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Abstract

Recent experimental works have implicated astrocytes as a significant cell type underlying
several neuronal processes in the mammalian brain, from encoding sensory information to
neurological disorders. Despite this progress, it is still unclear how astrocytes are communi-
cating with and driving their neuronal neighbors. While previous computational modeling
works have helped propose mechanisms responsible for driving these interactions, they
have primarily focused on interactions at the synaptic level, with microscale models of cal-
cium dynamics and neurotransmitter diffusion. Since it is computationally infeasible to
include the intricate microscale details in a network-scale model, little computational work
has been done to understand how astrocytes may be influencing spiking patterns and syn-
chronization of large networks. We overcome this issue by first developing an “effective”
astrocyte that can be easily implemented to already established network frameworks. We
do this by showing that the astrocyte proximity to a synapse makes synaptic transmission
faster, weaker, and less reliable. Thus, our “effective” astrocytes can be incorporated by
considering heterogeneous synaptic time constants, which are parametrized only by the
degree of astrocytic proximity at that synapse. We then apply our framework to large net-
works of exponential integrate-and-fire neurons with various spatial structures. Depending
on key parameters, such as the number of synapses ensheathed and the strength of this
ensheathment, we show that astrocytes can push the network to a synchronous state and
exhibit spatially correlated patterns.

Author summary

In many areas of the brain, glial cells called astrocytes wrap their processes around synap-
ses—the points of contact between neurons. The number of wrapped synapses and the

tightness of wrapping varies between brain areas and changes during some diseases, such
as epilepsy. We investigate the effect that this synaptic ensheathment has on communica-
tion between neurons and the resulting collective dynamics of the neuronal network. We
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present a general, computationally-efficient way to include astrocytes in neuronal net-
works using an “effective astrocyte” representation derived from detailed microscopic
scale models. The resulting hybrid networks allow us to emulate and observe the effect of
ensheathment conditions corresponding to different brain areas and disease states. In par-
ticular, we find that it makes the networks more likely to switch into a highly correlated
regime, contrary to predictions from the traditional neurons-only view. These results
open a new perspective on neural network dynamics, where our understanding of condi-
tions for generating correlated brain activity (e.g., rhythms associated with various brain
functions, epileptic seizures) needs to be reevaluated.

Introduction

Recent theoretical work on neural circuits has successfully begun linking network structure to
their underlying dynamics [1]. In particular, it has been shown that the statistics of connectiv-
ity (e.g., spatial scales of recurrent connectivity) can be used to predict the statistics of spiking
behavior (e.g, level of network correlation) [2-4]. As reconstruction methods such as electron
microscopy start to provide considerable amounts of data pertaining to the connectome of
extensive brain regions [5-7], such theoretical work can guide the analysis of these massive
datasets, suggesting the most useful network statistics to examine first. In this work, we
develop a framework that extends computational spiking networks to efficiently include astro-
cytes, a non-neuronal cell that is often included in such reconstructed volumes [8]. As a result,
this method allows for improving the scope and accuracy of theoretical predictions linking
network structure to network dynamics.

While the overwhelming majority of computational networks only account for conven-
tional synaptic connections across excitatory and inhibitory populations of neurons, many
synapses found in vivo are ensheathed, or tightly wrapped around, by astrocytes [9-11]. It is
well-known that astrocytes are engaged in bidirectional communication with nearby neurons,
with recent breakthrough results demonstrating that astrocytes reliably encode sensory infor-
mation [12]. Such communication is thought to occur through multiple pathways, such as
neurotransmitter removal from the synaptic cleft, altering of extracellular ion concentrations,
and the release of neuroactive substances [13-15]. The tightness of the ensheathment modu-
lates the amount of extracellular space available around the synaptic site, and, as a result, is
likely one of the contributing factors determining the properties of the synaptic connections
[16] and the overall dynamics of the network. However, it is unclear how one may explore
these factors computationally, as the field currently lacks an efficient method to implement
such micro-scale details into a large spiking network.

Further, the presence of ensheathed and non-ensheathed synapses in a network would
require a higher degree of heterogeneity than considered previously, since modeling efforts
have largely focused on networks with weak heterogeneities across key synaptic parameter
values to none at all [17-20]. Here, synaptic parameters would need to be drawn from dis-
tinct distributions depending on the presence of an astrocyte. Interestingly, it has been
experimentally shown that the number of synapses ensheathed by astrocytes differs dramati-
cally between brain regions (e.g., 74% of cerebellar Purkinje cell synapses, 29% of the den-
dritic spines in the mouse visual cortex, and 60% of hippocampal synapses are ensheathed
[9, 10, 21]). Further, disease states such as epilepsy and Alzheimer’s disease are associated
with astrocytes altered in a variety of ways (so-called “reactive astrocytes”) [22-27], includ-
ing alteration of their proximity to the synapse. Taken together, synaptic ensheathment by
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astrocytes is a source of heterogeneity in synaptic connections that needs to be accounted
for to make possible predictions as to how neuronal dynamics shift across brain regions and
states. Interestingly, this concept has not been included in previous mathematical studies
that have investigated the so-called “tripartite synapse” (pre- and post-synaptic terminals
plus neighboring astrocyte, choosing to assume the astrocyte portion does not vary from
synapse to synapse [28-31].

Despite the wealth of evidence for synaptic ensheathment, the role it might play in regulat-
ing brain activity is unknown. For example, enhanced synaptic ensheathment during epilepsy
in the hippocampal CA3-CA1 network might be contributing to run-away excitability and sei-
zures, or, conversely, they might be playing a compensatory, protective role [32]. We use
computational modeling at different spatial scales to differentiate between these two options
and, more generally, to take a step towards understanding the role of astrocyte ensheathment
in altering network dynamics.

