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Abstract

Autoencoders are a popular model in many
branches of machine learning and lossy data com-
pression. However, their fundamental limits, the
performance of gradient methods and the features
learnt during optimization remain poorly under-
stood, even in the two-layer setting. In fact, earlier
work has considered either linear autoencoders
or specific training regimes (leading to vanish-
ing or diverging compression rates). Our paper
addresses this gap by focusing on non-linear two-
layer autoencoders trained in the challenging pro-
portional regime in which the input dimension
scales linearly with the size of the representation.
Our results characterize the minimizers of the pop-
ulation risk, and show that such minimizers are
achieved by gradient methods; their structure is
also unveiled, thus leading to a concise descrip-
tion of the features obtained via training. For
the special case of a sign activation function, our
analysis establishes the fundamental limits for the
lossy compression of Gaussian sources via (shal-
low) autoencoders. Finally, while the results are
proved for Gaussian data, numerical simulations
on standard datasets display the universality of
the theoretical predictions.

1. Introduction

Autoencoders represent a key building block in many
branches of machine learning (Kingma & Welling, 2014;
Rezende et al., 2014), including generative modeling (Ben-
gio et al., 2013) and representation learning (Tschannen
et al., 2018). Prompted by the fact that autoencoders learn
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succinct representations, neural autoencoding techniques
have achieved remarkable success in lossy data compres-
sion, even outperforming classical methods, such as jpeg
(Ballé et al., 2017; Theis et al., 2017; Agustsson et al., 2017).
However, despite the large body of empirical work on neural
autoencoders and compressors, basic theoretical questions
remain poorly understood even in the shallow case:

What are the fundamental performance limits of autoen-
coders? Can we achieve such limits with gradient methods?
What features does the optimization procedure learn?

Prior work has focused either on linear autoencoders (Baldi
& Hornik, 1989; Kunin et al., 2019; Gidel et al., 2019),
on the severely under-parameterized setting in which the
input dimension is much larger than the number of neurons
(Refinetti & Goldt, 2022), or on specific training regimes
(lazy training (Nguyen et al., 2021) and mean-field regime
with a polynomial number of neurons (Nguyen, 2021)), see
Section 2. In contrast, in this paper we consider non-linear
autoencoders trained in the challenging proportional regime,
in which the number of inputs to compress scales linearly
with the size of the representation. More specifically, we
consider the prototypical model of a two-layer autoencoder

z(x) := &(x, A, B) = Ac(Bx). ()

Here, x € R4 is the input to compress, £ € R" the recon-
struction, B € R™*¢ the encoding matrix, and A € R?*"
the decoding matrix; the activation o : R — R is applied
element-wise. We aim at minimizing the population risk

R(A,B) := d'Eq ||z — &(z)|3, )

where the expectation is taken over the distribution of
the input . Our focus is on Gaussian input data, i.e.,
x ~ N(0,X). When o is the sign function, the encoder
o(Bx) can be interpreted as a compressor, namely, it com-
presses the d-dimensional input signal into n bits. The prob-
lem (2) of compressing a Gaussian source with quadratic
distortion has been studied in exquisite detail in the infor-
mation theory literature (Cover & Thomas, 2006), and the
optimal performance for general encoder/decoder pairs is
known via the rate-distortion formalism which characterizes
the lowest achievable distortion in terms of the rate r = n/d.
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Figure 1. Compression (o = sign) of the CIFAR-10 “airplane”
class with a two-layer autoencoder. The data is whitened so that
32 = I: on top, an example of a grayscale image; on the bottom,
the corresponding whitening. The blue dots are the population
risk obtained via SGD, and they agree well with the solid line
corresponding to the lower bounds of Theorem 4.2 and Proposition
4.3.

Here, we focus on encoders and decoders that form the two-
layer autoencoder (1): we study the fundamental limits of
this learning problem, as well as the performance achieved
by commonly used gradient descent methods.

Main contributions. Taken all together, our results show
that, for two-layer autoencoders, gradient descent methods
achieve a global minimizer of the population risk: this is
rigorously proved in the isotropic case (3 = I') and corrob-
orated by numerical simulations for a general covariance 3.
Furthermore, we unveil the structure of said minimizer: for
3} = I, the optimal decoder has unit singular values; for
general covariance, the spectrum of the decoder exhibits the
same block structure as X, and it can be explicitly obtained
from X via a water-filling criterion; in all cases, weight-
tying is optimal, i.e., A is proportional to B i Specifically,
our technical results can be summarized as follows.

e Section 4.1 characterizes the minimizers of the risk (2) for
isotropic data: Theorem 4.2 provides a tight lower bound,
which is achieved by the set (7) of weight-tied orthogonal
matrices, when the compression rate r = n/d < 1; for
r > 1, Propositions 4.3 and 4.4 give a lower bound, which
is approached (as d — oo) by the set (12) of weight-tied
rotationally invariant matrices.

* Section 4.2 shows that the above minimizers are reached
by gradient descent methods for » < 1: Theorem 4.5
shows linear convergence of gradient flow for general
initializations, under a weight-tying condition; Theorem
4.6 considers a Gaussian initialization and proves global
convergence of the projected gradient descent algorithm,
in which the encoder matrix B is optimized via a gradient
method and the decoder matrix A is obtained directly via
linear regression.

* Section 5 focuses on data with general covariance ¥ # 1.
We observe that experimentally weight-tying is optimal
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Figure 2. Compression (o = sign) of the CIFAR-10 “cat” class
with a two-layer autoencoder. The data is not whitened (£ # I).
The blue dots are the SGD population risk, and they are close to
the lower bound of Theorem 5.2.

and then derive the corresponding lower bound (see The-
orem 5.2), which is also asymptotically achieved (as
d — ©0) by rotationally invariant matrices with a carefully
designed spectrum (depending on ¥), see Proposition 5.3.

When o = sign, our analysis characterizes the fundamental
limits of the lossy compression of a Gaussian source via
two-layer autoencoders. Remarkably, if we restrict to a
certain class of linear encoders for compression, two-layer
autoencoders achieve optimal performance (Tulino et al.,
2013), which can be generally obtained via a message pass-
ing decoding algorithm (Rangan et al., 2019). However,
for general encoder/decoder pairs, shallow autoencoders
fail to meet the information-theoretic bound given by the
rate-distortion curve, see Section 6.

Going beyond the Gaussian assumption on the data, we
provide numerical validation to our theoretical predictions
on standard datasets, both in the isotropic case (Figure 1)
and for general covariance (Figure 2). Additional numerical
results — together with the details of the experimental setting
—are in Appendix L.

Proof techniques. The lower bound on the population risk
of Theorem 4.2 comes from a sequence of relaxations of the
objective function, which eventually allows to apply a trace
inequality. For » > 1, Proposition 4.3 crucially exploits
an inequality for the Hadamard product of PSD matrices
(Khare, 2021), and the asymptotic achievability of Proposi-
tion 4.4 takes advantage of concentration-of-measure tools
for orthogonal matrices. The key quantity in the analysis
of gradient methods is the encoder Gram matrix at itera-
tion ¢, i.e., B(t)B(t)". In particular, for gradient flow
(Theorem 4.5), due to the weight-tying condition, tracking
log det B(t)B(t)" leads to a quantitative convergence re-
sult. However, when the weights are not tied, this quantity
does not appear to increase along the optimization trajec-
tory. Thus, for projected gradient descent (Theorem 4.6),
the idea is to decompose B(t)B(t) " into (i) its value at the
optimum (given by the identity), (ii) the contribution due
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to the spectrum evolution (keeping the eigenbasis fixed),
and (iii) the change in the eigenbasis. Via a sequence of
careful approximations, we are able to show that the term
(iii) vanishes. Hence, we can study explicitly the evolution
of the spectrum and obtain the desired convergence.

2. Related Work

Theory of autoencoders. A popular line of work has
focused on two-layer linear autoencoders: Oftadeh et al.
(2020) analyze the loss landscape; Kunin et al. (2019) show
that the minimizers of the regularized loss recover the princi-
pal components of the data and, notably, the corresponding
autoencoder is weight-tied; Bao et al. (2020) prove that
stochastic gradient descent — after a slight perturbation —
escapes the saddles and eventually converges; Gidel et al.
(2019) characterize the time-steps at which the network
learns different sets of features. Rangamani et al. (2018);
Nguyen et al. (2019) prove local convergence for weight-
tied two-layer ReLU autoencoders. Nguyen et al. (2021)
focus on the lazy training regime (Chizat et al., 2019; Jacot
et al., 2018) and bound the over-parameterization needed
for global convergence. Radhakrishnan et al. (2020) show
that over-parameterized autoencoders learn solutions that
are contractive around the training examples. The latent
spaces of autoencoders are studied in (Jain et al., 2021),
where it is shown that such latent spaces can be aligned by
stretching along the left singular vectors of the data. More
closely related to our work, Nguyen (2021) and (Refinetti &
Goldt, 2022) track the gradient dynamics of non-linear two-
layer autoencoders via the mean-field PDE and a system of
ODEzs, respectively. However, these analyses are restricted
to diverging and vanishing rates: Nguyen (2021) considers
weight-tied autoencoders with polynomially many neurons
in the input dimension (so that » — c0); Refinetti & Goldt
(2022) consider the other extreme regime in which the input
dimension diverges (so that » — 0).

Neural compression. In recent years, compressors based
on neural networks have outperformed traditional schemes
on real-world data in terms of minimizing distortion and
producing visually pleasing reconstructions at reasonable
complexity (Ballé et al., 2017; Theis et al., 2017; Agustsson
et al., 2017; Ballé et al., 2021). These methods typically
use an autoencoder architecture with quantization of the
latent variables, which is trained over samples drawn from
the source. More recently, other architectures such as atten-
tion or diffusion-based models have been incorporated into
neural compressors (Cheng et al., 2020; Liu et al., 2019;
Yang & Mandt, 2022; Theis et al., 2022), and improvements
have been observed. We refer to Yang et al. (2022) for a
detailed review on this topic. Given the remarkable suc-
cess of neural compressors, it is imperative to understand
the fundamental limits of compression using neural archi-

tectures. In this regard, Wagner & Ballé (2021) consider
a highly-structured and low-dimensional random process,
dubbed the sawbridge, and show numerically that the rate-
distortion function is achieved by a compressor based on
deep neural networks trained via stochastic gradient descent.
In contrast, our work considers Gaussian sources, which are
high-dimensional in nature, and provides the fundamental
limits of compression for two-layer autoencoders. Our re-
sults also imply that two-layer autoencoders cannot achieve
the rate-distortion limit on Gaussian data, see Section 6.

Additional related works on rate-distortion formalism and
non-linear inverse problems are discussed in Appendix A.

3. Preliminaries

Notations. We use plain symbols for real numbers (e.g.,
a, b), bold symbols for vectors (e.g., a, b), and capitalized
bold symbols for matrices (e.g., A, B). We let [n] =
{1,...,n}, I be the identity matrix and 1 the column vector
containing ones. Given a matrix A, we denote its operator
norm by || Al|,,, and its Frobenius norm by || A[|r. Given
two matrices A and B of the same shape, we denote their
element-wise (Hadamard/Schur) product by A o B and the
k-th element-wise power by A°". We write L?(R, 1) for
the space of L? integrable functions on R w.r.t. the stan-
dard Gaussian measure p and hy(z) for the k-th normalized
Hermite polynomial (see e.g. O’Donnell (2014)).

Setup. We consider the two-layer autoencoder (1) and aim
at minimizing the population risk (2) for a given rate r =
n/d. In particular, we provide tight lower bounds on the
minimum of the population risk computed on Gaussian input
data with covariance X, i.e.,

R(r) := minR(A, B). 3)

In the isotropic case (X = I), our results hold for any odd
activation o € L2(RR, u) after restricting the rows of the en-
coding matrix B to have unit norm. We remark that, when
o(z) = sign(z), the restriction is unnecessary since the ac-
tivation is homogeneous.! We also note that restricting the
norms of the rows of B prevents the model from entering
the “linear” regime. In fact, when || B||r = 0, by linearizing
the activation around zero, (1) reduces to the linear model
&(x) ~ ABz, which exhibits a PCA-like behaviour. For
general covariance 3, we consider odd homogeneous acti-
vations, which includes the sign function and monomials of
arbitrary odd degree.

Any function ¢ € L?(R, 1) can be expanded in terms of
Hermite polynomials. This allows to perform Fourier analy-
sis in the Gaussian space L?(R, 11), and it provides a natural
tool because of the Gaussian assumption on the data. In

"We say that a function o is homogeneous if there exists an
integer k s.t. o(ax) = oo (z) forall o # 0.
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particular, for odd o, only odd Hermite polynomials occur,
ie.,

o(z) =32 gcaer1haryr (), €]

where {c;}scn denote the Hermite coefficients of . We
also consider the following auxiliary quantity

= i A B 5
R(r) A,II(BHL%I)I},:HFlR( , B), (5)

that defines a minimum of the population risk for the au-
toencoder (1) with a certain norm constraint on the encoder
weights B. Here, D contains the square roots of the eigen-
values of X (i.e., ¥ = UD?U " for an orthogonal matrix
U), and (BD), . stands for the i-th row of the matrix BD.
A few remarks about the restricted population risk (5) are
in order. First of all, if o is homogeneous, the minimum of
the restricted population risk (5) and of the unconstrained
one (3) coincide (see Lemma 4.1 and Lemma 5.1). Thus, in
this case, the analysis of R(r) directly provides results on
the quantity of interest, i.e., 7%(7") The technical advantage
of analysing (5) over (3) comes from fact that the expec-
tation with respect to the Gaussian inputs, which arises in
the constrained objective, can be explicitly computed via
the reproducing property of Hermite polynomials (see, e.g.,
O’Donnell (2014)). To exploit this reproducing property,
it is crucial that the inner products <Bi,;, x) have the same
scale, which is ensured by picking ||(BD); .||z = 1. The
sole dependence of the constraint on the spectrum D (and,
not on a particular choice of U) stems from the rotational
invariance of the isotropic Gaussian distribution.

4. Main Results

In this section, we consider isotropic Gaussian data, i.e.,
3 = D = I. First, we derive a closed form expression
for the population risk in Lemma 4.1. Then, in Theorem
4.2 we give a lower bound on the population risk for » < 1
and provide a complete characterization of the autoencoder
parameters (A, B) achieving it. Surprisingly, the minimizer
exhibits a weight-tying structure and the corresponding ma-
trices are rotationally invariant. Later, in Proposition 4.3
we derive an analogous lower bound for » > 1. While it
is hard to characterize the minimizer structure explicitly
for a finite input dimension d (and r > 1), we provide a
sequence {(Ag4, Bq)}den that meets the lower bound in the
high-dimensional limit (d — o0), see Proposition 4.4. No-
tably, the elements of this sequence share the key features
(weight-tying, rotational invariance) of the minimizers for
r < 1. In Section 4.2 we describe gradient methods that
provably achieve the optimal value of the population risk.
Specifically, we consider gradient flow under a weight-tying
constraint and projected (on the sphere) gradient descent
with Gaussian initialization. The corresponding results are
stated in Theorem 4.5 and Theorem 4.6.

