deviation φ, and cardinality
of Ψ, m

Output: Popt

1 Set Q0 = i0ΔOΨ(C )
2 Set τ0 = 0
3 for t = 1 to IM
4 Set ht = τt−1 + 1
5 repeat
6 Compute [U t−1,Σr−1,V t−1]ht
7 Set tt = ht + α

8 until σt−1
ht−α ≤ η

9 Set τr = max{j : σt−1
j > η}

10 Set P t =
∑τr

j=1(σ
t−1
j − τ)u t−1

j v t−1
j

11 if ||OΨ(P
t −C ) ||2F ≤ (1 + ζ)mφ2 then break

12 Set Q t
ij =

{
0 if (i , j ) �∈ Ψ

Y t−1
ij +Δ(Cij − P t

ij ) if (i , j ) ∈ Ψ

13 end for t
14 Set Popt = P t

heavily determines coverage values, particularly in a small
cell environment, remains correlated over small distances that
separate users in the same small cell. However, the network
scenario they consider consists of macro cell environment,
therefore, the application of matrix completion to small cell
environments needs further investigation.

B. Inverse Distance Weighted

In this section, we first discuss the simplest form of inverse
distance weighted (IDW) method, the simple IDW. Then we
highlight several improvements in simple IDW interpolation
and finally present an adaptive IDW method from literature.
1) Simple IDW: The simplest form of IDW method is also

known as the Shepard’s method. It is based on the assumption
that the distribution of signal samples is strongly correlated
with distance. To estimate the missing received signal strength
value, ĉ (at a particular bin location, D) in the matrix C,
weighted average of N known signal strength values, ck from
N adjacent bins are used, where k = 1 · · ·N . Each known
received signal strength value is weighted with a weight that
is equal to the inverse of distance, dk = d(D ,Dk ) between
the location of the bin with missing RSRP value and location
of the k-th bin and raised to the power p. Mathematically, the
missing received signal strength value is calculated as:

ĉ =

⎧
⎪⎨

⎪⎩

∑N
k=1

1

d
p
k

ck
∑N

k=1
1

d
p
k

if dk �= 0

ck if dk = 0

(11)

The choice of p is an important parameter in this method.
For p < 1, ĉ remains no longer differentiable. Therefore,
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the exponent has to exceed 1 for the interpolation function
to remain differentiable with respect to spatial coordinates
(Cartesian coordinates x and y that are used in distance cal-
culation) [40]. It is shown by empirical testing that higher
exponents tend to make the surface flat near all data points
and the gradients over small intervals between data points are
very steep. On the other hand, lower exponents tend to produce
a relatively flat surface with short blips to achieve appropriate
values at data points [40]. When p = 0 in (11), the missing
coverage value is set equal to the weighted arithmetic average
of the neighboring coverage values and the recovery method
is often termed as the ‘moving average method’.

Simple IDW method’s disadvantages are that it leads to
the production of the “bull’s-eyes” effect, it is sensitive to
measurement outliers, it introduces significant errors in case
of non-uniform distribution measurements or unevenly dis-
tributed data clusters, computational error becomes highly
significant in the neighborhood of a data point, the calcula-
tion of missing value increases proportionally with the number
of data points, leading to inefficiency of the method when
the number of data points is large. Also, there is no way of
pre-determining the optimal weighting power factor that will
construct the most accurate RF-REM. The appropriate search
radius also needs to be optimized. Another drawback is the
lack of directionality, i.e., different configurations of co-linear
points could yield the same results, attributing to the fact that
only the distances from the missing location to the points
with known locations are considered and not their direction
[25], [40].

However, the advantages of simple IDW method include its
efficiency and ease of comprehension since it is intuitive. This
interpolation works best with evenly distributed points.

An illustrative example of IDW for REM interpolation
using MDT-based RSRP measurements is shown in Fig. 3(f).
It can be seen from the figure that although techniques like
kriging in Fig. 3(j) outperform IDW in terms of accuracy of
REM construction, IDW does outperform several techniques
like moving average in Fig. 3(c) and is usually preferred
for its reduced computational complexity. IDW has been
widely used for REM construction in outdoor environments,
such as in [34], where authors use RSRP data to complete
scarce REM using IDW. Results in [41] also favor the adop-
tion of IDW for REM construction in a device-to-device
network crowd-sourcing scenario consisting of Nakagami-m
and Nakagami-lognormal channels.
2) Improved IDW: In order to address the drawbacks of

simple IDW method in the preceding subsection, several
improvements have been suggested in literature.

The focus of the work in [42] is on the reliable estimation of
radio interference field with small number of measurements.
For this purpose, different variants of IDW spatial interpola-
tion method are employed which have proven robustness when
dealing with limited number of observations [42].

Authors in [40], [43] and [23] improve the weighting func-
tion by proposing a framework to intelligently select the
nearby data points to be used in predicting the missing data
point. This approach is developed keeping the overall density
of the data points into consideration.

Authors in [40] incorporate a direction factor, in addition to
the distance factor in defining the weights. This direction factor
is based on the cosine of angle of DiDDj , where i �= j and
i , j = 1 · · ·K . If other data points Dj are in approximately the
same direction from D as Di , then the angles, 1−cos(DiDDj )
are close to 0. On the other contrary, if other data points are
in the opposite D from Di , then the angles 1− cos(DiDDj )
are close to 2. The direction factor in the improved weighting
function in [40] leverages this fact.

Other improvements to simple IDW involve reduction of
computational complexity and errors and making features
of the interpolation function desirable, i.e., ensuring non-
zero gradients at every location to achieve the desired partial
derivatives for the function to remain differentiable [40], [44].

Since simple IDW assumes that the distance decay is uni-
form throughout the entire study area, it does not perform
well in case of clustered data or data that depicts spatial vari-
ability. To address this problem, authors in [45] suggested
an improvement based on the weighted median of data in
the neighborhood of missing data point. The weighting func-
tion in [45] is a function of inverse-distance weights and the
de-clustered weights that include the effects of distance and
clustering among spatially correlated data in the estimator.

In order to increase the accuracy of predictions through the
IDW method, authors in [46] proposed the use of piecewise
least-square polynomial regression estimators to increase the
accuracy, after evaluating fifteen different estimators using an
extensive evaluation data set.

For reducing the “bull-eye” effect in simple IDW method,
a distribution-based distance weighting (DDW) technique is
used [23]. Weight calculations in DDW method are based
on appropriate distributions according to available data, such
as Gaussian, Lorentzian and Laplacian distributions. Such a
distribution-based calculated ensures that if data variations are
very small, then the distribution will have a fairly sharp peak
and will cause the weighting to be more sensitive to the dis-
tance. On the contrary, if data included in the interpolation are
more spread out, a distribution with a larger variance would
be a good choice and this would result in the distances having
less impact on the weight calculations.

Authors in [23] and [47] propose another improvement to
the IDW-based method, that incorporates temporal dimension
in addition to spatial dimension. Although these approaches
are evaluated in the context of environmental data, such an
approach can also be applied to wireless network data. In
the approach in [23], time is treated independently from the
spatial distance dimension and weights are calculated in two
steps: using the inverse of 2D-spatial distance, followed by
the inverse of the 1D-temporal distance [23]. Authors in [47]
assume second-order non-stationarity of both spatial and tem-
poral distributions of the data, based on which they treat the
space-time variables in their proposed method as a sum of
independent spatial and temporal non-stationarity components.
Heterogeneous covariance functions are constructed to obtain
the best linear unbiased estimates in spatial and temporal
dimensions [47].

The applications of improved IDW techniques for cellular
network data are far less common than their application to the
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TABLE I
IMPROVEMENTS TO IDW INTERPOLATION

environmental modeling/geoscience domain [23], [46], [47].
In wireless networks context, the study in [42] used improved
IDW accounting for the direction, the number and set of
considered neighboring points and the slope of the interpola-
tion function, for radio interference field estimation based on
distributed spectrum use measurements. It concluded that as
compared to classical IDW, improved IDW experiences lower
variance of mean absolute error but had more outliers [42].

3) Adaptive IDW: The IDW method assumes that the
distance-decay structure is uniform throughout the entire study
area. However, recognizing the potential of varying distance-
decay relationships over area, authors in [44] proposed a
variation in the value of weighting parameter, p according to
the spatial pattern of sampled points in the neighborhood using
information derived from empirical data. Intuitively, when
the unsampled location has highly clustered points around its
neighborhood, a small p is appropriate so that the nearest sam-
pled values will not have an overwhelming influence on the
estimated value. On the contrary, a large p is desirable when
data is spatially dispersed since the more reliable source for
the estimate will likely be influenced from the closest location,
therefore, if a small p value is used in this case, the contri-
butions from local and more reliable sources will be small,
resulting in less reliable estimates [44].

In order to adjust p according to the spatial pattern of known
data, authors in [44] first quantify the spatial pattern of sample
locations in the form of nearest neighbor statistic:

R = ro/re , re =
1

2(M /A)0.5
(12)

where re and ro are the expected and observed average near-
est neighbor distances respectively and A is the area under
consideration.

After normalizing R to get the normalized local nearest
neighbor statistic, μR , in the adaptive IDW method, this
neighbor statistic carries a fuzzy membership that belongs
to certain categories of p. This membership function is
depicted in Fig. 4. As an example, μR corresponding to R
of 0.8 will be 0.35, yielding two points in the membership
degree (0.3 for category C and 0.7 for category B). The
final p would then be a weighted sum of these member-
ship degrees and corresponding p values (0.5 for category

Fig. 4. Triangular membership function for different adaptive distance-decay
parameters (modified from [44]).

B and 1 for category C). Consequently, the final p will be:
0.7 × 0.5 + 0.3 × 1 = 0.65.

Adaptive IDW (AIDW) method can outperform IDW and
work well in situations where local variability is relatively
large or spatial correlation structure of the data is not strong
or data is too limited to support data intensive methods, such as
kriging. It is shown to outperform ordinary Kriging, when the
spatial structure of data was such that it could not be modeled
accurately by a variogram function [44].