As mentioned above, astrocytes have many pathways of interacting with neurons. In this
work, we limit ourselves to only considering two such interaction pathways, namely, the physi-
cal barrier around the synapses presented by astrocyte wrapping and the rapid removal of neu-
rotransmitters from the synaptic cleft by glutamate transporters on the surface of astrocyte.
Building on our earlier work on detailed synaptic models [33, 34], we show that the ensheathed
synapse can be thought of as faster and weaker than the same synapse without tight wrapping
by an astrocyte. This allows us to create an “effective astrocyte ensheathment” model, which
can be included in established neuronal network frameworks with only minimal increases in
computational cost. Namely, an “effectively ensheathed” synapse is endowed with parameter
values (synaptic time constant and synaptic strength) derived from detailed studies of a syn-
apse at the microscopic level. These synaptic properties are parameterized only by the degree
of astrocytic proximity at that synapse. This approach allows us to reevaluate several important
examples of neuronal networks in which the dynamics had been well-studied and understood
in the absence of astrocytes. We endow some of the individual synapses with “effective astro-
cyte ensheathment” by altering their synaptic parameters accordingly, and study the resulting
changes in network dynamics.

We start this work by analyzing simulations of the microscale DiRT (Diffusion with
Recharging Traps) model for different levels of astrocyte protrusion into the synaptic cleft.
Interestingly, this model finds a strong negative linear relationship between protrusion depth
and the strength and time constant of the ensheathed synapse. In other words, astrocyte
ensheathment leads to weaker and faster synaptic communication across neurons. We then
utilize this linear relationship and implement this result into a series of large-scale spiking
models similar to those studied extensively in [2]. This implementation transforms a homoge-
neous network, a network with uniform synaptic parameters across populations, into a hetero-
geneous network, where the parameter values for an individual synapse depend explicitly on
its level of astrocyte ensheathment. We investigate the impacts this novel heterogeneity has on
fundamental states of the network, such as its firing rate, pairwise correlation, and stability of
its dynamic states. We demonstrate that, depending on key parameters, such as the number of
synapses ensheathed and the strength of this ensheathment, astrocytes can push a non-spatial
network from a balanced, asynchronous firing regime into a highly synchronous one. Consis-
tently, we then show that when neuronal assemblies are embedded into our non-spatial net-
work, astrocyte ensheathment can enhance correlations within populations. Finally,
broadening our network architectures to include models with spatially structured connections,
we find that these results readily extend, namely that the spatial correlation patterns sharpen
(i.e., they show stronger correlations in more spatially-restricted regions) in the presence of
astrocytes.
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Opverall, our results indicate that our understanding of what dynamical modes can be
expected from a particular network of neurons needs to be reevaluated in light of synaptic het-
erogeneity induced by astrocyte ensheathment. Specific ensheathment-induced parameter
modification for individual synapses will need to be expanded as we learn more about the
effects of the synaptic ensheathment from the detailed models. In the meantime, this frame-
work can easily be applied to other dynamic networks in other contexts using our “effective
ensheathment” approach.

Models
Microscale model of neurotransmitter diffusion

We use the diffusion with recharging traps (DiRT) model [33, 34] to investigate the number of
neurotransmitters that interact with receptors found on the postsynaptic terminal vs. those
that diffuse out of the synaptic cleft and interact with the ensheathing astrocyte. We consider a
similar idealized synapse as this previous work, taking the cleft to be a two-dimensional
domain

Q™" =10,¢,] x [0,¢,],

where c,, is the width of the cleft, and ¢}, is the height. N, postsynaptic receptors of equal size
are located along the postsynaptic density

00 = {(x.9)ly = 0.x € [psd,, psd,] € [0, ¢, ]}
The boundary of the ensheathing astrocyte is taken to be
Qi = {(x,y)lx = ¢, - (¢/2) and x =¢, - (1 = ¢/2)},

where ¢ < 1 denotes the fraction of the synaptic cleft blocked due to astrocyte protrusion (Fig
1A). As aresult, stronger astrocyte ensheathment corresponds to larger values of ¢. Note that
we also allow for ¢ to be negative (i.e., there exists space between the astrocytes and the
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Fig 1. Model of astrocyte ensheathment. A: Schematic of astrocyte (purple) ensheathment of a synapse (blue). The astrocyte is protruding into the
synaptic cleft by amount ¢. B: Time course of receptor activation in a diffusion with recharging traps simulation for different depths of astrocyte
protrusions (red: ¢ = 0, blue: ¢ = 0.4) of the neighboring astrocyte, with the half-max widths denoted (dashed lines). C: Strength of synapse, defined as
the area under the curve of activation time course, and D: half-max width as a function of protrusion depth. Dashed lines show a piecewise linear fit to

the simulated data.

https://doi.org/10.1371/journal.pcbi.1011290.9001
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Table 1. Default parameter value for the DiRT model (arbitrary units).

Parameter Default value Description

Nnt 1000 number of neurotransmitters released
Nrec 50 number of postsynaptic receptors

T, 0.1 mean receptor recharge time

K 1 absorption rate

D 1 diffusion coefficient

C 1 cleft width

o 0.1 cleft height

[psdy, psdy] [0.250.75] postsynaptic density location

¢ -11t0 0.95 fraction of the cleft blocked by protruding astrocyte
At 0.00001 diffusion time step

https://doi.org/10.1371/journal.pchi.1011290.t001

synaptic cleft), in which case the domain outside of the cleft is referred to as the extracellular
space Q'™

The simulation begins with Nyt neurotransmitters being released at (c,,/2, ;). While in the
cleft or in the extracellular space, the neurotransmitters diffuse according to

dX,(t) = V2DAW,(t),k = 1, ..., Ny, for X,(t) € (Q™ UQ™™)

where X(f) denotes the location of the neurotransmitter, W;(t) denotes independent Wiener
processes, and D is the diffusion coefficient. The receptors along the postsynaptic terminal are
taken to be partially absorbing, meaning the probability of a particle being absorbed upon
making contact is

