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Neural Granger Causality

Alex Tank*, lan Covert*, Nick Foti, Ali Shojaie, Emily B. Fox

Abstract—While most classical approaches to Granger causality detection assume linear dynamics, many interactions in real-world
applications, like neuroscience and genomics, are inherently nonlinear. In these cases, using linear models may lead to inconsistent
estimation of Granger causal interactions. We propose a class of nonlinear methods by applying structured multilayer perceptrons
(MLPs) or recurrent neural networks (RNNs) combined with sparsity-inducing penalties on the weights. By encouraging specific sets of
weights to be zero—in particular, through the use of convex group-lasso penalties—we can extract the Granger causal structure. To
further contrast with traditional approaches, our framework naturally enables us to efficiently capture long-range dependencies
between series either via our RNNs or through an automatic lag selection in the MLP. We show that our neural Granger causality
methods outperform state-of-the-art nonlinear Granger causality methods on the DREAMS3 challenge data. This data consists of
nonlinear gene expression and regulation time courses with only a limited number of time points. The successes we show in this
challenging dataset provide a powerful example of how deep learning can be useful in cases that go beyond prediction on large
datasets. We likewise illustrate our methods in detecting nonlinear interactions in a human motion capture dataset.

Index Terms—time series, Granger causality, neural networks, structured sparsity, interpretability

1 INTRODUCTION

In many scientific applications of multivariate time se-
ries, it is important to go beyond prediction and forecast-
ing and instead interpret the structure within time series.
Typically, this structure provides information about the con-
temporaneous and lagged relationships within and between
individual series and how these series interact. For example,
in neuroscience it is important to determine how brain
activation spreads through brain regions [1], [2], [3], [4]; in
finance it is important to determine groups of stocks with
low covariance to design low risk portfolios [5]; and, in bi-
ology, it is of great interest to infer gene regulatory networks
from time series of gene expression levels [6], [7]. However,
for a given statistical model or methodology, there is often
a tradeoff between the interpretability of these structural
relationships and expressivity of the model dynamics.

Among the many choices for understanding relation-
ships between series, Granger causality [8], [9] is a com-
monly used framework for time series structure discovery
that quantifies the extent to which the past of one time
series aids in predicting the future evolution of another
time series. When an entire system of time series is studied,
networks of Granger causal interactions may be uncovered
[10]. This is in contrast to other types of structure discovery,
like coherence [11] or lagged correlation [11], which analyze
strictly bivariate covariance relationships. That is, Granger
causality metrics depend on the activity of the entire system
of time series under study, making them more appropriate
for understanding high-dimensional complex data streams.
Methodology for estimating Granger causality may be sep-
arated into two classes, model-based and model-free.
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Most classical model-based methods assume linear time
series dynamics and use the popular vector autoregressive
(VAR) model [7], [9]. In this case, the time lags of a series
have a linear effect on the future of each other series, and the
magnitude of the linear coefficients quantifies the Granger
causal effect. Sparsity-inducing regularizers, like the Lasso
[12] or group lasso [13], help scale linear Granger causality
estimation in VAR models to the high-dimensional setting
(7], [14].

In classical linear VAR methods, one must explicitly
specify the maximum time lag to consider when assessing
Granger causality. If the specified lag is too short, Granger
causal connections occurring at longer time lags between
series will be missed while overfitting may occur if the lag
is too large. Lag selection penalties, like the hierarchical
lasso [15] and truncating penalties [16], have been used
to automatically select the relevant lags while protecting
against overfitting. Furthermore, these penalties lead to a
sparse network of Granger causal interactions, where only
a few Granger causal connections exist for each series—a
crucial property for scaling Granger causal estimation to the
high-dimensional setting, where the number of time series
and number of potentially relevant time lags all scale with
the number of observations [17].

Model-based methods may fail in real world cases when
the relationships between the past of one series and future
of another falls outside of the model class [18], [19], [20].
This typically occurs when there are nonlinear dependencies
between the past of one series and the future. Model-free
methods, like transfer entropy [2] or directed information
[21], are able to detect these nonlinear dependencies be-
tween past and future with minimal assumptions about
the predictive relationships. However, these estimators have
high variance and require large amounts of data for reliable
estimation. These approaches also suffer from a curse of di-
mensionality [22] when the number of series grows, making
them inappropriate in the high-dimensional setting.

Neural networks are capable of representing complex,



nonlinear, and non-additive interactions between inputs
and outputs. Indeed, their time series variants, such as
autoregressive multilayer perceptrons (MLPs) [23], [24], [25]
and recurrent neural networks (RNNs) like long-short term
memory networks (LSTMs) [26] have shown impressive per-
formance in forecasting multivariate time series given their
past [27], [28], [29]. While these methods have shown im-
pressive predictive performance, they are essentially black
box methods and provide little interpretability of the multi-
variate structural relationships in the series. A second draw-
back is that jointly modeling a large number of series leads
to many network parameters. As a result, these methods
require much more data to fit reliably and tend to perform
poorly in high-dimensional settings.

We present a framework for structure learning in MLPs
and RNNs that leads to interpretable nonlinear Granger
causality discovery. The proposed framework harnesses the
impressive flexibility and representational power of neural
networks. It also sidesteps the black-box nature of many
network architectures by introducing component-wise ar-
chitectures that disentangle the effects of lagged inputs on
individual output series. For interpretability and an ability
to handle limited data in the high-dimensional setting, we
place sparsity-inducing penalties on particular groupings
of the weights that relate the histories of individual se-
ries to the output series of interest. We term these sparse
component-wise models, e.g. cMLP and cLSTM, when ap-
plied to the MLP and LSTM, respectively. In particular,
we select for Granger causality by adding group sparsity
penalties [13] on the outgoing weights of the inputs.

As in linear methods, appropriate lag selection is crucial
for Granger causality selection in nonlinear approaches—
especially in highly parametrized models like neural net-
works. For the MLP, we introduce two more structured
group penalties [15], [30] [31] that automatically detect
both nonlinear Granger causality and also the lags of each
inferred interaction. Our proposed cLSTM model, on the
other hand, sidesteps the lag selection problem entirely
because the recurrent architecture efficiently models long
range dependencies [26]. When the true network of nonlin-
ear interactions is sparse, both the cMLP and cLSTM ap-
proaches will select a subset of the time series that Granger-
cause the output series, no matter the lag of interaction.
To our knowledge, these approaches represent the first set
of nonlinear Granger causality methods applicable in high
dimensions without requiring precise lag specification.

