
ISSN 1990-4789, Journal of Applied and Industrial Mathematics, 2023, Vol. 17, No. 4, pp. 908–927. © Pleiades Publishing, Ltd., 2023.

Numerical Verification of the Convexification Method
for a Frequency-Dependent Inverse Scattering Problem

with Experimental Data

T. Le1,2∗, V. A. Khoa3∗∗, M. V. Klibanov1∗∗∗, L. H. Nguyen1∗∗∗∗,
G. W. Bidney1∗∗∗∗∗, and V. N. Astratov1∗∗∗∗∗∗

1Department of Mathematics and Statistics, University of North Carolina at Charlotte,
Charlotte, NC 28223 USA

2Department of Mathematics, North Carolina State University, Raleigh, NC 27607 USA
3Department of Mathematics, Florida A & M University, Tallahassee, FL 32307 USA

e-mail: ∗tle55@uncc.edu, tle9@ncsu.edu, ∗∗anhkhoa.vo@famu.edu, vakhoa.hcmus@gmail.com,
∗∗∗mklibanv@uncc.edu, ∗∗∗∗loc.nguyen@uncc.edu, ∗∗∗∗∗gbidney@uncc.edu, ∗∗∗∗∗∗astratov@uncc.edu

Received January 18, 2024; revised January 18, 2024; accepted January 18, 2024

Abstract—The reconstruction of physical properties of a medium from boundary measure-
ments, known as inverse scattering problems, presents significant challenges. The present study
aims to validate a newly developed convexification method for a 3D coefficient inverse prob-
lem in the case of buried unknown objects in a sandbox, using experimental data collected by
a microwave scattering facility at The University of North Carolina at Charlotte. Our study
considers the formulation of a coupled quasilinear elliptic system based on multiple frequencies.
The system can be solved by minimizing a weighted Tikhonov-like functional, which forms our
convexification method. Theoretical results related to the convexification are also revisited in
this work.
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1. INTRODUCTION

In this paper, we build upon our prior research and expand on the performance evaluation of our
recently developed globally convergent convexification numerical method for solving a Coefficient
Inverse Problem (CIP) for the 3D Helmholtz equation using multiple frequencies. Our research aims
to reconstruct the physical characteristics of explosive-like objects that are buried underground,
including antipersonnel land mines and improvised explosive devices (IEDs). Thus, our focus is on
three key properties: dielectric constants, locations, and the shapes of front surfaces.

One common approach for numerically solving a CIP is to minimize a conventional least squares
cost functional, as described in previous literature such as [8, 11, 12]. However, this method has
a major drawback - the cost functional is nonconvex and often suffers from the issue of multiple
local minima and ravines. As a result, gradient-like methods are limited by getting stuck in any
local minimum, and any convergence achieved is only guaranteed if the starting point is in close
proximity to the correct solution. Therefore, conventional numerical methods for CIPs are generally
limited to local convergence.

Definition. A numerical method for a CIP is referred to as globally convergent if there exists
a theorem that guarantees the method will converge to at least one point within a sufficiently small
neighborhood of the correct solution without requiring any prior knowledge of the neighborhood.
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The convexification method is globally convergent, meaning that it is guaranteed to produce at
least one solution within a sufficiently small neighborhood of the correct solution, without any prior
knowledge of that neighborhood. This method is particularly well-suited for the most challenging
cases of solving CIPs, whose data are both backscattering and nonoverdetermined. In this context,
data are considered nonoverdetermined if the number m of free variables in the data is equal to
the number n of free variables in the unknown coefficient. In this paper, we consider the case
where m = n = 3. It is worth noting that we are not aware of any other numerical methods for
solving CIPs with nonoverdetermined data at m = n ≥ 2 that are both based on the minimization
of a conventional least squares cost functional and globally convergent according to the definition
given above.

The convexification method has proven effective in solving a 3D CIP with a fixed frequency and
a point source moving along an interval of a straight line, as demonstrated by both computationally
simulated [15] and experimental data [13, 14, 20]. In this scenario, we were able to accurately
determine the first two key criteria: the dielectric constants and locations of the experimental
targets. However, imaging the shapes of the targets’ front surfaces requires further improvements.
For instance, when dealing with more complicated objects, as shown in Figs. 6–8, the previous
configuration manifests several defects in the reconstructed images. Henceforth, the present paper
is focused on further enhancing this aspect.

To address the limitations in imaging the targets’ front surfaces with the existing method, we pro-
pose to use multiple frequencies while maintaining a fixed point source for the CIP under considera-
tion. This configuration has been previously studied in [24] in conjunction with the convexification
technique to solve the same CIP using simulated data. However, its effectiveness with experimental
data has only been demonstrated in producing good shapes of objects, while the reconstruction of
the dielectric constant is not good. Therefore, we have no choice but to combine this configuration
with the previous configuration, which uses a fixed frequency and moving point sources, to amend
the third property. In other words, we have figured out that the best would be to use a two-step
procedure. Steps 1 and 2 are performed using two different versions of the convexification method.
The version for Step 1 is described in this paper and the version for Step 3 was described in [13–15].

Step 1. Use the backscattering data for a single location of the source and multiple frequencies.
This gives us accurate geometrical characteristics of unknown targets: their locations and
shapes of front surfaces. Especially complicated nonconvex shapes with voids are imaged
well, see images of letters U, A, O in Figs. 6–8 below. However, values of dielectric constants
of targets are not computed accurately on this step.

Step 2. Use the backscattering data for multiple locations of the source at a single frequency, as
it was done in our previous papers [13, 14]. This provides us with accurate locations and
accurate values of dielectric targets of targets, although the shapes of their front surfaces are
not computed as accurately as they are in Step 1.

Step 3. Assign values of dielectric constants obtained on Step 2 to images obtained on Step 1.
This completes our imaging procedure.

It is worth noting that the configuration of using multiple frequencies and a fixed point source
has been studied before in [26], but our approach in that study focused on a different approximation
procedure using the tail function, rather than the convexification method explored in [24].

It should be noted that the proposed convexification approach for both the above-mentioned
configurations builds upon the ideas of the Bukhgeim–Klibanov method. This method, which
is based on Carleman estimates, was initially introduced in 1981 to establish proofs of uniqueness
theorems for multidimensional CIPs, as detailed in the seminal work by Bukhgeim and Klibanov [7].
Since then, the method has been widely used and extended for solving various inverse problems, see
e.g. [16] for a survey of this method.

The numerical approach considered in this paper deviates from other inversion techniques, such
as those employed by Novikov’s research group, as described in their publications [2, 3, 27]. These
methods address single-frequency data and use distinct treatment methodologies. Additionally, we
make reference to [4] for a diverse numerical approach to a similar CIP.
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The structure of this paper is as follows. In Sec. 2, we introduce the Coefficient Inverse Prob-
lem (CIP) and the corresponding forward problem. Section 3 is devoted to the derivation of our
functional Jλ and the presentation of our theoretical results, which are based on our recent publi-
cation [24]. Then, our experimental findings are provided in Sec. 4. Finally, we close the paper by
some concluding remarks in Sec. 5.

2. STATEMENTS OF THE FORWARD AND INVERSE PROBLEM

While the Maxwell’s equations are the primary governing equations for the propagation of elec-
tromagnetic waves, our paper employs the Helmholtz equation. This approach is supported by
numerical demonstrations presented in the appendix of the paper [28], which establish that the
Helmholtz equation effectively characterizes the propagation of a specific component of the electric
field. Additionally, our successful experimental findings, as reported in our recent publications [2, 3],
provide further validation for the use of the Helmholtz equation in this context.