K=
Probability of absorption = —— VAt
y P /D

where At is the time step of the diffusion model and K is the absorption rate. After successfully
absorbing a neurotransmitter, the receptor becomes activated and switches to a transitory
reflecting state and is unable to bind additional molecules. The time in this transitory state is
taken to be exponentially distributed with mean 7, > 0. After this ‘recharge’ time, the receptor
switches back to its partially absorbing state. The astrocyte boundary is taken to be perfectly
absorbing, with no recharge needed between captures. We define the synaptic time course in
this framework as the number of active receptors over time (Fig 1B), and the strength of the
synapse to be the area under this curve. All parameters corresponding to this microscale
model can be found in Table 1.

Balanced state network models

Throughout this paper, we examine the effects that astrocyte ensheathment has on the network
dynamics of neurons placed in the so-called tightly balanced regime [35, 36]. Specifically, the
networks will have dense connectivity (i.e., the connection probabilities are (1)) and strong
synaptic couplings [2, 37]. In this regime, if the firing rates of the inhibitory neurons are kept
fixed, the strong coupling across excitatory neurons leads to amplification and unstable
dynamics [38]. However, if recurrent connections with inhibitory neurons are sufficiently
strong and fast, inhibition can effectively track and balance recurrent excitation, leading to
asynchronous firing across the network [2, 36-40]. Such asynchronous firing behavior is
robust to parameter choices and is observed across networks with different connectivity rules.
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Table 2. Default parameter value for the EIF non-spatial and spatial network models (spatial model parameters in
parentheses if different).

Parameter
N.
N;
Ng

[C. /g C./8l]

Vin

Vr

E,

Vie

[Tt The
[7e, 7]
(A%, Ay
T

[m,, m;]
0-5

rp

K
Kout
K;;IH

Default value
10,000 (40,000)
10,000

N/A (5,625)

[15, 10] ms

-10 mV

-50 mV

-60 mV

-65 mV
[1.5,0.5] ms

[5, 4] ([6, 5]) ms
[2,0.5] mV

40 (N/A) ms
[0.015, 0.01] (N/A) mV/ms
0.1 (N/A) mV/ms
N/A (5) Hz
2500 (2000)
2500 (500)

2500 (2000)
2500 (500)

12.5 (40) mV
20 (120) mV
-50 (-400) mV
-50 (-400) mV

https://doi.org/10.1371/journal.pcbi.1011290.t002

Description

number of excitatory neurons

number of inhibitory neurons

number of ffwd neurons

membrane time constant

spike threshold

soft spike threshold

leak potential

reset threshold

refractory time

synaptic time constants

EIF slope parameter

noise correlation timescale

static bias to ffwd input

noise fluctuations magnitude

firing rate of ffwd neurons

number of out-going connections from E to E neurons
number of out-going connections from E to I neurons
number of out-going connections from I to E neurons
number of out-going connections from I to I neurons
synaptic strength from E to E neurons

synaptic strength from E to I neurons

synaptic strength from I to E neurons

synaptic strength from I to I neurons

The focus of this work is to investigate how the dynamics established by this strong cou-
pling might be modulated by the ensheathment of synapses by astrocytes. To do this, we con-
sider exponential integrate-and-fire (EIF) neurons placed in both a randomly connected and a
spatially extended recurrent layer defined by connectivity rules previously considered in this
literature (see [2]). Unless otherwise noted in the figure captions, the parameters used for each
network can be found in Table 2.

Exponential integrate-and-fire neuron. We consider exponential integrate-and-fire
(EIF) neurons of the form

a

i
"odt

C

LV + 4 (Vi) + (),

where V' denotes the membrane potential for neuron j in population a (= e, i). The first two

terms on the right-hand side correspond to the leak

L(V)

and spike-generating current

vE(V)

=&

=—g(V-E)),

V-V
ALII" exp I:T:| )

Ay
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respectively. The third term represents the synaptic input currents, and is given by
—171a — [a a
CII () = Fi(t) + Re(D),

where F(t) represents the feedforward inputs and R?(t) are the recurrent inputs. We consider

recurrent inputs of the form

Zi E(hest) (1), W)

b=e,i k=1

where N is the total number of neurons in the network and SZ(¢) is the spike train. 17} (£) repre-
sents the synaptic kinetics and takes the following form

mo) =5 L), 2)

where (t) is the Heaviside function. Note that the 1/+/N scaling of the synaptic weights Ji
in Eq 1 highlights that we are in the regime of strong recurrent coupling.

Non-spatial recurrent model. In the non-spatial model, for each postsynaptic neuron in
population b, we randomly and uniformly chose K9 excitatory and K3 inhibitory presynap-
tic neurons in the network for it to be connected to (i.e., we fixed the number of outgoing con-
nections). The random network receives feedforward inputs as smoothly varying input biases
that can target specific subpopulations. Specifically, the excitatory feedforward input to each
neuron was given by

Fi(t) = VNm, + a.s(t),
where m, > 0 is the input bias and s(¢) is smooth, unbiased Gaussian noise that is shared across
neurons. We take its auto-covariance function to be

con(s0).s(1-+-9) =exp (55 ).

where 7, sets the correlation timescale and o; scales the magnitude of the fluctuations. We con-
sider two cases: 1) all neurons receive the same signal s(¢) (Fig 2A), and 2) half of the neurons
receive realization s;(¢) and the other half receive s,(¢) (Fig 2B).