However, as compared to IDW, the AIDW method is compu-
tationally intensive as the distribution of p has to be formulated
to find the optimal set of parameter values, which require
significant level of heuristics [44].

C. Gradient Plus Inverse Distance Squared

Gradient plus Inverse Distance Squared interpolation
(GIDS) combines multiple linear regression and inverse dis-
tance based weighted coefficients for the interpolating missing
data. By assuming that the data of interest can be represented
by a multivariate function, for the unsampled location, D, an
ordinary least squared regression is done using N neighbor-
ing locations. This yields the coefficients which represent the
location gradients. If the measurements are taken at different
heights, GIDS method can incorporate the elevation dimension
in interpolation too. Assuming D = (x, y, z) with correspond-
ing coefficients Cx ,Cy ,Cz , representing the x, y, z gradients
respectively, the missing data point through GIDS can be
estimated as [48]:

ĉ =

∑N
k=1(ck + Cx (x − xk ) + Cy (y − yk ) + Cz (z − zk ))/d

2
k

∑N
k=1 1/d

2
k

(13)

The advantage of GIDS method is its ability to account
for signal level gradients and elevation of the terrain at the
interpolated location and at locations of the measurements.
However, this method is very sensitive to the selection of
neighborhood points as a small neighborhood selection would
leave out important measurements and a large neighborhood
selection may introduce noise [25].

GIDS has been used for REM construction in [48], where
authors conclude that when number available measurements
are sufficient, then Kriging outperforms GIDS in terms of
lower relative mean absolute error in most REM simulation
scenarios. Note also that Kriging is highly sensitive to the
performance metric used as it minimizes mean squared error
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(MSE), so performs best when MSE is used as evaluation
metric.

D. Modified Shepard’s Method

The IDW based modified Shepard’s method (MSM) is a
local interpolation that makes the estimation based on a real
multivariate function, f, whose local approximation is referred
to as nodal functions. If Qk is the output of the nodal function
of the data point Dk (local approximation to f at xk , yk ), then
the missing value using the MSM method can be written as
a weighted average of the nodal functions within some radius
influence (about the missing data point), Rw in the following
manner [42], [48]:

ĉ =

∑N
k=1WkQk∑N
k=1Wk

(14)

First, the weights, Wk are calculated by the following formula:

Wk =

{
[Rw − dk ]/[Rwdk ]

p if dk < Rw

0 if dk ≥ Rw
(15)

Then, another radius, Rv around each known data point is
considered and the weights are again calculated using (15),
this time, replacing Rw with Rv .

This technique can be extended to multivariate case but is
dependent upon optimization of Rw , Rq and p. It is also shown
to perform poorly if measurements lie in a low-dimensional
subspace [25]. However, this method can reduce the ‘bull’s
eye’ effect as compared to classical IDW methods.

An example of MSM application for the task of generat-
ing REM of total received signal power is illustrated in [48].
Authors in [48] use a wireless system simulator to simulate
both indoor and outdoor scenarios with different levels of data
scarcity. Among the considered methods of Kriging, MSM
and GIDS, MSM generally performs somewhere in between
the other two. For example, when the measurement points
increase from 38 to around 695, the relative mean absolute
error (RMAE) reduces from 7.5% to 1% for Kriging, 8% to
1.5% for MSM, and 9% to 2% for GIDS. They thus conclude
that although Kriging performs best in terms of interpolation
error, but due its high computational complexity and weak
performance when observation points are low, MSM may be
preferred as it is more flexible and robust.

E. Nearest Neighbor

The nearest neighbor (NeN) method is also known as prox-
imal interpolation or point sampling. Let Dl be the nearest
neighbor of the missing point, D and d(D ,Dl ) denote the dis-
tance between Dl and D , then min{d(D ,Dk )} = d(D ,Dl ),
k = 1 · · ·N . In this case, the estimated value will be the same
as the value in the nearest sampled location l. Mathematically,
the weights, λk can be represented as [49]:

λk =

{
1 if k = l
0 if k �= l

(16)

which leads to the missing point prediction as:

ĉ =
N∑

k=1

λkck = cl (17)

Nearest neighbor method is known for its low complexity.
Among the considered techniques in [50] for the task of
interference map interpolation, nearest neighbor interpolation
is concluded to be the least complex method and natural neigh-
bor, linear, cubic and quadratic interpolation techniques have
shown to exhibit comparable performances.

Although nearest neighbor approach is of low complexity,
it results in sharp transitions between the individual signal
level zones and increases noise, especially at the boundary of
a given area, since it does not consider the influence of the
sample data points apart from the nearest neighboring data
point [25], [51].

Fig. 3(g) illustrates an example of using nearest neighbor
interpolation to interpolate scarce RSRP measurements for
constructing coverage maps. It can be seen from the figure
that compared to methods like kriging in Fig. 3(j) where the
interpolated coverage map is smooth, nearest neighbor inter-
polation results in a representation that has more sharper
transitions between adjacent values.

F. Natural Neighbor

The natural neighbor (NaN) interpolation is based on
Voronoi decomposition (tessellation) of a set of given points
in the plane. The received signal strength value at a par-
ticular location is found from a weighted average of N
from all available measurements which fall within its ‘natural
neighborhood’.

The natural neighbors of any point are those associated with
neighboring Voronoi polygons. If the 2-D point Dk is a natural
neighbor of the 2-D point D, the portion of Voronoi region,
VDk

stolen away by D is called the natural region of D with
respect to Dk . Initially, a Voronoi diagram is constructed of all
the available coverage values. Then, a new Voronoi polygon
is created around the interpolation point (missing coverage
value). The proportion of overlap between this new polygon
and the initial polygons is then used as weights. If we denote
the Lebesgue measure of this natural region by lDk

, the natural
coordinate associated to Dk is used as weights [14]:

λDk
(D) =

lDk
(D)∑

k lDk
(D)

(18)

The weights are thus the ratio of the area of overlap to the
total area of the new polygon. Once the weights are obtained,
interpolation to find the missing coverage value can be carried
out by a weighted sum of known coverage values.

The natural neighbor interpolation method performs well
with non-homogeneous distribution of measurements as well.
However, its major drawback is that it can not find missing
signal values that lie outside the convex hull of Voronoi poly-
gons since it requires that the points to be interpolated be in
the convex hull of the measurement locations as the Voronoi
cells of outer data points are open-ended polygons with an
infinite area [25].

Another scheme similar to natural neighbor using an area-
wise multi-criteria triangulation-induced interpolation algo-
rithm which utilizes the linear interpolation to estimate the key
performance indicators of the QoS inside a triangle with the
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known values of its three vertexes is proposed to reconstruct
the coverage maps in [52].

Fig. 3(h) is an illustrative example of the result obtained by
applying natural neighbor for the task of interpolating miss-
ing RSRP values from MDT-based data in [34]. An important
observation is the interpolation at the corners of the cover-
age map in Fig. 3(h), that do not have any value due to the
inability of natural neighbors to fill the missing values that lie
outside the convex of Voronoi polygons as identified above.

G. Splines

The spline method is also referred to as the radius basis
function and ‘rubber sheeting’ [25]. It estimates the missing
value by a mathematical function or piecewise defined polyno-
mials called splines that minimizes the total surface curvature.
This results in a smooth surface that passes exactly through
the sampled points. This interpolation method is useful for
estimating above maximum and below minimum points and
for creating a smooth surface effect. However, because of this
smoothing effect, the discontinuity in data might not be well
estimated. Since it uses slope calculations or change over dis-
tance to estimate the missing values, when the known data
points are too close together or have extreme differences in
values, this method does not work well.

There are different kinds of splines, such as linear, quadratic,
cubic, biharmonic and thin-plate splines. For example, for thin-
plate splines, the unknown value is estimated as [14]:

ĉ =

N∑

k=1

wk ||D −Dk ||2 ln(||D −Dk ||) (19)

where ||.|| is the Euclidean norm. wk can be obtained by solv-
ing Ow = i, where i and w are the column vectors of input
data points and weights respectively, while O is the matrix of
output of the basis function (||D−Dk ||2 ln(||D−Dk ||) in this
case) for all possible input values.

A visual example of splines in the case of REM construction
of RSRP measurements is illustrated in Fig. 3(i). Authors
in [34] conclude that Splines and Kriging have similar
performance quantitatively in terms of relative recovery error
(Frobenius norm of recovered interpolated matrix minus the
ground truth matrix divided by Frobenius norm of ground truth
matrix).

H. Kriging

Kriging, unlike the other methods discussed above, also
takes into account the statistical relationships in additional
to spatial relationships among the measured data points to
estimate the missing values of data.

In Kriging, the weights are based not only on the dis-
tance between the measured points and the prediction location
but also on the overall spatial arrangement of the measured
points [53], [54]. The weight coefficients are calculated by
minimizing the variance of the estimation error, σ2e :

σ2e = V

[
Ĉm − Cm

]
(20)

where V is the variance operator and Cm is the missing
coverage value located at the 2-D point, p.

The first step in kriging therefore involves creating a
prediction surface map in order to uncover the dependency
rules to make predictions. To achieve this, kriging first cre-
ates a semivariogram and covariance functions to estimate
the statistical dependence values that depend on the model
of autocorrelation. To solve the optimization problem in (20),
semivariogram function, γ is used to characterize the spatial
correlation.

The next step is to fit a model to the points forming the
empirical semivariogram. A mathematical function is used
to fit the empirical semivariogram as the theoretical semi-
variogram model to model spatial autocorrelation. There are
many variants of kriging based on advanced and robust semi-
variogram models, such as simple kriging, block kriging,
factorial kriging, kriging with a trend, dual kriging, univer-
sal cokriging, kriging with an external drift, indicator kriging,
probability kriging, to name a few. A comparison of these vari-
ants is presented in [21], [24]. Kriging weights then come from
the semivariogram that was developed by analyzing the spatial
nature of the data. These weights are a result of minimizing
the variance in (20), which yield the following solution [49]:

[
λ

δ

]
= X−1y (21)

where X and y are defined as:

X =

⎡

⎢⎢⎢⎢⎣

X1,1 · · · X1,N 1
...