Let δ be the Dirac function. Consider the following time-harmonic Helmholtz wave equation
with x = (x, y, z) ∈ R3.

∆u+ ω2µε′ (x)u = −δ (x− xα) in R3, i =
√
−1. (1)

Physically, u = u(x) can be interpreted as a component of the electric field E = (Ex, Ey, Ez) that
corresponds to the nonzero component of the incident field. Specifically, in our case, the incident
field is characterized by the voltage Ey. In our experiments, we measure the backscattering signal of
this same component. Additionally, ω represents the angular frequency in rad/m, while µ and ε′ (x)
denote the permeability (H/m) and permittivity (F/m) of the medium, respectively. The point
source xα is fixed in this study.

We restrict our settings to nonmagnetic targets, which means that the materials under consider-
ation have no magnetic properties, and therefore their relative permeability is equal to one. To be
more precise, this implies that the ratio of the permeability of the material to the permeability of
free space (i.e., vacuum) is unity. Let ε0 represent the vacuum permittivity and let µ0 denote the
vacuum permeability. Consider k = ω

√
µ0ε0, equation (1) can be rewritten as

∆u+ k2 µ

µ0

ε′(x)

ε0
u = −δ (x− xα) in R3. (2)

We can now express the spatially distributed dielectric constant as c(x) = ε′(x)/ε0. Using
this, the conventional Helmholtz equation follows from (2) and applying the Sommerfeld radiation
condition, we get the following system.

∆u+ k2c(x)u = −δ (x− xα) in R3, (3)

lim
r→∞

r (∂ru− iku) = 0 for r = |x− xα| , i =
√
−1. (4)

Let us now focus on a rectangular prism Ω, defined as (−R,R) × (−R,R) × (−b, b) in R3

for R, b > 0. This prism serves as our computation domain of interest. Besides, we define the
lower side of the prism as the near-field measurement site,

Γ :=
{
x : |x| , |y| < R, z = −b

}
.

In what follows, we make the assumption that the dielectric constant is smooth and meets the
following conditions: ⎧

⎨

⎩
c (x) ≥ 1 in Ω

c (x) = 1 in R3\Ω.
(5)
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The second equation in (5) indicates our assumption that the region outside of the domain Ω is
a vacuum. Next, we consider the line of sources that is parallel to the x-axis and exists outside of
the closure Ω. Mathematically, the following line of sources, denoted as Lsrc, is examined:

Lsrc :=
{
(α, 0,−d) : a1 ≤ α ≤ a2

}
, (6)

where d > b and a1 < a2. Note in this setting that the distance between the line of sources Lsrc and
the xy-plane is d. With this configuration in place, we can now select and describe the fixed point
source. The value of R, d, b, a1, a2,α will be specified in our experimental results.

Remark 1. To this end, we define the total wave u, incident wave ui, and scattered wave us.
It is worth noting that u = ui + us. Besides, the Sommerfeld radiation condition (4) is applied to
guarantee the existence and uniqueness results for the Helmholtz equation (3); cf. [9, Ch. 8].

Remark 2. In our configuration of interest, we arrange to measure the data with multiple
frequencies. In this regard, the involved waves u, ui, us are dependent of k. Henceforth, in the
sequel, we write u = u(x, k), ui = ui(x, k), us = us(x, k) for k ∈ [k, k], where k, k > 0.

2.1. Forward Problem
Prior to introducing the forward problem, we model the incident wave by using the point source,

ui (x, k) =
exp

(
ik |x− xα|

)

4π |x− xα|
. (7)

We observe that the incident wave ui satisfies the Helmholtz equation in the form of (4) with c(x)=1.
By subtracting (4) from the Helmholtz equation for ui, we can obtain the PDE for the scattered
wave us as follows.

∆us + k2us = −k2
(
c (x)− 1

)
u.

Cf. [9], the scattered wave is solved via the following integral equation:

us (x, k) = k2

ˆ

R3

exp
(
ik |x− x′|

)

4π |x− x′|
(
c (x′)− 1

)
u (x′, k) dx′

= k2

ˆ
Ω

exp
(
ik |x− x′|

)

4π |x− x′|
(
c (x′)− 1

)
u (x′, k) dx′, x ∈ R3,

(8)

where we have used the fact that c−1 is compactly supported in Ω; see (5). Combining (7) and (8),
we arrive at the so-called Lippmann–Schwinger equation:

u (x, k) = ui (x, k) + k2

ˆ
Ω

exp
(
ik |x− x′|

)

4π |x− x′|
(
c (x′)− 1

)
u (x′, k) dx′, x ∈ R3.

Hence, our forward problem is to determine the boundary information of the total wave
field u (x, k)|Γ for k ∈ [k, k], based on the known dielectric constant c. It is important to re-
mark that the total wave field can be nonzero for all points x in the domain Ω and for large values
of k, as demonstrated in [15, 24] when c belongs to C15(R3) and the Riemannian geodesic line
connecting xα and x is unique.

2.2. Coefficient Inverse Problem (CIP)
Our CIP is to seek the dielectric constant c (x) satisfying (5) from knowledge of the boundary

measurement F0 (x, k) of the near-field data,

F0 (x, k) = u (x, k) for x ∈ Γ, k ∈ [k, k], (9)

where u (x, k) is the total wave associated with the incident wave ui(x, k) in (7).
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Fig. 1. (a) Configuration that involves the utilization of multiple sources arranged along a straight line. Each source
emits an incident wave at a fixed frequency. (b) Configuration that uses a fixed source while varying the frequency
of the generated signal. For both distinct configurations, there are detectors on the measurement plane to collect the
backscattering data.

While a more detailed description of our experimental setup will be provided in the numerical
section, we would like to provide a brief overview. In order to simulate the detection of land mines
buried underground, we have buried a single inclusion in a sandbox, with the sand understood as
our background medium. The dielectric constant of the sand, cbckgr, is known a priori to be about 4.
Although we do not utilize this information in our numerical method, the inclusions in our resulting
images are characterized by a dielectric constant c(x) greater than this number 4. It is important
to note that the function c(x) used in our mathematical statements incorporates information from
both the sand and the inclusion. In order to address this, we measure the raw data twice in our
configuration: once when the sandbox is empty, and again when the target is buried within it. By
subtracting the former from the latter, we can filter out the information related to the sand. The
resulting “actual” data (i.e., after subtraction) can then be used in the mathematical setting under
consideration.

Our choice to use near-field data stems from our experimental observations, which have shown
that far-field data alone do not provide an accurate indication of the buried object’s location.
In contrast, near-field data have been found to be more reliable, as reported in [13, 14, 26] and
numerically observed in Fig. 3. Furthermore, using near-field data allows us to reduce the size of
the computational domain, thereby increasing accuracy, since the number of mesh grids is fixed in
our experiments.

Experimentally, we cannot get the near-field data, but the far-field. The “near-field” we mean
is the approximate dataset that is calculated from the experimental far-field data. To obtain the
near-field data, we employ a technique known as data propagation; cf. [13, 26], the technique is
revisited in Sec. 4. This procedure involves eliminating high spatial frequencies to obtain a good
approximation of the near-field function F0 in (9). While we only obtain the measured data F0, our
mathematical model requires the z−derivative of the function u (x, k) on Γ,

F1 (x, k) = ∂zu (x, k) for x ∈ Γ, k ∈ [k, k]. (10)

Remark 3. Given the CIP above, our data are nonoverdetermined since the number m of free
variables in the data equals to the number n of free variables in the sought coefficient. In particular,
m = n = 3 in this scenario.