B

Fig 2. Network schematics. We consider networks of excitatory (red triangles) and inhibitory (blue circles) neurons with different connectivity rules.
Individual synapses can be ensheathed by an astrocyte (purple stars). A: One population, non-spatial network where all neurons receive the same Gaussian
noise s(t). B: Two population, non-spatial network where the neurons are randomly split to either receive s;(t) or s,(). C. Spatial network on a periodic
domain, where the recurrent connections can be ensheathed by astrocytes.

https://doi.org/10.1371/journal.pcbi.1011290.9002
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Spatially extended recurrent model. For the spatial network, we arranged N, excit-
atory and N; inhibitory neurons on a uniform grid covering a two-dimensional square
domain (Fig 2C). Similarly, the feedforward layer consisted of N excitatory neurons uni-
form grid covering a square that is parallel to the recurrent network. We then normalized
each grid such that the domain lays in the unit square I" = [0, 1] x [0, 1]. Neurons were
connected randomly and the probability that two neurons were connected depended on
their distance measured periodically on I'. We used the same algorithm presented in [2] to
form the connections. Given a presynaptic neuron at coordinates y = (y;, y,) in population
b and a postsynaptic neuron at x = (x, x,) in population a, this algorithm creates a net-
work where the expected number of synaptic contacts from b to a is given by

out

1@@—ﬂ::§g@rwmmg%—hwﬁ (3)

a

where g(u; @) is a wrapped Gaussian distribution [41]. The Ny excitatory feedforward neu-
rons are taken to be Poisson-spiking, so that the feedforward input to the recurrent layer
is

Ng aF

Ei(t) = Z%ﬁ (m.%85) (1)

Results
Modeling astrocyte ensheathment with an effective astrocyte

We start by investigating how the absorption of excess neurotransmitters by astrocytes can
shape synaptic time courses. After neurotransmitters are released into the synaptic cleft, they
either interact with receptors on the postsynaptic terminal or are absorbed by neighboring
astrocytes (e.g., via glutamate transporters). While it is reasonable to assume that the depth an
astrocyte protrudes into a cleft impacts the number of neurotransmitters ending up in each
destination, it is unclear whether this impact is enough to significantly alter the strength of the
transmitted signal. To address this unknown, we make use of the DiRT model [33, 34] to simu-
late particles interacting with the receptors on this microscale domain (Fig 1A). We find that
the protrusion of an astrocyte noticeably decreases the synaptic time course by effectively
assisting the cleft in clearing out neurotransmitters (Fig 1B, red: ¢ = 0, blue: ¢ = 0.4). Further,
by defining the strength of the synapse to be the area under the curve of these synaptic time
courses, we find that protrusion also causes the synapse to become noticeably weaker. We
explore this relationship between the amount of protrusion and synaptic strength in more
detail by considering a range of protrusion values (¢ € [-1, 0.95]). In the extreme case where
the astrocyte sits significantly away from the cleft (¢ < —0.2), the synaptic strength rests at a
constant value (Fig 1C). As the astrocyte approaches and then begins to fill in the cleft

(¢ € [-0.2,0.95]), we see that the protrusion amount and the strength vary linearly, decreasing
to zero as the astrocyte completely fills in the extracellular space. This narrative also largely
holds true for the half-max width of the synaptic time course (Fig 1D).

Such microscale simulations are computationally intractable to conduct in a large network
of spiking neurons, but they provide insight into how one might include “effective” astrocytes
in such a model. Namely, a synapse that is ensheathed by an astrocyte should be weaker and
faster than an unsheathed synapse. As a result, an ensheathed synapse should have smaller val-
ues for ] and 7, which correspond to the synapse’s strength and time constant respectively (see
Eqs 1 and 2).
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We implement these results of the microscale model in the following way. First, we let s,
€ (0, 1) denote the strength of astrocyte ensheathment in the network, where stronger astro-
cyte ensheathment implies a greater amount of protrusion into the synaptic cleft (i.e., s.,, ~ ¢).
Second, for a synaptic connection from neuron k to neuron j, we let 1 ensheathea be an indica-
tor function that equals 1 if the jk synapse is ensheathed and zero otherwise. We then choose

to set this synapse’s strength Jf}f’ and time constant 7 to be

ab _ ab
ik = ] : (1 = Sen " ljk ensheathed)7 and

ik
ij = Ty (1 — Sen " ljk ensheathed)'

This model captures the key results from the DiRT simulations, namely the synaptic strength
(]j”;f) and the half-max width of the synaptic time course (7} - In (2)) are linearly decreasing

functions of the ensheathment strength (Fig 1C and 1D). Lastly, the probability that an excit-
atory (inhibitory) synapse is ensheathed is given by p¢, (p.,). The difference between this and
previous network models that accounted for synaptic heterogeneity is that the synaptic
strength ]j‘;f and synaptic time constant 7, of different synapses are highly variable across the
network. Though this adjustment appears deceptively subtle, allowing each synapse to have its
own synaptic parameters introduces a level of heterogeneity not seen in previous work.

Utilizing this readily implementable model of astrocyte-neuron interactions, the rest of this
paper investigates how this heterogeneity introduced by astrocyte ensheathment may modu-
late the network’s ability to synchronize in several commonly used configurations introduced
in Models (Fig 2). Specifically, we consider non-spatial networks receiving one or two
smoothly varying input biases and a spatial network driven by a feedforward layer of Poisson-
spiking neurons. Since recent experimental evidence suggests that glutamatergic (i.e., excit-
atory) neurons are preferentially approached by astrocytes [42], we initially focus on exploring
the p¢ X s,, parameter space. However, note that throughout the paper, we maintain the dense
connectivity property of balanced networks. This necessitates keeping s.,, sufficiently less than
1, since synaptic connections are effectively removed in the limit s,,, — 1. Building upon these
initial results, we then perform a more in-depth parameter sweep that accounts for the
ensheathment of both excitatory and inhibitory synapses.