. . .
...

...

XN ,1 · · · XN ,N

...
1 · · · 1 0

⎤

⎥⎥⎥⎥⎦
, y =

⎡

⎢⎢⎢⎣

y1
...

yN
1

⎤

⎥⎥⎥⎦ (22)

Each element of matrix, X, Xi ,j = γ(||pi − pj ||) and each
element of the column vector y, yi = γ(||p− pi ||). The extra
element in the weight vector solution in (21), δ, is the
result of fitting by assuming a mean trend component in the
reconstructed coverage matrix.

Kriging is applied on RSRP measurements for REM con-
struction in [55], [56]. A more practical implementation of
Kriging based approach using real data from the University
of Colorado, Boulder campus has been demonstrated in [15].
In [57], the authors propose a REM construction method by
combining residual maximum likelihood-based radio propa-
gation parameter estimation with Kriging-based transmission
power prediction. They then benchmark the performance of
their proposed algorithm with a path loss-based method and a
Kriging-based method without prior fit of a path loss model,
using the metric of root mean square error (RMSE). Another
Kriging-based radio environment map construction method
based on mobile crowd sensing is proposed in [58]. Authors
in [58] compare Kriging with the nearest neighbor and the
inverse distance weighting interpolation algorithms and con-
clude that Kriging performs the best for their crowdsourced
RSRP dataset. Kriging is applied in the context of a REM-
enabled spectrum sharing mechanism for performance analysis
for mobile cellular networks in [59]. Authors in [60] propose
an improved Kriging algorithm by combining the concept of
affinity propagation clustering in ordinary Kriging algorithm
for REM construction. Another improvement over ordinary
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Kriging is the fixed-rank Kriging proposed in [61]. However,
it tends to neglect the small-scale structured variations of the
data, which may result in a loss of accuracy [62]. To overcome
the limitations of ordinary and fixed-rank Kriging, authors
in [62] propose covariance tapering based Kriging. Neural
network techniques are also applied to improve Kriging
algorithm in [63], [64], [65].

In the domain of cognitive radio networks, authors in [14]
compare three interpolation methods, namely, natural neigh-
bor, kriging and spline for constructing interference car-
tographs from a scarce set of data. They conclude that both
kriging and natural neighbor interpolations perform similarly
when the channel uncertainty is lower and that the aver-
age efficiency of all interpolation techniques improves with
increased shadowing decorrelation [14]. Authors in [51] con-
clude that Kriging performs best among nearest neighbor and
inverse distance weighted (IDW) methods. Results in [49]
again demonstrate the superior performance of Kriging among
nearest neighbors, IDW and triangular irregular network inter-
polation, but has demonstrated the robustness of IDW method
overall.

Authors in [48] compare Kriging, Modified Shepard’s
method (MSM) and Gradient plus inverse distance squared
(GIDS) and IDW for creating radio environment maps. It is
concluded that Kriging and IDW are most flexible among these
methods and offer trade-off between the computational cost
and accuracy.

Kriging has also been used in indoor environments, such
as in [66], where authors compare various interpolation tech-
niques, including Kriging, splines, weighted moving average,
Theissen polygons, trend surfaces, classification, in terms of
accuracy, spatial distribution of measurements, measurement
density and impact of a fixed location inaccuracy for the task
of signal strength prediction in an indoor environment. The
results in [66] indicate that Kriging is a fairly robust tech-
nique overall, across all considered scenarios. Kriging has
also shown to be the method which is least sensitive to the
deployment of the sensors as compared to nearest neighbor
and inverse distance weighted in [67], where the authors ana-
lyzed the impact of the number of sensors on the REM quality
in the context of military wireless networks. They used data
from real field tests with 39 sensors in an area of 4 km2.

Fig. 3(j) is an illustrative example of the result obtained
by applying Kriging for the task of interpolating missing
RSRP values from MDT-based data in [34]. Authors in [34]
report that among the methods considered in Fig. 3, kriging
method performs the best with the least quantitative rela-
tive recovery error (Frobenius norm of recovered interpolated
matrix minus the ground truth matrix divided by Frobenius
norm of ground truth matrix) of less than 0.15. This is because
in contrast to other interpolation methods where the weights
are only dependent on the distance, the weights in kriging
are based on the overall spatial arrangement of the measured
points too.

The major drawbacks of Kriging are that it requires a
large number of measurement points in order to achieve high
precision and it involves significant input from the user in
order to select the best fit function for the semivariogram.

Identifying the most appropriate theoretical variogram for the
given data (especially if it exhibits large spatial heterogene-
ity) is critical in order for Kriging to perform well. Although
Kriging has relatively high computational complexity, it is the
most commonly applied technique in the literature [31], [53]
due to its higher precision. As Kriging is geostatistical method,
it also can estimate the variances of predicted values in the
unsampled location.

I. Lessons Learned

Among the interpolation methods, Kriging has been most
widely used in literature due to its high accuracy. However, it
is computationally expensive. Simpler and less computation-
ally demanding techniques, like IDW, are shown to work best
for evenly distributed data points. Kriging, GIDS, MSM and
Splines can be used in cases where extrapolation is required.
However, when extrapolation is not required, IDW, natural
neighbors and nearest neighbors are candidate choices. Among
these, natural neighbors require all data points be inside the
convex hull of location measurement. Another method, matrix
completion, although has shown to be very promising in other
domains, its applicability to small cell environments where it
will most likely work best needs further investigation.

III. METHODS USING CONTEXTUAL INFORMATION

The preceding section discussed techniques that can be
leveraged to address the data scarcity challenge when the
only known information are the measured data and their loca-
tions. However, if some additional information other than the
observed data is known, we can employ other techniques lever-
aging that additional information, or use it to enhance the
interpolation methods.

This additional information can be knowledge of propaga-
tion model, such as path loss and other relevant parameters,
transmitter parameters, such as transmit power or antenna
patterns, transmitter location estimation, network geometry,
or characteristics of the operating environment. It is then
combined with observed scarce data to augment it. Based
on the availability of known information, different indirect
approaches can be employed. For example, authors in [68] esti-
mate the transmitter power and location using received signal
strength (RSS) measurements and empirical model to enrich
REM. Similarly, authors in [69] calibrate propagation model
using transmit power, antenna diagram, azimuth and tilt angles
before generating more RSS data through it.

A. Utilizing Geometry of Network

1) Triangular Method (Interpolation Using Locations of
Data Base Stations): One way to estimate measurements for
bins with no user reports can be using the geometry of the
base stations as shown in Fig. 5. This is particularly suitable in
ultra-dense deployment scenarios [70], where the data base sta-
tions (DBSs) are very densely deployed (by virtue of switching
OFF DBSs to keep energy consumption and interference low).
These additional measurements, after appropriate transforma-
tion, can then be used to increase the accuracy of interpolation



QURESHI et al.: TOWARD ADDRESSING TRAINING DATA SCARCITY CHALLENGE IN EMERGING RANs 1965

Fig. 5. Leveraging dense base station deployment to enrich scarce data.

Fig. 6. Leveraging cluster geometry to enrich scarce data.

methods proposed above. However, this approach can com-
plement only simple measurements such as received signal
strength.

2) Arc Method (Exploiting Pattern Among Clusters in Polar
Coordinates): Another way to enrich scarce data in a given
network area can be by dividing the area into clusters into
polar coordinates as shown in Fig. 6. Each cluster has a value
that can show a given KPI, such as the average RSRP or
SINR of the users in that cluster. To find the missing value
in a particular cluster, geometric pattern among other clusters
can be exploited, for example, if we travel along a particular
circumference, we observe that the Tx-Rx distance remains
constant on that circumference and the only variation is in
azimuth angle (θ1 to θ4 in Fig. 6). Conversely, if we tra-
verse a path radially outwards, we can notice that the azimuth
angle remains the same but there is variation in Tx-Rx dis-
tance (d1 to d3 in Fig. 6 assuming base station is located at the
center of the sector). If we model the received signal strength
as a function of azimuth angle and Tx-Rx distance, this pat-
tern can be exploited to find the unknown signal strength
values.

Learning cluster values by exploiting this pattern using
a supervised DNN has been proposed in [11]. However,
authors in [11] has not used this approach to address the data
scarcity challenge. In [11], correlations among their SINRs has
been exploited to learn the locations of users at macrocells.
However, we propose that such a model based on correlations
among SINRs of known clusters can also be used to find the
missing SINR in another cluster.

B. Through Propagation Modeling and Transmitter
Parameter Estimation

1) Received Signal Strength (RSS) Based: The RSS based
method to recover scarce data is based on a combination of
analytical models with statistical evaluation through measure-
ments [68]. The RSS at a particular receiver, i located at a
distance, d can be represented as:

Pi (d) = Pt − L− 10p log10(d) + φ (23)

where Pt is the transmit power, L is the free space path loss
and φ represents a lognormal random variable for shadowing.
L, p and standard deviation of φ are environment dependent
parameters.

After averaging out RSS measurements (in order to reduce
random shadowing effect), and assuming the sample size of
RSS measurements is large enough, the average RSS at a
particular location can be estimated as:

Pav
i (d)≈Pt − L− 10p log10(d), where Pav

i (d)=

N∑

k=1

Pk
i (d)/N (24)

After performing some algebraic manipulations, taking the
anti-log of (24) and representing d is cartesian coordi-
nates, (24) can be transformed into a regression problem which
can be expressed as a system of linear equation as follows [13]:

⎡

⎢⎢⎢⎢⎢⎢⎣

10
−L−Pav

1 (d)

5p 2x1 2y1 − 1

10
−L−Pav

2 (d)

5p 2x2 2y2 − 1
...