Remark 4. In the context of multiple sources and a fixed frequency, as presented in e.g. [15], our
CIP can be expressed in a similar way. Specifically, we can consider α as the source variable based
on the definition of the line of sources in (6). To handle the configuration of multiple sources and
a fixed frequency, we require the boundary measurement F̃0(x,α), which corresponds to F0 in (9),
and the Neumann-type measurement F̃1(x,α), which corresponds to F1 in (10). Thereby, to derive
a coupled quasilinear elliptic system and establish the convexification, as discussed in Sec. 3, we
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can replace the frequency variable k with the source argument α in our formulations. The reader
can be referred to Fig. 1 for a visual representation showing the difference in the setup between the
two distinct configurations.

3. CONVEXIFICATION

3.1. Derivation of a Coupled Quasilinear Elliptic System

For x∈Ω and k ∈ [k, k], we define v (x, k) = 1
k2 log

(
u(x,k)
ui(x,k)

)
. It follows from simple calculations

that
∇v (x, k) =

1

k2

[
∇u (x, k)

u (x, k)
− ∇ui (x, k)

ui (x, k)

]
, (11)

∆v (x, k) =
1

k2

[
∆u (x, k)

u (x, k)
−
(
∇u (x, k)

u (x, k)

)2

− ∆ui (x, k)

ui (x, k)
+

(
∇ui (x, k)

ui (x, k)

)2
]
. (12)

When x ∈ Ω, we know that the total wave field u(x, k) satisfies the homogeneous Helmholtz
equation, ∆u + k2c(x)u = 0. The incident wave ui(x, k) also satisfies this Helmholtz equation
with c(x) = 1. In other words, it holds true that

∆u (x, k)

u (x, k)
= −k2c (x) ,

∆ui (x, k)

ui (x, k)
= −k2.

Combining this with (11), (12), we obtain the following nonlinear PDE for the function v = v(x, k):

∆v + k2 (∇v)2 +
2∇v ·∇ui

ui
= −c (x) + 1 (13)

for all x ∈ Ω and k ∈ [k, k]. By differentiating (13) with respect to the argument k, we arrive at
the following nonlinear PDE:

∆∂kv + 2k2∇v ·∇∂kv + 2k (∇v)2 + 2∇∂kv ·
∇ui

ui
+ 2∇v∂k

(
∇ui

ui

)
= 0. (14)

At this stage, it is worth noting that the PDE (14) does not contain the unknown function c(x),
which is the quantity of interest in our CIP. By solving PDE (14), we can obtain the dielectric
constant c(x) via the back-substitution in PDE (13).

We, on the other hand, observe that Eq. (14) is a nontrivial third-order PDE. Therefore, we
rely on the use of a special orthonormal basis of L2(k, k). Denoted by {Ψm}m≥1, this basis is
first established in [17], and it has been applied to solve distinctive inverse problems for PDEs with
direct applications to, e.g., electrical impedance tomography and imaging of land mines – our target
application in this work. The reader can be referred to [13, 19, 21] and references cited therein for
an overview of such inverse problems.

To construct this basis, for each m≥1 we consider ϕm (k)=km−1ek−(k+k)/2. The set {ϕm (k)}m≥1

is linearly independent and complete in L2
(
k, k

)
. We then apply the standard Gram-Schmidt

orthonormalization procedure to obtain the basis {Ψm (k)}m≥1.
The basis {Ψm (k)}m≥1 has the following properties:

– Ψm ∈ C∞
[
k, k

]
and Ψ′

m is not identically zero for any m ≥ 1;
– Let Smn = ⟨Ψ′

n,Ψm⟩ where ⟨·, ·⟩ denotes the scalar product in L2
(
k, k

)
. Then the square

matrix SN = (Smn)
N
m,n=1 ∈ RN×N is invertible for any N since

Smn =

⎧
⎨

⎩
1 if n = m

0 if n < m.
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Notice that the second property does not hold for either classical orthogonal polynomials or the
classical basis of trigonometric functions. The first column of SN obtained from either of the two
conventional bases would be zero.

To solve the third-order nonlinear PDE (14), we consider the truncated Fourier series using the
above-mentioned basis. In particular, for x ∈ Ω and k ∈

[
k, k

]
, we seek

v (x, k) ≈
N∑

n=1

vn (x)Ψn (k) =
N∑

n=1

kˆ
k

v (x, k)Ψn (k) dkΨn (k) . (15)

By plugging (15) into the third-order PDE (14), we find that
N∑

n=1

∆vn (x)Ψ
′
n (k) + 2

N∑

m,n=1

∇vn (x) ·∇vm (x)
[
k2Ψn (k)Ψ

′
m (k) + kΨn (k)Ψm (k)

]

+ 2
N∑

n=1

∇vn (x) ·
[
Ψ′

n (k)
∇ui

ui
+Ψn (k) ∂k

(
∇ui

ui

)]
= 0.

(16)

Henceforth, for 1 ≤ l ≤ N we multiply both sides of (16) by Ψl(k) and obtain the following PDE
system:

N∑

n=1

Sln∆vn(x) +
N∑

n,m=1

Plnm∇vn(x) ·∇vm(x) +
N∑

n=1

Qln(x) ·∇vn(x) = 0. (17)

In (17), we have for m,n, l = 1, . . . , N that

Sln =

kˆ
k

Ψ′
n(k)Ψl(k) dk,

Plnm = 2

kˆ
k

(
k2Ψn(k)Ψ

′
m(k) + kΨn(k)Ψm(k)

)
Ψl(k) dk,

Qln(x) = 2

kˆ
k

(
Ψ′

n(k)
∇ui(x, k)

ui(x, k)
+Ψn(k)∂k

∇ui(x, k)

ui(x, k)

)
Ψl(k) dk.

Now recall from (9) that we measure the wave u on the lower side Γ of the prism Ω. Therefore,
the Dirichlet boundary information of the sought Fourier coefficients vn(x) for 1 ≤ n ≤ N is given by

g0n (x) =

kˆ
k

k−2 log
[
F0 (x, k) /ui (x, k)

]
Ψn (k) dk for x ∈ Γ. (18)

For x ∈ ∂Ω\Γ, we apply the heuristic data completion method (cf. e.g. [26]), choosing
that u (x, k)|Ω\Γ = ui (x, k)|Ω\Γ. This choice is reasonable because outside of the sandbox is vacuum,
i.e. c = 1. Henceforth, we have

g0n (x) = 0 for x ∈ ∂Ω\Γ. (19)

As mentioned in the previous section, the Dirichlet measured data (9) can lead to the Neumann-type
data (10). Moreover, we can compute that for x ∈ Γ,

∂zv (x, k) =
1

k2

[
∂zu (x, k)

u (x, k)
− ∂zui (x, k)

ui (x, k)

]
=

1

k2

[
F1 (x, k)

F0 (x, k)
− ∂zui (x, k)

ui (x, k)

]
.
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Henceforth, the Neumann-type boundary information of the source Fourier coefficients vn(x)
for 1 ≤ n ≤ N is given by

g1n (x) =

kˆ
k

k−2

[
F1 (x, k)

F0 (x, k)
− ∂zui (x, k)

ui (x, k)

]
Ψn (k) dk for x ∈ Γ. (20)

Associating (17) with (18), (19), (20) forms our system of coupled elliptic equations, whose
solution is the vector function V (x) that contains all of the Fourier coefficients vn for 1 ≤ n ≤ N .

3.2. Convexified Costs Functional and Theorems Revisited
It is evident that (17) is a system of coupled quasilinear elliptic equations. The nonlinear terms

are generated by products of gradients ∇vn (x) · ∇vm (x). Therefore, conventional least-squares
methods, which minimize the differential functional, may not yield desirable results. Nonlinear
problems often exhibit nonconvex cost functionals, resulting in multiple local minima and ravines.
Hence, a good initial guess must be chosen to reach the global minimizer.