We start by expanding o in a Hermite series to obtain a
closed-form expression for the population risk.

Lemma 4.1. Consider any odd o € L*(R, u) and its Her-
mite expansion given by (4). Then, R(r) is equivalent to

. 1 T T
o in (Tr [A Af(BB )} — 2 - Tr [BA}>+1,
(6)

where f(x) = Y2 (carp1)?2? L is applied element-
wise. In particular, if o(x) = sign(z), then f(x) =
c? - arcsin(z) and ¢y = +/2/m. Moreover, for any ho-
mogeneous o, we have that R(r) = R(r).

The proof of the lemma above is contained in Appendix
B. Note that, if ¢; = 0, it is easy to see that the mini-
mum of R(r) equals 1 and it is attained when AT A is
the zero-matrix. Furthermore, if >,°, (c2¢+1)% = 0, then
o(x) = cx and we fall back into the simpler case of a lin-
ear autoencoder (Baldi & Hornik, 1989; Kunin et al., 2019;
Gidel et al., 2019). Thus, for the rest of the section, we will
assume that ¢; # 0 and Y_,°  (cap41)? # 0.

4.1. Fundamental Limits: Lower Bound on Risk

We begin by providing a tight lower bound for » < 1, which
is uniquely achieved on the set of weight-tied orthogonal
matrices H,, 4 defined as

C1

T {;21 BeRm . A —
: ’ F1)

~T ~~T

B .BB = I} .
(7)

Theorem 4.2. Consider any odd o € L*(R,p) and fix

r < 1. Then, the following holds

R(r) > LB,<i(I) =1~ % o,

and equality is achieved iff (A, B) € Hy, 4.

We note that the minimizers H,, 4 of ﬁ(r) do not directly
correspond to the minimizers of the unconstrained popula-
tion risk R(r), since in general R(r) # R(r). However, if
o is homogeneous, the “inverse” mapping can be readily
obtained. For instance, when o (z) = sign(z), rescaling the
norms of the rows of B does not affect the compression,
i.e., sign(Bx) = sign(SBx) for any diagonal S with pos-
itive entries. Hence, to obtain a minimizer, it suffices that
the rows of B form any set of orthogonal (not necessarily
normalized) vectors. In contrast, note that A is still defined
with respect to the row-normalized version of B. Similar
arguments hold for homogeneous activations.

We also note that the weight-tying structure (7) observed
in the minimizers of the population risk is related to the
early representation learning literature (Vincent et al., 2008;
Hinton & Salakhutdinov, 2006).



Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods

We now provide a proof sketch for Theorem 4.2 and defer
the full argument to Appendix C.1.

Proof sketch of Theorem 4.2. Using the series expansion of
f(+), we can write

Tr [ATA f(BBT)} —2¢, - Tt [BA]

— g;cgeﬂ (Tr [ATA (BBT) OQHI} —Q%Tr [BA}).

Thus, the minimization problem in Lemma 4.1 can be re-
duced to analysing each Hadamard power individually:
201
min _ Tr[ATA(BBT)*| -~ Tr[BA]. )
AIB:.:[l2=1 ( ) f() A
The crux of the argument is to provide a suitable sequence
of relaxations of (8). The first relaxation gives
2

Tr [(ATA 0 Q)(BB' o Q)} - % .Tr[BA], (9)
where Q is any PSD matrix with unit diagonal. Using the
properties of the SVD of Q, (9) can be further relaxed to

261

i Tr [AjAjTBjBH -0

4,J=1

) Te(BA], (10)
=1

where now A;, BiT € R%*™ are arbitrary matrices. The key
observation is that
2 2
1

n
S VX AT - VXBY|| =10+
=1

7 v ez

with X = 327" | A A,. As each relaxation lower bounds
(8) and the Frobenius norm is positive, this argument leads
to the lower bound on R(r). The fact that the lower bound is
met for any (A, B) € H,, 4 can be verified via a direct cal-
culation. The uniqueness follows by taking the intersection
of the minimizers of (8) for different values of £. O]

Next, we move to the case » > 1.

Proposition 4.3. Consider any odd o € L*(R, i) and fix
r > 1, then the following holds:

~ r

R(r) > LBpoy(I)i=1— ——— .
()

The key difference with the proof of the lower bound in
Theorem 4.2 is that the term Tr [ATABBT] requires a
tighter estimate. This is due to the fact that the matrix BB'
is no longer full-rank when r > 1. We obtain the desired

tighter bound by exploiting the following result by (Khare,
2021):

ATAoBB' - % -Diag(BA)Diag(BA)T, (11)

where Diag(BA) stands for the vector containing the di-
agonal entries of BA. The full argument is contained in
Appendix C.2.1.

As for r < 1, the bound is met (here, in the limit d — 00)
by considering weight-tied matrices:

T b
B =\ [14,04, 4U", b= ﬁ7 A=p3B",
il2
(12)
where 3 = W and U is uniformly sampled from
1 Y 1

the group of rotation matrices. The idea behind the choice
(12) is that, as d — oo, (BBT)OQZ for ¢ > 2 is close to
the identity matrix, and (11) is attained exactly. The formal
statement is provided below and proved in Appendix C.2.2.

Proposition 4.4. Consider any odd o € L*(R, i) and fix
r > 1. Let A, B be defined as in (12). Then, for any ¢ > 0
the following holds

IR(A, B) — LB, (I)] < Cd~ %+,

with probability 1 — c/d>. Here, the constants c,C' depend
only on r and e.

We note that all the arguments of this section directly apply
to G2aussian data with a covariance matrix of the form 3 =
o“lg . Owa—r)xk

} . For the details, see Appendix F.
Ok xk

Ok (d—k)

4.2. Gradient Methods Achieve the Lower Bound

In this section, we discuss the achievability of the lower
bound obtained in the previous section via gradient methods.
We study two procedures which find the minimizer of the
population risk R(A, B) under the constraint || B; |2 = 1.
Namely, we analyse (i) weight-tied gradient flow on the
sphere and (ii) its discrete version (with finite step size)
without weight-tying, i.e., projected gradient descent.

The optimization objective in Lemma 4.1 is equivalent (up
to a scaling independent of (A, B)) to

min  Tr [ATA f(BBT)| —2-Tr[BA], (13)
A,||Bi,:[l2=1
where we have rescaled the function f by 1/c2. This fol-
lows from the fact that the multiplicative factor ¢; can be
pushed inside A. Note that such scaling does not affect the
properties of gradient-based algorithms (modulo a constant
change in their speed). Hence, without loss of generality,
we will state and prove all our results for the problem (13).

Weight-tied gradient flow. We start by considering the
weight-tied setting

A=p3B", BeR. (14)
This is motivated by the fact that the lower bounds on the
population risk are approached by weight-tied matrices (see
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Theorem 4.2 and Proposition 4.4). We keep the presenta-
tion brief and informal, and the formal setup is deferred to
Appendix D. Note that for all A, B under the weight-tying
constraint (14), the optimal 8* in (13) can be found exactly.
Thus, to optimize (13), we perform a (Riemannian) gradient
flow on B with rows constrained to the unit sphere, where
at each time ¢ we pick the optimal 5*(¢):

b (t)
ot

where b;(t) stands for the i-th row of B(t) and J;(t)
projects the gradient Vy, U(3(t), B(t)) of (13) under the
weight-tying constraint on the unit sphere (see (64)-(65) in
Appendix D for the exact expressions). This ensures that
Ib;(t)|l2 = 1 along the gradient flow trajectory.

5)

= —Ji(t)Vs, U(5*(t), B(1)),

Theorem 4.5 (Informal). For any r < 1, the gradient flow
(15) initialized with full rank unit-row norm B converges to
a global minimizer of (13), given by BB" = 1.

Proof sketch of Theorem 4.5. 1t can be readily shown that the
B’s for which BB = I are the unique minimizers of (13)
under the weight-tying constraint and they satisfy the station-
ary point condition of the gradient flow (15). However, if B
becomes not full-rank, such subspaces are never escaped by
the gradient flow (15) (see Lemma D.2). Hence, the proce-
dure would fail to converge to the global minimizer that has
full-rank. We show that, under the full-rank initialization,
this does not happen by lower bounding the time derivative
of logdet (B(t)B(t)") (see Lemma D.3), which vanishes
uniquely at BB = I. This ensures that the solution of
(15) will not saturate to a low-rank subspace. O]

In Appendix D, we also provide a quantitative bound on the
convergence time (see Lemma D.4). We remark that Theo-
rem 4.5 holds for any d and for all full-rank initializations.

Projected gradient descent. We now move to the setting
where the encoder and decoder weights are not weight-
tied. In this case, we consider the commonly used Gaussian
initialization and prove a result for sufficiently large d. The
Gaussian initialization allows us to relax the requirement
on f: we only need ca = 0, as opposed to the previous
assumption that coy = 0 for any ¢ € N (see the statement
of Lemma 4.1). Specifically, we consider the following
algorithm to minimize (13):

A =B (FBHBOT) 16)
/ . !/

B'(t):= B(t) —nVpg), B(t + 1) :=proj(B'(t)),
where A(t) is the optimal matrix for a fixed B(t) and V gy
(see (86) in Appendix E) is the projected gradient of the ob-
jective (13) with respect to B(t). Furthermore, proj(B’(t))
rescales all the rows to have unit norm. It will become ap-
parent from the proof of Theorem 4.6 that the inversion in
the definition of A(t) is indeed well defined. We remark

that (16) can be viewed as the discrete counterpart of the
Riemannian gradient flow for the weight-tied case (with
the optimal A(t) in place of the weight-tying), where the
application of proj(-) keeps the rows of B(t) of unit norm.
In the related literature, this procedure is often referred to as
Riemannian gradient descent (see, e.g., Absil et al. (2009)).
Alternatively, (16) may be viewed as coordinate descent
(Wright, 2015) on the objective (13), where the step in A is
performed exactly.

Our main result is that the projected gradient descent (16)
converges to the global optimum of (13) for large enough d
(with high probability). We give a sketch of the argument
and defer the complete proof to Appendix E.

Theorem 4.6. Consider the projected gradient descent
(16) applied to the objective (13) for any f of the form
f(x) =2+ >, 522" where Y ,_, 3 < occ. Initialize
the algorithm with B(0) equal to a row-normalized Gaus-
sian, i.e., Bj ;(0) ~ N(0,1/d), B(0) = proj(B'(0)). Let
the step size 1) be ©(1//d). Then, for any r < 1 and suffi-
ciently large d, with probability at least 1 — Ce™°%, we have
that B(t)B(t) " converges to I, which is the unique global
optimum of (13). Moreover, defining t = T /1, we have the
following bound on the rate of convergence

IBOBE®™ - 1|, < -7,

where C > 0 and c € (0, 1] are universal constants depend-
ing only onr and f.

Proof sketch of Theorem 4.6. Let B(0)B(0)T =
UA(0)U " be the singular value decomposition (SVD) of
the encoder Gram matrix. Then, the idea is to decompose
B(t)B(t)T at each step of the projected gradient descent
dynamics as

Bt)Bt)" =1+ 2Z(t)+ X(t), (17)
where Z(t) = U(A(t) — I)U . Here, T is the global opti-
mum towards which we want to converge; Z (¢) captures the
evolution of the eigenvalues while keeping the eigenbasis
fixed, as U comes from the SVD at initialization; and X (t)
is the remaining error term capturing the change in the eigen-
basis. The update on A(t) is given by A(t + 1) = g(A(t)),
where g : R” — R™ admits an explicit expression. Hence,
in light of this explicit expression, if we had X (¢) = 0, then
the desired convergence would follow from the analysis of
the recursion for A(t) (see Lemma G.3).

The main technical difficulty lies in carefully controlling
the error term X (t). In particular, we will show that X (t)
decays for large enough d, which means that dynamics
(17) is well approximated by I + Z(t). The proof can be
broken down in four steps. In the first step, we compute
the leading order term of V g(;) (see Lemma E.2 and E.3).
This simplifies the formula for V g(;), which can then be
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expressed as an explicit nonlinear function of Z(t) and
X (t). In the second step, we perform a Taylor expansion
of V(). seen as a matrix-valued function in Z(t) and
X (t) (see Lemma E.4). The intuition for this expansion
comes from the fact that X (¢) is a small quantity, and also
1Z(t)l,, — 0ast — oo. In the third step, we show that
the norm of V g(;) vanishes sufficiently fast (see Lemma
E.5), which implies that the projection step B(t + 1) :=
proj(B’(t)) has a negligible effect (see Lemma E.6). After
doing these estimates, we finally obtain an explicit recursion
for X (t). In the fourth step, we analyse this recursion (see
Lemma E.7): first, we show that the error does not amplify
too strongly (as in Gronwall’s inequality); then, armed with
this worst-case estimate, we can prove an exponential decay
for X (t), which suffices to conclude the argument. O

Further discussions on the results in this section can be
found in Appendix F.

5. Extension to General Covariance

In this section, we consider a Gaussian source with general
covariance structure, i.e., X = UD?U". Without loss of
generality, the matrix D can be written as

D:Dlag([Dlv7D1||DK77DKD7 (18)
——— —_———
x k1 x kK
where Zfil ki=d,k; > 1and D; > D;y; > 0. We start
by deriving a closed-form expression for the population risk,
similar to Lemma 4.1. Its proof is given in Appendix B.
Lemma 5.1. Let 0 € L?(R, p) be an odd homogeneous
activation, then R(r) is equal to the minimum of

é (Tr [ATAf(BBT)] —2¢1 - Tr[BDA] + Tr [DQ])
(19)

under the constraint | B, .||2 = 1. Moreover, R(r) = R(r).

Lemma 5.1 can be extended to any odd o € L?(R, ;1) at the
cost of losing the equivalence between R (r) and R(r).