Astrocyte ensheathment can break E-I balance, causing synchronous
activity
We first consider a non-spatial recurrent layer with each neuron receiving the same smoothly
varying signal s(f) (Fig 2A). Surprisingly, despite each neuron receiving this same input signal,
previous work has shown that such a network with homogeneous parameters can exhibit
robust asynchronous firing, as long as the network is placed in strongly coupled, or tightly bal-
anced, parameter regime [2, 37]. Placing our EIF network into such a regime reproduces this
result, namely a network that exhibits asynchronous spiking (Fig 3A). However, introducing
astrocyte ensheathment onto the excitatory synapses broke E-I balance and caused the net-
work to show strong levels of synchrony (Fig 3B and 3C). We emphasize that all three net-
works in Fig 3 share the same underlying connectivity and receive the same feedforward input.
Therefore, the only differences between the networks used in Fig 3B and 3C are the specific
synapses that were selected for ensheathment. Together, these results demonstrate that net-
work activity can be driven to synchrony at different times based on the subtle interactions
and loss of balance between internal excitatory and inhibitory activity and the external drive.
To investigate what caused the balance state to be lost, we examine the normalized shared
current across 500 neurons (Fig 4A; solid: default network, dashed: realization 1 of the network
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https://doi.org/10.1371/journal.pcbi.1011290.g003

with astrocyte ensheathment from Fig 3B). Initially, we observe that the recurrent activity in
both networks tracks and cancels the feedforward input, the crucial characteristic of a balanced
network (Fig 4A; gray lines) [37]. Zooming in on a time window (I) exhibiting the stereotypi-
cal asynchronous firing found in the balanced state (Fig 4B, left column), we see that this can-
cellation of the feedforward input is achieved via small fluctuations in the excitatory and
inhibitory currents (Fig 4Bii and 4Biii). Further, we note that previous work investigating the
tight balance regime showed explicitly that the inhibitory currents track and balance the excit-
atory currents after a small lag to accomplish this result [37]. Lastly, we observe that during
this first time window, the normalized feedforward current is large and positive, and by neces-
sity, the net shared/recurrent current is negative to compensate (Fig 4Bi).

However, we see that this breaks down during a later time window (II) for the network with
astrocyte ensheathment. Here, the normalized feedforward current drops, which must be met
with an increase in the net shared current. This increase runs the risk of leading to runaway
excitation, and as a result, synchronous firing, if the inhibitory currents are unable to track
and balance their excitatory counterparts. We see that this is not an issue for the default net-
work, where cancellation of the feedforward and recurrent currents continues unabated.
Meanwhile, this cancellation fails in the network with astrocyte ensheathment, causing the bal-
anced state to be lost and leading all neurons to fire synchronously. Interestingly, we note that
the second realization of the astrocyte ensheathment network (Fig 3C) does not fall into syn-
chrony at this point in the simulation, and instead is able to maintain the balanced state during
this drop in the feedforward current (S1D Fig, center column) due to random differences
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https://doi.org/10.1371/journal.pcbi.1011290.9004

between realizations (i.e., the specific synapses chosen for astrocyte ensheathment). Nonethe-
less, it fails later on in the simulation when the feedforward input reaches a more extreme local
minimum (S1D Fig, right column).

To explain this loss of the asynchronous state, we recall that our model of astrocyte
ensheathment leads to faster and weaker synapses. Here, astrocytes are specifically targeting
excitatory synapses, so the net effect is known: a subset of excitatory synapses throughout the
network now have faster and weaker synaptic dynamics. As noted previously, the balanced
state relies on inhibition to be sufficiently fast relative to excitation [37, 40], which suggests
that the faster synaptic kinetics lead to this loss of the balanced state. To examine this hypothe-
sis and to dissociate the roles of synaptic strength with synaptic kinetics, we considered
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modified models where astrocyte ensheathment only modified one or the other (S2 Fig). In all
cases considered where the default astrocyte ensheathment model exhibited synchronous fir-
ing (ten networks with s, = 0.4, p°, = 0.7 and p!, = 0), the balanced state was similarly lost
when only the synaptic kinetics were modified. Meanwhile, the asynchronous state was main-
tained in all cases when only the synaptic strength was modified. As a result, we conclude that
the balanced state is lost in the network with astrocyte ensheathment due to the inability of
inhibitory neurons to effectively track their excitatory counterparts, leading the network to
experience runaway excitation and synchronous firing. While consistent with previous work,
our results show that adjusting the synaptic kinetics in only a subset of neurons is sufficient for
the entire network to enter into a state of synchronous firing.

We now explore how the parameters underlying astrocyte ensheathment (i.e., the probabil-
ity (p¢,) and strength (s.,,) of ensheathment of excitatory synapses) determine the size of subset
needed to lead to synchronization and whether a mean-field approximation can be used to
average across this heterogeneity and capture this effect. We consider ten default EIF networks,
each with a different input signal s(¢) and no astrocyte ensheathment. These ten networks all
exhibited asynchronous spiking solutions for the full length of the trial (taken to be 5 seconds).
We then ask whether or not these same networks synchronized in the presence of astrocyte
ensheathment. Discretizing the parameter space p°, x s,, = [0.1, 1] x [0.2, 0.8] into seventy
parameter sets, we observe that all ten networks eventually exhibit synchronous behavior as p,
and s,,, increase (Fig 4C; red dots in the upper right corner). However, we also observe that
there is not a sharp transition point from blue (all networks remain in the asynchronous state)
to red (all networks become synchronous). This suggests that for intermediate values of p,
and s,,;, random differences in the connectivity diagram and the locations of astrocyte
ensheathment are enough to prime some networks to tend toward synchrony over others.