...
...

...

10
−L−Pav

N (d)

5p 2xN 2yN − 1

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

10
Pt
5p

xt
yt

x2t + y2t

⎤

⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎣

x21 + y21
x22 + y22

...
x2N + y2N

⎤

⎥⎥⎥⎦ (25)

where xt , yt is the transmitter location and(xi , yi ) is the
i-th receiver location. Therefore, by solving (25) using least-
squares methods, we get estimates for transmit power, Pt and
the location of transmitter, (xt , yt ). These estimates can then
be used to evaluate estimated received power at the missing
location, by first calculating the Tx-Rx distance at the miss-
ing location and then using it to find RSS. A similar method
combining transmitter localization estimation with Kriging is
proposed in [71].

Note that since path loss and shadowing parameters in the
model are assumed to be known and are highly environment
dependent, the quality of estimated is likely to be drastically
affected if there is an error in estimation of propagation param-
eters, caused by, for example, high shadowing fading in the
environment. However, this method is likely to improve if
propagation conditions are not too drastic, for example, in
rural areas and if the number of receivers with known mea-
surements are large. It is also shown in [13] that unlike IDW
and Kriging, RSS-based method is not affected by the mini-
mum distance between receiver and transmitter and therefore,
is more robust as compared to interpolation methods alone.
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RSS algorithm was applied for the task of REM interference
cartography generation in [68]. Results from [68] show that the
transmitter location estimation error decreases in an exponen-
tial manner as the number of sensor measurements increases.
2) Received Signal Strength Difference (RSSD) Based: The

RSSD method is based on the received signal strength dif-
ference (RSSD) between two base stations or transmitters. It
is assumed that transmit power is known, transmitter loca-
tion, (xt , yt ) is estimated based on the idea that the ratio
of the signal powers (or their differences expressed in dB)
observed at two different receiver locations is related to the
ratios of the transmitter to receiver distances. Specifically, the
received power differences between any two receivers, located
at (xa , ya ) and (xb , yb) can be represented as [68]:

Pab = 5p log10

(
(xt − xa)

2 + (yt − ya )
2

(xt − xb)
2 + (yt − yb)

2

)
(26)

The transmitter location in (26) can then be estimated by
solving a linear system of equations of the following form:
⎡

⎢
⎢
⎢
⎢
⎣

1− β12 − 2(x2 − β12x1) − 2(y2 − β12y1)

1− β13 − 2(x3 − β13x1) − 2(y3 − β13y1)
...

...
...

1− β1N − 2(xN − β1N x1) − 2(yNβ1N y1)

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎣
x2t + y2t

xt
yt

⎤

⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

β12

(
x21 + y21

)
−

(
x22 + y22

)

β13

(
x21 + y21

)
−

(
x23 + y23

)

...

β1N

(
x21 + y21

)
−

(
x2N + y2N

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(27)

where βab =
(xt−xa )2+(yt−ya )2

(xt−xb)2+(yt−yb)2
. Solution to (27) by ordi-

nary least squares using available receiver locations yields
estimates for xt , yt , x2t +y2t . Once the transmitter location has
been estimated, the received signal level at any location can
also be estimated by subtracting the path loss from transmit-
ted signal power. As with RSS based method, this method is
also dependent on selection of propagation parameters, such
as path-loss exponent and shadowing spread.

Performance comparison between RSS and RSSD based
methods for REM construction was done in [68]. Results
in [68] show that the transmitter location estimation error
decreases in an exponential manner as the number of sen-
sor measurements increases. For example, as the number of
measurements increase from 6 to 20, the transmitter location
error decreases from to 75 m to around 23 m for RSSD based
approach and it decreases from around 24 m to approximately
12 m for the RSS based method. As can be seen quantita-
tively, RSSD algorithm outperforms RSS based method for
all measurement densities.
3) Angle of Arrival (AOA) Based: Using prior knowledge

of transmit power and using measurements from N receivers
with known locations, this method first estimates the angles
of arrival at the locations of the measurements and combines
them with the received signal powers to estimate the location
of the transmitter. Once the location of the transmitter and
its transmit power is available, any appropriate propagation

model can be applied to estimate unknown data at different
locations.

The signal model for received signal at i-th receiver is
modeled as [72]:

Ri =
√
α(di )h(θi )s + ni (28)

where s is the complex baseband transmitted signal with
known transmit power, di is the unknown distance between
the unknown transmitter and receiver, θi is the unknown angle
by which the signal reached the i-th receiver and ni is addi-
tive white Gaussian noise vector. The (θi , di ) pair represents a
unique position. The directional and attenuation characteristics
of the channel h can be modeled by:

h(θi ) =

[
1

exp
(
j π2 sin(θi )

)
]
, α(di ) = φ

(
c

4πf

)
d−p
i (29)

For the recovery of missing measurements, first, the angle
of arrival based on the received signal strength is estimated at
each receiver and then a fusion of these estimates is performed.
For angle of arrival estimation, authors in [72] apply the
multiple signal classification (MUSIC) algorithm and obtain
estimated of the pair (θi , di ), that translate into a location
estimate for the i-th receiver:

[
x̂ it
ŷ it

]
=

[
xi
yi

]
+

⎡

⎣d̂i cos
(
θ̂i

)

d̂i sin
(
θ̂i

)

⎤

⎦ (30)

Next, these estimated locations are transferred to a cen-
tral network that combines these estimates. One way to
combine these estimates can be through simple averaging.
Another fusion method proposed in [73] obtains the following
over-conditioned system from the estimates:

⎡

⎢⎢⎢⎣

−x1 sin
(
θ̂1

)
+ y1 cos

(
θ̂1

)

...

−xN sin
(
θ̂N

)
+ yN cos

(
θ̂N

)

⎤

⎥⎥⎥⎦

≈

⎡

⎢⎢⎢⎣

− sin
(
θ̂1

)
cos

(
θ̂1

)

...
...

− sin
(
θ̂N

)
cos

(
θ̂N

)

⎤

⎥⎥⎥⎦

[
x̂t
ŷt

]
(31)

Solving this system of equations through least squares solu-
tions yields the transmitter location, which can then be com-
bined with known transmit power and a suitable propagation
model to estimate signal strengths at unknown locations.

Authors in [72] use AOA based method for interference
source localization to interpolate REMs. Authors in [72] com-
pare the AOA based method with simple averaging method
(where averaging of sensor estimates by all sensors is done)
and SNR based method in Section III-B4, where sensor
results are weighted by each sensor’s SNRs. The AOA method
outperforms the other two methods at low SINRs.
4) Signal to Noise Ratio (SNR) Based Method: The ini-

tial steps of this method are similar to AOA based method
in which the estimation step at each receiver enables the
estimation of the angle of arrival and the received signal
power. However, in the later step, combination of the location
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estimates is done through SNR-aided fusion. The basic idea
of this approach is the observation that receivers far away
from the transmitter yield worse location estimates. Hence the
receiver results are weighted with their respective receiver’s
SNR, Γi as follows [72], [74]:

[
x̂t
ŷt

]
=

N∑

i=0

Γi∑N
k=1 Γk

[
x̂ it
ŷ it

]
(32)

where the received SNR at the i-th receiver is:

Γi (d) = E

[
α(di )Pt

NoB

]
(33)

with No being the noise power density and B being the
bandwidth of the receiver.

The SNR based method has been used for interference
source localization for cognitive radio scenarios to interpo-
late REMs in [72]. Authors in [72] conclude that AOA based
method using tens of sensor nodes with two antennas in an
area of 2500 m × 2500 m can meet the location error require-
ment of FCC, which is ± 50 m and outperforms AOA based
method at moderate to high SINR.
5) Self-Tuning Method: Another method utilizing propaga-

tion parameters but also taking the antenna pattern into account
is the self-tuning method (STM) is proposed in [69]. In addi-
tion to leveraging characteristics of the operating environment,
it performs estimation of the transmitter location, antenna
parameters, transmit power and parameters of the propagation
model such that the error between available measurements and
predicted data is minimized.

Using the scarce data collected, the STM first estimates
transmitter parameters and calibrates the propagation model.
This is then used to predict missing data, such as signal levels.
Among these transmission parameters, the location of trans-
mitter is calculated using localization algorithms based on
parameters such as angle of arrival or timing advance, time
of arrival or time difference of arrival. Then, based on the
transmitter location, distance from transmitter to receiver is
calculated. This distance is then used in an appropriate prop-
agation model. As an example, if the Okumura-Hata model
is used, the received power at a particular location can be
represented as:

Pr = Pt − Ao − A1 log10(d)− A2 log10(He)

− A3 log10(d) log10(H ) + 3.2(log10(11.75Hm ))2

− 44.49 log10(f ) + 4.78(log10(f ))
2 − Ld − Lc +G

(34)

where Pt is the transmit power, d is the transmitter-receiver
distance, f is the operating frequency, Ld represents the
diffraction loss, Lc is the loss through terrain clutter, H is
the height of transmitter and Ao ,A1,A2,A3 are the con-
stant coefficients. G represents the antenna gain and can be
represented as [69]:

G = Gmax − Fθ + Fθ

∣∣∣∣cos
p1

(
θazi − θu

2

)∣∣∣∣

− Fφ + Fφ

∣∣∣∣cos
p2

(
φtilt − φu

2

)∣∣∣∣ (35)

where φtilt is the tilt angle of the antenna, φu is the vertical
angle from the reference axis (for tilt) to the user. θazi is the
angle of orientation of the antenna with respect to horizontal
reference axis, i.e., positive x-axis, θu is the angular distance
of the user from the horizontal reference axis. Gmax represents
the maximum antenna gain and Fθ and Fφ are the front to
back ratios in both directions, whereas the antenna form is
approximated with the cosine functions to the power of p1
and p2

We suggest that another option for a more practical direc-
tional antenna model defined by 3GPP and utilized in [8] can
be as follows:

G = λφ

(
Gmax −min

(
12

(
φu − φtilt

Bφ

)2

,Amax

))

+ λθ

(
Gmax −min

(
12

(
θu − θazi

Bθ

)2

,Amax

))
(36)

The additional antenna parameters in this model are the
half power vertical and horizontal beamwidths, Bφ and Bθ
respectively and the side and back lobe attenuation, Amax.