We restrict the theoretical analysis to proving a lower bound
on (19) in the weight-tied setting (14). This lower bound
is achieved via the choice of A, B in Proposition 5.3, and
we give numerical evidence (see Figure 6 in Appendix I)
that gradient descent saturates the bound without the weight-
tying constraint. Thus, we expect our lower bound to hold
also for general (not necessarily weight-tied) matrices. The
lower bound is given by the minimum of

! @ <§:,3‘>2 —|—§: <c2i2 —2c1D;B; +D2>
d\ n \iH7 l i=1 ' o i
(20
over all 5; > 0 and
0 < s; <min{k;,n}, 1 <K s <min{d,n}. (21)

Here g(x) := f(z) — cx, and we use the convention that
2 N P

% = 0 and § = +oo for ¢ > 0. We can also explicitly

characterize the optimal s;, 3;. The optimal s; are obtained

via a water-filling criterion:

s = [kla"' 7kid(n)—17res(n)707'” ;O]a (22)

where s = [s1,---, sk, id(n) denotes the first position
at which min{n,d} — >k, < 0, and res(n) :=
min{n, d} — Zid:(f)_l k;. The B; can also be expressed
explicitly in terms of f,s;, D;. This is summarized in the

following theorem.

Theorem 5.2. Consider the objective (19) under the weight-
tied constraint (14). Then,

(19) > LB(D) := min (20), (23)

SiyPi

where B; > 0 and the s; satisfy (21). Furthermore, the
minimizers of (20) are the s; obtained via the water-filling
criterion (22) and

g(1) M* AL
Si plj jzlsjAj_FDl A i < M*
1 FIEESV Y R A I > )
Bi = o S (24)

0, 1> M*,

where Aj = Dy — D; and M* is smallest index such that

1 I
ign) Z?i1+lsj(DM*+1 = Dj)+ Dp+41 <0.
1

If no such index exists, then M* = K.

We give a high-level overview of the proof below, and the
complete argument is provided in Appendix H.

Proof sketch of Theorem 5.2. We first show that (23) holds.
Consider the following block decomposition of B having
the same block structure as D:

B =[I'iB;i|--- [Tk Bkl, (25)

where B; € R"™*% with ||(B;);.|]2 = 1 and {Il"j}jl-i1
are diagonal matrices with ZgK:1 I‘? = I. Each B; plays
a similar role to the B in the isotropic case. The crucial
bound for this step comes from Theorem A in Khare (2021):

(T;B; B/ T;)°? = — . Diag(I'?)Diag(T?)",

1
54
where s; = rank(BZ-B;r). Now, ignoring the (PSD) cross-
terms for ¢ # j we can proceed as in the proof of Proposition
4.3 to arrive at (20). It then remains to minimize (20), which
is done using tools from convex analysis. O

Asymptotic achievability. We show that the lower bound
in Theorem 5.2 can be asymptotically (i.e, as d — o0)
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Figure 3. Performance comparison for the compression (¢ = sign)
of an non-isotropic Gaussian source for k = (20, 20, 35, 25) and
(D1, D2, D3, Ds) = (2,1.5,1,0.8).

achieved by using the block form (25), after carefully pick-
ing B; for each block. Specifically, first we generate a
matrix U € R™*"™ which is sampled uniformly from the
group of orthogonal matrices. Next, we choose each B;

LT

such that B; B, = %UDZ-UT, where D, is a diagonal
matrix with

. i—1 i
(D) o 17 if Zj:l k] <v S Z]:l k]’
vy 0, otherwise,

and the rows of B, are given by b; = |\Ebi|\ . Furthermore,
112

we pick 1"? = LTand A = BBT. The scalings ~; and

[ are chosen such that 3; := (+; are the minimizers of

(20) for s; as in (21). This is formalized in the following
proposition.

Proposition 5.3. Assume A, B are constructed as de-
scribed above and fix r > 0. Also assume that, for all
i, % converges to a strictly positive number as d — 0.
Then, for any € > 0, with probability 1 — 7,

[R(A,B) — LB(D)| < Cd~++,

where LB(D) is defined in (23), and the constants ¢, C only
depend onr, € and limgy_, %

The proof of this lemma is similar to that of Proposition 4.4,
and it is provided in Appendix H.

Taken together, Proposition 5.3 and Theorem 5.2 show that
the optimal B exhibits the block structure (25), which
agrees with the block structure (18) of the data covari-
ance. The individual blocks are orthogonal in the sense
that BZT I';T'; B; = 0. Furthermore, we expect each block
to have the same form as the minimizers in the isotropic
case, up to some scaling. Such a structure is also confirmed
by the numerical experiments: for instance, it is observed in
the setting considered for Figure 6 in Appendix I.

Interpretation of the water-filling solution. To provide an
intuitive illustration of the property of solutions in Propo-
sition 5.3, consider the case of K = 2 and k1 = ko. In

this case, the eigenvalues of BB T will take only the two
values A1, A2 corresponding to the two blocks. For rate
r < ki/d = 1/2, we have Ay = 0 since water-filling im-
plies that only the block corresponding to D is utilized by
B. For rate r > 1/2, we have Ay > 0, as soon as

2
2ct

(1 + MT) Dy > D;.

The inequality can be obtained by evaluating explicitly the
condition stated in Theorem 5.2 below Equation (24) in this
special case. Furthermore, in the limit » — co, we have that
i—; — g—;. This means that, for sufficiently large rates, the
weight given by the encoder to each block is proportional to
the corresponding eigenvalue of the data.

The water-filling behaviour can be observed in a setting
with four blocks in Figure 3. Namely, at each of the rates
{k1/d, (k1+Fke)/d, (k1 +ka+ks)/d, (k1 +he+ks+Fka)/d}
that correspond to the earlier blocks being utilized to their
full capacity, the derivative of the lower bound experiences
a “jump” at which the next \; becomes positive.

6. Discussion

Population vs. empirical loss. All our results hold for the
optimization of the population loss. Extending them to the
empirical loss is an interesting direction for future research.
One possible way forward is to exploit progress towards re-
lating the landscape of empirical and population losses, see
e.g. (Mei et al., 2018). We remark that, in the simulations
of gradient descent, we always use the tempered straight-
through estimator of the sign activation (see Appendix I
for details). Thus, another promising direction is to show
that, in the low-temperature regime (i.e., when the differen-
tiable approximation of the sign becomes almost perfect),
the gradient-based scheme converges to the minimizer of
the population risk.

Optimality of two-layer autoencoders. This paper charac-
terizes the minimizers of the expected /5 error incurred by
two-layer autoencoders, and it shows that the minimum er-
ror is achieved, under certain conditions, by gradient-based
algorithms. Thus, for the special case in which o = sign, a
natural question is to what degree the model (1) is suitable
for data compression. Let us fix the encoder to be a rotation-
ally invariant matrix, i.e., B = U AV withU , V indepen-
dent and distributed according to the Haar measure and A
having bounded entries. Then, the information-theoretically
optimal reconstruction error can be computed via the replica
method from statistical mechanics (Tulino et al., 2013) and,
in a number of scenarios, it coincides with the error of a
Vector Approximate Message Passing (VAMP) algorithm
(Rangan et al., 2019; Schniter et al., 2016). Furthermore,
it is also possible to optimize the spectrum A to minimize
the error, which leads to the singular values of B being all
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Figure 4. Performance comparison for the compression (o = sign)
of an isotropic Gaussian source.

1 (Ma et al., 2021).2 Surprisingly, for a compression rate
r < 1, the optimal error found in (Ma et al., 2021) coin-
cides with the minimizer of the population loss given by
Theorem 4.2. Hence, two-layer autoencoders are optimal
compressors under two conditions: (i) » < 1, and (ii) fixed
encoder given by a rotationally invariant matrix. Both con-
ditions are sufficient and also necessary. For r > 1, VAMP
outperforms the two-layer autoencoder. Moreover, for a
general encoder/decoder pair, the information-theoretically
optimal reconstruction error is given by the rate-distortion
function, which outperforms two-layer autoencoders for
all » > 0. This picture is summarized in Figure 4: the
blue curve represents the lower bound of Theorem 4.2 (for
r < 1) and Proposition 4.3 (for » > 1), which is met by
either running GD on the population risk (blue crosses) or
SGD on samples taken from a isotropic Gaussian (green
triangles) when d = 100;? this lower bound meets the per-
formance of VAMP (red curve) if and only if » < 1; finally,
the rate distortion function (orange curve) provides the best
performance for all » > 0.

Universality of Gaussian predictions. Figure 4 (and also
Figure 6 in Appendix I) show that gradient descent achieves
the minimum of the population risk for the compression of
Gaussian sources. Going beyond Gaussian inputs, to real-
world datasets, Figures 1-2 (as well as those in Appendix I)
show an excellent agreement between our predictions (using
the empirical covariance of the data) and the performance
of autoencoders trained on standard datasets (CIFAR-10,
MNIST). As such, this agreement provides a clear indication
of the universality of our predictions. In this regard, a flurry
of recent research (see e.g. (Hastie et al., 2022; Hu & Lu,
2022; Loureiro et al., 2021; Goldt et al., 2022; Dudeja et al.,

*More specifically, Ma et al. (2021) consider an expectation
propagation (EP) algorithm (Minka, 2001; Opper et al., 2005;
Fletcher et al., 2016; He et al., 2017), which has been related to
various forms of approximate message passing (Ma & Ping, 2017;
Rangan et al., 2019).

3For further details on the experimental setup, see Appendix 1.

2022; Montanari & Saeed, 2022; Wang et al., 2022)) has
proved that the Gaussian predictions actually hold in a much
wider range of models. While none of the existing works
exactly fits the setting considered in this paper, this gives
yet another indication that our predictions should remain
true more generally. The rigorous characterization of this
universality is left for future work.

The choice of the activation function. The sign activation
function constitutes an important special case of our analysis.
However, our results hold for a broader class of activations.
In particular, under the restriction that the rows of the en-
coder B lie on the unit sphere, all the results apply for any
odd activation. The reason to fix the norm of the rows of the
encoder is to prevent the network from entering the linear
regime (e.g., by scaling B — ¢B and A — %A). In fact, in
the linear regime, perfect recovery can be achieved and this
case has been well studied, see e.g. (Baldi & Hornik, 1989;
Kunin et al., 2019; Gidel et al., 2019). We also note that, if
the activation function is homogeneous, the restriction on
the norm of the rows of B can be lifted, as the norm can be
scaled out. Extending our analysis to activation functions
that are not odd (e.g., ReLU) is an exciting avenue for future
research. To achieve this goal, we expect that novel ideas
will be needed, since our current approach relies on the fact
that the Hermite expansion of the activation function (4) has
only odd monomials.
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A. Additional Related Works

Rate-distortion formalism. Lossy compression of stationary sources is a classical problem in information theory, and
several approaches have been proposed, including vector quantization (Gray, 1984), or the usage of powerful channel codes
(Korada & Urbanke, 2010; Ciliberti et al., 2006; Wainwright et al., 2010). The rate-distortion function characterizes the
optimal trade-off between error and size of the representation for the compression of an i.i.d. source (Shannon, 1948;
1959; Cover & Thomas, 2006). However, computing the rate-distortion function is by itself a challenging task. The
Blahut-Arimoto scheme (Blahut, 1972; Arimoto, 1972) provides a systematic approach, but it suffers from the issue of
scalability (Lei et al., 2022). Consequently, to compute the rate-distortion of empirical datasets, approximate methods based
on generative modeling have been proposed (Yang & Mandt, 2021; Lei et al., 2022).

Non-linear inverse problems. The task of estimating a signal & from non-linear measurements y = o (Bx) has appeared
in many areas, such as 1-bit compressed sensing where o (z) = sign(z) (Boufounos & Baraniuk, 2008), or phase retrieval
where o(z) = |z| (Candes et al., 2013; 2015). While the focus of these problems is different from ours (e.g., compressed
sensing has often an additional sparsity assumption), the ideas and proof techniques developed in this paper might be
beneficial to characterize the fundamental limits and the performance of gradient-based methods for general inverse
reconstruction tasks, see e.g. (Ma et al., 2021; Matsumoto & Mazumdar, 2022).

B. Closed Forms for the Population Risk

For the proofs of Lemmas 4.1 and 5.1 in the current section, we assume that the rows of B have non-zero norm, hence, in
particular, they may be chosen to have unit norm. In the end of the section, we elaborate on why this assumption holds true.

Let us also mention that we call o odd in L? sense. For this particular case, it means that o(x) = o(—x) for x # 0 and
|o(0)| < C, where C is some universal constant. This concern is purely technical, since the main application of our results
is 1-bit compression. Namely, we do not set o(0) = sgn(0) = 0. In fact, this would mean that the compressed sequence can
take values in {—1,0, 1}, which would not result in 7-bit compression, but rather in log, (3)-bits compression. It is safe to
ignore this technicality and intuitively assume that o(0) = 0.

Proof of Lemma 4.1. Opening up the two-norm gives

E|z — Ao(Bz)|; = E||z| + E| Ac(B=)||; — 2E(x, Ac(Bx)). (26)
Since & ~ N (0, ), we get
E|lz||3 = d @7)
Let B' = [by,...,b,] € R and A = [a,,...,a,] € R*™, with ||b;||, = | B;.|| = 1. Rewriting the second term in
(26) gives
E|Ao(Bz)|3 = Y (ai.a;) - E[o((bi,x)) - o((bj,z))]- (28)

4,J=1

Using the reproducing property of Hermite coefficients (see, e.g., Chapter 11 in (O’Donnell, 2014)), since the random
variables (b;, ) and (b;, x) are (b;, b;)-correlated, we have

E [hae1((bi, @) - hors1((bj, @))] = (bi, b;)* ', E[haer1((bi, @) - haes1((bj, ®))] = 0,
for k # £. This gives that
E[o((bi, @) - o((bj, )] =Y (cart1)*(bi, b;)* T = f((bi, b;)),
£=0

and, hence, using (28) we arrive to

ElAo(Ba)3 = 3 (ai,a;) - f({(bi,b;) =T [ATA- f(BBT)]. (29)

ij=1

13
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Rearranging the last term in (26) gives

d n

E(z, Ac(Bx)) =Y Y a - Elmio((bj, x))], (30)

i=1 j=1

where a’; stands for the i-th coordinate of the vector a; and ; stands for the i-th coordinate of the vector a. Let us now
compute the inner expected value for each pair (i, j). Notice that the random variables (b;, ) and x; are jointly Gaussian

with zero mean and covariance matrix 3 € R2*2;
221 = ilg = Exi<bj,w) = Engf = b;, ill = E(bj,:c>2 = ||b]||§ = 1, igg = ]EJ,‘ZZ =1.

Hence, the random vectors ({b;, ), z;) and

(2/1753- Y1+ /1 = (0))? '92) . with (y1,92) ~ N(0,1)

are identically distributed. In this view, we obtain

Bleio((bs, )] = E [ () -y + /1= (6))2  2) o(11)|

=% -Elyio(y1)] + /1 = (02)2 - Elya] - E[o(31)] = c1 - b5,

3D

where we applied the reproducing property to conclude that E[y;o(y1)] = ¢;. Consequently, by combining (30) and (31),
we get that

E(x, Aoc(Bz)) = ¢ - Z Zaé-b;- =c¢; - Tr[BA]. (32)
i=1 j=1

By combining (26), (27), (29) and (32), we obtain the desired expression for E(r)

Assume now that ¢ is homogeneous. Then, in (28) and (30), the norm of b; can be pushed into the corresponding a; and,
hence, we obtain
inE|z — Ac(Bz)|3 = in E|z— Ac(Bz)|3
pinEllz - Ao(Bz)l; = | min _ Ellz — Ao(Baz)[z,
which proves that R(r) = R(r).