We first validate our approach and the associated penal-
ties via simulations on both linear VAR and nonlinear
Lorenz-96 data [32], showing that our nonparametric ap-
proach accurately selects the Granger causality graph in
both linear and nonlinear settings. Second, we compare our
c¢MLP and cLSTM models with existing Granger causality
approaches [33], [34] on the difficult DREAM3 gene regula-
tory network recovery benchmark datasets [35] and find that
our methods outperform a wide set of competitors across all
five datasets. Finally, we use our cLSTM method to explore
Granger causal interactions between body parts during nat-
ural motion with a highly nonlinear and complex dataset
of human motion capture [36], [37]. Our implementation
is available online: https://github.com/iancovert/
Neural-GC.
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Traditionally, the success stories of neural networks have
been on prediction tasks in large datasets. In contrast, here,
our performance metrics relate to our ability to produce
interpretable structures of interaction amongst the observed
time series. Furthermore, these successes are achieved in
limited data scenarios. Our ability to produce interpretable
structures and train neural network models with limited
data can be attributed to our use of structured sparsity-
inducing penalties and the regularization such penalties
provide, respectively. We note that sparsity inducing penal-
ties have been used for architecture selection in neural
networks [38], [39]. However, the focus of the architecture
selection was on improving predictive performance rather
than on returning interpretable structures of interaction
among observed quantities.

More generally, our proposed formulation shows how
structured penalties common in regression [30], [31] may
be generalized for structured sparsity and regularization in
neural networks. This opens up new opportunities to use
these tools in other neural network context, especially as
applied to structure learning problems. In concurrent work,
a similar notion of sparse-input neural networks were de-
veloped for high-dimensional regression and classification
tasks for independent data [40].

2 LINEAR GRANGER CAUSALITY

Let x; € R? be a p-dimensional stationary time series and
assume we have observed the process at I' time points,
(x1,...,xr). Using a model-based approach, as is our focus,
Granger causality in time series analysis is typically studied
using the vector autoregressive model (VAR) [9]. In this
model, the time series at time ¢, X;, is assumed to be a linear
combination of the past K lags of the series

K
Xy = Z A(k)xt—k + ey, (1)
k=1

where A%) is a p x p matrix that specifies how lag k affects
the future evolution of the series and ¢; is zero mean noise.
In this model, time series j does not Granger-cause time
series ¢ if and only if for all £, AZ(.;C) = 0. A Granger causal
analysis in a VAR model thus reduces to determining which
values in A%) are zero over all lags. In higher dimensional
settings, this may be determined by solving a group lasso
regression problem [41]

T K
min Z llx: — E AMx, |2
AW, AU T k=1

1 K
AR AR AP @
j
where || - ||2 denotes the Ly norm. The group lasso penalty

over all lags of each (i, j) entry, H(AEP, . ,Ag{) ||2 jointly
shrinks all Afj parameters to zero across all lags £ [13]. The
hyper-parameter A > 0 controls the level of group sparsity.

The group penalty in Equation (2) may be replaced with

a structured hierarchical penalty [30], [42] that automatically
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selects the lag of each Granger causal interaction [15]. Specif-
ically, the hierarchical lag selection problem is given by

T K
min E Ix: — ZA(k)xt,kH%
AW, AU =

K
A IA -

ij k=1

LA e, e

where A > 0 now controls the lag order selected for each
interaction. Specifically, at higher values of A there exists
a k for each (i, j) pair such that the entire contiguous set

of lags (AZ(-;-C),...,AEJK)) is shrunk to zero. If £ = 1 for
a particular (7, ) pair, then all lags are equal to zero and
series ¢ does not Granger-cause series j; thus, this penalty
simultaneously selects for Granger non-causality and the lag

of each Granger causal pair.

3 MODELS FOR NEURAL GRANGER CAUSALITY
3.1 Adapting Neural Networks for Granger Causality

A nonlinear autoregressive model (NAR) allows x; to evolve
according to more general nonlinear dynamics [25]

L Tctp) € 4)

where .4 = (...,m(t,g)i,m(t,l)i) denotes the past of
series ¢ and we assume additive zero mean noise e;.

In a forecasting setting, it is common to jointly model
the full nonlinear functions ¢ using neural networks. Neural
networks have a long history in NAR forecasting, using both
traditional architectures [25], [43], [44] and more recent deep
learning techniques [27], [29], [45]. These approaches either
utilize an MLP where the inputs are x<; = = (;_1).(:—K), for
some lag K, or a recurrent network, like an LSTM.

There are two problems with applying the standard
neural network NAR model in the context of inferring
Granger causality. The first is that these models act as black
boxes that are difficult to interpret. Due to sharing of hidden
layers, it is difficult to specify sufficient conditions on the
weights that simultaneously allows series j to Granger
cause series ¢ but not Granger cause series i’ for i # i’
Second, a joint network over all z;; for all ¢ assumes that
each time series depends on the same past lags of the
other series. However, in practice, each z;; may depend on
different past lags of the other series.

To tackle these challenges, we propose a structured
neural network approach to modeling and estimation. First,
instead of modeling g jointly across all outputs z;, as is
standard in multivariate forecasting, we instead focus on
each output component with a separate model:

Xt = 9($<t17 ..

Ty = gi (Tt1, o Ttp) + €1

Here, g, is a function that specifies how the past K lags are
mapped to series . In this context, Granger non-causality
between two series j and ¢ means that the function g; does
not depend on z ., the past lags of series j. More formally,
Definition 1. Time series j is Granger non-causal for time
series i if for all (z<41,...,%<tp) and all x’<tj # Tetj,

gi (T, .. CToyp) =

. /
gi (1<t17 s Tt -~$<tp)

Lty

that is, g; is invariant to x..;.

In Section 3.2 and 3.3 we consider these component-wise
models in the context of MLPs and LSTMs. We examine a
set of sparsity inducing penalties as in Equations (2) and
(3) that allow us to infer the invariances of Definition 1 that
lead us to identify Granger non-causality.