Having defined a suitable propagation and antenna model,
the optimal antenna, transmitter and propagation environment
parameters can then be obtained by minimizing the mean
squared error between the measured and estimated signal
strengths. Authors in [69] solved this optimization problem
in a non-least squared sense, using prior knowledge of the
bounds for the parameters to be optimized.

After solving the optimization problem by a suitable algo-
rithm, the optimized parameters are applied in the calculation of
signal levels at unknown location to augment the existing data.

Note that Ld and Lc require knowledge of the propagation
environment, such as access to clutter database of a mobile
operator or knowledge of the digital elevation model [69]. Also,
antenna parameters knowledge through antenna datasheets or
antenna diagrams is required in this method.

STM has been applied for constructing the radio frequency
layer of REM in [69]. When 1000 measurements are used,
STM method obtains the lowest RMSE of 5, followed by
Kriging with RMSE of 17.5, while IDW attains the highest
RMSE of 22.5 [69].

C. Lessons Learned

The methods discussed in this section can be used in cases
where some additional contextual information is known. Based
on the network geometry, triangular method can be used in the
case when transmitter locations are known, and arc method can
be used in cases where transmitter locations are not known.
When the propagation environment parameters are known,
along with the transmit power and receivers’ SNR, the SNR-
based method can be used. However, if SNR is not known,
but antenna characteristics are known, the STM method can
be a potential candidate solution. There are also methods such
as AOA based method, RSS, RSSD based method that do not
require antenna or SNR information, but instead make use of
mathematical equations/models after estimating or using prior
knowledge of the transmit power and location. However, since
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Fig. 7. Conventional GAN architecture.

these methods are mostly based on analytical models, they
inherit some assumptions.

IV. MACHINE LEARNING METHODS

Several machine learning techniques such as generative
adversarial networks (GANs), autoencoders, transfer learn-
ing and few-shot learning techniques can be leveraged to
address the training data scarcity challenge in radio access
networks. In certain RAN use-cases involving higher dimen-
sional datasets, these neural network based techniques can
be trained with much less training data (or with higher
performance for the same amount of data) due to their efficient
learning ability for higher-dimensional datasets as compared to
previously mentioned interpolation and contextual information
based methods [75]. Examples of scarce data and use cases in
RAN where ML techniques have shown superior performance
than other techniques, include CDR data for traffic map
prediction [19], [76], MDT data for outage detection [77], cell
trace data for performance analysis [78], RSS data for pathloss
prediction [79], [80], RF data for radio map generation [81],
[82] and configuration data for performance prediction [83],
[84], [85], [86], [87], [88], [89], [90].

A. Generative Adversarial Networks

Generative adversarial networks (GANs) success in image
processing has been well established [91], [92], [93],
[94], [95]. Although this concept has widely been used in
image processing, it can also be used in wireless communi-
cations. In wireless communications context, the works that
utilize GANs are limited to [19], [76], [77], [81], [82], [96],
[97], [98]. While GANs have been widely used for image data,
its application to tabular data remains relatively limited. The
works that use GANs on tabular data in a non-cellular network
data context include [99], [100], [101], [102], [103], [104].
However, similar concepts can be applied to wireless data
domain too.

The basic idea of GAN illustrated in Fig. 7 is to gener-
ate large amount of synthetic data building on small amounts
of real data which will not be distinguishable from real data.
The intuition behind GANs is to exploit the potential of deep
neural networks (DNNs) to both model nonlinear complex
relationships (the generator) as well as classify complex sig-
nals (the discriminator). In GAN, a two-player minimax game

is set between the discriminator DNN and generator DNN as
follows:

min
G

max
D

V (D ,G) = Ex∼pdata(x)[logD(x )]

+ Ez∼pz (z )[log(1−D(G(z )))] (37)

where V (D, G) is the value function over which train-
ing happens, the latent variable z is randomly drawn from
prior distribution pz (z ), x is sampled from pdata(x ), gener-
ator G is a mapping from the latent variable z to data space
and the discriminator is a scalar function of data space that
outputs probability that input was genuine. Other types of
loss functions for the discriminator and generator for differ-
ent types of GANs are described in [105]. In each training
epoch, the generator iterates its weights to produce synthetic
data trying to fool the discriminator DNN. The discrimina-
tor DNN on the other hand, tries to discriminate between
real data and generated data. In theory, when Nash equilib-
rium is reached between the generator DNN and discriminator
DNN, the pair of DNNs will provide us a generator that can
exactly duplicate or reproduce the distribution of the real data
so that the discriminator would be unable to identify whether
a sample is synthetic, i.e., whether it is generated by the gen-
erator DNN or it is from the real data. At this point, the
synthetic data generated by the generator DNN are indis-
tinguishable from the real data, and are thus as realistic as
possible.

To assess the efficacy of GAN-based approach outlined
above, as a preliminary study recently published in [19], GAN
was leveraged to generate synthetic call data records (CDRs)
data and thus increased training dataset size by enriching the
real scarce CDR from [106] with realistic synthetic data. CDRs
data are selected as preliminary case study because CDR data
can be used by a large number of SON solutions such as
in [107], [108]. Real network traces with call durations and call
start time stamps, provided by one of the leading mobile oper-
ators in USA, were used in this study to train the GAN. The
discriminator was trained beginning with 20,000 data points
(from a record of several hundred thousand). Once the dis-
criminator could reliably differentiate between the real data
taken from the record and randomly generated CDR data with
two features, i.e., call duration and start time, the generator
was trained. After the generator was generating data that the
discriminator perceived to be real, we used the trained gener-
ator to produce another 20,000 CDR data samples. Figs. 8(a)
and 8(c) and represent the distribution of the real data used to
train the discriminator. Figs. 8(b) and 8(d) show the distribu-
tion of the 20,000 synthetic data points produced by the trained
generator. These preliminary results show the high similar-
ity between real and synthetic data produced by the proposed
GAN based approach.

Other GAN-based approaches in cellular networks context
include the use of GANs to address the imbalance data issue
in cell outage detection [77] Authors in [77] use an LTE
simulator to get RSRP and RSRQ data and combine GAN
with AdaBoost to improve classification performance of imbal-
anced data for cell outage detection in self-organizing cellular
networks.
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Fig. 8. Leveraging GAN for enriching the scarce training data [19].

A radio environment maps estimation algorithm leveraging
a GAN-based pixel regression framework (PRF) for under-
lay cognitive radio networks using incomplete training data is
proposed in [81], [82]. In these works, the authors first trans-
form the radio environment maps estimation task into a pixel
regression through color mapping. Then they extract helpful
information from the incomplete training data, design a feature
enhancing module for the PRF algorithm, which intelligently
learns and emphasizes the important features from the training
images. Finally, they train the PRF to reconstruct the radio envi-
ronment maps in the target area. Three indicators are used to
test the proposed algorithm: the visual display of the radio envi-
ronment maps, the estimated power spectrum of primary users,
and the average REMs estimating error against different num-
bers of secondary users. Results are bench-marked with IDW
and Kriging with the exponential semi-variogram estimation.

Moreover, authors in [76], while drawing inspiration from
image processing design a deep-learning architecture tai-
lored to mobile networking, which combines Zipper Network
(ZipNet) and GAN models. Using the open-source Telecom
Italia’s dataset [106], they infer fine-grained mobile traffic
patterns to monitor city-wide mobile traffic via the GAN.

However, GANs suffer from many challenges, such as van-
ishing gradients, oscillations, modal collapse and the design
of suitable evaluation metrics to evaluate their performance.

B. Autoencoders

Unlike GANs, which come in the class of implicit den-
sity methods (where the prior distribution of latent features is
not known), some generative methods fall under explicit den-
sity method, meaning that the distribution of latent features is
explicitly defined. One such method is a type of autoencoder,
namely variational autoencoder (VAE). Autoencoders are basi-
cally neural networks consisting of an encoder and decoder,
that encodes the input to a point in latent space, by performing
non-linear dimensionality reduction (Fig. 9). The parameters
of the encoder and decoder are optimized during training to
minimize the reconstruction loss, as the autoencoder learns
to reproduce its input. On the other hand, as illustrated in

Fig. 9. A conventional vanilla autoencoder and variational autoencoder
(whose internal representation is described by a probability distribution).

Fig. 9, variational autoencoders encode the input into a multi-
variate distribution (e.g., normal distribution) in latent space,
described by the mean and variance vector where the length of
the vector is equal to the number of dimensions in latent space.
This probabilistic representation ensures that the latent space
has good properties, such as variability of the latent space, thus
making the model more robust and achieve better performance
as compared to traditional autoencoders.

VAEs are used in literature [109], [110] to handle labeled
training data scarcity problem for anomaly detection use-cases
in RAN. In these use-cases labeled training data is severely
imbalanced and traditional machine learning techniques are not
able to distinguish the anomalies from the majority data. As a
case study, authors in [109] used VAEs for anomaly detection
and root cause analysis (RCA) in radio access networks. The
data used in the analysis includes key performance indicators
(KPIs) that indicate network quality of service (QoS), as well
as key quality indicators (KQIs) that indicate user quality of
experience (QoE). The anomaly detection module focuses on
detecting the performance degradation in RAN, whereas the
RCA module tries to find the root cause of detected anomalies.
The proposed anomaly detection module takes time series of
KPIs/KQIs from a cell as an input to the VAE model and
outputs their respective anomaly score based on the error from
the VAE model when it tries to reproduce its input. The RCA
module is trained by auto-labelling the anomaly labels in a semi-
supervised fashion using KQI rules, e.g., high PRB usage, over
coverage, weak coverage, etc. The proposed AI-based approach
is then tested in a live O-RAN compliant network for closed
loop automation, resulting in 25% increase in downlink rate
and 8% increase in RRC connection establishment with zero
human cost in the entire process.