Finally, consider the case o(x) = sign(z). Then, Grothendieck’s identity (see, e.g., Lemma 3.6.6 in (Vershynin, 2018))
gives
2 2
Eo((b;,z))o((bj, x)) = —arcsin((b;, b;)) = f(z) = —arcsin(z).
s ™

Recalling that the first Hermite coefficient of o (x) = sign(z) is equal to \/g finishes the proof. O

Proof of Lemma 5.1. The proof of Lemma 5.1 follows from similar arguments as that of Lemma 4.1. Given this, we only
explain the key differences. We first show that it is enough to consider 3 = D?. Given the SVD X = UD?U ", we have
x = U Dz, where £ ~ N'(0, I). Now, we can push the rotation U in A, B:

| — Ao(Bz)||, = HDaE - UTAU(BUDa?;)HQ .

Thus, after replacing A with U ' A and B with BU, we may assume that & = DZ.

We again open up the two-norm
E|z — Ao(Bz)|; = E||z| + E| Ac(B=)||; — 2E(x, Ac(Bz)). (33)

For the first term, we clearly have
Ellz|3 = Tr [D?].
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Now, for the second term we write
E||Ao(Bz)|; = E||Ao(BDz)|j3,

where & ~ N(0,I) . Thus, as in the proof of Lemma 4.1, we have
E||Ac(BD#)|2 =Tr|ATA- f(BDQBT)} .
Similarly, for the last term we obtain
E(x, Ac(Bz)) = E(Z, DAc(BD%)) = ¢y Tr [DABD].

Finally, since o is homogeneous, by abuse of notation we can replace B.D by any B with unit-norm rows. This follows
from the fact that, similarly to the proof of Lemma 4.1 (namely, equations (28) and (30)), we have that

n

E|As(BDZ)|l3 = ) (ai,a;) - E[o((BD);: &) - o(((BD);, &))],

4,5=1

J o (34)
E(z, DAc(BDz)) = ZZ Di;- &) -o((BD);.,&))],
which, by homogeneity, readily gives that the norm of (B.D); . can be pushed into the corresponding a;.
As a result, the statement of Lemma 5.1 readily follows by comparing the terms. O

Rows of B are non-zero. We show that the assumption holds true by contradiction. Without loss of generality, assume that
the first n” < n rows of B are zero vectors. Hence, from (34) we can see that the following holds:

n

E|Ac(BD@)|3= ) (ai,a;)-E[0({(BD):%)) o(((BD);,, &))]

i,j=n’+1
+ Y laia;)-E[0(0) o((BD);.@))
i<n’ A j>n’
+ Y (ana) Elo(0)-o(BD). @) + Y (aia;)-a(0)? 55)
i>n' A j<n’ i,7<n’
= > {aia;) -Elo(((BD)i;, &) o({(BD);;, &)+ ) _ {aia;)0(0)*
i,j=n/+1 1,j<n’
> Y (aia;) -Elo(((BD)i. &) o(((BD);,, &))],
i,j=n’+1
where in the fourth line we used that for & ~ N(0, I), as o is odd, the following identity holds:
E[lo((BD);,,2))] =0,
and the last inequality follows from the fact that for the Gram matrix M of the vectors {al}, 1t
3 (aia;) - 0(0)? = 0(0)? - (1, M1) > 0.
i,j<n’
Similarly, one can verify that
E(z, DAc(BDz%)) Z Z i) - o((BD);.., &))]. (36)

i=1 j=n’'+1
Combining (35) and (36), and recalling the population risk form in (33), we conclude that

R(Aa B) Z 7?1(14:,'r1’+1:7 Bn’Jrl:,:);

15
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where A. /1. and B, 1. . are obtained by removing the zero columns/rows from A and B, respectively. This means
that considering a matrix B with zero rows is equivalent to looking at a smaller rate ' < r. We show in Theorem 4.2,
Proposition 4.3 and Theorem 5.2 that the population risk is monotone in the rate. Thus, having zero rows in B is clearly
sub-optimal.

C. Proofs of Lower Bound on Loss (Section 4.1)
Cl.Caser <1

C.1.1. LOWER BOUND ON R(r)

Lemma C.1. Ler A = [ay,...,a,] € R and BT = [by,...,b,] € R¥*", with ||b;||y = 1 fori € [n]. Let ¢; and f(-)
be defined as per Lemma 4.1. Then, the following bound holds:

Li(A,B) :=Tr ATA. (BBT)O(%H)} 20

1y miBA 2 -

Gz " &7

Proof of Lemma C.1. For any symmetric P, Q,T € R™*", a direct computation readily gives that
Tr[P-(QeT)]=Tr[(Po@)-T). (38)
Thus, by taking P = AT A, Q = (BB")°! and T = (BB ")°“*1) we obtain
Tr [ATA : (BBT)"(%“)] = Tv [(ATA o (BBT)*")- (BB o (BBT)")].

Note that BB " is PSD and, therefore, (BB T)Oe is also PSD by Schur product theorem. Furthermore, as the rows of B
have unit norm, (BB T)Of has unit diagonal. As a result, if we show that, for any PSD matrix @) with unit diagonal entries,

2¢cy 3
Tr [(ATA ©Q)- (BB o Q)} 2 T [BA] > - “n, (39)
f() (f(1))?
then the claim (37) immediately follows.
As Q is a PSD matrix with unit diagonal, it admits the following decomposition
Q= Z wu; = Diag(u;), Z D2 (40)
i=1

In this view, defining
A, =AD;, B;=D,B,

we can rewrite the LHS of (39) in a more convenient form for further analysis. In particular, for the second term we deduce
the following

Tr[BA] =Tr[AB] =

(ZD2> ]:iTr[A-Df ZTr [(AD;) ZTrAB

i=1
Let us now rearrange the first term of (39). Notice that

n n n n

(ATA0Q)i; =) (ai,a)) - ujuj, =) (ai-uj,a;-uj) =Y (ADy)" - (AD))i; = > (AL Ap)i;.

k=1 k=1 k=1 k=1

In the same fashion we get

n
(BB'0Q)i; =Y (BiBy)ij,
k=1
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from which we deduce that
n
Tr [(ATA ©Q)- (BB o Q)} -3 [AIAiBjB]T} .
i,j=1
Therefore, the proof of (39) can be obtained by proving that, for any matrices A,,..., A, € R¥>" and By,...,B,, €
Rnxd,

n

n 2
ST [AinBjBH - % S Tr[AB) + %Tr 1] > 0. 1)
=1

(f(1))?

i,j=1

To show the last claim, let us define the following matrices

X:iAiTAi, Y:iBiBiT, Zzzn:BiAi,

i=1 i=1
which allows us to rewrite the statement of (41) as

2
1

2c c
o [XY R OIAREE

Note that X is PSD, hence it has a symmetric square root, which we denote by v/ X . Using the continuity of the quantities
involved in the LHS of (42), we can assume without loss of generality that X is invertible. In fact, the following quantities
are continuous: trace, matrix product, matrix transpose. In addition, we can always introduce a small perturbation to A;’s
which makes X full-rank. Thus, it suffices to show that (42) holds for A;’s such that X is invertible.

: I} > 0. (42)

In this view, for any matrix T' € R™*", we have

n

og; %-TAJ—\/XBi i—iﬁ{(() TA] - JYBZ-) : <%~AiTT—B:¢)7>}
_ - . i T T 2a T T
—;T [(f(l)) -TA] A,T f()WBAT +XBB}
_ 4 pxpT_ 2 T
_ﬂ{(f(l)y TXT f(l)\/YZT +XY}, (43)

where in the second line we used that Tr [M] = Tr [MT] for any M, and Tr [M N| = Tr [N M| for any M, N.

As X is invertible, its square root v/ X is invertible. As X is also PSD, its inverse, i.e., X _1, is PSD and, hence, it has a
symmetric square root, i.e., V. X ~! In this view, we get that

X1=(vx).
Thus, by picking T = (v/X)~', we obtain
T'T=T>=X""', T'WVX=TVX=1
Using these observations, we deduce that the RHS of (43) is equal to the LHS of (42), which concludes the proof. O

C.1.2. MATRICES IN H,, 4 ARE THE ONLY MINIMIZERS

Lemma C.2. Let A € R¥" and B" = [by,...,b,] € R¥", with ||b;||s = 1 fori € [n]. Let ¢; and f(-) be defined as
per Lemma 4.1. Then, we have that the set of minimizers of

Tr [ATA : f(BBT)} —9¢; - Tr [BA] (44)
coincides with the set H,, 4 of weight-tied orthogonal matrices .

17
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Proof of Lemma C.2. A direct computation immediately shows that the lower bound (37) is achieved for all £ € N by
matrices (A, B) that belong to the set H,4 ,,. Define the sets of minimizers of (37) as follows

My := argmin Ly (A,B) = {(AB,B) : Ap € argmin £4(A, B), B € argmin EE(AB,B)} .
A,B:||b;|]2=1 A B:||bs]]2=1

We will now show that

() Me=Hpa (45)
=0

As the Taylor coefficients of f(-) are non-negative, (45) readily gives that the set of minimizers of (44) coincides with #,, 4.
Futher, recall that ¢; # 0 and Z;’;l (62K+1)2 = 0 and, hence, (45) is the union of the linear term (¢ = 0) and at least one
non-linear (£ > 0) term.

We first prove that it is enough to consider the case » = 1. Thus, assume that the result holds for n = d and consider now
n < d. We have that, for any orthogonal matrix O € R%*¢,

E. | — Ao(Bz)|2 = B, |Oz — Ao(BO)|
(46)
=E,

)

z— 0 Ao(BOx)

where in the first step we have used the rotational invariance of &, and in the second step we have multiplied the argument of
the norm by the orthogonal matrix O ' . Thus, (46) gives that (A, B) € H,, 4 if and only if (OTA, BO) € Hy, 4.

Let us write the SVD of B as UDVT, where U € R"*" )V € R4%d are orthogonal matrices and D € R™*d g a
(rectangular) diagonal matrix. Thus, by taking O = V/, one can assume that B has the form (B1.,,,1:n, 01:n,1:4—n ), Where
Bi.;, 1.0, denotes the left n x n sub-matrix of B and 01.,,,1.4—n, denotes a n x (d — n) matrix of 0’s. We also write the
decompositions A = ((A1..1:0) ", (Ans1.a.1:m) )" and @ = (T1., Tyt1:4), Where Aq.p, 1., (tesp. Ay i1.4,1.,) denotes
the top n x n (resp. bottom (d — n) x n) sub-matrix of A, and x;.,, (resp. €, +1.4) denotes the first n (resp. last d — n)
components of . Hence, the objective (2) can be expressed (up to the constant multiplicative factor d~!) as the sum of

Rl(A7 B) =E |:||w1:n - Al:n,l:nU(Blzn,lznmlzn)||2i|

and
R2(A, B) =E [ |10 = Aut 1100 (Br i)

As x,,11.4 has zero mean and it is independent from x;.,,, we have that
RZ(Av B) =d—n+E |:||An+1:d,1:nJ(Blzn,1:nm1:n)“2] 5

which is minimized by setting A,,11.4,1.» to 0. Note that R, depends only on A1.p, 1.5, B1:n,1:n (and noton Ay 1.4.1:0),
hence its minimizers are (A1;n,1:m Bl:n,l:n) € Hp,n by our assumption on the 7 = 1 case. As a result, by using that
(A, B) € Hg,, ifand only if (OT A, BO) € H,,,,, we conclude that all the minimizers of the desired objective have the
form O((Al;ml:n)T, (Olm_d,lm)T)T and (B1.n,1:n, Olm,l:d_n)OT, i.e., they form the set #,, 4 defined in (7).

It remains to prove the result for = 1. First, consider ¢ = 0. In this case, we have

2
Lo(A,B) = Tr [ATABBT} - % - Tr[BA]
2
—Tr [BTATAB} ~ 2% [AB
f(n)
— |AB|? - 2 . 1y[AB] @7)
@ ’
where we have used that the trace is invariant under cyclic permutation. Notice that the minimizer of (47) is clearly
AB = 351,
M
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Consider some ¢ > 1. As AB = %Id and A, B are square matrices, B is invertible and ATA= ﬁ . (BBT)_l.
Thus,

261

f(1)
BBT)fl(BBT)o(2€+1):| _

LA, B)=Tr {ATA(BBT)"W“)} ~ 29 v [BA]

(48)
2c?

ez "

Let P = BB'. Note that P is symmetric and, hence, also its inverse is symmetric. Then, by using (38), we have that

3
Fay |

Tr [P’lPo(%“)} =Ty [(P’l : P)PCW} . (49)
An application of Theorem 5 in (Visick, 2000) gives that
PoP'>1, (50)
where > denotes majorization in the PSD sense. We now show that P o P~ = I. To do so, suppose by contradiction that
PoP '=I+R,
for some R = 0 such that R # 0. Hence,

T [(P o P)POM} —Tr [P"”] +Tr [RP"%} —n4Tr {RPOM} , (51)

where in the last equality we use that P (and, consequently, P°2%) has unit diagonal. By the Schur product theorem,
P°2“ » 0 and, hence, it admits a square root. Thus, we get

Tr [RP"”] —Tr [\/ P . R POMJ .

It is easy to see that the matrix v/ P°%* . R ./ P°% is PSD and, thus,
Tr [\/P"” "R-VP*| >0,

where the inequality is strict if and only if the corresponding matrix has only zero eigenvalues. However, for any non-zero

v € R™, we have that
Uy = VP v £0,

since vV P°?* is strictly positive definite (as P 0) and, thus, it does not have 0 eigenvalues. Hence, if
v - VP?*.R. VP .v=u]Ru, =0,

then u,, # 0 is an eigenvector of R corresponding to a zero eigenvalue. In this view, if V/ P2 . R/ P°% has all zero
eigenvalues, then all eigenvalues of R are zero. As R cannot be the zero matrix, by using (51), we conclude that

Tr [(P’l ° P)Pm} > n. (52)

By combining (48), (49) and (52), we have that £,(A, B) > —cn/(f(1))?, which contradicts with the fact that (A, B) is
a minimizer (since any (A’, B') € H,, 4 achieves the value of —c?n/(f(1))?). Therefore, we conclude that P o P~* = T.