3.2 Sparse Input MLPs

Our first approach is to model each output component g;
with a separate MLP, so that we can easily disentangle the
effects from inputs to outputs. We refer to this approach,
displayed pictorially in Figure 1, as a component-wise MLP
(cMLP). Let g; take the form of an MLP with L — 1 layers
and let the vector h € R¥ denote the values of the m-
dimensional /th hidden layer at time ¢. The parameters of
the neural network are given by weights W and biases b at
each layer, W = {W! ... . W!}and b = {b',...,b"}. To
draw an analogy with the time series VAR model, we further
decompose the weights at the first layer across time lags,
Wl ={wh . W} The dimensions of the parameters
are given by Wl € RIXPE Wl ¢ REXH for 1 < | <
LWL e RE W € R forl < L and b* € R. Using this
notation, the vector of first layer hidden values at time ¢ are
given by

K
hl=o (Z Wi¥x,_p + b1> , (5)

k=1

where o is an activation function. Typical activation func-
tions are either 1ogistic or tanh functions. The vector of
hidden units in subsequent layers is given by a similar form,
also with ¢ activation functions:

Wo=o (Wlhi—1 +1). ©)

After passing through the L—1 hidden layers, the time series
output, z;, is given by a linear combination of the units in
the final hidden layer

Ty = gi (T<t) + €4 = WLhtL_l +oF + ey (7)

where W is the linear output decoder and hF is the final
hidden output from the final L — 1th layer. The error term,
ei;, 18 modeled as mean zero Gaussian noise. We chose
this linear output decoder since our primary motivation in-
volves real-valued multivariate time series. However, other
decoders like a logistic, softmax, or poisson likelihood
with exponential link function [46], could be used to model
nonlinear Granger causality in multivariate binary [47],
categorical [48], or positive count time series [47].

3.2.1 Penalized Selection of Granger Causality in the cMLP

In Equation (5), if the jth column of the first layer weight
matrix, W;k, contains zeros for all k, then series j does
not Granger-cause series i. That is, z(;_y); for all k£ does
not influence the hidden unit h} and thus the output zy;.
Following Definition 1, we see g; is invariant to x ;. Thus,
analogously to the VAR case, one may select for Granger
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Fig. 1. (left) Schematic for modeling Granger causality using cMLPs. If the outgoing weights for series j, shown in dark blue, are penalized to
zero, then series j does not Granger-cause series . (center) The group lasso penalty jointly penalizes the full set of outgoing weights while the
hierarchical version penalizes the nested set of outgoing weights, penalizing higher lags more. (right) Schematic for modeling Granger causality
using a cLSTM. If the dark blue outgoing weights to the hidden units from an input =, _1); are zero, then series j does not Granger-cause series i.
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Fig. 2. Example of group sparsity patterns of the first layer weights
of a cMLP with four first layer hidden units and four input series with
maximum lag k = 4. Differing sparsity patterns are shown for the three
different structured penalties of group lasso (GROUP) from Equation (9),
group sparse group lasso (MIXED) from Equation (10) and hierarchical
lasso (HIER) from Equation (11).

BRI

Wf)T (me)T W

Fig. 3. Example of the group sparsity patterns in a sparse cLSTM model
with a four dimensional hidden state and four input series. Due to the
group lasso penalty on the columns of W, the W/ , Win, We and W¢
matrices will share the same column sparsity pattern.

causality by applying a group penalty to the columns of the
WF matrices for each g;,

min tz;( (wit — gi (Z—1):t-K)) ) + AZ:I QWS). ®
= Jj=

where 2 is a penalty that shrinks the entire set of first layer
weights for input series j, i.e., Wl = (Wll . WlK
to zero. We consider three different penalties that, together
show how we recast structured regression penalties to the
neural network case.

We first consider a group lasso penalty over the entire
set of outgoing weights across all lags for time series j, W%,

QW3) = Wil ©)
where || - || is the Froebenius matrix norm. This penalty
shrinks all weights associated with lags for input series
j equally. For large enough ), the solutions to Equation
(8) with the group penalty in Equation (9) will lead to
many zero columns in each W'* matrix, implying only a
small number of estimated Granger causal connections. This
group penalty is the neural network analogue of the group
lasso penalty across lags in Equation 2 for the VAR case.

To detect the lags where Granger causal effects exists,
we propose a new penalty called a group sparse group lasso
penalty. This penalty assumes that only a few lags of a
series j are predictive of series ¢, and provides both sparsity
across groups (a sparse set of Granger causal time series)
and sparsity within groups (a subset of relevant lags)

QW) =a|Wh,. +(1-a Z HW”“H (10)
where o € (0,1) controls the tradeoff in sparsity across
and within groups. This penalty is a related to, and is a
generalization of, the sparse group lasso [49].

Finally, we may simultaneously select for both Granger
causality and the lag order of the interaction by replacing
the group lasso penalty in Equation (8) with a hierarchical
group lasso penalty [15] in the MLP optimization problem,

K
S
k=1

The hierarchical penalty leads to solutions such that for each
j there exists a lag k£ such that all Wlk =0 for &’ > k and
all VV”C # 0 for k' < k. Thus, this penalty effectively selects

[



the lag of each interaction. The hierarchical penalty also sets
many columns of W1k to be zero across all k, effectively
selecting for Granger causality. In practice, the hierarchical
penalty allows us to fix K to a large value, ensuring that
no Granger causal connections at higher lags are missed.
Example sparsity patterns selected by the three penalties
are shown in Figure 2.

While the primary motivation of our penalties is for effi-
cient Granger causality selection, the lag selection penalties
in Equations (10) and (11) are also of independent interest
to nonlinear forecasting with neural networks. In this case,
over-specifying the lag of a NAR model leads to poor
generalization and overfitting [25]. One proposed technique
in the literature is to first select the appropriate lags using
forward orthogonal least squares [25]; our approach instead
combines model fitting and lag selection into one procedure.

3.3 Sparse Input RNNs

Recurrent neural networks (RNNs) are particularly well
suited for modeling time series, as they compress the past
of a time series into a hidden state, aiming to capture
complicated nonlinear dependencies at longer time lags
than traditional time series models. As with MLPs, time
series forecasting with RNNs typically proceeds by jointly
modeling the entire evolution of the multivariate series
using a single recurrent network.

As in the MLP case, it is difficult to disentangle how each
series affects the evolution of another series when using
an RNN. This problem is even more severe in complicated
recurrent networks like LSTMs. To model Granger causality
with RNNs, we follow the same strategy as with MLPs and
model each g; function using a separate RNN, which we
refer to as a component-wise RNN (cRNN). For simplicity,
we assume a single-layer RNN, but our formulation may be
easily generalized to accommodate more layers.

Consider an RNN for predicting a single component. Let
h;, € R represent the H-dimensional hidden state at time
t, representing the historical context of the time series for
predicting a component ;. The hidden state at time ¢ + 1
is updated recursively

h; = fi(xtvhtfl)v

where f; is some nonlinear function that depends on the
particular recurrent architecture.