Similarly, adversarial autoencoders are a type of variational
autoencoders which combines the architecture of autoen-
coders with GANs adversarial loss for regularization. Authors
in [110] demonstrated the effectiveness of adversarial autoen-
coders for detecting anomalous behavior in wireless spec-
trum using power spectral density data. Manual spectrum
management, especially in emerging dense and heteroge-
neous networks is inefficient and can only detect limited
anomalies. Therefore, automated spectrum monitoring solu-
tions are becoming more crucial than ever before. Along
with anomaly detection, the proposed model in [110] shows
a semi-supervised wireless band classification accuracy close
to 100% on datasets using only 20% of the labeled samples.
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Fig. 10. An example of transfer learning in deep neural networks for cover-
age estimation. The feature network (source model) is pre-trained on a large
dataset (from BS with rich data). The target model is created by transferring
the knowledge learned from the source model, e.g., weights of the model.
This model is then trained/fine-tuned using the scarce dataset (from BS with
scarce data).

C. Transfer Learning

For data streams where latent features are too little to
allow the use of GANs, matrix completion or other inter-
polation techniques identified above, the transfer-learning
paradigm [84], [111] can be leveraged.

Transfer learning aims to help improve the learning of
the target environment (target model) by transferring the
knowledge learned from another similar environment (source
model). One way of achieving that is by model fine-tuning,
where a larger source dataset is used to pre-train a neural-
network based model (source model) and fine-tuned using the
target scarce dataset (as illustrated in Fig. 10).

In cellular network context, similarities among cells can be
leveraged for determining when to use transfer learning. To
quantify similarities among the cells, one approach is to use
Wasserstein distance measure [112]. Given two random vari-
ables fi and fj with marginal distributions P(fi ) and P(fj )
respectively, let ψ denote the set of all possible joint distribu-
tions that has marginals of P(fi ) and P(fj ). Then Wasserstein
distance between them is defined as:

W
(
fi , fj

)
= inf

Pfi fj
∈ψ

∫
|fi − fj |Pfi fj

(
fi , fj

)
dfidfj (38)

The inf in Equation (38) gives joint distribution with fi and
fj having smallest distance while maintaining the marginals.

Several works have been carried out in the literature using
transfer learning to address data scarcity problem for network
performance prediction [84], [85], [86], [87], [88], [89], [90].
As a case study, authors in [85] proposed to use transfer learning
for parameter configuration in cellular networks. In this work,

contextual bandit algorithm is leveraged along with transfer
learning to optimize parameter configurations for uplink power
control and user scheduling using cell KPI/counter data. Cell
state measurements, e.g., the number of total users within the
cell, the number of active users, the average channel quality
indicator (CQI) of the cell, etc. are collected for each cell at
each hour, and the goal is to minimize the ratio of users with
experienced throughput less than 5Mbps for each cell. Live
field tests in a real cellular network consisting of 1700+ cells
show a significant performance improvement of 20% by opti-
mizing five parameters for two weeks, thereby demonstrating
the effectiveness of the proposed scheme.

A transfer actor-critic learning framework for energy saving
in cellular radio access networks is proposed in [86]. This work
utilizes the transferred learning expertise in historical periods
or neighboring regions for predicting traffic load variations for
BS ON/OFF switching. The problem of predicting the signal
strength in the downlink of a real LTE network, where the
antennas can be tuned to operate with different antenna tilt
configurations is addressed using transfer learning in [87]. The
authors show that augmenting the data from the source domain
by adding data available from other tilts configurations of the
same antenna improves the performance of the proposed transfer
learning approaches. Transfer learning for channel quality and
active UEs prediction is proposed in [88], using KPI/counter
data from a commercial LTE network. The results show how
transfer learning can be carried out across pairs of cells working
at different frequencies, or at the same frequency in different
locations and how to pick suitable candidate cells across the
city for the transfer learning task. Transfer learning is also par-
ticularly helpful in tasks that require frequent model retraining,
due to changes in the operational environment during execution,
such as learning performance model for a cloud service [89].
Authors in [89] show that the number of new measurements
required to compute a new model are reduced by an order of
magnitude in most cases using transfer learning, as compared
to training the new model from scratch, when evaluated on
traces collected from a testbed running video-on-demand ser-
vice, under various load conditions. However, finding suitable
transfer candidates, or where to transfer is another challeng-
ing research question that remains unfocused in most of the
works discussed earlier. Authors in [90] argue that the choice
of source domain can either yield ‘transfer gain’, or further
decrease the performance of the baseline model, commonly
known as ‘negative transfer’, and proposed two source selection
approaches to mitigate this issue. A key result from their study
is that source selection should encourage diversity of the data
in source domain rather than similarity between source and
target cell, especially in scenarios with few samples in target
domain as the similarity between the underlying distributions
of both domains cannot be reliably measured.

D. Few-Shot Learning

Few-shot learning (FSL) is another branch of machine learn-
ing that addresses the performance degradation problem of
deep learning algorithms when the training dataset size is
small. Using prior knowledge, FSL can master new tasks from
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Fig. 11. Meta learning-based methods can learn a learning strategy from a
family of tasks by developing a task-agnostic learner. The learning strategy
(or task-agnostic knowledge) can then be used to improve the learning of a
new few-shot learning task from that task family [128].

a limited number of examples [127]. This type of learning is
primarily motivated from the ability of humans to learn from
only a few examples. Therefore, FSL can eliminate expensive
data collection efforts and help in building suitable models for
rare cases of limited supervised data [127].

FSL can be used for classification, regression and even
reinforcement learning tasks using only few labeled, input-
output and state-action examples respectively. However, the
most common application scenario for FSL is “N-way-K-shot
classification”, where a classifier is built for distinguishing
between N classes, each having only K examples per class.
When only one example with supervision is available, it is
referred to as One-Shot Learning and when no example is
available, it is called Zero-Shot Learning.

FSL is a very active area of research these days and the
methods being proposed in the literature for solving the few-shot
problem can be broadly classified in two different branches:
1) Meta learning, and 2) Metric learning. The key idea in Meta
learning-based methods (as shown in Fig. 11) is to distill the
experience of multiple learning episodes from a distribution of
related tasks. This learning to learn strategy can improve the
future learning performance on new few-shot learning tasks,
thus developing a task-agnostic learner with improved data
and compute efficiency [128], [129]. Examples of methods
include Model Agnostic Meta Learning [130], Task-Agnostic
Meta Learning [131] and Meta-transfer Learning [132]. These
methods are good at out-of-distribution tasks and can han-
dle varying and large shots well, but their model and
architecture are intertwined and their optimization process
is challenging [133]. On the other hand, Metric learning-
based methods learn to compare query set (test set) with
support set (few-shot training set) by learning transferable
representations in semantic embedding space using a dis-
tance loss function (learn to compare). Examples include
Siamese Neural Networks [134], Matching Networks [135],
Prototypical Networks [136], Relation Networks [137] and
Graph Neural Networks [138]. As compared to meta learning-
based methods, these are relatively simple, entirely feedforward,
computationally fast and easy to optimize, but harder to
generalize to varying shots and to scale to very large shots [133].

A few works have been carried out using few-shot learn-
ing to address training data scarcity issue in cellular networks.

Authors in [78] use prototypical networks, a few-shot learning-
based algorithm for performance metrics analysis in LTE
networks. They used eNodeB trace data from live network
and classified individual eNodeBs into different performance
classes based on their KPIs. Their results show an improved
performance as compared to baseline DNN, 1-D CNN and
2-D CNN.

Authors in [79] show that meta learning can be used
in mmWave smart factory environment to frame the indoor
pathloss prediction task as a meta-task comprising of multiple
tasks. Authors show that meta-learning based CNN-based
model trained on a meta-task of multiple beams can out-
perform conventional training methods. Specifically, the
prediction RMSE of the proposed meta-learning based CNN
model show a gain of 70% in terms of prediction accuracy as
compared to floating-intercept (FI) model, and a gain of 55%
as compared to conventional CNN based model.

Authors in [139] use self-imitation via transfer learning
to achieve few-shot learning for the resource management
(network power minimization) problem in Cloud Radio Access
Networks (C-RAN). Their simulation results show that few-
shot learning is able to achieve similar performance even with
scarce and unlabeled training data, as compared to a model
that is trained without few-shot learning even with labeled
data. These results show the power of few-shot learning in
scenarios where labeled training data is not available or is
very scarcely available.

E. Lessons Learned

Based on the covered literature, we can see that all the
above-mentioned ML/DL techniques work well for modeling
high-dimensional datasets, however, they differ in terms of
their applicability. For instance, both GANs and autoencoders
can only generate quality synthetic data if their training data
contains some latent information about their environment. In
situations where the scarce dataset is not representative of the
environment from which it is collected, few-shot learning and
transfer learning techniques can be used. Both, however, rely
on the availability of auxiliary datasets to help them learn
the target environment from unrepresentative training data.
Transfer learning requires data from a similar domain or task
to gain insights and then transfer that knowledge to the task
at hand. few-shot learning requires data from a lot of dif-
ferent (but not necessarily similar) task/domain to learn the
unfamiliar environment. These takeaways are also illustrated
in Fig. 17 for the benefit of the reader.

V. SYNTHETIC DATA GENERATION

The techniques mentioned in previous sections are likely
to work well when the scarce available data is somewhat
representative of the whole data or exhibits some degree of
correlation. In situations where the available data is scarce
and non-representative, the methods presented in preceding
sections are likely to perform poorly. Likewise, in other sce-
narios, the available data can be big, but still not representative.
In these cases, the solution lies in either resorting to get real
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TABLE II
COMPARISON OF DIFFERENT SIMULATORS FOR SOLVING DATA SCARCITY PROBLEM

data or generate synthetic data. In this section, we will present
ways to generate synthetic data through simulators.

