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Abstract.
We present the first formal-methods analysis of the Session Binding Proxy (SBP)
protocol, which protects a vulnerable system by wrapping it and introducing a reverse
proxy between the system and its clients. SBP mitigates thefts of authentication
cookies by cryptographically binding the authentication cookie—issued by the server
to the client—to an underlying Transport Layer Security (TLS) channel using the
channel’s master secret and a secret key known only by the proxy. An adversary
who steals a bound cookie cannot reuse this cookie to create malicious requests
on a separate connection because the cookie’s channel binding will not match the
adversary’s channel. SBP seeks to achieve this goal without modifications to the client
or the server software, rendering the client and server “oblivious protocol participants”
that are not aware of the SBP session.
Our analysis verifies that the original SBP design mitigates cookie stealing under the
client’s cryptographic assumptions but fails to authenticate the client to the proxy.
Resulting from two issues, the proxy has no assurance that it shares a session context
with a legitimate client: SBP assumes an older flawed version of TLS (1.2), and
SBP relies on legacy server usernames and passwords to authenticate clients. Due
to these issues, there is no guarantee of cookie-stealing resistance from the proxy’s
cryptographic perspective.
Using the Cryptographic Protocol Shapes Analyzer (CPSA), we model and analyze
the original SBP and three variations in the Dolev-Yao network intruder model. Our
models differ in the version of TLS they use: 1.2 (original SBP), 1.2 with mutual
authentication, 1.3, and 1.3 with mutual authentication (mTLS-1.3). For comparison,
we also analyze a model of the baseline scenario without SBP. We separately analyze
each of our SBP models from two perspectives: client and proxy. In each SBP
model, the client has assurance that the cookie is valid only for the client’s legitimate
session. Only in mTLS-1.3 does the proxy have assurance that it communicates with
a legitimate client and that the client’s cookie is valid. We formalize these results by
stating and proving, or disproving, security goals for each model.
SBP is useful because it provides a practical solution to the important challenge of
protecting flawed legacy systems that cannot be patched. Our analysis of this obscure
protocol sheds insight into the properties necessary for wrapper protocols to resist a
Dolev-Yao adversary. When engineering wrapper protocols, designers must carefully
consider authentication, freshness, and requirements of cryptographic bindings such
as channel bindings. Our work exposes strengths and limitations of wrapper protocols
and TLS channel bindings.
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1 Introduction
Flawed legacy systems are a security professional’s nightmare: they are challenging to
patch against known vulnerabilities, store large accumulations of sensitive data, and often
contribute to spectacular data breaches [SN20]. In the 2015 attack on the United States
Office of Personnel Management (OPM), which leaked over 22 million sensitive records
to geopolitical adversaries, attackers exfiltrated data from decades-old computer systems
incapable of encryption [PT17]. To protect legacy systems, organizations often attempt to
isolate such systems by using Virtual Local area Networks (VLANs), firewalls, air gaps,
and reverse proxies. In spite of these attempts, poorly designed solutions continue to
enable existing or new attacks, while instilling a false sense of security.

Legacy systems often communicate using outdated cryptographic protocols or legacy
protocols, with known weaknesses. A prevalent approach for hardening legacy protocols is
to bind them to modern protocols, such as Transport Layer Security (TLS), and to rely
on this binding to mitigate known vulnerabilities. Cryptographic channel binding (see
Section 3.2), a common binding technique, binds the cryptographic values of the legacy
protocol to a cryptographic channel established by a modern protocol (e.g., TLS). Because
it is difficult to develop sound cryptographic protocols, due diligence requires that we
analyze cryptographic bindings using formal methods.

We present a formal-methods analysis of the 2013 Session Binding Proxy (SBP) protocol
by Burgers, Verdult, and Eekelen [BVvE13], originally designed to mitigate a known session-
hijacking vulnerability with their university’s Blackboard Learn software [vEMHV13]. SBP
is a cryptographic protocol that wraps a vulnerable web application server and introduces
a reverse proxy. SBP binds the HTTP session authentication cookie—a token with which
a client identifies themselves to the server—to an underlying TLS channel between the
client and the proxy. The session binding reverse proxy receives requests on behalf of the
server and manages the cookie binding. A design goal of SBP is to avoid modifying the
client or the server: neither the client nor the server are aware that they participate in a
session of SBP with the proxy.

To analyze SBP, we model a baseline scenario without SBP (pre-SBP), the original SBP,
and three custom variations in the strand space model [THG99] using the Cryptographic
Protocol Shapes Analyzer (CPSA) [GLRR]. Throughout, we focus on SBP’s goal of
preventing cookie-stealing attacks. Our model of the original SBP incorporates and binds
to TLS-1.2, consistent with the SBP authors’ written description and their prototype
implementation. Each of our custom variations binds to alternate versions of TLS: mutual
TLS (mTLS)-1.2, TLS-1.3, and mTLS-1.3 Using our models, we explore how variations
between underlying TLS channels affect SBP’s cookie-stealing resistance and compare
these to pre-SBP.

Using CPSA, we formalize security goals of the SBP design by extracting authentication
goals to define an SBP session context. From each of the protocol’s distinct cryptographic
perspectives (client, proxy), we prove context agreement, in which legitimate parties
agree on the session context after executing the protocol, via an exhaustive proof or a
counterexample. To our knowledge, we are the first to perform a formal-methods analysis
of the SBP protocol.

From the cryptographic perspectives of the client and proxy, our analysis identifies
the properties of the underlying communication channel that SBP requires to function
within the Dolev-Yao (DY) network intruder model [DY83]. The client and the proxy
must mutually authenticate each other, and the channel binding must incorporate fresh
values from each communicant. From the proxy’s perspective, the original SBP, mTLS-1.2,
and TLS-1.3. models fail to authenticate mutually: the proxy cannot determine if they are
communicating with a legitimate client or the network adversary. Within a DY network,
traditional passwords are an inadequate authentication mechanism because clients may
inadvertently transmit these to penetrator strands (see Section 13). Additionally, the proxy



E. Golaszewski et al. 3

in the original SBP and mTLS-1.2 models has no assurance that the client contributes a
fresh pre-master secret to the protocol—consequently, the proxy may bind the cookie to a
compromised TLS channel.

Unlike in our SBP TLS-1.2 and TLS-1.3 models, in our SBP mTLS-1.3 model, the
proxy authenticates the client using a client certificate; the proxy is guaranteed freshness
of the TLS master secret; and the protocol does not leak this freshness—preventing session
hijacking. In this variation, the client receives a cookie bound to the fresh TLS master
secret. Of the models we analyze, only this model guarantees that both the client and the
proxy perspectives agree on an SBP session context, including the identities of the user,
the server, and the cookie. The client certificate, however, does not bind to a username or
password, enabling the client to transmit stolen credentials to the proxy on the mutually
authenticated channel. To mitigate this issue, we recommend eliminating password-based
authentication in favor of user certificates or other mechanisms.

From our analysis, we identify several vulnerabilities resulting from the design of the
original SBP protocol: (1) The proxy cannot authenticate the client because the client
does not produce a certificate; the client may transmit stolen credentials; and the protocol
leaks freshness of the TLS pre-master secret. (2) The client may communicate with a
corrupt proxy that forwards the client’s credentials and requests in another session of
SBP. (3) The client cannot verify the cryptographic binding that the proxy applies to the
cookie. As we show in Section 9.2, an adversary can exploit these vulnerabilities to launch
a “forwarding attack.”