Due to their effectiveness at modeling complex time
dependencies, we choose to model the recurrent function f
using an LSTM [26]. The LSTM model introduces a second
hidden state variable c;, referred to as the cell state, giving
the full set of hidden parameter as (c¢, h¢). The LSTM model
updates its hidden states recursively as

(12)

fo= o (Wixi+U'h )
i, =0 (W%, + U™h(_1))
oy =0 (W% + Uh;_1))
c;=f0c1+i O (W +Uh;_q)
h; =0; ®o(cy)

where ® denotes element-wise multiplication and i; , f; ,

and o, represent input, forget and output gates, respectively,
that control how each component of the state cell, c;, is

(13)
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updated and then transferred to the hidden state used for
prediction, h. In particular, the forget gate, f;, controls the
amount that the past cell state influences the future cell state,
and the input gate, i, controls the amount that the current
observation influences the new cell state. The additive form
of the cell state update in the LSTM allows it to encode long-
range dependencies, since cell states from far in the past
may still influence the cell state at time ¢ if the forget gates
remain close to one. In the context of Granger causality,
this flexible architecture can represent long-range, nonlinear
dependencies between time series. As in the cMLP, the
output for series ¢ at time ¢ is given by a linear decoding
of the hidden state

xy = gi(T<t) + e = W?h, + Ctis (14)

where W? are the output weights. We let W =
(WL, W2 U') be the full set of parameters where
Wl — ((Wf)'l'7(Win)T,(Wo)T7(Wc)T)T and Ul —
(UHT,@™)T,(WU°)7,(U)T)" represent the full set of
first layer weights. As in the MLP case, other decoding
schemes could be used in the case of categorical or count
data.

3.3.1 Granger Causality Selection in LSTMs

In Equation (14) the set of input matrices W' controls how
the past time series affect the forget gates, input gates,
output gates, and cell updates, and, consequently, the up-
date of the hidden representation. Like in the MLP case,
for this component-wise LSTM model (cLSTM) a sufficient
condition for Granger non-causality of an input series j on
an output i is that all elements of the jth column of W1
are zero, W% = 0. Thus, we may select series that Granger-
cause series ¢ using a group lasso penalty across columns of
W1 by

T 5 P
H‘lﬂi,nz (fCit - 9i($<t)) +AD Wil (15)
=2 j=1

For a large enough A, many columns of W' will be zero,
leading to a sparse set of Granger causal connections. An
example sparsity pattern in the LSTM parameters is shown
in Figure 3.

4 OPTIMIZING THE PENALIZED OBJECTIVES
4.1 Optimizing the Penalized cMLP Objective

We optimize the nonconvex objectives of Equation (8) using
proximal gradient descent [50]. Proximal optimization is
important in our context because it leads to exact zeros
in the columns of the input matrices, a critical requirement
for interpretating Granger non-causality in our framework.
Additionally, a line search can be incorporated into the
optimization algorithm to ensure convergence to a local
minimum [51]. The algorithm u}))dates the network weights
W iteratively starting with W (%) by

WD = prox_ s (WO =4 ULW™)) - (16)

where £ = Z?: i (@6 —gi (x<t))2 is the the neural network
prediction loss and prox,, is the proximal operator with
respect to the sparsity inducing penalty function 2. The



entries in W(?) are initialized randomly from a standard
normal distribution. The scalar ’y(m) is the step size, which
is either set to a fixed value or determined by line search
[51]. While the objectives in Equation (8) are nonconvex,
we find that no random restarts are required to accurately
detect Granger causality connections.

Since the sparsity promoting group penalties are only
applied to the input weights, the proximal step for weights
at the higher levels is simply the identity function. The
proximal step for the group lasso penalty on the input
weights is given by a group soft-thresholding operation on
the input weights [50],

prox’y(nl))\Q(W:ik) = SOft(W}w'y(m))‘)

(m)

- Wi, (18)
IIW§-IIF>+

where (z)1 = max(0,x). For the group sparse group lasso,
the proximal step on the input weights is given by group-
soft thresholding on the lag specific weights, followed by
group soft thresholding on the entire resulting input weights
for each series, see Algorithm 2. The proximal step on
the input weights for the hierarchical penalty is given by
iteratively applying the group soft-thresholding operation
on each nested group in the penalty, from the smallest group
to the largest group [42], and is shown in Algorithm 3.

17)

Algorithm 1 Proximal gradient descent with line search
algorithm for solving Equation (8). Proximal steps given in
Equation (17) for the group lasso penalty, in Algorithm 2 for
the group sparse group lasso penalty, and in Algorithm 3
for the hierarchical penalty.
Require: A >0
m = 0, initialize W)
while not converged do
m=m+1
determine v by line search
for j =1topdo
W™D = prox (Wé(m) VL (W(m)))
end for
forl =2to L do
WHm+1) — Wim) _ A7, L (Wm))
end for
end while
return (W (™))

Algorithm 2 One pass algorithm to compute the proximal
map for the group sparse group lasso penalty, for relevant
lag selection in the cMLP model.

Require: A > 0,7 > 0, (Wﬁl, el WzK)
fork =K to1ldo
Wy“ = soft (Wzyf, 'y)\)
end for
(Wit W) = soft (Wi, , WK ) 90)

return (W%l, cee WﬁK)
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Algorithm 3 One pass algorithm to compute the proximal
map for the hierarchical group lasso penalty, for automatic
lag selection in the cMLP model.

Require: A > 0,7 > 0, (W;H e WéK)
fork =K toldo
) ()
return (Wﬁl7 s W;K)

Since all datasets we study are relatively small, the
gradients are with respect to the full data objective (ie.,
all time points); for larger datasets, one could instead use
proximal stochastic gradient descent [52].

4.2 Optimizing the Penalized cLSTM Objective

Similar to the cMLP, we optimize Equation (15) using prox-
imal gradient descent. When the data consists of many
replicates of short time series, like in the DREAMS3 data in
Section 7, we perform a full backpropagation through time
(BPTT) to compute the gradients. However, for longer series
we truncate the BPTT by unlinking the hidden sequences.
In practice, we do this by splitting the dataset up into equal
sized batches, and treating each batch as an independent
realization. Under this approach, the gradients used to opti-
mize Equation (15) are only approximations of the gradients
of the full cLSTM model. This is very common practice in
the training of of RNNs [53], [54], [55]. The full optimization
algorithm for training is shown in Algorithm 4.