At this point, we show that P o Pl=1 implies that P = I. Note that P is a Gram matrix, and let its basis be
{by,--- ,b,}. Define .
b; =b; — b;,

where b; is orthogonal projection of b; onto the space spanned by {b; };‘#. From a well-known result (see, for instance,
Theorem 2.1 in (del Pino & Galaz, 1995)) we have that

-1 1

e (53)
13113
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Hence, we obtain that
1b5]l2 < [[Bi]l2 =1, (54)

where the inequality is sharp only if b; is orthogonal to all {b; }" =i~ Then, from (53), we deduce

n=Tr[I]=Tr[PoP"~ Z||b||2 HbH lebl\ (55)
2 2

By combining (54) and (55), we conclude that {bi}ie[n] form an orthonormal basis, and, hence, P = I. This means that
(45) holds for » = 1 since

(44) = (c211)* - Lo(A, B),
=1
which concludes the proof. O
Proof of Theorem 4.2. 1t follows by combining the results of Lemma C.1 and C.2. O

C2.Caser >1
C.2.1. LOWER BOUND ON R(r)

Proof of Proposition 4.3. An application of Theorem A in (Khare, 2021) gives that
1 1
Tr {ATABBT} = (1,(ATA0 BBT)1) > (1, (Ding(BA)Diag(BA) ")1) = - (Tr [BA])"

where Diag(B.A) € R" stands for the vector with entries corresponding to the diagonal of the matrix B A. Hence, we have
2 oo

Tr [ATA : f(BBT)] —2¢,-Tr [BA] > %1 (Te[BA]?+Y_(car1)?-Tr [ATA : (BBT)OQM} —2¢;-Tr [BA]. (56)
=1

Define o := f(1) — c}. Then, for any 3 € [0, 1], we can rewrite the RHS of (56) as

2501
«

{Cd% (Tr[BA])® — 2(1 — B)cy - Tr | BA] +,§ cart1)? <Tr [ATA- (BBT)"”“} - Tr [BA]> - 6D

The first term in (57) is a quadratic polynomial in Tr [BA]. Hence, we have that
2
E (Tr[BA])? —2(1 — )¢y - Tr [BA]} > —d(1 - )% (58)

Define B, := [B,01.,,1.—q) and AZ = [AT, 01.n,1:n—aq]. One can readily verify that the traces in the second term of
(57) remain unchanged if we replace A and B with A, and B., respectively. Note that A., B, are square matrices, hence
we can apply Lemma C.1 (which readily generalizes to a different scaling in front of the second trace) to get

(oo} oo

R 28¢ 262 262
> (car1)? (Tr [ATA- (BB") 24+1} — % -Tr [BA]) > = (cars1)? 5a21n = —ﬂaln. (59)
=1 =1

By combining (56), (57), (58) and (59), we obtain that

1 2.2
2 (Tr [ATA : f(BBT)} 2Ty [AB]) +1>1-(1-p)>2 - ﬂacl (60)
By taking 3 = a/(c3r + «) and re-arranging the RHS of (60), the desired result readily follows. O
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C.2.2. ASYMPTOTIC ACHIEVABILITY OF THE LOWER BOUND
Lemma C.3. Let A, B be defined as in (12). Then, for any € > 0, we have that, with probability at least 1 — c/d?,
‘ (Tr [ATAf(BBT)} —2cTr [AB}) — (BPcirn + B%an — 261,871)’ < Cnzte.

C1
Arta

_r
%
€1

’(H;(Tr {ATAf(BBT)} —2c1Tr[AB])> - (1— TIQ>

Here, the constants c, C depend only on r and e.

Thus, choosing 3 =

the loss approaches 1 — i.e., with the same probability,

< odete

We start by proving the following.
Lemma C.4. Ler B , B be defined as in (12). Then, for any € > 0, we have that, with probability at least 1 — c/d?,

(BB")i, 1
~ T

< Cn~3te,
(BB )i,

max
2,7

Here, the constants c, C depend only on r and e.

Proof. f U € R™*™ is sampled uniformly from SO(n), then it follows from rotational invariance that any fixed row or
column is uniformly distributed on the n-dimensional sphere S"~!. Thus, any fixed row of U is distributed as g/ ||g||,.
where g ~ N (0, I/n). Now, it follows from the concentration of ||g||, (see e.g. Theorem 3.1.1 in (Vershynin, 2018)) that

gl =1, < Cn~2, where [[[l 5, denotes the sub-Gaussian norm. Denote by g, € R9 the first d components of g,,.

Then, by the same reasoning, it holds that ||/ ||g4]/, < ¢d™ . Looking at the definition of B, we have that, for

—1
2
any fixed ¢, the distribution of its rows is given by b; ~ \/rg,/ ||g||,. Furthermore, for any pair of indices 4, j, we have that

(BB")i; _ 1
~ T 2 - :
(BB );;  llbill2- 16512
Hence,
BB"), 1 e
}P’< (A AT)M -1 gn—é+e> :IP><M—1| Sn—;+e> SCexp(—d>,
(BB )zg Hb@||2 ’ ||bj||2 C

Now a simple union bound over all rows gives us

1 1 de
P (ma_x —_— — 1’ < n_2+6> < Cnexp <—) < %,
w0 [Billz - [1by]l2 ¢)~d

which implies the desired result. O

Next, we bound the traces of the terms BB " (BBT)O(%H). We start with the case ¢ = 0.
Lemma C.5. Let B be defined as in (12). Then, for any € > 0, with probability at least 1 — ¢/d?,

< odzte.

Tr {BBT(BBT)} —rn

Here, the constants c, C depend only on r and .

Proof. Note that

T [BB"(BB')| =) ((BBT),;J)2 = —1 ((1@21§T)i7j)2 4T {BBT(BBT) .

A AT 2
s 5\ (BB )y)
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Thus, an application of Lemma C.4 gives that, with probability at least 1 — ¢/d?,

Tr [BBT(BBT)} ~Tr [BBT(BBT)} ‘ < Tr [BBT(BBT) L Cd-b+e. 1)
Since the trace is invariant under cyclic permutation, we readily have that
AT AT
Tr [BB (BB )} = rn. (62)
By combining (61) and (62), the desired result follows. O]

Finally, we consider the higher order terms for ¢ > 1.

Lemma C.6. Let B be defined as in (12). Then, for any € > 0, we have that, with probability at least 1 — c/d?,

sup
0>1

Tr [BBT(BBT)O(%“)} - n‘ < Clog?n.
Here, the constants c, C depend only on r and .

Proof. We first observe that

20+2 20+2
T [BBT(BBT)C| =3 ((BBT):,) =n+> ((BBT),)
iJ i#j
An application of Lemma C.4 gives that, with probability 1 — c¢/d?,
2042 . 2042
sup ((BBT)M) < sup Z ( (1+Cd=1/2+e). (BBT)m) (63)
3y 1

LT
Furthermore, by using the first part of Lemma G.2 with A = BB , we have that, with probability at least 1 — 1/n?, the
RHS of (63) is lower bounded by

2042
/1
supz ( (1+ Cd71/2+6) -C ogn) < Clog?n,
>1 n

which implies the desired result. O
At this point, we are ready to give the proof of Lemma C.3.

Proof of Lemma C.3. Recall that {(cae41)?}52, denote the Taylor coefficients of f(z). By using that A = SB', our
objective becomes

Tr [ATA f(BBT)} — 26, Tr [AB] = 82Tr {BBT f(BBT)} — 2¢18n

= 52 (ears1)*Te [BBT(BBT G440 — 2¢,n
=0

— 620%7% + B2 Z(CQZH)QTL —2c18n

+ B2 (Tr [BBT (BBT)} - m) + B2 Z Covs) (Tr {BBT(BBT)W“)} - n) .
Then, by bounding the last two terms with Lemma C.5 and Lemma C.6, the desired result follows. O
Proof of Proposition 4.4. The proof is a direct application of Lemma C.3. O
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D. Global Convergence of Weight-tied Gradient Flow (Theorem 4.5)

We start by giving a formal recap of the weight-tied gradient flow considered in Section 4.2. Under the weight-tying
constraint (14), the objective (13) has the following form

U(3,B) =% Tr [BTB : f(BBT)} —28n

n (64)
=82 > (bisby) - [ ((bi,b;)) —26n,

i,7=1

where ||b;||2 = 1 for all i. Note that the optimal 3* can be found exactly, since (64) is a quadratic polynomial in /3. In this
view, to optimize (64), we perform a gradient flow on {b;}?" ,, which are regarded as vectors on the unit sphere, and pick
the optimal 8* at each time ¢. Formally,

B(t> - E;L,jzl <bi, bj> - f (<b“ bj))’ -
algf) =—Ji(t)Ve, W(B(1), B(t)),

where J;(t) := I — b;(t)b;(t) T projects the gradient V, U(3(t), B(t)) onto the tangent space at the point b;(t) (see (69)
for the closed form expression). This ensures that ||b;(¢)||2 = 1 along the gradient flow trajectory. The described procedure
can be viewed as Riemannian gradient flow, due to the projection of the gradient Vi, ¥(/5(¢), B(t)) on the tangent space of
the unit sphere. We now present the formal counterpart of Theorem 4.5.

Theorem D.1. Fix r < 1. Let B(t) be obtained via the gradient flow (65) applied to U defined in (64). Let the initialization
B(0) have unit-norm rows and rank(B(0)) = n. Then, ast — oo, B(t)B(t)" converges to I, which is the unique global
optimum of (64). Moreover, define the residual

o(t) =Tr (Bt)B(t)" — 1) f(B(t)" B(1)] >0,
which vanishes at the minimizer, and let T be the first time such that ¢(T') = 6. Then,

2f%(1)
5

T <~ 1{6(0) > nf(1)} - f(1) - log det(B(0)B(0)) — 1{5 < nf(1)} - log det(B(0)B(0)T).  (66)

In words, if the residual at initialization is bigger than n f(1), then it takes at most constant time to reach the regime in
which the convergence is linear in the precision §. We also note that by choosing the optimal 8*, the function ¢ can be

related to the objective (64) by U (5*, B(t)) = —m. Hence, (66) gives a quantitative convergence in terms of the

objective function as well.

We now are ready to present the proof of Theorem D.1. Let B T= [b1,- -, by]. Recall that, under the weight-tying (14),
the objective in (13) can be re-written as

n
B2 (bisby) - f ({biby)) — 26m. (67)
i,j=1
By the definition in Theorem D.1, the residual ¢(¢) is given by

n

$(t) =D (bi,bj) - f ((bi, b)) (68)
i#]

In this view, in accordance with (65), we study the following gradient flow:

Pt — —32(1) - [T (0) X, b5 (1) - 9((i(0), b5 (1))

SNZIOETZON
17

16%(0)[]2 =

(69)
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where g(z) := z - f'(z) + f(x), and we have rescaled the time of the dynamics by a factor 2 to omit the factor 2 in front of
(% (t). From here on, we will suppress the time notation when it is clear from the context, for the sake of simplicity. Note
that one of the terms is absent in the summation, due to the fact that by definition of the operator J:

Jib, = 0.
In addition, since J, defines the projection of the gradient on the tangent space at the point by, of the unit sphere, along the
trajectory of the gradient flow (69) we have that ||bg||2 = 1.

The gradient flow (69) is well-defined (i.e., its solution exists and it is unique) when its RHS is Lipschitz continuous (see,
for instance, (Santambrogio, 2017)). It suffices to check the Lipschitz continuity of g(-). Note that both x f'(z) and f(z) are
Lipschitz continuous on any interval [—1 + d, 1 — ¢] for some 6 > 0. Hence, the RHS of (69) is Lipschitz continuous, if

max|<bi,bj>| < 1 —(S, (70)
i#]

where § is bounded away from 0 uniformly in ¢.

Recall that, by the assumption of Theorem D.1, we have that rank(B(0)B(0) ") = n, hence det(B(0)B(0) ") > ¢ for
some €1 > 0. Thus, from the result in Lemma D.3, we obtain that

det(B(t)B(t)") > €. (71)

Let0 < A1 < Ay <...< ), denote the eigenvalues of B(t)B(t) " in increasing order. Then, (71) directly gives that

)\112[)\1261 > 0.

=2

Since B(t)B(t)" has unit diagonal, we have that >, A\; = n. Hence, the smallest possible value of A; during the

gradient flow dynamics can be inferred from
€1

H?:2 Ai’
by picking the largest possible [;-_, A; given the constraint ) ., A; < n. This is achieved by taking

AL >

Al:nil7 VZ€{2,,’H,},

n n n—1 1 n—1
A = =(1 <C,
Z_:H2 (n—l) ( +n—1> -

where C' is a universal constant, since the RHS converges from below to Euler’s number as n increases. This proves that
A1 is bounded away from zero uniformly in ¢. As a result, we can readily conclude that (70) holds. To see this last claim,
consider a vector v which has 1 on position ¢ and —sign(b;, b;) on position j. Hence, we have that

which gives

20 = A1 v]3 <o T (BO)B(t) v =2 -2 [(b;, b;)| = (b, b;)| < 1— Ay

Notice that
$(t) < (n* = n)f(1),
since z f(z) < f(1) for |x| < 1. Hence, we have that 3(t) > #(1) > 0. In this view, along the trajectory of the gradient
flow (69), the quantity ¢(t) is strictly decreasing until convergence, by the property of gradient flow.
Lemma D.2 (Characterization of stationary points). Consider the gradient flow (69). Then, the following holds:

(A) Any orthogonal set of b; is a stationary point and a global minimizer.

(B) The gradient flow (69) never escapes any subspace spanned by a set of linearly dependent b;. However, for each such
subspace there exists a direction in which (67) can be improved.
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Proof of Lemma D.2. Recall that 5(¢) > 0 and {b;}?_;. Then, the stationary point condition can be expressed as
Ji Y bj-g((br,bj)) =0, Vk€[n]. (72)
J#k

Thus, any orthogonal set of vectors is clearly a stationary point by definition of g(-). Moreover, (67) is minimized iff
BB = I as zf(z) is an even function since f(-) is odd.

Note that the kernel of the operator J, is spanned by the vector by,. Thus, the condition (72) is equivalent to
> by g((bi, b)) = - b,
J#k

for some v, € R. One can readily verify that g(«) = 0 if and only if = 0. Thus, either (i) b;, is orthogonal to b; for
all j # k and v, = 0, or (ii) by, lies in the span of {b;} . If condition (i) holds for all k € [n], then {b;}?_, form an
orthogonal set of vectors and we fall in category (A). If condition (i) holds for some k € [n], then we fall in category (B).