To mitigate SBP’s vulnerabilities, we make several recommendations. SBP must
require that the server embed the proxy to merge into a single network entity. Clients
must produce certificates to authenticate via mTLS-1.3, and the certificates must bind to
specific usernames and passwords to mitigate stolen passwords. The proxy must provide
the client with some means by which to verify the binding of the authentication cookie
(see Section 13). We also point out how SBP’s design prevents meaningful improvements
without disruptively modifying the server and client (see Section 10).

This work evolves a preliminary formal-methods analysis of SBP by Elsaad [AE22],
who verified that the original SBP protocol resists protocol interactions from the client’s
perspective. Additionally, as we present in Section 9.2, Elsaad identified and implemented a
“tail-gating attack” against SBP, which (beyond the DY model) assumes that the adversary
can execute code in the client’s browser. Our expanded study analyzes models of the
original SBP and three variations using alternate TLS versions and compares them with a
pre-SBP model. We also identify issues with TLS channel binding and passwords, and
make recommendations for designing and deploying protocols like SBP.

Our primary contributions are: (1) We present a formal-methods analysis of the SBP
protocol, in which we state and prove security goals from the server and proxy perspectives
for a model of the original SBP, three variations, and a baseline model without SBP. (2) We
interpret our formal analysis in terms of vulnerabilities, attacks, and risks; and (3) we
recommend principles and improvements for SBP and similar wrapper protocols.

In the remainder of this paper, we introduce SBP and wrapping protocols that per-
form channel binding, review relevant background, explain the SBP protocol, state our
adversarial model, present our CPSA model for each variation of SBP, state security goals
in strand space for each model, prove or disprove the security goals using CPSA, point out
potential vulnerabilities, attacks, and risks, make recommendations, summarize previous
work, and discuss issues and open problems raised by our work.

Source code for our CPSA models are available on GitHub [UMB23].
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2 Introducing SBP, Wrapping Protocols, and TLS
Channel Bindings

Wrapping protocols such as SBP, which encapsulates an older, flawed protocol, exist to
solve a practical problem facing many organizations: hardening legacy systems against
adversaries who target these systems with known exploits. Such adversaries exploit known
vulnerabilities in these systems that can be impossible for organizations to patch. Systems
may become impossible to patch because vendors discontinue support, developers of custom
software become unavailable, and patches break the system’s functionality. Although it
may be tempting to eliminate the legacy system from an organization’s network, doing so
may be prohibitively expensive and disruptive. Solutions such as SBP attempt to wrap
and isolate legacy systems to keep them available while mitigating known attacks.

TLS channel binding is the key idea of SBP, which seeks to improve cookie-based
authentication in HTTP by applying channel binding to the cookie. Many protocols
assume authenticated communication channels negotiated by protocols such as TLS, which
is widely available, supported, and ubiquitous with web browsing. To bind values in a new
protocol to an underlying TLS channel, protocol designers apply channel bindings: they
encrypt or hash their sensitive values together with secret values originating from the TLS
channel. The purpose of such bindings is to enable protocol participants to detect protocol
interactions in which an adversary attempts to transfer information bound to one TLS
channel to a session taking place on a different TLS channel. We explore the ability of
SBP’s channel bindings to mitigate cookie-based hijacking.

Wrapper protocols like SBP introduce the problematic notion of oblivious protocol
participants (see Figure 1), that participate in cryptographic protocols without knowledge
that they are participating. Often, these participants are flawed systems that are not
possible to patch. To enable such systems to function in a network without presenting
soft targets for adversaries, wrapper protocols fool the participants into participating in
stronger protocols that mitigate known flaws. The existence of protocols such as SBP
illustrates a need for such protocols and their oblivious participants.

Oblivious protocol participants introduce new dangers, particularly in the DY model,
because they are not aware of the protocols or sessions in which they communicate.
Cryptographic bindings (see Section 3.2) are vital primitives for preventing man-in-the-
middle attacks but are impossible for oblivious participants to apply or verify.

3 Background
3.1 Session Hijacking
In session hijacking, an adversary presents a legitimate user’s session credentials as their own,
potentially enabling malicious transactions. Examples include cross-site scripting (XSS), in
which the adversary injects code into the client’s browser to steal a session authentication
token [RTFB20], and malicious browser plugins [KFS+22, JDG+15, KGC+14], which can
modify web pages in the client’s browser or steal sensitive information, such as an HTTP
cookie. Existing mitigations include HTTP-only cookies [ZE10]. SBP seeks to eliminate
cookie-based session hijacking by binding the user’s cookie to an underlying TLS session.

3.2 Cryptographic Binding
Cryptographic binding is vital for preventing a DY adversary from creating adverse protocol
interactions [KSW97]. It applies cryptographic primitives, such as encryption, digital
signature, or hashing, to associate session context (e.g., identities and nonces) with a
message from a specific protocol session. Cryptographic binding may or may not involve
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secrets. It is important that an adversary cannot undo bindings and that recipients be
able to verify them. As early as 1996, Abadi and Needam’s [AN96] informal guidelines
on designing sound cryptographic protocols stated a need to bind to session contexts
cryptographically. An example of cryptographic binding is digital certificates, which
associate public keys with identities via signature.

Protocols that do not bind appropriately are vulnerable to protocol interactions. The
well-known 1995 attack by Gavin Lowe [Low95] on the Needham-Schroeder (NS) [NS78]
protocol exploits a lack of binding between the responder’s nonce and the responder’s iden-
tity. Binding failures continue to appear in modern protocols such as FIDO UAF [GSZ23],
illustrating the need for formal-methods tools in protocol design. We discuss requirements
for effective cryptographic bindings in Section 13.

3.3 Formal-Methods Protocol Analysis
Formal-methods protocol analysis involves expressing a protocol in a formal, mathematical
model, stating theorems that reflect the protocol’s desired security properties, and proving
those theorems. Often, this process requires the assistance of specialized theorem-proving
tools. Notable existing tools for protocol analysis include ProVerif [Bla13], Tamarin
Prover [MSCB13], Maude-NPA [EMM07], and CPSA [LRGR16]. It is also possible to
carry out security analysis using more general high-order logic theorem provers such as
Isabelle [Pau98]. Unlike most theorem provers, CPSA is capable of discovering protocol
security goals given a set of assumptions and a partial execution. In this sense, CPSA is a
“model-finding tool.” Like other theorem provers, CPSA is also capable of verifying stated
theorems within the model. For our analysis, we use CPSA because we are familiar with
the tool, have access to experts, and find the tool’s model-finding properties useful for
identifying protocol security goals and protocol interactions.

3.4 Strand Spaces
Strand spaces [THG99] are a formalization of interactions between protocol participants
on a DY network. A protocol’s strand space comprises a set of strands, which express
actions by legitimate parties or a network penetrator. Each strand expresses a sequence of
incoming and outgoing messages via positively or negatively signed terms: positive terms
denote messages going out into the network, and negative terms denote messages coming
in from the network. A pair of strands with corresponding terms, such that one strand
transmits the terms that the other strand receives, are complementary strands. We model
the strand space of a protocol by extracting the protocol’s roles from its specification,
extracting complementary strands from these roles, and including penetrator strands that
express the capabilities of our adversary.

Together with a set of keys known to the adversary, penetrator strands express the
adversary’s available actions on the network. The adversary composes these strands to
construct attacks within a protocol’s strand space. A standard set of penetrator strands
models the following actions: (1) Emit or extract arbitrary messages. (2) Replay messages.
(3) Concatenate message or separate messages into components. (4) Using knowledge of
a secret key, encrypt or decrypt messages. When necessary, one can include additional
penetrator strands that express additional behaviors.