Algorithm 4 Proximal gradient descent with line search
algorithm for solving Equation (15) for the cLSTM with
group lasso penalty.
Require: A >0
m = 0, initialize W(®
while not converged do
m=m+1
compute VL (W(m)) by BPTT (truncated for large T')
determine v by line search.
for j = 1topdo
WY = soft (W™ = 44y £ (W) 1)
end for
W2(m+1) _ WQ(m) _ 'YVWQL (W(m)>

U1(77L+1) _ Ul(m) _ ’YVU1£ (W(m))
end while
return (W (™))

5 COMPARING CMLP AND cLSTM MODELS FOR
GRANGER CAUSALITY

Both the ¢cMLP and cLSTM frameworks model each com-
ponent function g; using independent networks for each
1. For the cMLP model, one needs to specify a maximum
possible model lag K. However, our lag selection strategy
(Equation 11) allows one to set K to a large value and the
weights for higher lags are automatically removed from
the model. On the other hand, the cLSTM model requires



TABLE 1
Comparison of AUROC for Granger causality selection among different approaches, as a function of the forcing constant ¥ and the length of the
time series T'. Results are the mean across five initializations, with 95% confidence intervals.

Model F=10 F =40

T 250 500 1000 250 500 1000

cMLP 86.6 £ 02 966 +02 984+01 840+05 89.6+02 955403

cLSTM 81.3+£09 934£07 960+01 751+09 878+£04 944+05

IMV-LSTM ~ 63.7 £43 760+45 855434 536+52 59.0+45 69.0+48

LOO-LSTM 479 +32 494+18 501+10 501433 491432 51.1+37
no maximum lag specification, and instead automatically
learns the memory of each interaction. As a consequence, VAR Lorenz F=10
the cMLP and cLSTM differ in the amount of data used WW/\M
for training, as noted by a comparison of the ¢ index in
Equation (15) and Equation (11). For a length T' series,
the cMLP and cLSTM models use 7' — K and T' — 1 data
points, respectively. While insignificant for large 7', when 0 20 40 60 80 1( 0 20 40 60 80 100
the data consist of independent replicates of short series, t t
as i'n the DREAM3 dfa’Fa in Sgction 7, the difference may Lorenz F=20 E.C. 1 DREAM
be important. This ability to simultaneously model longer
range dependencies while harnessing the full training set /\/\/\/\/
may explain the impressive performance of the cLSTM in
the DREAM3 data in Section 7. A O

Finally, the zero outgoing weights in both the cMLP
0 20 40 60 80 1000 5 10 15 20

and cLSTM are a sufficient but not necessary condition to
represent Granger non-causality. Indeed, series 7 could be
Granger non-causal of series j through a complex configu-
ration of weights that exactly cancel each other. However,
because we wish to interpret the outgoing weights of the
inputs as a measure of dependence, it is important that these
weights reflect the true relationship between inputs and out-
puts. Our penalization schemes in both cMLP and cLSTM
acts as a prior that biases the network to represent Granger
non-causal relationships with zeros in the outgoing weights
of the inputs, rather than through other configurations. Our
simulation results in Section 6 validate this intuition.

6 SIMULATION EXPERIMENTS
6.1 cMLP and cLSTM Simulation Comparison

To compare and analyze the performance of our two ap-
proaches, the cMLP and cLSTM, we apply both methods
to detecting Granger causality networks in simulated linear
VAR data and simulated Lorenz-96 data [32], a nonlin-
ear model of climate dynamics. Overall, the results show
that our methods can accurately reconstruct the underly-
ing Granger causality graph in both linear and nonlinear
settings. We first describe the results from the Lorenz exper-
iment and present the VAR results subsequently.

6.1.1 Lorenz-96 Model

The continuous dynamics in a p-dimensional Lorenz model
are given by

dl’ti

dt

where Ty(_1) = Typ—1), Tto = Tip, Ty(p+1) = T41 and F is
a forcing constant that determines the level of nonlinearity
and chaos in the series. Example series for two settings of I

= (xt(i+1) - mt(i72)) Tpi—1) — T + F, (19)

MoCap Subject 13

0 50 100 150 200 250

t

Fig. 4. Example multivariate linear (VAR) and nonlinear (Lorenz,
DREAM, and MoCap) series that we analyze using both cMLP and
cLSTM models. Note as the forcing constant, F', in the Lorenz model
increases, the data become more chaotic.

are displayed in Figure 4. We numerically simulate a p = 20
Lorenz-96 model with a sampling rate of A; = 0.05, which
results in a multivariate, nonlinear time series with sparse
Granger causal connections.

Using this simulation setup, we test our models” ability
to recover the underlying causal structure. Average values
of area under the ROC curve (AUROC) for recovery of the
causal structure across five initialization seeds are shown
in Table 1, and we obtain results under three different data
set lengths, T' € (250, 500, 1000), and two forcing constants,
F € (10,40).

We compare results for the cMLP and cLSTM with
two baseline methods that also rely on neural networks,
the IMV-LSTM and leave-one-out LSTM (LOO-LSTM) ap-
proaches. The IMV-LSTM [56], [57] uses attention weights
to provide greater interpretability than standard LSTMs,
and it detects Granger causal relationships by aggregating
its attention weights. LOO-LSTM detects Granger causal
relationships through the increase in loss that results from



TABLE 2
Comparison of AUROC for Granger causality selection among different approaches, as a function of the VAR lag order and the length of the time
series T'. Results are the mean across five initializations, with 95% confidence intervals.

Model VAR(1) VAR(2)

T 250 500 1000 250 500 1000

cMLP 916 £ 04 949+02 984+01 844+02 883+04 951402

cLSTM 885+09 934+19 976+04 835+03 925+£09 978 +0.1

IMV-LSTM  537+£79 6324+80 604+£83 535+39 543+£36 550+34

LOO-LSTM 501+27 502+26 505+19 501+14 504+14 50.0+1.0
withholding each input time series (see Appendix). TABLE 3

We use H = 100 hidden units for all four methods, as
experiments show that performance does not improve with
a different number of units. While more layers may prove
beneficial, for all experiments we fix the number of hidden
layers, L, to one and leave the effects of additional hidden
layers to future work. For the cMLP, we use the hierarchical
penalty with model lag of K = 5; see Section 6.2 for a
performance comparison of several possible penalties across
model input lags.