To tackle nonlinear inverse problems, convexification is one of some numerical methods avail-
able. This method and its variants construct a suitable weighted cost functional that is strongly
convex over a bounded set of a Hilbert space. With this approach, the existence and uniqueness of
a minimizer can be proven without any restriction on the size of the set. Additionally, convergence
towards the correct solution is guaranteed.

Introduce µλ = µλ(z) = e−λ(R+r)2eλ(z−r)2 as the Carleman Weight Function (CWF). Then, we
consider the following weighted cost functional J : [Hp(Ω)]N → R+, for p > 3,

J(V ) =
N∑

l=1

ˆ
Ω

µ2
λ

∣∣∣∣∣

N∑

n=1

Sln∆vn +
N∑

n,m=1

Plnm∇vi ·∇vm +
N∑

n=1

Qln∇vn

∣∣∣∣∣

2

dx+ ε∥V ∥2[Hp(Ω)]N . (21)

Here, the CWF plays several important roles in the convexification of interest. First, the function
helps to control the highly nonlinear terms in the target quasilinear system. Second, the CWF
appears to maximize the influence of the measured boundary data at Γ. Lastly, by the presence of
such a function, one can prove that the cost functional is globally strongly convex.

From now onward, we state the minimization problem.
Minimization problem. Minimize the cost functional J(V ) on the set B(M),

B (M) =
{
V ∈ [Hp (Ω)]N : ∥V ∥[Hp(Ω)]N ≤ M

}
.

Now, we formulate theorems of our convergence results. The theorems were proven in,
e.g., [15, 24]. Therefore, their proofs are omitted. We begin with the Carleman estimate for the
continuous Laplacian.

Theorem 1. There exists constants λ0 = λ0 (Ω, r) ≥ 1 and C = C (Ω, r) > 0 such as for every
V ∈ H2

0 (Ω) and for all λ ≥ λ0 the following Carleman estimate holds true:ˆ
Ω

µλ (z) |∆V |2 dx ≥ C

λ

ˆ
Ω

µλ (z)
(
|∂xxV |2 + |∂yyV |2 + |∂zzV |2 + |∂xyV |2 + |∂yzV |2 + |∂xzV |2

)
dx

+ Cλ

ˆ
Ω

µλ (z)
(
|∇V |2 + λ2 |V |2

)
dx.

The next theorem is devoted to the global strong convexity of the cost functional J(V ).
Theorem 2. The functional J(V ) defined in (21) has its Fréchet derivative DJ for all V ∈B(M).

Moreover, we can find a sufficiently large λ = λ(M,Ω) > 0 such that J(V ) is strongly convex
on B(M). In particular, for all V2, V1 ∈ B(M), we have

J (V2)− J (V1)−DJ (V1) (V2 − V1) ≥ C ∥V2 − V1∥2[H2(Ω)]N + ε ∥V2 − V1∥2[Hp(Ω)]N ,

where C = C(M,Ω) > 0.
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As a by-product of Theorem 2, the existence and uniqueness of a minimizer Vmin in B(M) are
guaranteed. Moreover, we obtain the Lipschitz continuity of the Fréchet derivative DJ on B(M);
see e.g. [15, Theorem 5.2] and some other references cited therein.

The convergence result follows from [29, Theorem 6]. Following the Tikhonov regularization
concept [6], we assume the existence of the exact solution V∗ ∈ [Hp(Ω)]N of system (17) and that it
satisfies the noiseless data g∗0 and g∗1 . Here, g∗0 and g∗1 are, respectively, corresponding to the noisy
boundary data g0 and g1, whose elements are defined in (18), (19), (20).

Let δ > 0 be the noise level. We assume that there exists an error function E ∈ [Hp(Ω)]N

satisfying ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∥E∥[Hp(Ω)]N ≤ δ

g0 = g∗0 + ∂νE|∂Ω
g1 = g∗1 + E|Γ .

Next, we assume the existence of a function V such that ∂νV = g0 on ∂Ω and V = g1 on Γ. Consider
Vmin,ε,δ (x) = Vmin (x) + V (x) for x ∈ Ω. The convergence theorem is stated in the following.

Theorem 3. Assume that

max
{
∥V∗∥[Hp(Ω)]N , ∥V∥[Hp(Ω)]N

}
≤ M

3
− δ.

Then we can find a constant C = C (Ω, r,M) such that the following estimate holds true

∥Vmin,ε,δ − V∗∥[H2(Ω)]N ≤ C
(√

ε ∥V∗ − V∥[Hp(Ω)]N + δ
)
.

Since smallness conditions are not imposed on M , then the above convergence estimate confirms
the global convergence of the minimizer of the cost functional J(V ) to the exact solution.

It now remains to discuss how to find Vmin,ε,δ by the so-called gradient descent method.
Let η ∈ (0, 1). The gradient descent method is given as follows:

V (n) = V (n−1) − ηDJ(V (n−1)), n = 1, 2, . . . , (22)

where V (n) denotes the nth iteration for the approximation of the minimizer Vmin,ε,δ. In (22), we
use the starting point V (0) ∈ B(M) being an arbitrary point in that particular set. Recall that
by Theorem 2, we obtain that Vmin,ε,δ in B(M). Cf. [25, Theorem 2], if we assume further that
the ball centered at Vmin,ε,δ with the radius

∥∥V (0) − Vmin,ε,δ

∥∥
[H2(Ω)]N

is contained in B(M), then
the distance between the nth iteration V (n) and the minimizer Vmin,ε,δ is controlled well by that
radius

∥∥V (0) − Vmin,ε,δ

∥∥
[H2(Ω)]N

. In particular, we formulate the following theorem, while its proof
is omitted.

Theorem 4. Let V (0) ∈ B (M) and Vmin,ε,δ ∈ B (M) be such that the ball centered at Vmin,ε,δ

with the radius
∥∥V (0) − Vmin,ε,δ

∥∥
[H2(Ω)]N

is contained in B(M). Then there exists a sufficiently small
number η0 ∈ (0, 1) such that V (n) ⊂ B (M) for all n = 1, 2, . . . and for all η ∈ (0, η0). Moreover,
there exists a number ς = ς (η) ∈ (0, 1) such that

∥∥V (n) − Vmin,ε,δ

∥∥
[H2(Ω)]N

≤ ςn
∥∥V (0) − Vmin,ε,δ

∥∥
[H2(Ω)]N

.

By Theorems 3 and 4, we obtain the strong convergence of the sequence {V n}∞n=0 toward the
exact solution V∗. Particularly, by the triangle inequality, it holds true that

∥∥V (n) − V∗
∥∥
[H2(Ω)]N

≤ C
(√

ε ∥V∗ − V∥[Hp(Ω)]N + δ
)
+ ςn

∥∥V (n) − V∗
∥∥
[H2(Ω)]N

.
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4. NUMERICAL EXPERIMENTS

The numerical results performed in this section are all obtained with experimental data. Those
are data collected at the microwave facility of the University of North Carolina at Charlotte (UNCC),
USA. For the sake of simplicity, we refer the reader to [13, 14] for details of the experimental setup
we establish at the University of North Carolina at Charlotte. Thereby, we only mention below key
elements of our experimental configuration. Even though those publications [13, 14] focus wholly
on the CIP with multiple point sources and a fixed frequency, the set of data collected at that time
is variable in both source locations and frequencies for trial-and-error. For each source position,
our raw data set consists of back-scattering data corresponding to 201 frequency values uniformly
distributed between 1 GHz to 10 GHz. Therefore, we are capable of using those data to verify
the numerical performance of the convexification method for the CIP in the context of multiple
frequencies and a fixed point source.