Interactions between strands occur in subsets of strand spaces called bundles: a bundle
consists of a portion of legitimate party strands and penetrator strands from a strand
space and captures causal relationships between the terms that these strands transmit and
receive. Strands within bundles follow three rules: First, a strand cannot send and receive
a message concurrently. Second, a strand must receive a message from a unique node on
another strand that emits that message. Third, if a strand emits a message, any strand
expecting such a message may receive it. The same strand can appear multiple times in
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a bundle. Bundles express unique execution sequences within a protocol’s strand space,
including sequences that describe attacks by an adversary.

Because proving properties of strand spaces is subtle, time consuming, and laborious,
we rely on CPSA to prove theorems for us automatically.

3.5 CPSA
CPSA [LRGR16] is an open-source tool for analyzing cryptographic protocols within
the strand-space model. While capable of proving theorems, CPSA distinguishes itself
as a model-finder: given an input model—which comprises strands consisting of roles,
messages, variables, and a set of initial assumptions—when executing to completion,
CPSA identifies all essentially different executions of the protocol within a DY network
and outputs these executions as shapes [LRT11]. CPSA’s model finding enables users to
identify the strongest achieved security goal for an input model [RGL16]. Additionally,
for each shape, CPSA outputs shape analysis sentences from which users can extract the
security goals [Gut00, Gut14, Ram15] and corresponding proofs.

Users define CPSA models using LISP-like s-expressions that implement a custom
language. In these models, which superficially resemble (but are not) executable source
code, users specify one or more roles, associated variables and messages, and skeletons.
Skeletons specify one or more initial strands and impose assumptions on the strand variables,
such as “uniquely originating” a value or identifying a value, most often a secret or key, is
unavailable to the adversary. When CPSA executes, the tool attempts to satisfy skeleton
nodes by repeatedly applying actions available to a DY intruder in strand space theory. A
shape is a skeleton consisting of only the strands of legitimate protocol participants, in
which CPSA satisfies all nodes under the skeleton’s assumptions.

Within a CPSA skeleton, we constrain variables by applying one or several origination
assumptions: uniquely originating, uniquely generating, non-originating, and penetrator
non-originating. Uniquely originating values are unknown to protocol participants and
the network until a legitimate strand emits them as part of a message, enabling us to
model random nonces, fresh secret keys, and other values that must be unique for each
execution of a protocol. Uniquely generating values are unknown to protocol participants
until a legitimate strand creates them. They are distinct from uniquely originating in that
originating terms do not exist until they are sent in a message, while generating terms are
unique on the node within a strand where they first appear. Non-originating values are
values such as private keys, which the adversary does not know, cannot guess, and will
never appear on the network in a decryptable form. Penetrator non-originating values
include passwords, which only legitimate strands can originate, that the adversary does
not know without obtaining them from some run of the protocol.

3.6 Proxies
Proxies, also known as proxy servers, are systems that pass messages on behalf of other
systems, often between web clients and servers [Luo98, WKDP14]. There are two major
types of proxies: forward proxies, which accept communication from entities and pass
them to remote destinations on a network, and reverse proxies, which appear outwardly as
servers and pass traffic to other systems.

Proxies intercept and manipulate network traffic by design and can appear indistin-
guishable from an adversary, making them problematic for protocol security. A rogue
proxy enables an adversary to create, delete, and modify network messages to exploit flaws
in network protocols. Because communicants often are unable to determine that they are
communicating via a proxy, the scenario of a rogue proxy can be challenging to detect and
mitigate. Within the DY model, a potentially corrupt proxy may make achieving many
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Figure 1: Architectural diagram for the SBP protocol in which the client and application
server are oblivious protocol participants. A client establishes a session with the SBP
(reverse) proxy over the Internet and issues further requests to this proxy. The proxy
strips SBP-specific information from the client’s messages before forwarding them to the
application server across a private network. The server, believing the proxy to be the
client, replies with responses that the proxy relays to the client.

security goals impossible. We discuss the potential vulnerabilities and attacks affecting
SBP’s reverse proxy in Section 9.

3.7 Transport Layer Security (TLS)

Transport Layer Security (TLS) [Res01] is a widely deployed cryptographic protocol for
negotiating encrypted communication channels on insecure networks. Frequently, protocols
that require an encrypted channel with integrity bind with TLS. The most common
deployments of TLS assume a client-server architecture in which the server produces for
the client a certificate, signed by a certificate authority, that attests the server’s public key.
This common deployment results in one-way authentication: the client authenticates the
server, but the server does not authenticate the client. In a variation of TLS known as
mutual TLS, or mTLS, both the client and the server produce certificates to authenticate
each other.

Currently, two versions of TLS are in active use: TLS-1.2 and TLS-1.3. In TLS-1.2,
the channel master secret comprises nonces sent in the clear from the client and the server,
together with a client-generated pre-master secret. While the client and server contribute
to freshness—uniqueness to a single protocol session—of the pre-master secret, TLS-1.2
leaks the freshness nonces, which can enable session hijacking. TLS-1.3 improves on this
limitation by replacing the pre-master secret with a Diffie-Hellman exchange in which the
client and the server securely contribute freshness.
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4 Session Binding Proxy (SBP) Protocol
Developed in 2013 by Burgers, Verdult, and van Eekelen [BVvE13], the Session Binding
Proxy (SBP) protocol is a custom protocol that wraps a vulnerable web server to improve
resistance against cookie-based session hijacking. The protocol specifies a reverse proxy
that manages communication on behalf of the server and cryptographically binds a client’s
authentication cookie to the master secret of the underlying TLS channel (version 1.2, in
the original SBP). This binding hinders an adversary from stealing a client’s cookie and
presenting it as their own by enabling the proxy to invalidate cookies that fail to bind
to the correct TLS channel. SBP specifies messages between three distinct roles (client,
proxy, server) and comprises three separate protocol phases: key establishment, session
establishment, and request handling. Figure 1 illustrates the binding of the cookie, the
main idea behind SBP.

Key establishment. The client initiates this phase by completing a standard TLS
handshake with the proxy. In this handshake, the proxy sends a certificate to the client,
enabling the client to authenticate the proxy. Following the TLS handshake, the client and
proxy each possess a master secret k, which the proxy uses to bind the session cookie in
the following phase. The remaining phases communicate over this encrypted TLS channel.

Client Proxy Server

TLS

Client: ClientWriteKey

Proxy: ProxyWriteKey

Phase One: Key Establishment

"login request", username, password

"login request", username, password

c = fresh client cookie

"login response", cookie

k = hash(TLS-Master-Secret, SysPrivKey

bc = encrypt(cookie, k)

IV = fresh random value

"login response", IV, bc

Phase Two: Session Establishment

Figure 2: Idealized message sequence diagram of SBP’s first two phases: key establishment
and session establishment. Vertical lines correspond to protocol roles; arrows indicate
sending or receiving a message; and arrow labels specify message content. The proxy
passes all messages between the client and the server, binding the cookie in the second
phase using the master secret of the client-proxy TLS channel and a system private key
known only to the proxy.

Session establishment. To establish a session with the server, the client, server, and
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proxy exchange the following messages: (1) The client transmits an authentication request,
containing credentials intended for the server, to the proxy. (2) The proxy forwards the
client’s request to the server. (3) The server generates a session cookie, an authentication
token representing the client’s authenticated identity, and a response for the client, and
transmits these to the proxy. (4) The proxy encrypts the session cookie using kc, which
comprises a hash of the master secret k from the previous phase, a secret system key kp

known only by the proxy, and a random initialization vector IV . The proxy transmits to
the client the server’s response, the IV, and an encryption of the session cookie under kc.
By so encrypting the cookie, the proxy binds the cookie to the TLS session. The client,
upon receiving the final message of this phase, stores the IV and the encrypted cookie for
future requests. Figure 2 illustrates the message flow of SBP’s first two phases.