For our methods, we compute AUROC values by sweep-
ing A across a range of values; discarded edges (inferred
Granger non-causality) for a particular A setting are those
whose associated Ly norm of the input weights of the neural
network is equal to zero. Note that our proximal gradient
algorithm sets many of these groups to be exactly zero. We
compute AUROC values for the IMV-LSTM and LOO-LSTM
by sweeping a range of thresholds for either the attention
values or the increase in loss due to withholding time series.

As expected, the results indicate that the ¢cMLP and
cLSTM performance improves as the data set size 1" in-
creases. The cMLP outperforms the cLSTM both in the less
chaotic regime of F' = 10 and the more chaotic regime of
F' = 40, but the gap in their performance narrows as more
data is used. Both methods outperform the IMV-LSTM and
LOO-LSTM by a wide margin. Our models” 95% confidence
intervals are also relatively narrow, at less than 1% AUROC
for the cLSTM and ¢cMLP, compared with 3-5% for the IMV-
LSTM.

To understand the role of the number of hidden units in
our methods, we perform an ablation study to test different
values of I; the results show that both the cMLP and cLSTM
are robust to smaller H values, but that their performance
benefits from H = 100 hidden units (see Appendix). Addi-
tionally, we investigate the importance of the optimization
algorithm; we found that Adam [58], proximal gradient
descent [50] and proximal gradient descent with a line
search [51] lead to similar results (see Appendix). However,
because Adam requires a thresholding parameter and the
line search is computationally costly, we use standard prox-
imal gradient descent in the remainder of our experiments.

6.1.2 VAR Model

To analyze our methods’ performance when the true un-
derlying dynamics are linear, we simulate data from p = 20
VAR(1) and VAR(2) models with randomly generated sparse
transition matrices. To generate sparse dependencies for
each time series ¢, we create self dependencies and ran-
domly select three more dependencies among the other

AUROC comparisons between different cMLP Granger causality
selection penalties on simulated Lorenz-96 data as a function of the
input model lag, K. Results are the mean across five initializations,

with 95% confidence intervals.

Lag K 5 10 20

GROUP 881+£08 85£03 805£05
MIXED 90.1+05 854+£03 833+11
HIER 955+ 02 954+05 952+0.3

p — 1 time series. Where series ¢ depends on series j, we
set Afj =0.1for k =1or k = 1,2, and all other entries of
A are set to zero. Examining both VAR models allows us to
see how well our methods detect Granger causality at longer
time lags, even though no time lag is explicitly specified in
our models. Our results are the average over five random
initializations for a single dependency graph.

The AUROC results are displayed in Table 2 for the
cLSTM, cMLP, IMV-LSTM, and LOO-LSTM approaches for
three dataset lengths, T' € (250,500,1000). The perfor-
mance of the cLSTM and cMLP improves at larger 7,
and, as in the Lorenz-96 case, both models outperform the
IMV-LSTM and LOO-LSTM by a wide margin. The cMLP
remains more robust than the cLSTM with smaller amounts
of data, but the cLSTM outperforms the cMLP on several
occasions with T' = 500 or 7" = 1000.

The IMV-LSTM consistently underperforms our meth-
ods with these datasets, likely because it is not explicitly
designed for Granger causality discovery. Our finding that
the IMV-LSTM performs poorly at this task is consistent
with recent work suggesting that attention mechanisms
are not indicative of feature importance [59]. The LOO-
LSTM approach consistently achieves poor performance,
likely due to two factors: (i) unregularized LSTMs are prone
to overfitting in the low-data regime, even when Granger
causal time series are held out, and (ii) withholding a single
time series will not impact the loss if the remaining time
series have dependencies that retain its signal.

6.2 Quantitative Analysis of the Hierarchical Penalty

We next quantitatively compare the three possible struc-
tured penalties for Granger causality selection in the cMLP
model. In Section 3.2 we introduced the full group lasso
(GROUP) penalty over all lags (Equation 8), the group
sparse group lasso (MIXED) (Equation 10) and the hierar-
chical (HIER) lag selection penalty (Equation 11). We com-
pare these approaches across various choices of the cMLP
model’s maximum lag, K € (5,10,20). We use H = 10



hidden units for data simulated from the nonlinear Lorenz
model with FF = 20, p = 20, and T' = 750. As in Section
6.1, we compute the mean AUROC over five random ini-
tializations and display the results in Table 3. Importantly,
the hierarchical penalty outperforms both group and mixed
penalties across all model input lags K. Furthermore, per-
formance significantly declines as K increases in both group
and mixed settings while the performance of the hierarchical
penalty stays roughly constant as K increases. This result
suggests that performance of the hierarchical penalty for
nonlinear Granger causality selection is robust to the input
lag, implying that precise lag specification is unnecessary.
In practice, this allows one to set the model lag to a large
value without worrying that nonlinear Granger causality
detection will be compromised.

6.3 Qualitative Analysis of the Hierarchical Penalty

To qualitatively validate the performance of the hierarchical
group lasso penalty for automatic lag selection, we apply
our penalized cMLP framework to data generated from a
sparse VAR model with longer interactions. Specifically, we
generate data from a p = 10, VAR(3) model as in Section
2. To generate sparse dependencies for each time series i,
we create self dependencies and randomly select two more
dependencies among the other p—1 time series. When series
1 depends on series j, we set Afj = 0.1 for k = 1,2,3.
All other entries of A are set to zero. This implies that the
Granger causal connections that do exist are of true lag 3.
We run the cMLP with the hierarchical group lasso penalty
and a maximal lag order of K = 5; for comparison, we also
train a VAR model with a hierarchical penalty and maximal
lag order K = 5.

We visually display the selection results for one cMLP
(i.e., one output series) and the VAR baseline across a variety
of A settings in Figure 5. For the lower A = 4.09¢—4 setting,
the cMLP both (i) overestimates the lag order for a few input
series and (ii) allows some false positive Granger causal
connections. For the higher A\ = 7.94e—4, lag selection
performs almost perfectly, in addition to correct estimation
of the Granger causality graph. Higher A\ values lead to
larger penalization on longer lags, resulting in weaker long-
lag connections. The VAR model, which is ideal for VAR
data, does not perform noticeably better. While we show
results for multiple A values for visualization, in practice
one may use cross validation to select the appropriate A.