A. Simulators

System level simulators are widely used in both indus-
try and academia due to limitations of analytical models
and field experiments. Apart from the limitation of mount-
ing Base Stations (BSs) on predefined locations, the support
of antenna height, tilt, transmission power etc. for individual
BSs is absent in the analytical model. Furthermore, stochas-
tic geometry-based models are unable to capture the network
dynamics which include mobility management and transmis-
sion latency. On the other hand, field trials exhibit the most
realistic modeling of network performance, evaluation and tun-
ing. However, this approach is impractical owing to the cost
and time effort required to conduct field trials on a large
scale, and with the high probability of significant network
performance impairment of live mobile network during the
trial phase.

A list of existing simulators along with a comparison of
their features is presented in Table II. For more details on these
simulators, the reader is referred to two existing surveys on
simulators; [28] that compares 4G and 5G simulators, and [29]
that gives the summary of the most significant 5G simulators.

As observed from Table II, none of the simulators is based
on comprehensive 5G standard incorporating all aspects out-
lined in the standard. To tackle this problem, SyntheticNET
simulator built on Python platform was developed by
the AI4Networks Research Center at the University of
Oklahoma [126]. The SyntheticNET simulator is modular,
flexible, microscopic and versatile, built-in compliance with
the 3GPP Release 15. This simulator supports features like
adaptive numerology, actual hand over (HO) criteria and futur-
istic database-aided edge computing to name a few. Instead

of an objected-oriented programming (OOP) based structure
like existing simulators, SyntheticNET simulator supports
commonly used database files (like SQL, Microsoft Access,
Microsoft Excel). Site info, user info, configuration param-
eters, antenna pattern etc. can be directly imported to the
simulator. As a result, the simulation environment is more
realistic and closer to actual deployment scenarios. For further
details of this simulator, the reader is referred to [126].

Python based platform and the flexibility of different input
and output data formats in SyntheticNET simulator can assist
in solving the data scarcity challenge by generating ample
amounts of synthetic data to enrich the available scarce real
data, which can then be used to implement different Self
Organizing Networks (SON) related features or AI based
network solutions [1]. Mobile operators can use it for plan-
ning, evaluating or even optimization of beyond 5G networks.
Research community can also benefit from it by implement-
ing the new ideas on data generated from this 3GPP-based
realistic 5G network simulator.

Fault diagnosis using synthetic data from Atoll simulator
is used in [140]. Authors in [140] consider 4 types of faults
characterized by cell outage, low transmit power, excessive
antenna uptilt, and excessive antenna downtilt. The SINR maps
obtained in these scenarios are scarce as shown in Fig. 14.
Authors in [140] then analyse the performance of several ML-
based algorithms for fault diagnosis in Fig. 15, where the
UE density on x-axis corresponds to the network depiction in
Fig. 14. As compared to complete coverage maps, a drastic drop
in diagnosis accuracy is observed for the ML models on scarce
data, where the exact match ratio (EMR) drops from 90.2%
to 69% and from 92% to 71.3% respectively, as the density of
users drops from 203 to 100 users/cell. Performance continues
to deteriorate as the number of users decreases per cell.

Another example of data generated through simulators
include system features data (such as BS horizontal/vertical



QURESHI et al.: TOWARD ADDRESSING TRAINING DATA SCARCITY CHALLENGE IN EMERGING RANs 1973

Fig. 12. Some current and emerging 5G testbeds.

separation, transmit power, operating frequency, antenna
beamwidth and gain) and environment features (such as prop-
agation distance, clutter types, BS height, diffraction points,
number of building penetrations in each clutter type) to create
a machine learning based prediction model for 3D pathloss and
received signal strength (RSS) [80] to overcome the challenges
of conventional and ray tracing based path loss modeling.
This work investigated the model performance under varying
data scarcity levels (UE density). Fig. 16 is a key numeri-
cal result from this study, which shows how the augmentation
of scarce training data (from 400 UE traces/km2 to 20,000

UE traces/km2) leads to significant reduction in RMSE (RSS
prediction error) for most ML algorithms used for path loss
and ultimately RSS prediction.

Another simulator generated data in [141] includes the
dataset of RSRP, SINR, and handover success rate (HOSR)
against the rarely explored mobility configuration and
optimization parameters, namely A5 time to trigger, A5 thresh-
old 1 and 2. The A5 parameters are usually fixed to a gold
standard value or adjusted through hit and trial due to the valid
reluctance of network operators to test all parameter combi-
nations in the live network. To overcome this issue, synthetic
data from a 3GPP-compliant simulator was generated. This
type of data was then used to develop a closed loop solu-
tion for optimizing seldom explored A5 parameters by jointly
maximizing RSRP, SINR and HOSR [141].

B. Lessons Learned

Synthetic data using simulators can be used to augment data
in situations where the available data is non-representative.
Simulators are also a good candidate to generate training data
for transfer learning or meta-learning techniques. Although
most simulators are link level, system level simulators are also
there. The choice of simulators depends on what features (e.g.,
scheduling support, mmWave, adaptive numerology, mobility
and pathloss modeling, COPs, etc.) are supported and Table II
can assist the reader for this purpose. Based on the available
literature, SyntheticNET has the most features supported.

VI. REAL DATA GENERATION

The preceding techniques, with the exception of using sim-
ulators, are likely to work well when the scarce available data
is somewhat representative of the whole data or exhibits some
degree of correlation. In situations where the available data
is scarce or big but non-representative, the solution lies in
obtaining real data.

One way of getting access to real data can be utilizing
historic logs of data gathered by other researchers. However,
these logs might become outdated quickly with the emergence
of new technologies, heterogeneous deployments or change in
traffic patterns, number of users, construction of buildings and
other terrain changes. Another way of generating real data can
be through the use of mobile phone applications. However,
what if researchers require data for scenarios which are not
yet deployed in a real network? The techniques presented in
previous sections (except simulators), all require some start-
ing real data but with the advent of AI based next generation
networks, there exists the potential of new or anticipated sce-
narios which do not exist in a real network. In such cases,
testbeds to generate real data are going to be the best option
for wireless communications community.

A. Phone Applications and Parametric
Subscriber/Third-Party Data

Many smartphone applications offer the ability to log
parameters such as RSRP, RSRQ, SNR, events occurring
(handover, cell re-selection), serving time, speed, height,
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Fig. 13. Federated Testbeds.

Fig. 14. Network coverage maps with various user densities (a) Full coverage
map (203 UEs/cell) (b) 100 UEs/cell (c) 80 UEs/cell (d) 60 UEs/cell (e) 40
UEs/cell (f) 20 UEs/cell [140].

cell ID, along with timestamp and location (latitude, longi-
tude) information). As an example, one of the studies [108],
used a novel methodology of utilizing smartphone applica-
tion, based on the idea of participatory sensing, to collect
real LTE network data for building, training and evaluat-
ing the performance of mobility prediction schemes in live
network [108]. The data in this case was the handover

Fig. 15. Performance comparison of ML models on scarce and complete
coverage maps data [140].

information of the user. An android application, “LTE
Discovery” was installed on the smartphone to log the times-
tamp and new cell IDs around the OU-Tulsa campus. This
information was then used to build a semi-markov model for
mobility prediction.

The quality of data gathered through smartphone applications,
however, depends on a number of factors, including mea-
surement capabilities of different smartphones and GPS error
inaccuracy for measuring heights and positions. Smartphones
equipped with barometers are likely to give a better estimate of
heights in scenarios with varying terrains. In addition, transmit-
ter parameters, such as type of antennas and their characteristics
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Fig. 16. Comparison of RSS prediction error when the ML based prediction
models are trained using scarce and enriched synthetic data. Height of bars
represent the mean value and error bar represent the standard deviation using
5-fold Repeated Cross Validation. Enriched synthetic data leads to a reduction
in RSS prediction error (RMSE) [80].

remain unknown, unless the network operator is involved. When
the network operator is involved, it is possible for the subscriber
to obtain parametric data from them. However, that type of data
may be limited to a certain number of possible configurations.
For this reason and for potential new scenarios, the solution
may lie in resorting to testbeds.

B. Testbeds

Field trials using testbeds generate real training data and
provide the most realistic picture of the network. An aerial
view of some of these testbeds is presented in Fig. 12. We have
summarized the existing and emerging testbeds in Table III
to make readers aware of current and emerging platforms to
access real data. Most of these testbeds are open, i.e., available
to external experiments. This will foster collaboration among
different academic institutions as well as with industry, which
will in turn enable the utilization of these existing facilities to
the fullest and accelerate quality research in the field.

Apart from individual testbeds, several federations or con-
sortiums of testbeds have been formed around the world. Some
key federated testbeds comprising of the testbeds in Table III
are presented in Fig. 13.

Examples of data collected from testbeds include data for
scenarios that are not fully and widely deployed yet, e.g.,
mmWave channel measurement data consisting of direction
of user movement with respect to BS-UE link, distance reso-
lution, the number of user locations and whether blockage is
present or not [142]. This type of data can be used for build-
ing beam tracking algorithms. Other examples of data include
received signal strength indicator, electric vector magnitude,
packet and bit error rate data from CORNET testbed [143] and
massive MIMO data from LuMaMi testbed such as signal to
noise ratio (SNR) and bit error rate for different antenna con-
figurations and modulation schemes [144]. These types of data
can provide flexibility to researchers for design and testing
network scenarios using a much wider range of parameters,

which is difficult to obtain from network operators other-
wise, due to the high probability of network impairment when
varying parameters too much in live networks.