4.1. Experimental Configuration and Computational Settings
The experiment conducted at UNCC involves practical data of five (5) experimental objects

buried in a sandbox. Those tested objects were prepared to mimic explosive-like devices often seen
in the battlefield. Typically, we classify them as metallic and nonmetallic objects:

1. An aluminum tube that mimics the NO-MZ 2B, a Vietnamese anti-personnel fragmentation
mine; cf. [5].

2. A glass bottle filled with clear water that is a good fit of the Glassmine 43 in terms of the
material; cf. [28]. Reconstructing the shape of the bottle is challenging as this object comes
with a cap.

3. A U-shaped piece of a dry wood that can be an example of the Schu-mine 42, a wood-based
anti-personnel blast mine. Compared to the glass bottle above, this piece of dry wood has
a very complicated nonconvex shape.

4. A metallic letter ‘A’ that is to augment the complication in shape of metallic experimental
object; compared to the aluminum cylinder.

5. A metallic letter ‘O’ that serves the same purpose as the letter ‘A’. It helps to test the
numerical performance of the convexification method with varying levels of complexity in the
shape of the object.

In [13], the last two tests (i.e. those with the metallic letters) were blinded. In this sense, we
only knew their backscattering data and that the experimental objects were buried close to the sand
surface. The experimental results obtained in that publication, however, turn the blinded tests to
be unblinded. Therefore, in the present paper, our numerical experiments are demonstrated with
all unblinded tests.

For every test, the experimental object is placed inside of a rectangular box filled with moisture-
free sand, which is then referred to as a sandbox. This man-made sandbox is framed by some
wood materials, and its back and front sides are covered by a 5-cm layer of Styrofoam. The
front side we mean here is closer to the standard antenna, compared to the back one. In our
configuration, the antenna plays a role in sending incident waves toward the sandbox. Then, there
is a rectangular measurement surface of dimensions 100× 100 (cm2) behind the antenna to collect
the backscattering data. Experimentally, this surface is discretized in an equidistant mesh of 2-cm
mesh-width. Moreover, the horizontal and vertical sides of this surface define, respectively, the x-
and y-axes of our coordinate system and thus, the z-axis is the orthogonal one to our measurement
plane. As to the burial depth of the experimental object, it is a few centimeters away from the front
Styrofoam. This is relevant to real-world applications that landmines are at most 10 (cm) away
from the ground surface in the battlefield; cf. [10].

In the sequel, we consider dimensionless variables as x′ = x/(10 cm) and for simplicity, we use
the same notations as in the theoretical part. In this regard, the dimensions in our computations
are 10 times less than the real ones in centimeters. For instance, our 100× 100 (cm2) measurement
plane is understood as a 10× 10 surface in the dimensionless regime. Now, we introduce our com-
putational setup in this dimensionless setting. According to our experiment, the distance between
the measurement surface and the sandbox with the front Styrofoam is 11.05. We also find that the
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Fig. 2. Illustration of the frequencies filtering for preprocessed data in Example 1. (a) The frequency dependent
dynamics of the maximal absolute values of the experimental data after preprocessing procedure. All of these values
are depicted for all wavenumbers k ∈ [2.09, 20.95] corresponding to the frequencies f̃ ∈ [1 GHz, 10 GHz]. The red
dots are imposed to indicate the wavenumber interval should be chosen. (b) The maximal absolute values of the
processed data after frequencies filtering.

length in the z direction of our sandbox without the Styrofoam is about 4.4. As the Styrofoam layer
is bent by the intensity of dry sand, we deliberately reduce 10% of this length. All of these result
in the choice of our computational domain Ω = {x ∈ R3 : |x| , |y| < 5, |z| < 2}. In other words, we
take R = 5, b = 2, and the center of the sandbox is taken as the origin of our coordinate system.
As to the source position, in our numerical results below we choose the one adjacent right to the
origin of the line of sources in [13, 14]. The location of this source is (0.1, 0,−9).

Our raw data are measured far away from the sandbox. Cf. [13, 14, 26], we observed numerically
that these data lack quality due to many physical difficulties met in measurement process (antenna
location, unwanted furniture with different materials, distracting signals). It will be then not
good if we apply them directly to the minimization procedure. Thus, we employ the so-called
data propagation technique to “move” these far-field data closer to the sandbox, which results in
an approximation of the near-field data. It is also worth mentioning that the application of this data
propagation procedure is helpful in reducing the size of the computational domain in the z-direction.
Thus, it gives a better estimation of images of the experimental objects in x, y coordinates. In this
work, the near-field plane is chosen as Γ = {x ∈ R3 : |x| , |y| < 5, |z| = 2} – the front side of the
sandbox.

We revisit the data propagation procedure that enables us to obtain the propagated data, termed
as near-field data, from the raw data referred to as far-field data. We know that c(x) = 1 outside
of the rectangular prism Ω = (−R,R)× (−R,R)× (−b, b) in R3. Therefore, the scattered wave us

in the half space {z < −b} satisfies the following system:

∆us + k2us = 0 in {z < −b} , (23)

lim
r→∞

r (∂rus − ikus) = 0 for r = |x− xα| , i =
√
−1. (24)

As mentioned in Sec. 2, our experiments make use of the far-field data. Consequently, we have a
dataset denoted as us(x, y,−D), where D > b, while our objective of the data propagation procedure
is to obtain us(x, y,−b). Specifically, in our experiments, we have D = 14. The data propagation
is obtained in the following way. Consider the Fourier transform of the scattered wave:

F (us) (ρ1, ρ2, z) =
1

2π

ˆ

R2

us (x) e
−i(xρ1+yρ2)dxdy,
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Fig. 3. Graphical illustration of the absolute value of the raw far-field data (a) and the propagated near-field data (b)
in Example 4 in which the experimental object is A-shaped. This set of data is collected at k = 10.77 corresponding
to f̃ = 5.14 (GHz), see (26) for the relation between the wavenumber k and the frequency f̃ . From these figures, we
can see the A shape very clear when using the propagated near-field data. Meanwhile, the shape is not captured well
for the raw far-field data.

Table 1. The case of a single location of the source and multiple frequencies. Distinctive choices of the wavenumber
interval for Examples 1–5 and the corresponding frequencies.

Example 1 2 3 4 5

Object Metallic cylinder Bottle of water Wood “U” Metallic “A” Metallic “O”

Wavenumber k 6.72–9.45 5.87–8.60 18.22–20.96 10.68–13.41 8.70–11.43

Frequency (GHz) 3.21–4.51 2.80–4.11 8.70–10 5.10–6.40 4.15–5.46

assuming that the corresponding integral is convergent. For z < −b, by applying the same Fourier
transform to equation (23), we find that

∂2
zzF (us) +

(
k2 − ρ21 − ρ22

)
F (us) = 0.

Solving the above differential equation gives the following relation between F (us) (z) at z < −b
and F (us) (z = −b),

F (us) (z) =

⎧
⎨

⎩
F (us) (−b) e

√
ρ2
1+ρ2

2−k2(z+b) for ρ21 + ρ22 ≥ k2

C1e
−i
√

k2−ρ2
1−ρ2

2(z+b) + C2e
i
√

k2−ρ2
1−ρ2

2(z+b) otherwise .
(25)

Cf. [26, Theorem 4.1], we can set C2 = 0 in (25). For D relatively large, the value of the term in
the first line of (25) is very small. Therefore, we can neglect the term with high frequencies and

Table 2. The case of a single frequency and multiple sources. Distinctive choices of the wavenumber for
Examples 1–5 and the corresponding frequencies.