Now, let us show that, if {b;}?_; spans a sub-space of dimension smaller than n, then there is a direction along which the
value of (67) can be improved. Since the {b;}?"_; are linearly dependent, there exists w of unit norm such that

(u,bj) =0, Vje|[n]. (73)
For some k € [n], consider the perturbation
- 1
by = —— - (by, + X - u),
SV e (b )

which has unit norm as (by, u) = 0. Recall that (67) can be expressed as
B 2237 (busby ) f ((Brobs) ) + 5 + Z (bi,b;) £ ((bi,b;)) | — 26n. (74)
j#k

Here, /5 is chosen to be the minimizer of the quantity (74) having fixed {b; } ;-1 and bi. Thus, in order to prove that the
population risk gets smaller by replacing by, with by, for any A > 0, it suffices to show that the following quantity

> (b 1 (b))
J#k

is decreasing with \. This last claim follows from the chain of inequalities below:

1

(75) = W > (br,by) (m <bk,bj>) (76)
Jj#k
— s Y .i(cﬂ+1)2.( 1)%1-@) b;)* ! (77)
IRRy=T - =\ Vit o
1 2 o) 2

- (m) 2 et 2 (Cf ) b ®

J#k =0
= 1+/\2 Z br, b; ((br, b)) < Z by, b; ({(br,bj)), (79)

J#k J#k

where in the second line we substitute the Taylor expansion of f(-), the inequality in the third line uses that the coefficients
{31152, are all non-negative, and the last inequality follows from the fact that A > 0.

Finally, we show that the gradient flow (69) does not escape the degenerate sub-space. If dim(span({b;}?_;)) < n, then
there exists u € R? such that (73) holds. By projecting the gradient expression (72) onto u, we have

<U,szbj '9(<bk7bj>)> =0.
7k

25



Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods

Hence, for any k € [n], the directional derivative of by, in the direction of w is equal to zero, and the gradient flow does not
escape the low-rank sub-space, which concludes the proof. O

In next lemma we show that, if at initialization {b;}?_; spans a sub-space of dimension 7, then it will never get stuck in a
low-rank sub-space.

Lemma D.3 (Linearly independent {b;}? ; stay linearly independent). Consider the gradient flow (69) with full rank
initialization, i.e., rank(B(0)B(0) ") = n. Then, the following holds

%logdet(B(t)B(t)T) >28(t)% - ¢(t) >0,

where B(t)T = [by(t),- -+ ,b,(t)] and ¢(t) is defined in (68). In particular, this implies that {b;}"_, stay full-rank along
the gradient flow trajectory.

Proof of Lemma D.3. Applying the chain rule and using that the time derivative of B is given by the gradient flow (69)
implies that

G, T o1 (0B T 0B"
alogdet(BB )="Tr l(BB ) <8t B +B 5 ,
where
Pr 2 [ 13y - g (bes b))
ot = k i g ks Uj

ik

Let us compute the quantity

B
9k 4, 0B o1\
ot ot Kt
By definition of J, we have that

JkZb bk, Zb] g ( bk7 Zbk bk» ((bkﬂbj»'

i#k J#k j#k
Note that
> b (br,by) - g (b, b)) ,be> = [Diag [1T((BBT —I)o g(BBT))] : BBT}k .
Jj#k ,
and that

By combining these last four equations, we conclude that

aa]f B = —B(t)? (g(BBT) -BB" — ¢(1)- BB" - Diag [1T((BBT Do g(BBT))} : BBT) .
Furthermore,
T T
-85; - (8; BT> = —B(t)? (BBT -g(BBT)—g(1)- BB" — BB" - Diag [N((BBT s og(BBT))]) .

Hence, by using the cyclic property of the trace, we get that

%log det(BBT) = 26(t)% - Tr [Diag [1T((BBT Do g(BBT))” —2B(1)? - [ (BBT) — ¢(1) .1}

=26(t)*- Y _(bi,by) - 9 ((bi, b)) +0,

i#]
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Now, note that
zg(x) = 2> f'(x) + 2 f(x) > 0,

since 22 f/(x) and x f () are non-negative functions, which concludes the proof. O

The result of Lemma D.3 gives that det(BBT) is non-decreasing. Hence, if /\min(BBT) > ¢ > 0 at initialization, then
this quantity will be bounded away from zero during the gradient flow dynamics and the gradient flow will not get stuck in a
low-rank solution. Therefore, by Lemma D.2, the gradient flow converges to a global minimum, in which the rows of B are
orthogonal vectors with unit norm. The speed at which this happens is characterized by the next lemma.

Lemma D.4 (Rate of convergence). Consider the gradient flow (69) with full rank initialization, i.e., rank(B(0)B(0)T) =
n. Let T be the time at which ¢(T') hits the value 6 > 0. Then, the following holds

7 < e BOBO ) (£ 100) > 0 F0) + W 1 <n. ). (80)

Proof of Lemma D.4. For all t, we have that Tr [B(¢)B(t)" | = n, which implies that det(B(t)B(t)") < 1 and, as a
consequence, that log det(B(t)B(t) ") < 0. From Lemma D.3, we know that

%logdet(B(t)B(t)T) > 26(t)% - 6(t).

In this view, using the exact expression (69) for 3(t), we get
t
—logdet(B(0)B(0)") > logdet(B(t)B(t)") — logdet(B(t)B(t)") > / % - p(s)ds. (81)
O () + <)

Stage 1. Assume that ¢(0) > n - f(1), and let T} be such that ¢(77) = n - f(1). Recall that the function ¢(t) is decreasing
and note that /(1 + x)? is decreasing for z € [1, +00). In this view, we can lower bound the integrand in the RHS of (81)
forallt <Tj by

v

(82)

2-¢(0 S 2(n—1) 1
(f(1)+¢—°))2 — nf(1) f(l)7

where the first inequality follows from the definition (68) of ¢(+), which readily implies that ¢(0) < f(1) - n(n — 1). Hence,
by combining (81) with the lower bound (82), we get

Ty < —f(1) - log det(B(0)B(0) ).

Stage 2. Assume that ¢(0) < n- f(1). Letd € (0,n - f(1)] be the desired precision which should be reached during the
gradient flow, and let T be such that ¢(T5) = §. As ¢(t) is decreasing, we have that

1 1 1
> > (83)
2 2 4f2(1)°
(r)+22)° 7 () + )"~ )
where in the last step we use that ¢(0) < n - f(1). Hence, by combining (81) with the lower bound (83), we get
1
—logdet(B(0)B(0)") > =+~ -T2
Oge(()())—2f2(1) 20,
which implies that
2f%(1) - log det(B(0)B(0) ")
T, < — 5 .
By combining the results of both stages, the desired result (80) readily follows. O
Proof of Theorem D.1. Theorem D.1 is a compilation of the results presented in current section. O
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E. Global Convergence of Projected Gradient Descent (Theorem 4.6)

Recall from statement of Theorem 4.6 that -
flx)=xz+ Zc%o:e,
=3

with )2 ¢7 < oo. We also define o« = 7 5 ¢7, and we assume that o > 0. In fact, if & = 0, then the algorithm trivially
converges after one step. We denote by C ¢ uniform positive constants (depending only on r and «) the value of which
might change from term to term. To make the notation lighter we will also but the time ¢ as a subscript (for example B(t)
becomes B;).

We analyze the following projected gradient descent procedure for minimizing the population risk
- b, b; - b;
<ama'>'f(<,J>> -2 <ai,>~ (84)
gz:l ’ [Bill2” [|b;]]2 ; 132
Given unit-norm initial {b; };c[,,]. at each step we pick the optimal value of A given B
—1
A =B (f(BB])) . (85)
Then, we update B with a gradient step and a projection on the sphere to keep the unit norm:
Bi:=B; —1Vp,, B :=proj(By).

Here, the operator proj(M ) normalizes the rows of M to be of unit norm and each row of Vp, is defined as the
corresponding row of the gradient of By, i.e.,

(vBt)k,! = _2Jka'k +2 Z<ak7 aj>Jk'bj + Z EC? Z<a’ka a’j><bk’7 bj>lile'bj7 (86)
Jj#k =3 Jj#k
::V}Bt (part 1) ::Vth (part 2)

where Jy, := I — by, b,: and we have omitted the iteration number ¢ on {a;, b; } ;[ to keep notation light. Note that in (86)
the norms ||b; bj||, no longer appear as the projection step enforces ||b;||, = 1. At each step of the projected gradient

29
descent dynamics, we decompose BtBtT as follows:

BB =1+ Z,+ X,, (87)

where BOBS— =UAU', Z, = U(A; — I)U—r and A¢11 = g(A4) for some function g : R™ — R™ which defines the
spectrum evolution. Here, U is an orthogonal matrix that importantly does not depend on ¢ and A, is the diagonal matrix
containing the eigenvalues (i.e., UA,U ' is the SVD). We also define X © := Diag(X ) and X? := X, — X7,

For now we will make the following assumptions, which will be proved later in the argument. There exist universal constants
C,Cx > 0and 6 € (0,1) (depending only on r) such that, with probability at least 1 — Ce~?,

. ) > _
2}gg/\mm(zt) el 1+6ra

Sup 1Z:l,, < C,

t>

poly(log d) (85)
\/g )

sup ||X75||op S CX
>0

|A— Iy < e,

Here, poly(log d) is used to denote polynomial powers of logd, i.e., (logd)® for some universal constant C. In the
assumptions (88), we specifically distinguish the constant C'x in the bound on || X ||, from the others. This important
distinction between C' and C'x will be apparent later to show that assumptions (88) indeed hold. Note also that, for
sufficiently large d, (88) implies that
sup [| X¢[[,, < 1. (89)
>0

We are now ready to give the proof Theorem 4.6. For the convenience of the reader we restate it here.

28



Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods

Theorem E.1. Consider the projected gradient descent algorithm as described above applied to the objective (13) for any
f of the form f(x) =z + 3, 4 c2a’, where >ys € < oo. Initialize the algorithm with By equal to a row-normalized
Gaussian, i.e., (BY); j ~ N(0,1/d), (Bo)i,: = Projsa—1 ((B)i,.). Let the step size n be O(1//d). Then, for any r < 1,
we have that at any time t = T /7, with probability at least 1 — Ce™?,

HBtBtT —I| <ca-or,

op

where C > 0 and c € (0, 1] are universal constants depending only on r and f.
Let E' := E(X, Z;) € R™*" be a generic matrix whose operator norm is upper bounded by

poly(log d)
|E,, <C <\/g NNZellop? + 1X el + 11X ellop | Zell557 ) - (90)

We highlight that the constant in front of the upper-bound on the error term E" is independent of C'x and t.

Lemma E.2 (Bound for the matrix inverse). Assume that (88) holds. Then, for all sufficiently large n, with probability at
least 1 — 1/d?, jointly for all t > 0 and { > 3, the following bounds hold

|(BiB] — D) |lop < | E'|.p. oD

I(f(B:B])) ™" — (aI + BB ) op < | Elop, 92)

where a was defined as o = Y2 5 7 .
Proof of Lemma E.2. Note that, for any square matrices R, S € R"*",

|R© Slap < Vil Slop max | R ©93)
Thus, for ¢ > 3,

|B.BT - 1 max |((B,B] —1)**),,|

< Vi |B.B] - 1t
g

o op ]
= Vi |[(BB] ~ DD max|(BB] 1)) ©4)
= Vi ||(BB] ~ 1| max|(Ze+ X%,
op 1

where in the first line we use (93), in the second line we use that ((B; B, — I)°3); ; = 0 fori € [n] and in the third line we
use the decomposition (87).

Let us bound the off-diagonal entries of X ; via (88) and the off-diagonal entries of Z; via Lemma G.2. This gives that,
with probability at least 1 — 1/d?, jointly for all £ > 0,

3/2
w22+ X))y < (0 -+ )P (R 5
i#]

We will condition on this event (without explicitly mentioning it every time) for the reminder of the argument. By combining
(94) and (95), we have that

|B.B - D)

<Vn
/4

d

o

3/2
(C + CX)3 (poly(log d)) ‘| H(BtB;r _ I)O(Z*?))
> (96)

< H(BtB: . I)o(éfi%)

op

where the last inequality holds for all sufficiently large n. Note that, for any square matrices R, .S, an application of Theorem
1 in (Visick, 2000) gives that
[R o Sllop < [|1R]opllS][op- o7
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Hence,

I(BBT = Dy < |(BB] = 1)*|| (BB~ 1)**|.. (98)

op

Now, by using again (97) and the assumptions (88), we have that, for £ € [3],

I(B:B; —I)*||op < C. ©9)
Thus, by combining (96) and (99), we obtain that H (BtB;r — I)°U=3)]l is uniformly bounded in £, which together with
op
(98) gives that
|(BiB = D)*|lop < CI(BiB] = D)* . (100)

We remark here that C' is independent of [ and C'x. This means that it suffices to prove the claim (91) for ¢ = 3.
To do so, define H := 11" — I, hence, since BtBtT has unit diagonal, we have that
(BB —1)**=(B,B; ~I)*cH=UA,~DNU" +X?+XP)PcH=(Z,0H+X?0H+ X oH)*
= (Z,oH+X9)? =(Z,0 H)*® +3(Z,0 H)*?0 X2 +3(Z,0 H) 0 (X9)°? + (X©)°3.
Using again (97) and that, by Lemma G.1 for any R € R"*",
[Ro H|lop = || R — diag(R)|lop < C[|Rl[op,

we get

IBBT 1o <€ (1022 H) oy |25 X + 12 KO 1XP15,)
< C (10200 )™ oy + 122X+ IXOI2,)

op

where the second step holds since HX tO H < 1land || Z|l,p < C by (88)-(89). Another application of (93) gives that
op

o o 2
1(Zeo H)*|lop = [(Z1 0 H)** 0 Zy]|op < \/E'I?ZX\(ZJM “NZtllop

logd logd (102)

Vd Vd

where the second passage follows from Lemma G.2 and the last from || Z||,, < C. By combining (101) and (102), the
proof of (91) for ¢ = 3 is complete.

<O—= N Zdlop < O—7= || Z:ll2}

op

To prove (92), define the following quantity

By definition of f(-) we have that
f(B:B])=0al + BB +Y,

which implies that

(f(B.B]))™ = (aI + BiB] +Y)!