C. Lessons Learned

One way of getting access to real data to augment scarce
data can be utilizing historic logs of data gathered by other
researchers. However, these logs can become outdated. Lack
of diversity in the COP-KPI data is another problem when data
is obtained through logs. Testbeds is another way to generate
real data and is particularly useful to test new or anticipated
scenarios which do not exist in a real network. Key features of
several federations and individual testbeds around the world
have been presented in Table III that can assist the readers in
the choice of testbed for their works.

VII. CONCLUSION AND DISCUSSION

In this paper, we have presented an overview of key tech-
niques in literature to address the data scarcity challenge and
presented some emerging new techniques that can be applied
to radio access networks in the wireless communication
domain to solve this problem.

Table IV summarizes the data augmentation techniques for
handling scarce datasets in mobile networks. The typical use
cases targeted in existing literature include mobile traffic maps
generation using scarce CDR data, spectrum sensing, MDT-
based outage detection, CSI/RSS for localization, BS trace
data for performance analysis, network power minimization,
optimizing BS Tx power using UE SINR data, network param-
eter configuration optimization for power control and user
scheduling, resource allocation, traffic load based energy sav-
ing, CQI and RSS prediction, radio environment map recon-
struction, channel estimation in Massive MIMO systems and
discovering user patterns using user trajectory data. The tools
in existing literature to address these use cases include GANs
and its variants, transfer learning, autoencoders, interpolation
techniques, simulators and testbeds. While these techniques
have proved to be beneficial for particular use cases, the
generalization ability of a particular technique to different sce-
narios remains a challenge. Another notable challenge is the
applicability of these techniques to highly dynamic or mobile
environments. Efforts are also being made to reduce the train-
ing time of machine learning based models and modifying
them for more robustness.

It should be noted however, that the success of any tech-
nique for solving the data scarcity challenge depends on a
number of factors, including type of data under considera-
tion, number of transmitter and receivers, distributions of users
and base stations in a given area, distribution of measure-
ment data, level of accuracy required, measurement capability
of receivers, dynamics of propagation environment, propa-
gation modeling accuracy, time and computational resources
available. Also, highly dynamic spatio-temporal environment
would greatly hamper the outputs of techniques covered in
this paper. In that case, using data through simulations and
testbeds may provide the best option. Further options on
addressing the data scarcity challenge for highly dynamic
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TABLE III
WORLDWIDE EXISTING AND EMERGING TESTBEDS FOR SOLVING DATA SCARCITY PROBLEM

(continued)

environments is out of the scope of this work and can be
considered as part of a future study. Therefore, while a
certain technique might work well in a particular scenario,

it is likely to perform poorly in other scenarios. It should
also be noted that the selection of a performance metric
to assess the accuracy of a particular method is important
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TABLE III
(Continued) WORLDWIDE EXISTING AND EMERGING TESTBEDS FOR SOLVING DATA SCARCITY PROBLEM

(continued)

too. As an example, if the metric of mean residual error
is used to access Kriging accuracy, it would always yield
zero, since this type of interpolant satisfies the unbiased-ness

condition, and so some other performance metric, like the
average relative error would be more appropriate in this
case.
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TABLE III
(Continued) WORLDWIDE EXISTING AND EMERGING TESTBEDS FOR SOLVING DATA SCARCITY PROBLEM

(continued)

Finally, based on the analysis from literature and domain
knowledge, in order to assess the applicability of a partic-
ular method, the tree diagram in Fig. 17 is aimed to assist

researchers and network operators in choosing the appropri-
ate techniques based on available information. We start the
figure by the red box, ‘Insufficient data’. The first question
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TABLE III
(Continued) WORLDWIDE EXISTING AND EMERGING TESTBEDS FOR SOLVING DATA SCARCITY PROBLEM

in the decision figure is whether the data required is for
completely new or unseen scenarios (e.g., 6G drones to
terrestrial networks that are not yet deployed) or whether
the data required is for scenarios already present in today’s

networks. In the former case, the only options are utilizing
testbeds and simulators to depict new use cases. In the lat-
ter case, if the data is non-representative (i.e., very few data
points are available that might not represent the scenario very
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TABLE IV
REVIEW OF MODELING TECHNIQUES FOR HANDLING SCARCE DATASETS IN RADIO ACCESS NETWORKS (RAN)

(continued)

well), the options are again to generate more synthetic data
through simulators or real data through testbeds and mobile
applications.

However, if the data is representative, low dimensional in
nature (e.g., spatial only), and exhibits some correlation (e.g.,
RSRP values that are correlated with distance), the choice
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TABLE IV
(Continued) REVIEW OF MODELING TECHNIQUES FOR HANDLING SCARCE DATASETS IN RADIO ACCESS NETWORKS (RAN)

(continued)

of methods depends on whether the propagation environment
parameters (e.g., frequency, path loss exponent) are known or
not. If these parameters are known, along with knowledge of

receivers’ SNR and transmit power (through, e.g., operator),
then SNR based method in Section III-B4 can be used. If
transmit power is known, but receivers’ SNR is not known, but
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TABLE IV
(Continued) REVIEW OF MODELING TECHNIQUES FOR HANDLING SCARCE DATASETS IN RADIO ACCESS NETWORKS (RAN)

(continued)

antenna characteristics (e.g., antenna tilt, patterns) are known,
then the STM method in Section III-B5 can be used. If SNR
is not known, and antenna information is also not available,

then based on the propagation environment and transmit power
information only, three methods described in Section III-B,
AOA, RSSD and RSS can be used.
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TABLE IV
(Continued) REVIEW OF MODELING TECHNIQUES FOR HANDLING SCARCE DATASETS IN RADIO ACCESS NETWORKS (RAN)

If the low dimensional data is correlated, but we do not
have information about propagation environment or transmit
power, choice of interpolation method can be done on the
based on other contextual information, such as network geom-
etry, which if known, leads to cluster-based interpolation in
Section III-A2. If, along with network geometry, transmit-
ter locations are also known, then the triangle method in
Section III-A1 can be a possible choice. If, however, the
network geometry is also not known, but the data forms a
low-rank matrix (e.g., ultra-dense high frequency scenario),
then matrix completion in Section II-A can be a choice.
Otherwise, decision is made by assessing whether the underly-
ing data surface is mathematically smooth or not. By smooth,
we mean differentiable and continuous surface. In case of
smooth surface that requires extrapolation of data, kriging,
GIDS, MSM, and Splines can be used and where extrapo-
lation is not required, all interpolation methods in Section II
can be used with the exception of natural neighbors, which
can be used only if all data points are inside the convex
hull of location measurements. In the case of non-smooth

surface that requires extrapolation, kriging, GIDS, MSM can
be used, and if the non-smooth data surface requires inter-
polation only, then kriging, GIDS, MSM, Nearest neighbors,
natural neighbors are the choices, since splines and IDW
can be used on smooth data surfaces only. The exception
here is again natural neighbors, which can be used only
if all data points are inside the convex hull of location
measurements.

If the low dimensional data does not exhibit any correla-
tion, we arrive at the decision block that coincides with the
case of high dimensional data (e.g., spatio-temporal tabular
data with multiple features) nature of data. In these cases, if
the data has many latent features, then VAEs in Section IV-B
can be used given the prior distribution of latent features is
known or can be approximated, otherwise GANs discussed
in Section IV-A can be the choice since they do not require
the knowledge of prior distribution of latent features. On
the contrary, if the low dimensional data does not exhibit
any correlation and also does not have enough latent fea-
tures, then the decision is made based on the availability of



1984 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 25, NO. 3, THIRD QUARTER 2023

Fig. 17. Decision flowchart for the selection of data augmentation technique for handling scarce datasets in mobile networks.

any prior knowledge about the distribution of data, which if
unknown, leads to the augmentation of data through testbeds,
simulators and mobile application, and if known, leads to the

possible solution of transfer learning (if data from a similar
domain is available), otherwise, few-shot learning can be the
choice.
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VIII. FUTURE DIRECTIONS

Since the advanced machine learning methods, such as
GANs, transfer learning and few short learning are much less
explored for different telco use-cases, as compared to tech-
niques such as interpolation methods, more investigation of
these techniques in telco domain in needed. Particularly the
potential of transfer learning remains unexploited. Future work
focused on questions on what to transfer, where to transfer and
how transfer while taking into account domain knowledge of
RAN may help avail the full potential of transfer learning for
wireless networks.

Similarly, in GANs, research questions such as how much
minimum data is needed to train a generator for given type of
RAN data and problem is an important direction to exploit the
full potential of GANs and their limits on synthesizing RAN
data. A recent work explores this question [145] indicating
significance of this research direction.

Moreover, solutions that have the scalability to generate
high dimensional data, robustness to highly dynamic real envi-
ronments and the capability to take conditional context of the
required network conditions into account can also be another
future direction.

Another research direction worth exploring to address the
data sparsity challenge in wireless communication domain is
by leveraging active learning [146], which harnesses the power
of machine learning together with the experience from domain
expert.

Most current machine learning based approaches to enrich
training data are predominately used as black-box models,
allowing little interpretability. Therefore, another future direc-
tion can be to design gray-box (or hybrid) machine learning
models (e.g., GANs) by combining domain knowledge and
analytical modeling with machine learning. This can bring
model interpretability and therefore improved ability to extrap-
olate beyond the exposed training data distributions.

Validating the recent and new developed methods and solu-
tions on real data from operators and testbeds can also be a
focus of future work.

There is also a need for datasets in this domain to be pub-
licly accessible to enable the research community to devise
practical solutions that can be benchmarked. One such initia-
tive in this direction was taken in the form of CRAWDAD
repository [147].

Recent advancements in Open RAN might also help the data
scarcity challenge as Open RAN introduces a set of open stan-
dardized interfaces to interact, control and collect data from
every node of the network [148]. However, the issue stemming
from sparsity of data (resulting from operators trying a limited
range of COPs that leads to a sparse data distribution) will still
remain as Open RAN will not allow experimentation on a live
network. Consequently, the exploration and advancements of
the techniques discussed in this survey will be required.
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