Example 1 2 3 4 5

Object Metallic cylinder Bottle of water Wood “U” Metallic “A” Metallic “O”

Wavenumber k 8.51 6.62 11.43 9.55 8.79

Frequency (GHz) 4.06 3.16 5.45 4.55 4.19
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then use the inverse Fourier transform to obtain the near-field data:

us (x, y,−b) =
1

(2π)2

ˆ

ρ2
1+ρ2

2<k2

F (us) (ρ1, ρ2,−D) e
i
[√

k2−ρ2
1−ρ2

2(−D+b)+xρ1+yρ2

]

dρ1 dρ2.

As a slight improvement of the data propagation technique commenced in [26], we postulated
a modified truncation procedure in [13] to remove possible random oscillations in the propagated
data. The truncation procedure consists of two steps. First, we only preserve the propagated data
whose values are at least 40 percents of the maximum absolute value. Then, we smooth those
truncated data by the Gaussian filter. Observe that the smoothing process will average out the
maximum value of the data, which may impact on the accuracy of the minimization result. In the
second step, we add back some percents of the smoothed data to preserve the important “peak” that
represents the maximum absolute value of the data. When doing so, we only need to multiply the
smoothed data by a retrieval number computed by max (|truncated data|) /max (|smoothed data|).
This whole notion is mathematically specified in [13], and the reader should be referred to that
publication for any other details.

We now discuss the choice of an appropriate frequency interval since it does affect the quality
of the frequency-dependent data applied to the minimization process. We remark that the raw
data are frequency dependent in which the frequency unit is Hz (or s−1). Cf. [13, 26], we formulate
the relation (in the dimensionless regime) between the wavenumber k (with unit cm−1) and the
frequency, denoted by f̃ , as follows:

k =
2πf̃

2997924580
. (26)

The choice of a frequency interval essentially relies on the performance of the data after prepro-
cessing. Experimentally, it is different from one example to the others; see Table 1. Following two
criteria proposed in [26], we choose the wavenumber interval such that (1) the maximal absolute
value of the processed data in this interval should not soar and plunge dramatically, and (2) for
distinctive frequencies within this interval, these maxima at attained at the same coordinates (small
deviation is acceptable) of the near-field plane. Once the interval is determined, we truncate all
data that are outside of the chosen interval. Presenting the maximal absolute values of the exper-
imental data in Example 1 after preprocessing for all wavenumbers k, Fig. 2 exemplifies well the
above-mentioned strategy. We find numerically that in Example 1, the interval of wavenumbers
should be the vicinity of the first bump with a length of about 2.7 (see red dots in Figs. 2a, 2b).
Note that since our frequencies f̃ are between 1 GHz and 10 GHz, the corresponding wavenumber k
should range approximately from 2.09 to 20.95 using (26). We apply the same process to all other
examples to choose appropriate wavenumber intervals for them. Tentatively, we call this process
frequencies filtering.

4.2. Minimization Process

Theoretically, our convexification method is globally convergent for any initial solution V0 ∈ B.
However, to reduce the elapsed time of computations, we deliberately find the initial solution
V0 =

(
v(0)1 , . . . , v(0)N

)T
that is close to V . Recall that V = (v1, v2, . . . , vN)T is the solution of the

following nonlinear elliptic system:

N∑

n=1

Sln∆vn(x) +
N∑

n,m=1

Plnm∇vn(x) ·∇vm(x) +
N∑

n=1

Qln(x) ·∇vn(x) = 0

for all l = 1, . . . , N, x ∈ Ω,

(27)

associated with the boundary conditions ∂νV |Γ = g0, V |∂Ω = g1. Note that g0 and g1 are ob-
tained from our experimental data after the frequencies filtering process. In (27), we indicate that
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for i, j, l = 1, . . . , N ,

Sln =

kˆ
k

Ψ′
i(k)Ψl(k)dk,

Plnm = 2

kˆ
k

(
k2Ψn(k)Ψ

′
m(k) + kΨn(k)Ψm(k)

)
Ψl(k)dk,

Qln(x) = 2

kˆ
k

(
Ψ′

n(k)
∇ui(x, k)

ui(x, k)
+Ψn(k)∂k

∇ui(x, k)

ui(x, k)

)
Ψl(k)dk,

where the upper and lower bounds of k are determined in the frequencies filtering mentioned above.
It is thus natural to take V0 solutions to the corresponding linear system to (27). In this sense, we

drop in (27) the nonlinear term containing ∇vn (x) · ∇vm (x) and therefore, arrive at the following
linear elliptic system:

N∑

n=1

Sln∆vn(x) +
N∑

n=1

Qln(x) ·∇vn(x) = 0 for all l = 1, . . . , N (28)

associated with the same boundary conditions g0 and g1. By the natural linearity, system (28)
can be solved directly by the quasireversibility (QR) method involving the same Carleman weight
function µλ = µλ(z) = e−λ(R+r)2eλ(z−r)2 . In this regard, we minimize the following functional:

J̃ (V ) =
N∑

l=1

ˆ
Ω

µ2
λ

∣∣∣∣∣

N∑

n=1

Sln∆vn (x) +
N∑

n=1

Qln (x) ·∇vn (x)

∣∣∣∣∣

2

dx+ ε ∥V ∥2[Hp(Ω)]N . (29)

The solution V0 obtained from solving (28) will be used as the starting point of the minimization
process.

Implementation of this QR method in a finite difference setting is detailed in [24, 25] and is
analogous to the implementation of our cost functional J(V ) below.

As introduced in Sec. 3, the cost functional of our minimization process for system (27) is
formulated as follows:

J(V ) =
N∑

l=1

ˆ
Ω

µ2
λ

∣∣∣∣∣

N∑

n=1

Sln∆vn +
N∑

n,m=1

Plnm∇vi ·∇vm +
N∑

n=1

Qln∇vn

∣∣∣∣∣

2

dx+ ε∥V ∥2[Hp(Ω)]N . (30)

Here, recall that µλ = µλ(z) = e−λ(R+r)2eλ(z−r)2 involves the Carleman weight function eλ(z−r)2 . In
our numerical verification, we choose λ = 1.1 and r = 5.5 in (31). We remark that even though
our theory is valid for sufficiently large values of λ, we have experienced numerically that we can
choose a moderate value of λ in [1,3]; see our previous works with both simulated and experimental
data [13–15, 18]. Below, we use the same value of ε = 10−9 for all examples. Also, instead of using
a high regularity in the regularization term ε∥V ∥[Hp(Ω)]N , we use only ε∥V ∥[H2(Ω)]N . It reduces the
computational complexity, while still providing a satisfactory numerical performance. As in [13],
the cut-off number for our Fourier series is chosen as N = 6 in all examples. Besides, the same
parameters are used in our minimization of the quadratic functional (29) of the QR method in all
tests.