=(I+Y(al+B,B/) ") (ol +B;B/)"" (103)

- (I + i(—l)’“(Y(aI + BtBtT)_1>k) (ol +B:B;)"".
k=1

By definition (90), we have that HEt ||Op < 1/2 under assumptions (88) for sufficiently large d. Hence, by the result (91) we
have just proved, ||(B;B, — I)°‘||,p, < 1/2, which implies that Y25, ¢7||(B; B, — I)°||,p < /2. Thus, we have

1
<

IY(BeB{ +al)  op < [|Y llopl|(BeB) + o) op < ok (104)

QI

@
2
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Therefore, we can conclude that

-1 — _ > _
I(f(B:B{))™ = (ol +BiB{) Mlop < l(a + B:B/) " op- Y _ Y (al + BB ) '|I5,
k=1
1Y (o + BB ) op

= T
1— Y (aI + B:B ) !op (105)

< = 1Y llopll (e + BB )~ op

Dl Q|

< =5 1Y lop,

QL\’:‘ )

where the third inequality uses (104). By bounding ||Y||o,, via (91), the proof of (92) is complete. O

Lemma E.3 (Bound for the Schur product with AT A). Assume that (88) holds, and let A, be given by (85). Then, we have
that, with probability at least 1 — 1/ 2, jointly for all t > 0 and £ > 2,

HAIAt o (BB — I)*

< 1 E lop- (106)
op
Proof of Lemma E.3. We have that

|A] Ao (BB —I)*||op < ||A] Ay o (B:B/] — I)?||s, (BB} — I)°""?

ov (107)
< C||Af Ay o (BB —I)*||op,

is uniformly bounded in [,

where the first inequality uses (97) and the second inequality uses that H (BtB;r —TI )0(2_2)
op

which follows from (96) and (99).

Let us now focus on bounding the RHS of (107). An application of Lemma E.2 gives that
(f(B:B])) " = (al + B,B])™ + Eu,

where
HE”OP < HEtHop'
Hence, by using (85), we get that
A/ A, = ((oI + B;B/)"'B, + E{ B,)(B/ (oI + B;B])™' + B/ E))
= BB/ (oI + B,B/)™ 2+ E|B,B/ (oI + B,B/) ' + (oI + B,B/)"'B,B/ E, + E| B,B[ E,,
(108)

where we rearranged the first term in (108) using that BtB;r and (ol + BtBtT )~! commute. By using the assumptions
(88), we have that

IBB oy <O 1Bilp<1/2 (oI +BB]) oy <
Hence, we can upper bound the operator norm of the last three terms in (108) as
HElTBtBtT(aI +B,B] )"+ (o + B,B)"'B,B/ E, + ElTBtBtTEluop < C|E1]|op- (109)
Let us now take a closer look at the first term in (108). Recall that
B,B] =UAUT + X,.
As the operator norm is sub-multiplicative, we have that
1X¢ - (@I + B:B/) ?[lop < C[| X tl|op- (110)
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Furthermore,

=UAU'T TS ' T TS,

where we have defined
T, =al +UANU", Ty=I+X,(al+UAU")™"

By expanding T;l as in (103)-(105), we get
175" = Illop < Cll X tllop,

or equivalently
T,' =1+ E,,

with || E2|[op < C||X¢||op. In this view, looking at (111) we have
UAU T\ T T, = UNBU ' TN + BT NI + Es).

All the terms which involve E5 can be controlled. We provide the analysis for two terms of different nature, the rest follows
from similar arguments. As || T} " ||, < 1/ and ||A¢]lop < C, we have that

C C

T— — —

[UAU T BT Balop < [T 5 11B: 3, < 5 1X015, < 511X lop,
- _ _ C

[UAU T T Bollop < (T35, 1 Bollop < 51X lop,

where we have also used that || X, ||Op is bounded via assumptions (88). Furthermore, a simple manipulation gives
UANU'T7?=UAU (el + UAU )2 =UA (oIl + A)2UT =Up(A)U T,
where ¢(z) = —Z<7. As a result,

(o)

HUAtUTTl_nglengl - UqS(At)UTHOp <C|xy

op?
which implies that
|B.B] (oI + B.B] )™ ~Us(A)U |lop < ClIX . (112)
By combining (108), (109) and (112), we have that
A7 A = Us(ADU lop < C(I1Xtllop + | B, ). (113)

At this point, we are ready to analyze the operator norm of || A, A; o (B;B; — I)°?||,:

Al Ao (BB —I)? = (U¢A)U" + E3)o (UA, —DU" + X,)?c H

(Up(ANU " + E3) o (UA; — DU )%+ X2 4 2U(A;, — I)U )0 X;) 0o H,
(114)

where we have defined H := 11" — I and || E3[op < C([| X¢|lop + || E1 lop )- We now decompose the quantity into three
terms:
Al A;o (BB —1)> =8, + S, + 83,

where
S =(UpA)U" cUA;, —TNU" o H)oU(A;, — U ",
Sy =HoEszo (UM -~DUN)? + X7 +2UA -~ DU ") 0 Xy),
S3=HoU}A)U" o (X2 +2UA;, — DU ") 0 X,).
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We proceed to bound each of these terms separately.

We start with S;. As ¢(x) is differentiable for z > 0, the derivative of ¢(x) is bounded for any compact interval I C R, .
Hence, ¢(x) is locally Lipschitz on I with Lipschitz constant C; > 0, which implies that

1

6(a) = 80 = |o(0) ~ (15272 < Crle — 1.
By assumption (88), we have that A; > 0 and ||A¢||op < C, hence
1
Up(A)U" — ————1I|| < Cr-|Zt]lop- (115)
H (L +a)2 ",

Hence, an application of Lemma G.2 gives that, with probability at least 1 — 1/d?,

log d

1
s Up AU — ———T) < , 116
upn (U800~ ) <o (e
where ¢ > 0 is a universal constant. Another application of Lemma G.2 also gives that, with the same probability,
log d
supm (U(At — I)UT) <c ogd (117)
t>0 d
As a result, we obtain the bound
log d
1S1llop = I(USANU " =1/(1 + )T o U(A; = DU 0o H) o U(Ay = DU |loy < C%Ilztllop (118)

Here, the first equality is due to the fact that we are taking the Hadamard product with the matrix H which has 0
on the diagonal, hence we can add multiples of the identity to U(Z)(At)UT; and the second inequality uses (93) with
R=[Up(A)U" —1/1+a)?I)ocUA; —I)U" o Hand S = U(A; — I)U " in combination with (116)-(117).

Next, we bound ||S2||,,,. We inspect the terms appearing in the expression for S one by one. First note that we can omit
H in the expression since, by Lemma G.1 for any square matrix R

[Ro Hlop < C|[R||op- (119)
Hence, by using (97), we get

|H o Eso (U(Ar — DU ")*?||op < C||Es]|0pl| 24112,
|H o E3 0 X{?(|,p < C||Eslopl| X2,
| H o Ezo02(U(A; — I)UT) o Xt)HO;D < CHE3Hoz)”XtHOPHZtHOp’

which leads to the bound

1825, < CllEsllop (1X 15, + 12112, + 1 X llopl Zellop) - (120)

op —
Finally, we bound ||S5|,,. Consider the term
I[H o US(ANU T 0 2(U(Ar = DU ] 0 X¢|op-

Then, by using (119) and (115), we have
I < C||Z¢||op- (121)

op

HoU(A)U oy = | o Wo(ANU -

1
< T_ -
S CHUqb(At)U a +C%)QI

1+ a)?
Hence, in conjunction with (97), we get

IH o Up(A)U " 02U(Ar = DU lop < C - || Z4]2

op?
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which invoking (97) one more time gives
IH o U(A)U T 02(U(Ar = DU '] 0 Xillop < CllZ4l[2, | X ]| op-
Furthermore, by combining (97) and (121), we get
I[H o Ap(A)AT] 0 X§lop < Cll Zelopll X el|2,

Thus,

1831l < CUZ, 1 X tllop + 1 Zellopl1 X l15,)- (122)

Opf

Recall that, from assumptions (88)-(89), ||Xt||op, HZtHop < C. Then, by combining the bounds in (118), (120) and (122),

the desired result readily follows. [

By exploiting the above lemmas, we are able to make the following approximation for the gradient.

Lemma E.4 (Gradient approximation). Assume that (88) holds, and let V g, be given by (86). Further define vy =1+ «

and F(z) = ('H-m)z Then, for all sufficiently large n, with probability 1 — 1/d?, jointly for all t > 0,

< || Eop- (123)

op

1 . 20 !
szBtBtT +aF(Z,) — aDiag (F(Z:)) (I + Z¢) — $Xt0 - ?X?

Proof of Lemma E.4. We start by showing that, with probability 1 — 1/d?, jointly for all ¢ > 0,

H;V’Bf +a(al + B,B; )"?B, — aDiag ((aI - BtBtT)‘z(BtBtT)) B, . < || E|op- (124)
Let us first consider the term V} ,» Which can be equivalently expressed as
Vg, =2(— A/ + Diag(B;A;)B; + TB, — Diag(T (B, B/ ))B),
where T = A A, — Diag(A, A;). It is then easy to verify that
fVBf —A] + A/ A,B, + Diag(B,A,)B, — Diag(A] A,B,B/)B,. (125)
Using Lemma E.2, we get
Al A, = ((aI +B,B;)™' + E\)B,B/ (oI + B,B] )™ + E)), (126)

where || E1|lop < |E|lop. It follows from (88) that || B, B, ||,, < C. Hence, using that B;B, and (oI + B;B))
commute in conjunction with ||(aI + B;B/ )~ !|,, < 1/a we get

Al A, = B,B/ (oI + B,B] )72 + E, (127)

where || E2||op < || E*||op. Noting that
BtB;r , we can further rewrite (127) as

O%Lz — ﬁ = i - B and using the spectral theorem for the symmetric matrix

AlA, = (ol + B,B] )™ —a(al + B,B] )% + E,. (128)

With similar arguments, by Lemma E.2, we can write

BA; = B;B/ (aI + B;B/)™! + Ez, (129)
where || E3|op < || E"||op- Noting that 1 — s = ot again by the spectral theorem for B By, we get
B, A, =1 —o(al + B,B] )™ + Es, (130)
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and, consequently, we obtain

Diag(BtAt)Bt = Bt — aDlag((aI + BtB;r)_l)Bt + E4, (131)
where | E4||op < ||E*||op- Using (128) and 1 — ats = ﬁ, we get

Diag(A,; A,B;B/)B; = Diag((aI + B;B; ) 'B,B/)B, — aDiag((aI + B,B/} ) BB/ )B, + E;

: Ty—1 . Ty—2 T (132)
= B; — aDiag((aI + BB, )™ )B; — aDiag((aI + B:B, ) °B:B, )B; + Es,

where || Es||op < [|E'[|op-
With this in mind, we get back to (125). Combining the results of (128), (131) and (132) we get
Vg, = —(al + B,B])™'B,+ (al + B,B])'B, — a(a + B;B/ ) 2B, + B; — aDiag((aI + B;B/ ) ")B,
—AT A] A.B; Diag(B:A,)B,
—B, + aDiag((aI + B,B; )"')B, + aDiag((aI + B,B; ) ?B,B/ )B, +Ej;
—Diag(A] A,B,B])B;
= —a(al + B;B/] )™ 2B, + aDiag((al + B;B, ) ?B,B/ )B, + Eg,

(133)
where || Ee|lop < [ E"[|op.
Let us now analyze the second part of the gradient which involves terms of the form below for £ > 3:
Vet =0 (an, a;) (be,by) VT b;.
i#k
Now, from the fact that
Jpy=1I—byb,,
we can write
i > (ak, a;)(br, b)) TVIb; = cf 0> (ak, a;)(br, b)Y (b — (br, bj)by). (134)
ik j#k
The second term of the RHS gives the following contribution to the B; update
Diag(A; A;(B,B/ — I)*')B;.
By recalling that || A, A;||,, < C and || B/, < C, we have
|Diag(A] A/(B,B] ~ I)*))Billop < C|A] Ai(B.B] ~ I)*|oy]| Bellop < CI(B:B] ~ Iy (135)
Now, for £ < 5, we upper bound the RHS of (135) via Lemma E.2, which gives that
. T T ol t
|Diag(A; A¢(B:B, — I)°")Billop < C|E*|op- (136)

Furthermore, if we follow passages analogous to (94)-(95) (the only difference being that we exchange the roles of the
Hadamard powers 3 and £ — 3), we have that, with probability at least 1 — 1/d?, jointly for all ¢ > 0 and ¢ > 5,

~ o oly(logd)\ ‘=72 oly(logd)\ /2
|Diag(A; A;(B;B] — I)°*)By|op < Cv/1|| E||op (I)Y(dg)> < C|E|op (pY(dg)) ,
(137)

for sufficiently large d.
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Define the following quantity:
Y = (A] A) o (BB —I)°" Y, (138)

In this view, the first term in (134) can be written as Y B;. For [ < 5, by Lemma E.3 we have that || Y[, < || E"||,,, hence
Y Billop < C||E"||op as || Bt|lop < C. Furthermore, with probability at least 1 — 1/d?, jointly for all ¢ > 0 and £ > 5, we
have

£—3

1Y Billop < ClIY ||op = CVIl(A[] Ar) o (BB — 1), H}_&}XI(BtBtT —Di;

< VB oy max | (B.B] = D),

< VAllE[lop |(C+Cx) <poly(log d) ) e 2] (139)
> op

d

poly(log d) ) =1/

< (€4 Cx) B oy (2

Here, in the second line we use Lemma E.3; and in the third line we bound the off-diagonal entries of X, via (88) and the
off-diagonal entries of Z; via Lemma G.2. Hence, by combining (137) and (139), we conclude that

> oly(logd)\“™*
193,11, < CIE llop + | B lop 3 (C + Cx) 22 ¢ (p“/\(@g)) < C||E|op, (140)
=5

-4
where we used that the series >~ ,~ . (C + C x)i3c2 e (%) converges to a finite value for all sufficiently large

d, since (C + CX)%\/IC%W) < 1. This finishes the proof of (124).

We now further analyse the gradient in (124). Defining F'(z) = 0 Vlj;”)Q , with v = 1 4 «, we can write

1 . .

§VBtB;r = —OéF(Zt + Xt) + aDlag (F(Zt + Xt))) + aDlag (F(Zt + Xt))) (Zt + Xt) + Et. (141)
By a slight abuse of notation, we will denote by F'(!)(0) the I-th derivative of the unidimensional function F(z) = (lew‘”)z

computed at x = 0. Here, F(Z; + X) is defined by the spectral theorem (note that indeed Z; + X, = BtBtT —1TIis
symmetric).