These results highlight the shortcomings that a naive mean field theory would have in cap-
turing the dynamics brought on by this type of synaptic heterogeneity. More specifically, one
might be tempted to simply average out the effect of astrocyte ensheathment across the net-
work and adjust the strength of all synapses to be

Son = Son Py 70 (L= pt,). (4)

However, by considering the outcomes across the 5,, = 0.4 iso-line (Fig 4D), the heteroge-
neous networks may rarely exhibit synchrony (low p¢ , high s.,) or frequently (high p¢ ,
low s,,,).

Astrocyte ensheathment can enhance correlations already present within a
network

The previous section explored how astrocyte ensheathment of excitatory synapses affects the
dynamics of a balanced network operating in the asynchronous regime. Now we examine a
network with the same non-spatial connectivity, but the neurons are split into two subpopula-
tions, where each subpopulation receives its own feedforward input (Fig 2B). As previously
shown in [2], this change in feedforward inputs leads to a dramatic shift away from the asyn-
chronous state, with positive correlations arising among neurons within the same population
and negative correlations across populations. As a result, the correlation distribution becomes
strongly binomial (Fig 5A and 5B; solid lines). While we expect the results of the previous sec-
tion to carry through, namely the loss of stability for the strong ensheathment of excitatory
synapses, it is unclear how the heterogeneity introduced by more moderate levels of ensheath-
ment will modulate these new correlations inherently found in the network.
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Setting p¢ = 0.8 and s, = 0.5, we find that the binomial distribution of spike count correla-
tions present in the default network becomes more extreme, with an increase in the positive
correlation among the same population and a decrease in the negative correlations across pop-
ulations (Fig 5A and 5B; dashed lines). This trend is true in general: as p¢, and s,, increase, the
correlations among a single population also increase (Fig 5C), while the correlations across dif-
ferent populations decrease. As anticipated, we also find that the network stability is lost for
more extreme values of astrocyte ensheathment (Fig 5C, gray boxes).

To gain additional insight into how astrocytes are modulating the spiking behavior of the
network, we compare the raster plot of the default network to a network with astrocytes, where
both networks receive the same feedforward inputs (Fig 5D). As expected from the presence of
negative correlations across populations (Fig 5B), the two populations show clear competitive
dynamics. Interestingly, the network with astrocyte ensheathment shows a much more subtle
modulation of network dynamics than our previous results. In fact, it is clear from these raster
plots that key quantitative traits, such as the times when the dominant spiking population
switches, are largely conserved across the two conditions.
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One observable difference between the two networks is the population firing rate: both pop-
ulations in the network with astrocyte ensheathment appear to have higher firing rates. Previ-
ous work [43] suggests that this difference in firing rates could be sufficient to explain the
increase in correlations. Indeed, we find a strong positive relationship (R* = 0.96) between the
spike count correlations and the excitatory firing rate, with higher firing rates arising with
stronger astrocyte ensheathment (Fig 5E; color corresponding to p, - s,,). This strong relation-
ship between firing rate, correlations, and astrocyte ensheathment suggests that, unlike the last
network configuration, a mean-field model utilizing the parameter defined in Eq 4 could be
used to capture the effect of astrocytes on the neuronal dynamics. See Discussion for additional
considerations regarding a mean-field approach.

Spatial correlations are enhanced by astrocyte ensheathment

In the previous two sections, we showed that the ensheathment of excitatory synapses by astro-
cytes strongly modulated the underlying correlations across neurons in a non-spatial network.
However, it is unclear the impact this ensheathment may have on networks with more realistic
connectivity. To pursue this, we now implement our “effective” astrocytes in a spatial model
(Fig 2C). Specifically, we arrange the recurrently connected neurons in a two-dimensional
grid, with a Gaussian connectivity profile (see Eq 3), the spread of which is given by parameter
Orec- Unlike the previous sections, the feedforward inputs are provided by neurons that are
Poisson-spiking. These neurons also lie on a two-dimensional grid and make connections
based on a Gaussian connectivity profile with spread parameter ag. We continue to consider
astrocyte ensheathment of only recurrent excitatory synapses.

In agreement with previous work [2], we find that when the spatial profile of recurrent con-
nections is less than the feedforward (i.e., otec < o), the default network exists in a spatially
asynchronous state, with small pairwise spike count correlations between neurons of any dis-
tance (Fig 6A, left and Fig 6B, black). In fact, [2] proves that the asynchronous state requires
Oyec < oigr. However, by introducing astrocyte ensheathment to this model (p¢, = 0.9 and
Sen = 0.5), we find that the asynchronous state can be broken without changing the spatial pro-
files of connectivity. Specifically, we observe strong positive correlations arising between
nearby neurons and negative correlations from those farther away (Fig 6B, orange), resulting
in tight clusters of spiking neurons (Fig 6A, right). We note these tight clusters do not persist
across time (S1 Video).

These results mirror our earlier results corresponding to the non-spatial network with a sin-
gle population of neurons (Fig 3), and arise from similar mechanisms. Specifically, astrocyte
ensheathment speeds up excitatory synapses, and as a result, the inhibitory synapses are unable
to track and cancel recurrent excitation, leading to a loss of the asynchronous balanced state.
However, unlike the result for the non-spatial network, the network activity organizes in tight
spatial patterns, as opposed to the synchronous firing of the entire network.

In further agreement with [2], when the recurrent connection’s spatial profile is larger than
the feedforward projections (i.e., 0tec > 0), we find that the default network now exhibits spa-
tial correlations (Fig 6C, black). In this case, astrocyte ensheathment of excitatory synapses
does not qualitatively change this behavior, but instead simply enhances these spatial correla-
tions at almost all distances (Fig 6C, orange), with the exception being the distances where spa-
tial correlations are zero. This is true for a range of astrocyte ensheathment parameters:
stronger astrocyte ensheathment, either through p¢ or s, leads to stronger spatial correla-
tions, while not affecting the spatial footprint of these correlations (S3 Fig). In this case, with
the asynchronous state already broken due to the widths of the spatial projections, astrocyte
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ensheathment of excitatory synapses simply amplifies the inability of inhibitory neurons to

effectively track and cancel recurrent excitation across all spatial scales.