We now briefly mention the standard fully discrete version of the cost functional J above.
Let Nx = Ny = 51 and Nz = 21 be the number of discrete points in x, y and z directions, respec-
tively. Therefore, the same grid step size h = 0.2 in these directions is used. For each i = 1, . . . , N ,
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Table 3. Values of computed and true dielectric constants of Examples 1–5. The values are taken from [13]

Example 1 2 3 4 5

Object Metallic cylinder Bottle of water Wood “U” Metallic “A” Metallic “O”

ch 18.72 23.29 6.56 15.01 16.25

ctrue 10–29 23.8 2–6 10–29 10–29

Reference [22] [30] [1] [22] [22]

we denote by vi(xi, yj, zl) the corresponding discrete function of vi(x, y, z) defined at mesh-points
xi = −R+ ih, yj = −R+ jh, zl = −b+ lh. Hereby, the corresponding Laplace operator in this finite
difference setting is given by ∆h = ∂h

xx + ∂h
yy + ∂h

zz, where, for interior grid points of Ω, we consider

∂h
xxvi(xi, yj, zl) = h−2

(
vi(xi+1, yj, zl)− 2vi(xi, yj, zl) + vi(xi−1, yj, zl)

)
,

and the same is applied to the difference operators ∂h
yy, ∂

h
zz. For the gradient operator, we consider

∇h = (∂h
x , ∂

h
y , ∂

h
z ) with

∂h
xvi(xi, yj, zl) = (2h)−1

(
vi(xi+1, yj, zl)− vi(xi−1, yj, zl)

)
.

Henceforth, the discrete version of J corresponding to (30) is given by

J(V h) = h3
Nx∑

i=1

Ny∑

j=1

Nz∑

l=1

N∑

l=1

µ2
λ(zl)

∣∣∣∣∣

N∑

i=1

Sli∆
hvi(xi, yj, zl)

+
N∑

i,j=1

Plij∇hvi(xi, yj, zl) ·∇hvj(xi, yj, zl) +
N∑

i=1

Qli(xi, yj, zl)∇hvi(xi, yj, zl)

∣∣∣∣∣

2

+ εh3
Nx∑

i=1

Ny∑

j=1

Nz∑

l=1

N∑

l=1

(∣∣vl(xi, yj, zl)
∣∣2 +

∣∣∇hvl(xi, yj, zl)
∣∣2 +

∣∣∆hvl(xi, yj, zl)
∣∣2
)
.

(31)

To speed up the computation process, we compute the gradient DJ of the discrete functional J
in (31) using the technique of Kronecker deltas; see in [23]. For brevity, we do not provide such
a long formulation for the gradient DJ here. Overall, the procedure to compute the approximate
minimizer, denoted by V comp, is described in Algorithm 1. For the step size η in Algorithm 1,
we briefly report that we start from η = 10−1, and for each iterative step, if the value of the
functional exceeds its value on the previous step, we replace the current step size η by η/2. Oth-
erwise, we keep it the same. We stop the minimization process via the gradient descent method
when η = 10−9.

Algorithm 1 (a numerical method to solve (27)).

1. Choose a threshold error ε > 0.
2: Set m = 0 and find an initial solution V0 by solving (28).
3: Compute Vm+1 using the gradient descent method for some step size 0 < η ≪ 1.
4. If ∥Vm+1 − Vm∥[H2(Ω)]N < ε, move forward to Step 5. Otherwise, set m = m + 1 and return

Step 3.
5. Set V comp = Vm+1
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Fig. 4. Example 1. Metallic cylinder. (a) Real photo of aluminum cylinder. (b) The reconstructed dielectric constant
function by the first method with a fixed source and multiple frequencies. (c) The reconstructed dielectric constant
function by the second method with multiple sources and a fixed frequency.

Fig. 5. Example 2. The bottle of water. (a) The real image of the glass bottle of water. (b) The reconstructed
dielectric constant function by the first method with a fixed source and multiple frequencies. (c) The reconstructed
dielectric constant function by the second method with multiple sources and a fixed frequency. Clearly, we successfully
detected the shape of the bottle of water by these two methods.

Fig. 6. Example 3. The wooden letter ‘U’. (a) The real image of the U-shaped piece of dry wood. (b) The
reconstructed dielectric constant function by the first method with a fixed source and multiple frequencies. (c) The
reconstructed dielectric constant function by the second method with multiple sources and a fixed frequency. Note
that the U shape can be seen clearly by the first method. It is well known that detecting nonconvex objects with
voids inside them is challenging but the first method can produce clearly letter U and the void inside it.
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Fig. 7. Example 4. The metallic letter ‘A’. (a) The real image of the A-shaped piece of metal. (b) The reconstructed
dielectric constant function by the first method with a fixed source and multiple frequencies. (c) The reconstructed
dielectric constant function by the second method with multiple sources and a fixed frequency. Note that letter A is
produced perfectly with the void inside by the first method. It is much clearer than the result obtain by the second
method.

Fig. 8. Example 5. The metallic letter ‘O’. (a) The real image of the O-shaped piece of metal. (b) The reconstructed
dielectric constant function by the first method with a fixed source and multiple frequencies. (c) The reconstructed
dielectric constant function by the second method with multiple sources and a fixed frequency. It is clear that the O
shape with a void inside is produced better by the first method in comparison with the result of the second one.

After obtaining the computed N -dimensional vector function V comp, we plug its components in
the Fourier series that approximates v. Then, we compute the unknown dielectric constant by the
following discrete formulation:

ch(xi, yj, zl) = meank

∣∣∣∣∣− Re
(
∆hv(xi, yj, zl, k) + k2(∇hv(xi, yj, zl, k))

2

+
2∇hv(xi, yj, zl, k) ·∇hu0(xi, yj, zl, k)

u0(xi, yj, zl, k)

)∣∣∣∣∣+ 1.

To visually represent the reconstructed inclusion in each example, we use the isovalue func-
tion in MATLAB to generate 3D images. In cases where the inclusion possesses a high dielectric
constant (≥ 10), we choose an isovalue of 20%. Conversely, for inclusions with low dielectric con-
stants (< 10), we select an isovalue of 10%.
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4.3. Numerical Results
Our numerical results are depicted in Figs. 4–8 corresponding to five (5) examples that we have

mentioned earlier in Sec. 4.1. In those figures, we present real photos of the experimental objects,
and the reconstructed inclusions in three dimensions from two different computational approaches
for comparison. Herewith, the first one is our current approach when using multi-frequency data and
a fixed point source. The second approach is the one investigated in a series of publications [13–15]
dealing with the context of multiple point sources and a fixed frequency.

In all figures, we find that the first method reconstructs our inclusions with better shapes.
Specifically, at this time the whole complicated shape of letters ‘U’, ‘A’ and ‘O’ is visible when
applying the first approach; see Figs. 6, 7, and 8. Also, in Fig. 5b, the bottle of water with its cap
can be well interpreted, compared to Fig. 5c in which the second approach is used. We, however,
observe numerically that there is a main drawback of the current numerical approach. Our approach
in this context (i.e. multiple frequencies and one source) does not give a decent value of dielectric
constant. For instance, in the first test with the metallic cylinder, we report that the maximum
value of the computed dielectric constant is only 1.0006, while by the second approach (i.e. multiple
sources and one frequency), the obtained value is 18.72. Note that we, herewith, focus on the so-
called “appearing” dielectric constant of metallic objects we have experimented numerically with in
the previous publication [22]. In particular, the range of the appearing dielectric constant of metals
is [10, 30].

As one of important physical properties that one targets in landmine detection, shape of recon-
structed inclusion is essential and can be helpful in classifying explosive devices in the battlefield.
Our reconstruction results show that the perspective of multiple frequencies and one source being
considered in this work does a good job to fulfill this property. It, indeed, produces a quite good
shape of buried objects. With the same experimentally collected data used but different perspective
(multiple sources and one frequency), the convexification method therein provides a high accuracy
of computing the dielectric constant; see Table 2 in [13]. Note that having an accurate dielectric
constant of the buried object is another essential physical property in landmine detection. Hence-
forth, when data set is allowed, it is our idea that one should combine these two perspectives to
obtain decent reconstruction results in terms of both shape of the buried object and the dielectric
constant. In the future work, we will find an appropriate approximate model for this interesting
idea. In other words, a convexification method should be studied to come up with the perspective
of multiple sources and frequencies.