Client Proxy Server

request, IV, bc

cookie = decrypt(bc, k)

request, cookie

response

response

Phase Three: Request Handling

Figure 3: Idealized message sequence diagram of SBP’s third phase: request handling.
Using knowledge of the TLS channel with the client, the proxy decrypts the client’s bound
cookie bc and substitutes the unbound cookie in the request prior to forwarding it to the
server. The server is never aware of the exchange of messages between the client and the
proxy; rather, it assumes the proxy is the client and responds to the proxy appropriately.
Similarly, the client is unaware of the exchanges between the proxy and the server, and
the client is unaware that its cookie is a bound cookie.

Request handling. The client, now in possession of the bound session cookie, initiates
further requests in this last phase: (1) The client transmits a request, the IV from the
previous phase, and the bound session cookie to the proxy. (2) Using knowledge of the IV,
kc, and kp, the proxy decrypts the client’s bound cookie, replaces the encrypted cookie
with the decryption of the bound cookie, and forwards the request to the server. (3) The
server receives the request and the session cookie, validates the cookie, and if the cookie is
correct, transmitting a response to the proxy; and (4) the proxy forwards the response to
the client. Figure 3 illustrates the message flow of SBP’s third phase.

The authors of SBP provide a proof-of-concept implementation that implements the
proxy as an embedded component of the server, as we recommend (see Section 11). The
authors, however, potentially dangerously do not require this configuration: the protocol’s
abstract design specifies the proxy and the server as two separate network entities that
communicate over a dedicated, private channel, whose characteristics could greatly impact
the security of the protocol.
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5 Adversarial Model
We evaluate SBP against a DY-style adversary that hijacks an honest user’s session via two
primary methods: stealing a user’s cookies using techniques such as XSS (see Section 3.1)
and exploiting protocol interactions between two separate SBP sessions. To hijack a user’s
session, the adversary attempts to provide a legitimate SBP proxy with an honest user’s
authentication cookie.

Consistent with the DY model, the adversary has full control over all messages on the
network and possesses the additional capability to steal cookies from legitimate users at
will. The adversary cannot break cryptographic primitives. They must acquire session
keys to compromise TLS channels or any corresponding channel bindings for any cookies
they obtain. Additionally, the adversary may operate a legitimate-appearing SBP proxy
with which legitimate users communicate. Within the strand space model, we formalize
these capabilities as penetrator strands (see Section 3.4). To reflect the adversary’s ability
to steal cookies, we grant these strands the ability to originate any cookie in the protocol.

To enable TLS channel negotiation between legitimate network participants, we as-
sume there exists an honest certificate authority on the network for which all legitimate
participants possess an authentic certificate. This certificate authority produces a legit-
imate certificate for any network entity, including SBP proxies and users operated by
the adversary. Additionally, we assume that all network participants rely on the same
version of TLS, which varies for our different protocol models. Finally, we assume that the
server behaves honestly and that the adversary cannot compromise messages between an
SBP proxy and its corresponding server. We make this assumption because the reference
implementation of SBP embeds the proxy and the server on a single network entity, and
SBP will fail to achieve any security properties if this assumption is untrue.

Our adversary is willing to risk detection and criminal charges to access a legitimate
user’s accounts unlawfully and to engage in a range of malicious activities, such as
transferring assets to steal them, collecting private information to blackmail users, or
selling user credentials to criminals. Potential targets include universities (SBP’s original
use case), financial institutions, E-commerce services, social media, and other lucrative
stores of sensitive data.

6 CPSA Models of SBP
Using CPSA’s modeling language, we specify roles, variables, messages, and assumptions to
model a baseline protocol (with no SBP) and four variations of the SBP protocol: Pre-SBP,
SBP-TLS-1.2, SBP-mTLS-1.2, SBP-TLS-1.3, SBP-mTLS-1.3. The baseline pre-SBP
model contrasts with SBP to illustrate how SBP helps resist our adversary. For each SBP
model, a client communicates with a proxy using a version of TLS that corresponds to the
protocol’s name. For these models, we state security goals in Section 7 and analyze the
goals in Section 8.

The pre-SBP and SBP models share several common terms that include the client’s
username u and password p, an authentication cookie cookie, and an HTTP request and
response. For TLS authentication, we incorporate separate models reflecting different
TLS versions into our pre-SBP and SBP models—our analysis of these models indicate
that their properties are consistent with existing formal analyses of TLS. Every legitimate
strand completes TLS authentication prior to sending or receiving further messages. For
non-mutual TLS sessions, only server and proxy strands transmit certificates. For mutual
TLS sessions, client, server, and proxy strands all transmit certificates. Following the
negotiation of a TLS session, all legitimate strands in our models encrypt messages under
the appropriate TLS key.

Each strand in each model corresponds to a complementary strand such that messages
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in one strand mirror messages in a complementary strand. Client strand terms correspond
to proxy or server strand terms. Server and proxy strand terms correspond with client
strand terms. TLS authentication messages reflect these relationships between strands.

The SBP protocol enables two branches of operation for a client: the client can
authenticate to the proxy, receive a bound session cookie, and make requests, or the client
can recall a cookie from a previous session to make requests. We reflect this branching
behavior by specifying two variations of each strand (client, proxy, server). Strands with
the suffix -a authenticate using credentials then process requests. Strands with the suffix
-r recall cookies from previous sessions and process requests. By including both types of
strands in our strand spaces, we enable CPSA to explore behaviors resulting from strands,
executing these two distinct cases, interacting with each other.

In our models, we distinguish between a client and a user. This distinction is important
when introducing client certificates, as we do in SBP-mTLS-1.2 and SBP-mTLS-1.3,
because client certificates serve only to authenticate the client, not the user for which
the client presents credentials. Because the client certificate does not bind to a user, an
authenticated client can present stolen credentials to a proxy.

6.1 Pre-SBP Model
For comparison, we begin with a pre-SBP model in which a client communicates with a
server over a TLS-1.2 channel without SBP. We model four strands: client-a, client-r, server-
a, and server-r. Each strand establishes a TLS session with a complementary strand and
carries out its respective steps: (1) Client-a transmits u and p, receives and stores cookie,
transmits cookie together with request, and receives response. (2) Client-r retrieves cookie
from storage, transmits it with request, and receives response. (3) Server-a receives u
and p, creates, transmits and stores cookie, receives request together with cookie, and
transmits response. (4) Server-r receives request together with cookie, retrieves cookie
from storage, and transmits response. Each client strand shares the client perspective,
and each server strand shares the server perspective.

We also model the pre-SBP protocol over a TLS-1.3 channel and with mutual TLS.
The security properties of each model are equivalent when communicating over a TLS-1.2
and a TLS-1.3 channel, so we refer to both of these models as a single model: Pre-SBP.

6.2 SBP Models
For each of our SBP models, we model four strands: client-a, client-r, proxy-a, and proxy-r.
SBP strands include three additional terms over the Pre-SBP model: a system private
key ppk for binding the cookie, the TLS channel’s master secret tls, and a bound cookie
bound cookie = enc(cookie, hash(tls, ppk)). We specify the following strands: (1) Client-
a transmits u and p, receives and stores bound cookie, transmits the bound cookie with
request, and receives response. (2) Client-r retrieves bound cookie from storage, transmits
it together with request, and receive response. (3) Proxy-a receives u and p, creates and
stores cookie, transmits bound cookie, receives request and the bound cookie, and transmits
response. (4) Proxy-r retrieves cookie, receives request together with bound cookie, and
transmits response. Client strands assume the client perspective, and proxy strands
assume the proxy perspective.