7 DREAM CHALLENGE

We next apply our methods to estimate Granger causality
networks from a realistically simulated time course gene
expression data set. The data are from the DREAM3 chal-
lenge [35] and provide a difficult, nonlinear data set for
rigorously comparing Granger causality detection methods
[33], [34]. The data is simulated using continuous gene
expression and regulation dynamics, with multiple hidden
factors that are not observed. The challenge contains five
different simulated data sets, each with different ground
truth Granger causality graphs: two E. Coli (E.C.) data sets
and three Yeast (Y.) data sets. Each data set contains p = 100
different time series, each with 46 replicates sampled at 21

©

CMLP (A = 4.09e-4) CMLP (A = 7.94e-4) CMLP (A = 9.26e-4)

ﬂ ] ] .

VAR (A = 2.92e-5) VAR (A = 8.51e-5) VAR (A = 2.35e-4)

Fig. 5. Qualitative results of the cMLP automatic lag selection using
a hierarchical group lasso penalty and maximal lag of K = 5. The
true data are from a VAR(3) model. The images display results for a
single cMLP (one output series) and a VAR model using various penalty
strengths X. The rows of each image correspond to different input series
while the columns correspond to the lag, with k& = 1 at the left and
k = 5 at the right. The magnitude of each entry is the Ly norm of
the associated input weights of the neural network after training. The
true lag interactions are shown in the rightmost image. Brighter color
represents larger magnitude.

time points for a total of 966 time points. This represents a
very limited data scenario relative to the dimensionality of
the networks and complexity of the underlying dynamics
of interaction. Three time series components from a single
replicate of the E. Coli 1 data set are shown in Figure 4.

We apply both the cMLP and cLSTM to all five data
sets. Due to the short length of the series replicates, we
choose the maximum lag in the cMLP to be K = 2 and use
H = 10 and H = 5 hidden units for the cMLP and cLSTM,
respectively. For our performance metric, we consider the
DREAMS3 challenge metrics of area under the ROC curve
(AUROC) and area under the precision recall curve (AUPR).
Both curves are computed by sweeping A over a range of
values, as described in Section 6.

In Figure 6, we compare the AUROC and AUPR of our
c¢MLP and cLSTM to previously published AUROC and
AUPR results on the DREAM3 data [33]. These compar-
isons include both linear and nonlinear approaches: (i) a
linear VAR model with a lasso penalty (LASSO) [7], (ii) a
dynamic Bayesian network using first-order conditional de-
pendencies (G1DBN) [34], and (iii) a state-of-the-art multi-
output kernel regression method (OKVAR) [33]. The lat-
ter is the most mature of a sequence of nonlinear kernel
Granger causality detection methods [60], [61]. In terms of
AUROC, our cLSTM outperforms all methods across all
five datasets. Furthermore, the cMLP method outperforms
previous methods on two datasets, Y.1 and Y.3, ties GIDBN
on Y.2, and slightly under performs OKVAR in E.C.1 and
E.C.2. In terms of AUPR, both cLSTM and cMLP methods do
much better than all previous approaches, with the cLSTM
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Fig. 6. (Top) AUROC and (bottom) AUPR (given in %) results for our pro-
posed regularized cMLP and cLSTM models and the set of methods—
OKVAR, LASSO, and G1DBN presented in [33]. These results are for
the DREAMS size-100 networks using the original DREAM3 data sets.

outperforming the cMLP in three datasets. The raw ROC
curves for cMLP and cLSTM are displayed in Figure 7.

These results clearly demonstrate the importance of tak-
ing a nonlinear approach to Granger causality detection in
a (simulated) real-world scenario. Among the nonlinear ap-
proaches, the neural network methods are extremely power-
ful. Furthermore, the cLSTM’s ability to efficiently capture
long memory (without relying on long-lag specifications)
appears to be particularly useful. This result validates many
findings in the literature where LSTMs outperform autore-
gressive MLPs. An interesting facet of these results, how-
ever, is that the impressive performance gains are achieved
in a limited data scenario and on a task where the goal is
recovery of interpretable structure. This is in contrast to the
standard story of prediction on large datasets. To achieve
these results, the regularization and induced sparsity of our
penalties is critical.

8 DEPENDENCIES IN HUMAN MOTION CAPTURE
DATA

We next apply our methodology to detect complex, non-
linear dependencies in human motion capture (MoCap)
recordings. In contrast to the DREAMS3 challenge results,
this analysis allows us to more easily visualize and interpret
the learned network. Human motion has been previously
modeled using both linear dynamical systems [62], switch-
ing linear dynamical systems [37], [63] and also nonlinear
dynamical models using Gaussian processes [64]. While the
focus of previous work has been on motion classification
[62] and segmentation [37], our analysis delves into the
potentially long-range, nonlinear dependencies between dif-
ferent regions of the body during natural motion behavior.
We consider a data set from the CMU MoCap database
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Fig. 7. ROC curves for the cMLP ( —— ) and cLSTM (
on the five DREAM datasets.

) models

[36] previously studied in [37]. The data set consists of
p = 54 joint angle and body position recordings across two
different subjects for a total of T' = 2024 time points. In total,
there are recordings from 24 unique regions because some
regions, like the thorax, contain multiple angles of motion
corresponding to the degrees of freedom of that part of the
body.

We apply the cLSTM model with I = 8 hidden units
to this data set. For computational speed ups, we break
the original series into length 20 segments and fit the pe-
nalized cLSTM model from Equation (15) over a range of
A values. To develop a weighted graph for visualization,
we let the edge weight w;; between components be the
norm of the outgoing cLSTM weights from input series j to
output component series ¢, standardized by the maximum
such edge weight associated with the cLSTM for series <.
Edges associated with more than one degrees of freedom
(angle directions for the same body part) are averaged
together. Finally, to aid visualization, we further threshold
edge weights of magnitude 0.01 and below.

The resulting estimated graphs are displayed in Figure 9
for multiple values of the regularization parameter, A\. While
we present the results for multiple )\, one may use cross
validation to select A if one graph is required. To interpret
the presented skeleton plots, it is useful to understand the
full set of motion behaviors exhibited in this data set. These
behaviors are depicted in Figure 8, and include instances
of jumping jacks, side twists, arm circles, knee raises, squats,
punching, various forms of toe touches, and running in place.
Due to the extremely limited data for any individual be-
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Fig. 8. (Top) Example time series from the MoCap data set paired
with their particular motion behaviors. (Bottom) Skeleton visualizations
of 12 possible exercise behavior types observed across all sequences
analyzed in the main text.

havior, we chose to learn interactions from data aggregated
over the entire collection of behaviors. In Figure 9, we see
many intuitive learned interactions. For example, even in
the more sparse graph (largest \) we learn a directed edge
from right knee to left knee and a separate edge from left
knee to right. This makes sense as most human motion,
including the motions in this dataset involving lower body
movement, entail the right knee leading the left and then
vice versa. We also see directed interactions leading down
each arm, and between the hands and toes for toe touches.