5. SUMMARY

In this paper, we have examined the numerical performance of our convexification method applied
to a 3D coefficient inverse problem using experimental data. Our study focuses on imaging buried
objects within a sandbox, simulating the detection of landmines on a battlefield.

Previously, we employed the convexification method with a setup involving multiple sources and
a fixed frequency. This approach yielded highly accurate computations of the dielectric constants.
Meanwhile, we observed that using multiple frequencies and a fixed source configuration improved
the shape of the front surface of the experimental inclusions, a crucial physical property for detecting
explosive devices.

Based on our current investigation, it is evident that combining these two configurations produces
good reconstruction results in terms of both the shape of the buried object and the dielectric
constant, provided the data set allows for such combination.

ACKNOWLEDGMENTS

V. A. Khoa thanks Dr. Darin Ragozzine (Brigham Young University, USA) for the recent support
of his research career.

FUNDING
V. A. Khoa was supported by NSF grant no. DMS-2316603. L. H. Nguyen was supported by

NSF Grant no. DMS-2208159.

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 17 No. 4 2023



926 LE et al.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES

1. Clipper Controls Inc. 2020 Dielectric Constants of Various Materials.
http://clippercontrols.com/pages/Dielectric-Constant-Values.html#W.

2. A. D. Agaltsov, T. Hohage, and R. G. Novikov, “An iterative approach to monochromatic phaseless
inverse scattering,” Inverse Probl. 35 (2), 024001 (2018).

3. N. V. Alekseenko, V. A. Burov, and O. D. Rumyantseva, “Solution of the three-dimensional acoustic
inverse scattering problem. The modified Novikov algorithm,” Acoust. Phys. 54 (3), 407–419 (2008).

4. A. B. Bakushinskii and A. S. Leonov, “Numerical solution of an inverse multifrequency problem in scalar
acoustics,” Comput. Math. Math. Phys. 60 (6), 987–999 (2020).

5. E. Banks, Anti-Personnel Landmines: Recognising & Disarming (Brassey’s Essential Guides) (Potomac
Books, , 1997).

6. L. Beilina and M. V. Klibanov, Approximate Global Convergence and Adaptivity for Coefficient Inverse
Problems (Springer, New York, 2012).

7. A. L. Bukhgeim and M. V. Klibanov, “Global uniqueness of a class of multidimensional inverse problems,”
Dokl. Akad. Nauk SSSR 260 (2), 269–272 (1981) [Sov. Math. Dokl. 24 (2), 244–247 (1981)].

8. G. Chavent, Nonlinear Least Squares for Inverse Problems (Springer Sci. + Bus. Media, New York,
2010).

9. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory (Springer, Berlin–
Heidelberg, 1992).

10. D. J. Daniels, “A review of GPR for landmine detection,” Sens. Imaging: Int. J. 7 (3), 90–123 (2006).
11. A. V. Goncharsky and S. Y. Romanov, “A method of solving the coefficient inverse problems of wave

tomography,” Comput. Math. Appl. 77 (4), 967–980 (2019).
12. A. V. Goncharsky, S. Y. Romanov, and S. Y. Seryozhnikov, “Low-frequency ultrasonic tomography:

Mathematical methods and experimental results,” Moscow Univ. Phys. Bull. 74 (1), 43–51 (2019).
13. V. A. Khoa, G. W. Bidney, M. V. Klibanov, L. H. Nguyen, L. H. Nguyen, A. J. Sullivan, and V. N.

Astratov, “Convexification and experimental data for a 3D inverse scattering problem with the moving
point source,” Inverse Probl. 36 (8), 085007 (2020).

14. V. A. Khoa, G. W. Bidney, M. V. Klibanov, L. H. Nguyen, L. H. Nguyen, A. J. Sullivan, and V. N. As-
tratov, “An inverse problem of a simultaneous reconstruction of the dielectric constant and conductivity
from experimental backscattering data,” Inverse Probl. Sci. Eng. 29 (5), 712–735 (2020).

15. V. A. Khoa, M. V. Klibanov, and L. H. Nguyen, “Convexification for a three-dimensional inverse scat-
tering problem with the moving point source,” SIAM J. Imaging Sci. 13 (2), 871–904 (2020).

16. M. V. Klibanov, “Carleman estimates for global uniqueness, stability and numerical methods for coeff-
cient inverse problems,” J. Inverse Ill-Posed Probl. 21 (4) (2013).

17. M. V. Klibanov, “Convexification of restricted Dirichlet-to-Neumann map,” J. Inverse Ill-Posed Probl.
25 (5) (2017).

18. M. V. Klibanov, V. A. Khoa, A. V. Smirnov, L. H. Nguyen, G. W. Bidney, L. H. Nguyen, A. J. Sullivan,
and V. N. Astratov, “Convexification inversion method for nonlinear SAR imaging with experimentally
collected data,” J. Appl. Ind. Math. 15 (3), 413–436 (2021).

19. M. V. Klibanov, A. E. Kolesov, A. Sullivan, and L. Nguyen, “A new version of the convexification
method for a 1D coefficient inverse problem with experimental data,” Inverse Probl. 34 (11), 115014
(2018).

20. M. V. Klibanov and J. Li, Inverse Problems and Carleman Estimates Global Uniqueness, Global Con-
vergence and Experimental Data (de Gruyter, Berlin, 2021).

JOURNAL OF APPLIED AND INDUSTRIAL MATHEMATICS Vol. 17 No. 4 2023



NUMERICAL VERIFICATION OF THE CONVEXIFICATION METHOD 927

21. M. V. Klibanov, J. Li, and W. Zhang, “Numerical solution of the 3-D travel time tomography problem,”
J. Comput. Phys. 476, 111910 (2023).

22. A. V. Kuzhuget, L. Beilina, M. V. Klibanov, A. Sullivan, L. Nguyen, and M. A. Fiddy, “Blind backscatter-
ing experimental data collected in the field and an approximately globally convergent inverse algorithm,”
Inverse Probl. 28 (9), 095007 (2012).

23. A. V. Kuzhuget and M. V. Klibanov, “Global convergence for a 1-D inverse problem with application to
imaging of land mines,” Appl. Anal. 89 (1), 125–157 (2010).

24. T. T. Le and L. H. Nguyen, “The gradient descent method for the convexification to solve boundary
value problems of quasilinear PDEs and a coefficient inverse problem,” J. Sci. Comput. 91 (3) (2022).

25. T. T. T. Le and L. H. Nguyen, “A convergent numerical method to recover the initial condition of
nonlinear parabolic equations from lateral Cauchy data,” J. Inverse and Ill-Posed Probl. 30 (2), 265–286
(2020).

26. D.-L. Nguyen, M. V. Klibanov, L. H. Nguyen, and M. A. Fiddy, “Imaging of buried objects from multi-
frequency experimental data using a globally convergent inversion method,” J. Inverse and Ill-Posed
Probl. 26 (4), 501–522 (2017).

27. R. G. Novikov, “An iterative approach to non-overdetermined inverse scattering at fixed energy,” Sb.:
Math. 206 (1), 120–134 (2015).

28. “Office of the Chief of Ordnance. Catalog of enemy ordnance materiel,” in World War II Operational
Documents, no. N2228-E, 1945.
http://cgsc.contentdm.oclc.org/cdm/ref/collection/p4013coll8/id/2758.

29. B. T. Polyak, Introduction to Optimization (Optim. Software, Publ. Div., 1987).
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