7 Security Goals in Strand Spaces
We formalize SBP’s security properties within the strand space model by specifying context
agreement security goals: following a run of SBP, instances of a client and a proxy strand
must agree on a session context. Failure to agree on context indicates the possibility of
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protocol interaction, which may lead to vulnerabilities and subsequent attacks on our SBP
models. For a protocol to be correct, all legitimate parties that execute a protocol must
agree on the resulting session context. In our subsequent analysis, we illustrate and discuss
counterexamples to goals.

A session context consists of authentication goals on which complementary pairs of
role strands must agree. These facts express equivalences of values such as communicant
identities, key material, nonces, or cookies. In SBP, a client and a proxy must agree on
the username, the server’s identifier, and a relationship between an unbound cookie and a
bound cookie: for any cookie, the client must have assurance that the cookie binds to the
underlying TLS channel between itself and the proxy. For the pre-SBP model, we rely on
a simpler context in which a client and a server agree on a cookie, the username, and the
server’s identifier. Using CPSA, we iteratively arrived at minimal session contexts for the
pre-SBP and SBP models, which we describe in Context 1 and Context 2, respectively.

SBP was designed to protect protocols that use cookies as authentication tokens. For
such protocols, a user authenticates with the server, and the server issues a cookie to the
authenticated user. The cookie is used as the user’s proof of authenticated identity to
that server in future requests, to eliminate the need to perform an authentication with
each request. The inclusion of a valid cookie in any request allows the server to treat the
request as coming from the authenticated user the cookie represents. Because cookies
provide a binding between a server and a user, the minimal context that the server and
client must agree upon for an authenticated exchange is the cookie, server, and user.

Session Context 1 (Pre-SBP).
Let C and S be instances of complementary client strands and server strands in a pre-SBP
strand space. For any pair (C, S), the following facts hold: C and S agree on the username
u, the server identifier s, and the cookie.

Session Context 2 (SBP).
Let C and P be instances of complementary client strands and proxy strands in a SBP strand
space. For any pair (C, P), the following facts hold: C and P agree on the username u, the
proxy identifier p, and for any cookie c that P originates, C must hold a corresponding
bound cookie that incorporates c.

We specify three sets of origination assumptions for our distinct roles: client, proxy,
and the pre-SBP model’s server. Origination assumptions express a role’s cryptographic
perspective by establishing assumptions about values in the protocol, such as the secrecy
of private keys and freshness of session values. Resulting from a disparity in origination
assumptions, security goals that hold for one set of assumptions may fail to hold for another
set of assumptions. Often, such a discrepancy suggests a flaw in a protocol. Below, we
provide definitions for each of our assumption sets.

Assumption 1 (Client Assumptions).
For any initial client strand C in a bundle, we make the following assumptions:
(1) Private keys of legitimate parties are unknown (non-originating) to the adversary.
(2) C generates (uniquely originates) a fresh client-random nonce for TLS, and [for TLS-
1.2] a fresh pre-master secret or [for TLS-1.3] a fresh Diffie-Hellman value.
(3) [SBP models only] The proxy system key is not available to the adversary.

Assumption 2 (Proxy Assumptions).
For any initial proxy strand P in a bundle, we make the following assumptions:
(1) Private keys of legitimate parties are unknown to the adversary.
(2) P generates a fresh proxy-random nonce for TLS, and [for TLS-1.3] a fresh Diffie-
Hellman value.
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Assumption 3 (Server Assumptions).
For any initial server strand S in a bundle, we make the following assumptions:
(1) Private keys of legitimate parties are unknown to the adversary.
(2) S generates a fresh server-random nonce for TLS, and [for TLS-1.3] a fresh Diffie-
Hellman value.

To define context agreement, we first specify two properties: successful completion and
unique completion. Successful completion states that for any initial strand that executes
fully, there exists a complementary strand in the bundle that executes the protocol and
agrees on a context. Unique completion states that within a bundle, no complementary
strand exists that completes the protocol and does not agree on the context with the initial
strand. We provide mathematical definitions for each of these properties below.

Within the following definitions, B-height refers to the number of a strand’s nodes
that are in a bundle B: a strand of integer height i has executed at least i steps of a
protocol run. When executing the protocol between an initial and complementary strand,
the complementary strand need not execute fully to satisfy the terms of the initial strand:
the complementary strand’s height can be less than a full run.

Definition 1 (Successful Completion).
Let B be any bundle in a strand space P , I and R be roles in P , X be a session context for
P, and O be a set of origination assumptions for I. Let i and j be any natural numbers.

Succ(I, R, X , O, i, j) is true if and only if (iff) for all bundles B ∈ S and strands s ∈ I,
there exists a strand s′ ∈ R such that under O, s ∈ I satisfies X with B-height i and
s′ ∈ R satisfies X with B-height j.

Definition 2 (Unique Completion).
Let I and R be roles in a strand space P , X be a session context in P , and O be a set of
origination assumptions for I. Let i and j be any natural numbers.

Uniq(I, R, X , O, i, j) is true iff Succ(I, R, X , O, i, j)∧Succ(I, R′, X , O, i, j) =⇒ R =
R′.

Using the properties and the assumption sets, we specify a context agreement security
goal, which we call Goal 1. In Goal 1, a role holding a set of assumptions must demonstrate
the successful completion and unique completion properties with a complementary role.
Goal 1 is an authentication goal that requires injective agreement [Low97] between an
initial and a complementary strand—there exists a one-to-one mapping of the session
context between these strands. Any counterexample is sufficient to prove the failure of
Goal 1. Counterexamples to Goal 1 describe attacks on the protocol under the initial role’s
perspective.

Goal 1 (Context Agreement).
Let P be a strand space, I be an initial role in P, R be a complementary role in P, O be
a set of origination assumptions for I, and X be a session context for P. Let height(n) =
the height of a fully executing strand in role n. Let i and j be natural numbers such that
i = height(I) and j ≤ height(R).

Context agreement is true iff Succ(I, R, X , O, i, j) ∧ Uniq(I, R, X , O, i, j) is true.

In Section 8, we evaluate context agreement goals for each of our models from each
role’s perspective using CPSA.

8 CPSA Analysis of Security Goals
We state and prove theorems that evaluate context agreement goals for each of our
models (Pre-SBP, SBP-TLS-1.2, SBP-mTLS-1.2, SBP-TLS-1.3, SBP-mTLS-1.3). For each



14 Formal-Methods Analysis of the Session Binding Proxy Protocol

model, we prove a context agreement theorem for a distinct strand with a corresponding
perspective. All strands (client, proxy, or server) use the corresponding perspectives and
contexts that we detail in Section 7. While we do not mention intruder strands in our
theorems, CPSA considers them when proving or disproving context agreement.

For our SBP models, context agreement implies prevention of cookie stealing and sub-
sequent session hijacking by an adversary. Unique completion, one of the two requirements
for context agreement, states that, for any legitimate client or proxy strand, no strand
exists in a bundle that does not agree on the SBP context: the client’s username, the
proxy’s identifier, and the correlation between the unbound and bound cookie. To make
requests using the stolen cookie, the adversary must construct a bundle in which a client
and a proxy strand exist, but hold non-matching contexts resulting from communicating
with penetrator strands. When such a bundle exists, the adversary successfully manipulates
a bound cookie from one SBP session to another to make requests, illustrating a successful
cookie-stealing attack.