Astrocyte ensheathment of both excitatory and inhibitory synapses can

boost stability and within-population correlations

Thus far, we have explored the effects on network dynamics when excitatory synapses are
targeted by astrocyte ensheathment. We found that across networks with different connec-
tivity rules and feedforward input, the neuronal dynamics shifted towards a more correlated
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regime. However, despite evidence suggesting that excitatory synapses are preferentially tar-
geted [42], it is important to note that inhibitory neurons can and are ensheathed, and that
the level of ensheathment may vary by the particular brain region. For this reason, we now
consider astrocyte ensheathment that can target both types of synapses, expanding our
parameter search over the larger p¢, x p! X s, space to examine whether our previous
results carry through.

For this, we return to the non-spatial model with two subpopulations that each receive its
own feedforward input (Fig 2B). Recall that in this framework, the within-population corre-
lations were positive and astrocyte ensheathment of excitatory synapses increased these cor-
relations (Fig 7A, top left). Across different values of p’ , we see that this relationship is not
only intact, but amplified: As p increases, the within-population correlations also increase.
Further, we note the network’s stability is more robust, with the higher levels of p’

(i.e., > 0.4) lacking the unstable gray regions. Lastly, we investigated whether the relation-
ship across correlations, excitatory firing rate, and average ensheathment level of excitatory
synapses (p¢, - s,,) remains. Indeed, we again find a strong linear relationship between corre-
lations and firing rate, and both metrics with a clear correspondence to the strength of astro-
cyte ensheathment (Fig 7B). In total, these results suggest that while the ensheathment of
inhibitory neurons in addition to excitatory do not drastically alter our earlier results, stabil-
ity and correlations are both reliably enhanced. As a result, this could be a key mechanism
utilized by the brain to support high levels of correlation while preventing pathological states
from arising.
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Discussion

Through microscale modeling of neurotransmitter diffusion, this work derives an efficient
way to implement astrocyte ensheathment of synapses in large-scale neuronal networks. Spe-
cifically, simulations on the microscale domain of the synaptic cleft suggested that ensheathed
synapses are weaker and faster than their non-ensheathed counterparts. This investigation
identified the synaptic strength and synaptic time constant as the key parameters to vary to
denote the presence of an “effective” astrocyte.

While we have chosen to consider a network of EIF neurons, such parameters are com-
monly found across different types of recurrently connected spiking networks (e.g., networks
of current- and conductance-base neurons, with and without adaptation [38, 40, 44-46]), mak-
ing the implementation presented here applicable to many network architectures and parame-
ter regimes. We showed this specifically by examining the consequences of including these
effective astrocytes in both non-spatial and spatial networks placed in the regime of strong
recurrent coupling, which is also referred to as the “tight balanced” regime [36]. In this regime,
we uncovered that astrocyte ensheathment can dramatically change firing dynamics, break the
balance state, and cause synchronous behavior. While this parameter regime yields a type of
inhibition-stabilized network (ISN) [47], meaning the fixed point is stabilized by feedback
inhibition, it is unclear whether our results extend to other types of ISN balanced networks
(e.g., the “loose balance” regime, also referred to as a stabilized supralinear network [36, 48])
and non-ISN parameter regimes. For example, we were able to explain the synchronous firing
in our non-spatial network (Fig 3) as due to the astrocytes targeting and speeding up excitatory
synapses, which the inhibitory currents were unable to track and cancel. In these other param-
eter regimes, this tight canceling does not occur, so it is unclear if similar synchronous firing
would arise. Future work will advance these lines of inquiry, made easier in part by the
straightforward implementation of our astrocyte framework.

The investigation of the balance state as a function of synaptic time courses was also com-
pleted recently in [40], but our work differs in a few notable areas. First, the adjustment of the
synaptic time courses here arose from the implementation of astrocyte ensheathment around
individual synapses. This resulted in a heterogeneous network, which behaves qualitatively dif-
ferently than its homogeneous network counterpart found by a naive mean field (see Fig 4).
Second, we observed spatial patterns emerge in the o, < agregime when astrocyte ensheath-
ment was present, showing that this condition, as derived in [2], is a necessary condition for
the balance state, but not a sufficient one. Meanwhile [40] only considered homogeneous net-
works in the a,.. > agregime.

We also note that the heterogeneity introduced by astrocyte ensheathment considered here is
significantly different than other models that consider heterogeneous parameters. For example,
previous works have implemented heterogeneity in connection strengths by having the J5’s be
randomly distributed according to the normal distribution N (], o) [18-20], resulting in only
small variations of parameters across the network. Here, the synaptic parameters corresponding
to ensheathed and unsheathed synapses are pulled from entirely distinct distributions, specifically

Upw) =

J

{ J*, 1) if synapse k — j is unsheathed

J*-(1-s,),7,-(1—s,)) if synapse k — j is ensheathed .