9 CONCLUSION

We have presented a framework for nonlinear Granger
causality selection using regularized neural network models
of time series. To disentangle the effects of the past of an
input series on the future of an output, we model each
output series using a separate neural network. We then ap-
ply both the component multilayer perceptron (cMLP) and
component long-short term memory (cLSTM) architectures,
with associated sparsity promoting penalties on incoming
weights to the network, and select for Granger causality.
Overall, our results show that these methods outperform
existing Granger causality approaches on the challenging
DREAMS3 data set and discover interpretable and insightful
structure on a human MoCap data set.

Our work opens the door to multiple exciting avenues
for future work. While we are the first to use a hierarchical
lasso penalty in a neural network, it would be interesting to
also explore other types of structured penalties, such as tree
structured penalties [31].

Furthermore, although we have presented two relatively
simple approaches, based off MLPs and LSTMs, our general
framework of penalized input weights easily accommodates
more powerful architectures. Exploring the effects of mul-
tiple hidden layers, powerful recurrent and convolutional

Fig. 9. Nonlinear Granger causality graphs inferred from the human Mo-
Cap data set using the regularized cLSTM model. Results are displayed
for a range of A values. Each node corresponds to one location on the
body.

architectures, like clockwork RNNs [65], and dilated causal
convolutions [66], open up a wide range of research direc-
tions and the potential to detect long-range and complex
dependencies. Further theoretical work on the identifiability
of Granger non-causality in these more complex network
models becomes even more important.

Finally, while we consider sparse input models, a dif-
ferent sparse output architecture would use a network, like
an RNN, to learn hidden representations of each individual
input series, and then model each output component as a
sparse nonlinear combination across the hidden states of all
time series, allowing a shared hidden representation across
component tasks. A schematic of the proposed architecture
that combines ideas from our cMLP and cLSTM models is
shown in Figure 10.

APPENDIX A
MODEL ABLATIONS

We ran two ablation studies to understand factors that
influence our methods’ performance. First, we tested the
cMLP and cLSTM with different numbers of hidden units
on the Lorenz-96 data. Table 4 shows the AUROC results
from a single run for two datasets with forcing constants
F € (10,40) and time series length 7" = 1000, using differ-
ent numbers of hidden units, H € (5, 10, 25,50, 100). The
results reveal that both models are robust to a small number
of hidden units, but that their performance improves with
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Fig. 10. Proposed architecture for detecting nonlinear Granger causality
that combines aspects of both the cLSTM and cMLP models. A separate
hidden representation, h;; , is learned for each series j using an RNN.
At each time point, the hidden states are each fed into a sparse cMLP
to predict the individual output for each series zy;. Joint learning of
the whole network with a group penalty on the input weights of the
individual cMLPs would allow the network to share information about
hidden features in each h;; while also allowing interpretable structure
learning between the hidden states of each series and each output.

larger values of H. These findings suggest that overpa-
rameterization can help with the nonconvex optimization
objective, leading to solutions that achieve high predictive
accuracy while minimizing the penalty from the sparsity-
inducing regularizer.

Next, we tested three approaches for optimizing our pe-
nalized objectives (Equations 8 and 15). We compared stan-
dard gradient descent with Adam [58] to proximal gradient
descent (ISTA) [50] and proximal gradient descent with a
line search (GIST) [51] on the Lorenz-96 data with 7" = 1000
time points. Table 5 displays AUROC results across five
initializations for two forcing constants F' € (10, 40), using
the cMLP with H = 10 hidden units. The results show that
the three methods lead to similar results for both ' = 10
and F' = 40, although we did not compare the optimizers in
other scenarios, e.g., with lower T values or with the cLSTM.

Among these optimization approaches, Adam is fastest
due to its adaptive learning rate, but it requires a parameter
for thresholding the resulting weights (while the proximal
methods lead to exact zeros). In contrast, GIST guarantees
convergence to a local minimum and is less sensitive to
the learning rate parameter, but it is also considerably
slower than Adam and ISTA. We therefore use standard
proximal gradient descent, or ISTA, in the remainder of
our experiments, because it leads to exact zeros while being
more efficient than GIST. In practice, this means running
Algorithm 1 or Algorithm 4 using a fixed learning rate
rather than determining it by a line search.

APPENDIX B
BASELINE METHODS

The IMV-LSTM uses an attention mechanism to highlight
the model’s dependence on different parts of the input [57].
We train a separate IMV-LSTM model to predict each time
series using all the time series as inputs, using the “IMV-
Full” variant [57], and we use the attention weights from
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TABLE 4
AUROC comparisons for the cMLP and cLSTM as a function of the
number of hidden units H for simulated Lorenz-96 data. Results are
calculated using a single run.

Model cMLP cLSTM

F 10 40 10 40
H=5 96,5 91.0 919 869
H=10 98.0 940 945 915
H=25 984 943 956 923
H =50 983 944 957 93.8
H=100 985 945 957 952

TABLE 5

AUROC comparisons between different optimization approaches for
the cMLP with simulated Lorenz-96 data. Results are the mean across
five initializations, with 95% confidence intervals.

F 10 40

GISTA 980402 938+03
ISTA 98.0+£02 941419
Adam 983 +0.1 951+£02

the trained models to infer Granger causal relationships.
Similar to the original work [56], we record the empirical
mean of the attention values for each input time series for
each model, and we construct a p X p matrix of these values
for the separate IMV-LSTMs. We then sweep over a range
of threshold values to determine the most influential inputs
for each IMV-LSTM, and we trace out an ROC curve from
which we calculate AUROC values.

The LOO-LSTM baseline is based on the idea that with-
holding a highly predictive input should result in a decrease
in predictive accuracy, a direction that has been explored
for providing model-agnostic notions of feature importance
[67], [68]. We begin by training separate LSTM models to
predict each time series using all time series as inputs. We
then train separate LSTM models to predict each time series
1 using all inputs except time series j, and we record the
increase in loss when the jth time series is withheld. Using
the results, we construct a p x p matrix representing the
differences in the loss, we sweep over a range of threshold
values to determine the most influential inputs for each
time series, and we trace out an ROC curve from which
we calculate AUROC values.
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