Table 1 summarizes the results of our analysis. For each strand represented by a
column, we indicate for which of our models the strand satisfies a context agreement goal
with its complementary strand (e.g., client and server, or client and proxy). In TLS-1.2
and TLS-1.3, the responder cannot authenticate the initiator within the DY model. In
mTLS-1.2, the responder cannot guarantee freshness of the master secret; consequently,
only SBP-mTLS-1.3 yields context agreement for all of its strands.

Each theorem asserts a context agreement goal as either true or false for a distinct
strand and perspective. Proofs take one of two forms: an exhaustive proof that evaluates
all possible, essentially different executions of the pre-SBP model, or a counterexample
consisting of a CPSA shape that disproves the security goal. Termination of CPSA is
only necessary for exhaustive proofs; a single counterexample is sufficient to prove context
agreement false. For each model, we prove theorems for the model’s two role perspectives.
When a theorem proves context agreement false for a strand, we provide and discuss a
counterexample that illustrates a protocol interaction by the adversary—in later sections,
we discuss vulnerabilities, attacks, and risks that result from counterexamples.

Different TLS versions vary in their requirement for client certificates and guarantee of
mutual freshness. Unlike mTLS-1.2 and mTLS-1.3, TLS-1.2 and TLS-1.3 do not require
a client certificate because they provide only one-way authentication. In TLS-1.2 and
mTLS-1.2, the initiator and responder contribute freshness via nonces, which are sent in
the clear, exposing them to the adversary. By contrast, in TLS-1.3 and mTLS-1.3, the
client and the server contribute additional freshness through a Diffie-Hellman (DH) key
exchange, which does not leak that freshness. SBP-mTLS-1.3 requires client certificates
and enables the proxy to guarantee mutual freshness of the master secret without leaking
the freshness to the adversary; consequently, it is our only model to guarantee context
agreement under both the proxy and the client origination assumptions.

Table 1: Summary of security goal analysis for the pre-SBP and SBP models. For each
model, a check (✓) indicates that all strands holding the corresponding perspective satisfy
context agreement (cookie stealing prevention) theorems. A crossmark (×) indicates that
CPSA finds a counterexample that disproves context agreement for that perspective.

Model client proxy server
Pre-SBP × N/A ×
SBP-TLS-1.2 ✓ × N/A
SBP-mTLS-1.2 ✓ × N/A
SBP-TLS-1.3 ✓ × N/A
SBP-mTLS-1.3 ✓ ✓ N/A
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8.1 Method
To analyze SBP using CPSA, we: (1) model protocol roles by extracting messages and
variables from a protocol specification, (2) specify origination assumptions for crucial
variables that each role originates—often, these assumptions are specific to certain pro-
tocol perspectives and ultimately reside in skeletons, (3) specify skeletons for different
role perspectives or special scenarios, (4) execute CPSA to produce output shapes, and
(5) extract and prove security goals from the resulting shapes.

8.2 Pre-SBP Analysis
For the pre-SBP model, we specify and prove a theorem for strands holding the client and
the server perspectives.

Theorem 1. For an initial client role holding the client assumptions and a complementary
server role in the Pre-SBP strand space, Goal 1 is false.

Counterexample. For our Pre-SBP model, CPSA finds a single shape illustrating a coun-
terexample in which an initial client strand fails to agree with a complementary server
strand on the username associated with a cookie. This failure results from the adversary
acquiring the cookie from a session with the server and reissuing it to the legitimate client
in a separate session. Because the client can complete the protocol using a cookie issued
for another user, this counterexample shows that stealing a cookie and using it to hijack a
session is possible under the client’s perspective in the Pre-SBP model.

Theorem 2. For an initial server role holding the server assumptions and a complementary
client role in the Pre-SBP strand space, Goal 1 is false.

Counterexample. CPSA finds a single counterexample shape in which the initial server
strand completes the protocol entirely with penetrator strands owned by the adversary. In
this shape, no legitimate client strand exists. Because the server has no assurance that the
client’s password is secret and has no other means by which to authenticate the client, the
adversary completes arbitrary runs of the protocol with the server. As a result, there will
never exist a legitimate complementary strand on which the server will agree to a Pre-SBP
session context.

8.3 SBP Analysis
As we did in the Pre-SBP model, we specify and prove theorems for the client and the
proxy perspectives in the models of the original SBP and variations.

Theorem 3. For an initial client role holding the client assumptions and a complementary
proxy role in the SBP-TLS-1.2, SBP-mTLS-1.2, SBP-TLS-1.3, and SBP-mTLS-1.3 strand
spaces, Goal 1 is true.

Enumeration. For each SBP model, CPSA terminates and finds a single shape that satisfies
context agreement between a client-a and a proxy-a strand. Because CPSA terminated
and provably found all possible shapes, no counterexamples exist.

Theorem 4. For an initial proxy role holding the proxy assumptions and a complementary
client role in the SBP-TLS-1.2, SBP-mTLS-1.2, and SBP-TLS-1.3 strand spaces, Goal 1
is false.

Counterexample. For each of the three models, CPSA finds a single counterexample shape
that illustrates the initial proxy strand completing the protocol with the adversary. Similar
to the Pre-SBP model, this outcome results from the proxy’s inability to authenticate the
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client strands due to one of several reasons: In all three models, the client authenticates
using a potentially stolen username and password pair. In SBP-TLS-1.2 and SBP-mTLS-
1.2, the proxy has no assurance that the client generates a fresh pre-master secret—the
client may provide a pre-master secret known to the adversary. In SBP-TLS-1.2 and
SBP-TLS-1.3, the client does not produce a certificate for the proxy to authenticate the
client. As a result, no bundle exists in which the proxy communicates with a legitimate
client strand.

Theorem 5. For an initial proxy role holding the proxy assumptions and a complementary
client strand in the SBP-mTLS-1.3 strand space, Goal 1 is true.

Enumeration. CPSA terminates and finds a single shape in which a proxy-a strand
completes the protocol and agrees on the SBP session context with a client-a strand.

9 Vulnerabilities, Attacks, and Risks
9.1 Vulnerabilities
In decreasing order of severity, we list vulnerabilities exposed from our analysis.

The proxy cannot authenticate the client. In the SBP-TLS-1.2 and SBP-TLS-1.3 models,
the proxy cannot authenticate the client; and the SBP-TLS-1.2 and SBP-mTLS-1.2 models
lack mutual contribution to the freshness of the master secret. As a result, the proxy
readily executes the SBP protocol with an adversary that presents stolen client credentials,
requests using SBP cookies from compromised sessions, or requests originating from other
SBP sessions.

A client may communicate with a corrupt proxy. Within the DY model, it is possible
for a client to initiate the protocol with a corrupt proxy. In SBP, this scenario leaks the
client’s password and requests to the adversary, potentially enabling a man-in-the-middle
attack against legitimate instances of SBP.

The server is an oblivious protocol participant. If an adversary communicates directly
with a legacy server and bypasses the SBP proxy, they can pass stolen authentication
cookies as we illustrate in the Pre-SBP model. This vulnerability is the result of the server
being an oblivious protocol participant: the server participates in the SBP session without
awareness of the SBP protocol. The legacy server’s oblivious participation in SBP is an
intentional design—a major goal of SBP is to avoid modifying the server.