In future work, it would be important to extend this heterogeneity even further, either by consid-
ering distributions for the synaptic parameters as done in previous works, or by considering a dis-
tribution on the ensheathment parameter s,,,.. This would allow various degrees of astrocyte
ensheathment across a single network and potentially across different populations (i.e., define s*
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as the strength of ensheathment from population b to a). In addition, since astrocytes segregate
the space into non-overlapping control domains, which can also be disrupted in epilepsy [49]), it
would also be interesting and important to perform a more thorough investigation that includes
spatial inhomogeneities across all ensheathment parameters for the spatial network. Further, it
may also be interesting to consider a time-varying component to these ensheathment parameters.
In fact, along with increasing the number of postsynaptic receptors [50], long-term potentiation
induction has recently been shown to decrease the ensheathment level of astrocytes [51]. While
these two mechanisms operate on a much slower timescale as considered in this work, as shown
here and in our previous work [33], they would work together to strengthen and slow synapses.
Lastly, we restricted our analysis to the regime where s,,, is sufficiently less than 1 to prevent astro-
cytes from effectively removing connections and switching the dense connectivity (as required in
the balanced state) of our networks to one with sparse connectivity. However, since it has been
shown experimentally that astrocytes are pruning synapses, through a process known as phagocy-
tosis [52, 53], future work should investigate how astrocytes may be modulating network dynam-
ics by directly changing the network’s topology. Including all of these additional forms of
heterogeneities, spatially, temporally, and structurally, would lead to a more robust understanding
of how astrocytes are modulating network dynamics via ensheathment.

Additionally, we found that it is non-trivial to capture this novel form of network heterogene-
ity in a mean-field approximation, complicating the extension of this framework to be included
in rate-based models of average population dynamics. Specifically, when we considered astro-
cyte ensheathment of excitatory synapses, we showed that a naive mean-field theory (see Eq 4)
would fail to capture key qualitative dynamics of the full model (Fig 4D). On the other hand,
when we allowed astrocytes to equally ensheathed both excitatory and inhibitory synapses, we
found a tight relationship between correlations, firing rates, and astrocyte ensheathment (Fig
5E), suggesting that a mean-field approximation in this parameter regime could be possible. So
while a mean-field approach could work in the latter case, it would be interesting future work to
investigate how robust such an approximation would be in the presence of symmetry breaking
changes in parameters, either in the probability and/or strength of ensheathment.

Lastly, our simplified model of astrocyte-neuron interactions at the synaptic level only
accounts for the ability of astrocytes to assist in the clearance of neurotransmitters from the
synaptic cleft by acting as an effective buffer and transporter [13, 54], but other astrocyte-neu-
ron communication pathways are likely to play a role in modulating neuronal dynamics. For
example, neurotransmitters may also activate receptors found on astrocyte membranes (e.g.,
mGluR5), leading to the activation of calcium pathways [55, 56]. While the downstream effects
of this pathway are still being investigated, evidence suggests that it may impact other aspects
of neuronal signaling not considered in this work, such as the overall excitability of the net-
work by either adjusting the resting potential of neurons [57] or by modifying neurotransmit-
ter profile in the extracellular space through the direct release of gliotransmitters [15] (but see
[58-60]). Here, we show the unanticipated result that this calcium pathway is not needed for
astrocytes to strongly tune network dynamics.

Astrocytes are also known to have a role in restoring the resting membrane potential of
nearby neurons and preventing hyperexcitability through the removal of potassium via Kir4.1
channels [61]. It is therefore possible that increased ensheathment, as considered in this work,
might result in improved potassium removal by bringing astrocyte Kir4.1 closer, which may
counteract to some extent the tendency to synchronize. On the other hand, rapid reduction of
extracellular potassium would also render glutamate removal more efficient [62, 63] making
the synchronization that we observe here even more likely. Lastly, our model suggests that
tight ensheathment by astrocytes would drastically decrease the number of neurotransmitters
that “spillover’ into the extrasynaptic space, which is in alignment with experimental
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observations [51, 64]. Since such spillover is known to allow for cross-talk between neurons, it
is another mechanism that could set the excitability of the network [65, 66]. Future work
should seek to connect these additional communication pathways to the ensheathment inter-
action investigated here to further advance our understanding of how astrocyte-neuron inter-
actions modulate spiking dynamics across brain regions.

Supporting information

S1 Fig. Broken E-I balance in Realization 2. A: Normalized shared fluctuations in the feedfor-
ward (black) and recurrent (purple) synaptic inputs for two one population, non-spatial net-
works (solid: default; dashed: realization 2 from Fig 3C). B,C: Spiking times of sampled
excitatory (red) and inhibitory (blue) neurons from the default network and network with
astrocyte ensheathment, respectively. D: Normalized shared fluctuations in the currents
zoomed in on time windows when the asynchronous state is maintained in both networks (left
and middle columns) and for the time window when the asynchronous state is lost in the net-
work with astrocyte ensheathment (right column). The following currents are displayed: i)
feedforward, all recurrent, total, ii) recurrent excitatory, and iii) recurrent inhibitory currents
in the default network (solid) and the network with astrocyte ensheathment (dashed). Same
parameters as Figs 3 and 4.

(TIF)

S2 Fig. Dissociating synaptic strength and the synaptic time constant. A: Spiking times of
sampled excitatory (red) and inhibitory (blue) neurons from the one population, non-spatial
network with astrocyte ensheathment tuning both the synaptic strength (J) and time constant
(1) (left), only J (middle) and only 7 (right). B: Percent of ten networks that maintained syn-
chronous activity when only J or 7 were modulated by astrocyte ensheathment. Ensheathment
parameters for all panels: 5., = 0.4, p°, = 0.7and p! = 0.

(TIF)

S3 Fig. Spatial correlations as a function of ensheathment parameters. Spike count correla-
tions as a function of distance for different probabilities of ensheathment (A: p¢, = 0.9, B:

pe, = 0.85, C: p¢ = 0.8) and ensheathment strengths (s, € [0.35, 0.5]), where the default net-
work exhibits spatial correlations (. = 0.2 and g,q = 0.1).

(TTF)

S1 Video. Video of spatial raster plots showing tight clusters of spiking neurons in the net-
work with astrocytes and asynchronous spiking in the default network.
(MP4)
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