The client cannot verify the binding of the cookie. Because the SBP proxy binds the
cookie using a secret key unknown to the client, the client cannot verify the channel
binding of the cookie. This property of SBP is by design: a major objective of SBP is to
prevent the client from learning the unbound cookie and subsequently leaking it to an
adversary. The primary issue resulting from this design is that the client may accept an
inappropriately bound cookie, which may bind to a TLS channel in which the client does
not participate, and use this cookie to make requests. It would be desirable for the client
to be able to detect if they receive such a cookie and abort the protocol.

9.2 Attacks
We describe forwarding and tailgating attacks, which exploit the stated vulnerabilities.

Forwarding Attack. Because a client is unable to verify the binding of an SBP cookie,
may communicate with a corrupt proxy, and cannot verify the binding a cookie, an
adversary operating an SBP proxy can forward a client’s credentials and requests in a
concurrent session with a legitimate proxy. If a client reuses credentials for multiple servers,
an adversary that receives the client’s credentials on a corrupt proxy may establish an SBP
session with a legitimate proxy by forwarding these credentials. Rather than forwarding a
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client’s credentials, the corrupt proxy can issue a cookie between itself and a legitimate
proxy to the client, enabling the adversary to automatically forward the client’s requests
to the legitimate proxy. The potential consequences of forwarding are numerous: the
adversary could authenticate using the client’s credentials, present a client’s legitimate
requests as their own, and issue arbitrary responses to the client. In Appendix B, we
illustrate an example of a forwarding attack from a proxy’s perspective.

Tailgating Attack on SBP. Elsaad [AE22] showed that SBP is vulnerable to a “tailgating"
attack, in which an adversary executes code inside of a client browser to forge requests on
the client’s SBP session rather than stealing the client’s authentication cookie. Because
these requests originate from the client on the appropriate TLS channel, and because
they contain the corresponding bound authentication cookie, the proxy will accept the
requests. While not possible within the DY model—a DY adversary cannot compromise a
client in this manner—this attack is available within an adversarial model that the SBP
authors specify: they allow one of their adversaries to execute arbitrary code in a client
browser. Elsaad implemented a proof-of-concept of this attack against a custom SBP
implementation [Els22].

9.3 Risks
We compare risks associated with legacy servers in typical environments, such as universities,
with and without the protection of SBP.

Without SBP, the adversary poses a serious risk to a legacy server. By stealing
authentication cookies from legitimate users and hijacking their sessions, the adversary
gains access to accounts, which might range from basic user accounts to administrator
accounts. Stealing cookies is simple against outdated servers and browsers and is possible
for even unsophisticated adversaries to achieve. Upon gaining access to accounts, the
adversary can impersonate the corresponding users, steal sensitive data to which the
users have access, and perform actions using the user’s privileges. If the account has
elevated privileges, the adversary’s access may result in a complete loss of the system—the
adversary might freely take the system offline or exploit it to attack other systems on an
organization’s network.

When SBP wraps the legacy server, the adversary faces a significant obstacle: even
when using known exploits to steal cookies, the adversary must find a way to breach a TLS
connection or break the cookie’s channel binding. Each of these tasks is challenging for all
but the most sophisticated adversaries. Likely, it would be easier for the adversary instead
to operate a malicious SBP proxy, harvest a user’s credentials, and search for opportunities
resulting from credential reuse. The risk of this attack depends on the properties of the
TLS channel: an SBP proxy that authenticates users using mTLS-1.3 renders the user
credentials significantly less valuable and requires an adversary to break the TLS channel.
The damage of a successful attack is equivalent to that of breaching a legacy server that is
unprotected by SBP.

10 SBP’s Design Prevents Meaningful Improvement
SBP’s requirement to mitigate cookie-based session hijacking without modifying the client
or server software results in two serious limitations: the client cannot verify SBP’s cookie
channel bindings, and the SBP proxy learns the client password. SBP’s core requirement
(not to modify the client or server) represents a tradeoff: it makes SBP broadly applicable
but limits its effectiveness at reducing security vulnerabilities.

Because clients believe they communicate with a legacy service and not an SBP proxy,
they are unaware of the channel binding on their authentication cookie and thus cannot
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authenticate the binding. This problem is impossible to correct without relaxing SBP’s
requirement not to modify client software.

The SBP proxy learns the client’s password when forwarding it to the wrapped
application, resulting in the user’s password leaking to the adversary who compromises
a legitimate proxy or operates a malicious proxy. There is no way to mitigate this issue
without modifying the client and the proxy, such as by using Password Authenticated Key
Exchange (PAKE) protocols [SLL+20].

11 Recommendations
We provide the following recommendations for SBP and other wrapper protocols.

Use Mutual TLS. To enable the server to authenticate the client, it would be helpful to
use mTLS and require clients to use public-key certificates. Much of the Internet does
not use mTLS, creating a large security liability, not only for SBP and other wrapper
protocols, but for all protocols that rely on TLS for establishing authenticated end-to-end
encryption. Furthermore, it is uncommon for individuals to possess certificates. From
the server perspective, one-way TLS authentication often makes it impossible to achieve
certain security goals due to the inability of the server to authenticate the client. Having
clients use certificates and assuming them in protocol design can enable protocols to meet
stronger security goals and can make it more difficult for adversaries to carry out adverse
protocol interactions.

Prioritize Embedding. To limit exposure of the server, embed the proxy and server,
and prevent any network communication other than the proxy’s from reaching the server.
Network administrators should be aware that an oblivious protocol participant will always
enable protocol interactions within the DY model because it is possible for the oblivious
protocol participant to communicate with the adversary. In situations where embedding is
not possible, a dedicated VLAN (see Section 13) comprising only the proxy and the server
can reduce exposure of the server.

Verify Bindings. The client should have some means by which to verify the binding
of the authentication cookie. In SBP, it is a vulnerability that the client receives a
bound authentication cookie for which it cannot verify the binding. Consequently, the
client cannot determine to which SBP session, if any, the cookie is bound. Because the
client should not learn the unbound cookie, the proxy could present the client with a
zero-knowledge proof (see Section 13) of the binding’s legitimacy for the SBP session.

12 Previous Work
To our knowledge, our work is the first formal-methods analysis of SBP.

In their original paper, Burgers et al. [BVvE13] informally evaluated SBP’s security
against a variety of known attacks against TLS and cookies. They consider attacks against
six levels of a system executing SBP: (1) JavaScript, (2) HTML, (3) plug-ins, (4) browser,
(5) TLS library, (6) operating system kernel. They conclude that SBP resists known cookie
hijacking attacks against Levels 1 and 2, but fails to mitigate session hijacking when attacks
target Level 3 (see the Tailgating Attack in Section 9.2) and higher. While technically
correct, their analysis fails to consider the properties of the TLS channel necessary for a
secure SBP session and does not state or prove any security properties.

Previous formal-methods analyses using CPSA include the CAVES multiparty attes-
tation protocol [CGL+11], Zooko’s forced-latency protocol [LZ17], the Secure Remote
Password (SRP) protocol [SLL+20], TLS-1.3 [BZN21], the FIDO Universal Authentication
Framework (UAF) [GSZ23, FHL22].
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Like SBP, other designs for hardening flawed protocols running on legacy software
frequently incorporate proxies. SessionShield [NMY+11] incorporate client-side proxies
that prevent the client’s browser from learning session identifiers, in turn making these
unavailable to XSS attacks by an adversary. Pournaghshband et al. [PSR12] improve
the security of mobile medical devices, which communicate wirelessly via flawed legacy
protocols, by introducing a physical proxy that manages authenticated, encrypted sessions
between these devices and their base stations. In the automotive space, works such as
Wang and Sawhney’s VeCure [WS14] and Schmandt et al.’s Mini-MAC [SSB17] augment
the existing protocols of legacy controller area networks (CAN buses) to mitigate serious
flaws. As with SBP, formal-methods analyses of these systems were not part of their design
process and often do not exist.

Other approaches for hardening legacy software include migrating these systems to
the cloud [ARM+15], encapsulation [Sne00], remote attestation via trusted platform
modules [SWP08], and virtualization [PNS07].

13 Discussion
We discuss several issues raised by our work, including the benefits of isolation in wrapper
solutions, inadequate adversarial models, authenticating via passwords, SBP’s custom
channel binding, requirements for effective cryptographic binding, and open problems.

Benefits of Isolation. Within the DY model, legacy systems that participate in protocols
obliviously are vulnerable to adversaries that bypass network controls to communicate with
the systems directly. To mitigate this vulnerability, one can isolate the systems physically
and logically. To isolate the system physically, configure the network so that it physically
communicates only with a proxy executing the wrapping protocol. To isolate the system
logically, establish a VLAN [LT07] to separate network traffic logically. The objective is to
prevent any network entity other than an authorized proxy from communicating with the
wrapped legacy system.

Inadequate Adversarial Models. When designing and analyzing protocols, researchers
should use well-defined adversarial models and formal-methods tools. Without a well-
defined adversarial model, it is impossible to articulate and analyze the security properties.
The SBP authors [BVvE13] did not analyze their protocol using any formal model such
as the DY model. Although their analysis identifies several attacks and mitigations, they
did not discuss limitations within the DY model, such as the client communicating with a
corrupt proxy, the server being unable to authenticate the client, and the client’s inability
to verify the binding of a cookie (see Section 9). Furthermore, experience has shown that,
without the aid of formal-methods tools, protocol design and analysis is highly error-prone.

Authenticating via Passwords. SBP authenticates users using traditional passwords,
which are often a poor choice for authentication. Users often rely on weak passwords,
store passwords insecurely, and reuse passwords across multiple services. Passwords also
suffer from poor storage practices (e.g., storing plain text passwords in a database) and
precomputation by adversaries. In the strand space model, an adversary may acquire
a user’s password in several ways: a legitimate strands may transfer the password to
penetrator strands that masquerade as a legitimate service or the adversary compromises
a password that a user registers with multiple services.

SBP’s Channel Binding vs. Channel Binding Standards. Rather than relying on
existing TLS channel binding standards, which bind to communication endpoints to
facilitate cross-session bindings, SBP introduces a custom TLS channel binding in which
messages bind directly to a TLS session’s master secret. A consequence of this binding
is that bound cookies in SBP become invalid when communicants negotiate a new TLS
channel, but are also impossible to transfer between different TLS sessions. The following
limitation would result if SBP bound cookies to endpoints: if multiple users shared one
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end-point, it might be possible for an adversary to transfer cookies for different users
between sessions that share common endpoints. Building wrapper protocols such as SBP
using standard TLS channel bindings requires additional study and consideration.

Requirements for Cryptographic Binding. Effective cryptographic bindings must achieve
several goals: (1) Each role in a protocol is able to verify, append, and sign a session
context. (2) The bindings are unique to a protocol instance, version, and session; and
(3) upon completing execution, each legitimate protocol role must agree on the context.
In practice, many protocols, including SBP, fail to bind in a manner that achieves these
goals. Oblivious protocol participants are unable to participate in effective binding because
they are, by design, unaware of the protocol context. Other protocols fail to bind values
consistently, neglecting to bind crucial values such as challenges or nonces, or binding in a
manner that prevents other legitimate protocol roles from verifying the bindings.

Using zero-knowledge proofs [GMR19], protocol roles can potentially verify bindings
without disclosing sensitive values, such as the unbound cookie in SBP.

Open Problems and Future Work. The benefits and drawbacks of enhancing systems
with wrapper solutions demands further study. Our analysis of SBP and oblivious protocol
participants underscores the needs to specify best practices for designing and implementing
wrapper protocols, and to devise better bindings for such protocols. Our work raises
awareness of cryptographic binding and formal-methods verification for practitioners
working to wrap flawed systems. As future work, we are developing tools for applying
cryptographic bindings to protocol specifications automatically.

14 Conclusion
We performed a formal-methods analysis of four models of SBP, the original SBP protocol
and three variations, and compared them with a baseline model without SBP. In the original
SBP model and variations other than mTLS-1.3, the proxy’s cryptographic perspective does
not guarantee resistance to cookie stealing by an adversary because of several issues. Except
for mTLS-1.3 connections, the proxy cannot authenticate the client, or the adversary
learns the freshness nonces. Passwords are insufficient to authenticate users in the DY
model. These issues result in part from a lack of adoption of client certificates, design
flaws in TLS-1.2 and mTLS-1.2, and SBP’s requirement to conform to legacy password
authentication mechanisms. To our knowledge, we are the first to analyze SBP using
formal methods and the first to highlight the phenomenon of oblivious protocol participants
in wrapper protocols.

To address each of these issues, we recommend binding to a mTLS-1.3 channel. To
accommodate this recommendation, the Internet must move towards mutual authentication
between all communicants and rely on alternate authentication mechanisms, such as
multifactor authentication or user-bound certificates, rather than passwords. Despite
limitations of the original SBP, we find that the protocol mitigates session hijacking from
the client’s perspective and, in many applications, significantly complicates an adversary’s
attempts to hijack sessions via cookie stealing.

With many organizations struggling to protect flawed legacy systems on their networks,
wrapping protocols are inevitable and necessary. In the DY model, such protocols must
take great care to establish and bind to encrypted channels with the necessary properties.
Where possible, these protocols should eliminate flawed authentication mechanisms, such
as traditional passwords, in favor of more robust solutions. Because it is often not possible
or practical to modify the legacy systems or the client software that interacts with them,
wrapping protocols such as SBP may represent the most attractive practical mitigation to
known flaws. Our formal-methods analysis sheds insights on the strengths and limitations
of wrapping protocols that depend on channel binding.
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A Acronyms and Abbreviations
CPSA Cryptographic Protocol Shapes Analyzer
DY Dolev-Yao
FIDO Fast Identity Online
HMAC Hashed-Based Message Authentication Code
HTTP Hypertext Transfer Protocol
NS Needham-Schroeder
SBP Session Binding Proxy Protocol
TLS Transport Layer Security
UAF Universal Authentication Framework
VLAN Virtual Local Area Network
XSS Cross-Site Scripting
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B Forwarding Attack
Figure 4 illustrates the forwarding attack described in Section 9.2.

Proxy Network Client

TLS 1.2

Network: nwk',

Client: cwk

TLS 1.2

Proxy: pwk

Network: nwk

enc("login", username-0, password, cwk)

enc("login", username-1, password, nwk)

c = fresh client cookie

k = hash(TLS-Master-Secret, SysPrivKey)

bc = enc(c, k)

enc("login response", bc, pwk)

enc("login response", bc, nwk')

enc(request, bc, cwk)

enc(request, bc, nwk)

Figure 4: Protocol diagram illustrating two types of forwarding in a forwarding attack:
credential forwarding and request forwarding. First, the network exploits the client’s
reuse of a password to authenticate with a legitimate proxy while posing as an SBP proxy
to the client. Second, independently of the first exploit, the network reuses the proxy’s
bound cookie in its session with the client, enabling it to forward the client’s requests
automatically without any modification beyond decryption and encrypting with the correct
key. These issues result from the proxy’s inability to authenticate the client, the client’s
inability to verify the binding of the cookie, and the client’s potential to communicate
with a corrupt proxy in the DY model.
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