We will now compute the error we incur if in (141) we replace F'(X; + Z;) by F(Z,). We first consider the case when
[Z+]|,, > 3. In this case, we have that

HF(Zt X)) - F(Z) - F(l)(o)xtHOp < C|Xd,, < ClIZ,, 1Xell,,- (142)

Here, the second inequality trivially holds since || Z||,,, > 3. To prove the first inequality, let DI be the derivative of the

matrix-valued function F'(M) = (I + M)(yI + M)~2. Then, by evaluating this derivative for M = Z; in the direction
of X;, we obtain

DF(Z) X, =—(I+Z,)(VI+2Z,) ' Xoe(WI+Z¢) T+ Z) I+ Z) > X (W I+Z,) '+ X (v I+ Zy) 2. (143)

To verify this expression we first note that the derivative of the function G(M) = M ~! in the direction of X is given
by DG(M)X = —M "X M. Now, (143) easily follows from the product rule applied to F(Z) = (I + Z)(vI +
Z)~Y(yI + Z)~!. By the assumptions in (88), we have that Z;, (I + Z,)~! are uniformly bounded, hence the map DF
is uniformly bounded as well. This implies that

1F(Z: + X1) = F(Z1)l,, < ClI Xl -

op —

As ||F<1>(0)Xt|\op < C||X|l,,» we readily obtain (142).
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Now we consider the case where || Z|| Hence,

op —3 fHop—S

(Z,+ X
F(Z,+ X} ZF“) t+ t).

The series above converges absolutely since F'(©) (0) scales as %poly(f) To see this, first we note that, if h( ) = G +$)2,

then h(9(0) = (—1)*(¢ + 1)!7(1“. Thus, by the product rule, F)(0) = (—1)*(¢ + 1).Wg+2 + (=1t 71{“ which has
the desired asymptotic behaviour. Expanding the brackets and applying the triangle inequality yields

00 —1
(f) (1) (e) t”op ® (0 14 i 0—i
F(Z:+ X) ZF <2 FO0 ZF Z N2l X5,
op =2 =
AS HZtHop’HX ||op S g’we have
(g) ||Op< (g) ( =21
ZF X EF 1) g <Clxs,.
and
00 1 l—1 ) - 4—o
S 00z > (7120, 1% _ZF“ 22 (1) 121X, < CUZilL, 1K,
=2 =1

By combining the last three expressions and using that

F(Z0) =3 FO0) 2,
=0
we obtain
|PX1+20) - F(Z0) - FOO X <0 (1Xuly, 120, + 1X0l,) - (144)
op
As the map DF is uniformly bounded, we have
||F(Zt) - F(O)IHop S C ||Zt||op : (145)

By combining (144), (145) and (141), we obtain
1
5VB,B] = —aF(Zy) + aDing (F(2.,)) (I + Z,) - aF M (0)X, + aDiag (XtF(l)(O)) +aX F(0) + E'. (146)

Using that F/(0) = Z» and FV)(0) = 25 (1 — 2), we finally obtain

1 2
5VB.B] = —aF(Z,)+ aDiag (F(2)) (I + Z¢) + V—‘Q‘X? + %X? +E (147)
which concludes the proof. O

Now let us return to the update equation of BtBtT during the gradient step
B;B;T:(Bt_ant)(Bt_ant)T:BtB -n: VBt -n: Bt(vBt) +772'VBt(VBt)T~ (148)

Note that we can control the terms B;(Vg,)" and V BtBtT via Lemma E.4. In this view, it remains to argue that the
contribution of the term n? -V g,(Vp,) " and of the projection step are of order 1 ||Et Hop. For convenience of the upcoming
lemmas we define the following quantity:

Vg, =2 (—a(aI + B,B])"2B, + aDiag ((aI n BtBj)—Q(BtBtT)) Bt) . (149)
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Lemma E.5. Assume that (88) holds, and let V g, be given by (86) with n < C’/\/& Then, for all sufficiently large n, with
probability 1 — 1/d?, jointly for all t > 0:

7 |Ve.(VB)' |, <l &,
Proof of Lemma E.5. We start by showing that
HvBtHOP < C(HXtHOP + ||Zt||0p)~ (150)

Recall that || B ||op, ||(aI + BB, )~2||,p < C. Hence, the following chain of inequalities holds

IV8.lop < 1Bllop - || -0l + BiB]) 2 + aDiag (oI + B.B])*(B:B)))

op

<C H—a(aI +BB/)*(I - B,B] + B,B/) + aDiag (oI + BB/ ) *(B,B/))

op

<O( |1+ BB 220+ X0) (151)

op

+ (T + BB B.B] — Diag (oI + B,B])*(B:B)))

)

S C (X tllop + 1 Ztllop + |1 F(X ¢ + Z¢) — Diag(F (Xt + Z4))|lop) »

where we recall the definition F'(x) =
we have

= (7+$)2 , with v = 1 4+ a. By combining (144) and (145) (in the proof of Lemma E.4),

||F(Xt + Zt) - F(O)IHOP < C(HXtHOP + ||ZtH0p)a
As | Diag(M)||op < C||M]|,p for any matrix M, we also have that

[|Diag(F(X ¢ + Z4)) — F(0)I|[op < C(| X tllop + [|Z¢lop)-
Hence,
| F(X:+ Z;) — Diag(F(X; + Zt))”Op < C(HXtHOP + ||ZtH0p)7

which finishes the proof of (150).
At this point, recall from (124) and (149) that

Ve - Vs <|&,- (152)
op

Thus,
IV5.95.l,, < 2|V 2

+ HeBtﬁBt)T

+ 1B

op op

Recalling the previous bound on ||§ B, |lop in (150) and using the assumptions in (88), we get that

[V 1B, < CIE L,
and
2
PIVe.I5, < Co1X 5, + 1Xll,, 1 Zll,,) + Co? 1 247,
9 . (153)
SCTI ﬁ”ztllop—i_||Xt||op+||Xt||op ||Zt||op SCV,"]H'E Hop’
where we have also used that n < C'/ \/d. This concludes the proof. O

The next lemma controls the contribution of the projection step.
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Lemma E.6 (Projection step). Assume that (88) holds and n < C/ \V/d. Then, for all sufficiently large n, with probability
1 — 1/d?, jointly for all t > 0:
[proi(BY) — Billop < ]| B,

which implies that, by differentiability of the bilinear form,
Iproj(B})proj(B;) " — By(B) [lop < n||E'],,-

Proof of Lemma E.6. Recall that the objective (84) does not depend on the norm of {b;}?_,, hence (V g, ); . is orthogonal
to (B¢),,., which implies that

By);,. — i
pI'Oji(B::) = ( t) "2 n(VBt) 72'
V1I+72[(Vs,)il
Let us define

1 1
D, := Diag > S5 = s |-
VI+12 (Ve VI+2[(VE)n,:l
Then, we obtain the following compact form:
proj(B}) = Dy(B; —nVg,) = D, B;.
In this view, it remains to bound ||D; — I||,,. In more details, by (150) and (152), we have
VB llop < IVB,llop + I E llop < CUIX llop + 1 Z¢llop + 1B lop) < C,

where C’ > 0 is a universal constant (independent of C'x, n, d). Hence, by recalling that || B,||,, < C by assumption (88),
we have
[proj(B}) — Billop = (Dt — I)(B: =0V B,)|,, < Cl|D: = IJ|,,,-

op —

Note that function 1/4/1 + z is differentiable at 0, hence, we have that for small enough 7 (which follows from n < C/ \/3):

1
VI+n2(Ve,)i:?

-1 <O |(V, )il

In this view, we have

ID: = Illop < C0*|IV .15, < C0? IV, 15, + C0* [V B, 1 E"[lop + Cn* [ E||*.

op —

Inspecting each term one by one and applying (150) in conjunction with < C'/\/d gives that

2
| B, < Cnll B,
IV B E [lop < Cnll E|lop,
772||vBt||L2)p < C’l7 ||EtHop’

where in the last step we have used (153). This concludes the proof. O

In this view, using (148) and Lemmas E.4, E.5 and E.6, we obtain
I+Zyy1+ X1 =By Bl =1+ Zy + X+ 4naF(Z;) — 2naDiag(F(Z,))(I + Z;)

— 2no(I + Z,)Diag(F(Z,)) — E%“X? - %X? +nE". (159
Furthermore, we have that
Diag(F(Z))(I + Z;) = (ll)iag(F(Zt) —FO))+FO0)I) I+ Z:)
- ?(I + Z,) + (Diag(F(Z,) — F(O)I)) (I + Z,) (155)
= %(I +Z)+ <:lTr [F(Z;) — F(0O)I) + D;> I+ Z,),
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where D) is a diagonal matrix such that, with probability at least 1 — 1/d?, its entries are upper bounded in modulus
by %HZtH:},/,? The last passage follows from Lemma G.2. Note that Wl—z(I + Z;) = 1Tr[F(0)I] and recall that
[Z¢]l,, < C. Hence, (155) implies that
1
Diag(F(Z:))(I + Z;) = —Tr [F(Z)| I+ Z,) + E". (156)
Similarly, we have that

(I + Z,)Diag(F(Z,)) = %Tr (F(Z))(I+ Z:) + E. (157)

By combining (156)-(157) with (154) and using that X, = X9 + X7 we get
8a 4ov
Zt+1 +Xt+1 = <1 — 37)> X? + (1 — 277) XtD + Zt +4770&F(Zt)
. v v (158)
- 477045Tr [F(Z)|(I+ Z,)+nE".

Hence, we can write the following system capturing the dynamics of the spectrum Z; and of the errors (X to, X ,{3 )

1

Zt+1 = Zt+4’l’]OéF(Zt) —477045TI' [F(Zt)] (I+Zt), (159)
4

X = (1 - ﬁn) X, +nE', (160)

X2, = (1 - i‘;‘n> X2 +nE". (161)

Here, the operator norm of E* is upper bounded as in (90), where we recall that the constant C' is uniformly bounded in t.

In the view of (159), one can readily see that the updates on the spectrum of Z, follow the one described in Lemma G.3 and,
thus, converges exponentially. This means that the set of assumptions on Z; in (88) is satisfied by suitably picking C.

Now it only remains to take care of X . If we write 77 = HX?H e HX?H 2 = ||Zt|\(17;2, then recalling the
op op
definition of F; in (90), (160), (161) we have that
4o poly(log d
i < (1 - 277) P +1Cp (W ot (@ +2) + (@ + x?)zt) (162)
gl Vd
8o oly(logd
2, < (1 - 7377) zf +nCo <py\(fdg) czp 4+ (2P +22) + (2P + :cto)zt) . (163)

Since both of these recursive bounds are monotone in 2, ¥, we can dominate them as follows. If we recursively define x;

by

. [4a 8« oly(logd
Tpqp1 = (1 — 7 min {2, 3}> zy +nmax{Cp,Co} (py(g) czp+ (mp +x)? + (w0 + xt)zt) . (164)
7 Vd

then by monotonicity max{xP, x?} < z;. Thus, we only need to analyse the recursion (164), which we do in the following
lemma. Note that the condition z; < C'e™“*" required by Lemma E.7 holds by (88).
Lemma E.7 (Error decay). Let {2:}7°, be a non-negative exponentially decaying sequence, i.e., z < C,e "', and
consider a non-negative sequence {2 such that at each time-step t the following condition holds for n = ©(1//d)
and sufficiently large d:

- poly(logd) -

Tip1 = (L —necr)xy +nCo - 2z - x4 + nchf +7n Nz Zt, (165)
with xo = 0. Then, the following holds
ly (log d
xp < Om 'Te*CT, (166)
Vd

where T' = tn.
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Proof of Lemma E.7. We proceed in two parts. In the first part, we show that our recursion does not blow up in ¢t = K /7
steps. In the second part, z; < C, exp(—c, K) will be small, which allows us to deduce (166).

Error does not blow up in finite time. Let t = K/ where K is such that K/n € N. We start by analysing the simpler
recursion
poly(log d)

Tir1 = (L=ncr)ay +mCo - 2z - 2y +nCy - T - 2.
By hypothesis, z; < C',. Hence, we arrive to
oly(log d
Zip1 = (L —ner)xy + nCeC, -z + 77C4Czpyx(fdg)‘

Writing C5 = C5C, — ¢1, unrolling the recursion on the RHS and using xg = 0 gives

oly(log d) < ,
Tpq1 = 7704Czpy\(fdg) Zo(l +nCs)’
n

}:H

< 1CiC. poly(logd) $~ ey
Vi =
j_
K/n
poly(logd) .k —Can(t—)
=nCyC, e Z e~ Csn(t—j
Vd =
poly(log d) es K
< C Cz : )
= nly \/a 1_ 677]05

where the inequality holds for ¢ < K /n and we have used 1 4+ 2 < e®. For small enough 7, we have that
n 2

I S G
1—eCn = C5’

hence, for all ¢t < K/n,
poly(logd) C,C,
Vd Cs

Ti41 S 2 exp(C'5K). (167)

Let us now go back to our original recursion (165), which contains the term z7. We claim that this recursion satisfies a
bound like (167). Assume by contradiction that it exceeds the bound

4poly(log d) C4C,
Tt S \/& 05

for the first time at step . Then, for all ¢+ < t', (168) holds. Noting that 2? < 4%\}3‘“)0&,—% exp(Cs K )z, we define

exp(C5 K) (168)

Cl=0C, + 403%\/?@ Cé—fz exp(C5K) — c¢1. By unrolling the recursion exactly as before, we obtain

poly(logd) C4C. poly(logd) C,C.,
vd Gy vd  Cs

for d large enough. Here, the second inequality follows for large d, since it is clear from the definitions that |C5 — CY|
vanishes for large d. This shows that we cannot violate (168), thus (169) holds for all ¢t < K /n.

Ty <2 exp(CLK) < 3 exp(C5K), (169)

Convergence of errors x; to zero. We now choose K large enough so that
2z = CLe 1 < S v K/n.
z 202 bl -
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Hence, the term corresponding to 7C5z;2; can be pushed inside the (1 — 7c; )z, term. Consequently, we can equivalently
study the following dynamics

pOly (log d) e—nczt

T = (1 —nc))x +nCsx? +nCyC, NG (170)

where ¢j = ¢1/2. Here, we initialize again at ¢ = 0, but now starting at

1y (1
2y — PO (logd).
Vd
where Cg = 4 Cégz exp(C5 K), corresponding to the bound in (168). Rearranging we have
ly (log d

Tyl =T+ 7 (—c’lxt + Cgacf + C4CZpOy\(f;)g)e_"Czt) . (171)

As the last term inside the brackets vanishes when d — oo, we have two roots of the polynomial inside the brackets,
corresponding to the fixed points of the iteration. The left root r; scales as

pOly(lOg d) e—nczt
\/g ’

r <O

and the right root 7, as
/

r, > o inoly(log d) e~ nest,

Cs Vd

In addition, it is easy to see that both roots are non-negative.

Next, we prove that x; < C M\}ggd) for all t. We will show this by contradiction. At initialization we have

_ ¢ poly(logd)
0 6 \/a .

Choose A, B as follows:
A :=max{C;,Cs}, B=CA.

log d)

We first note that, for small enough 7 and large enough d, we can choose C'7 such that z; < A% implies x7,; <

Bwjiz’gd). We now show that z; < B M\}gg‘” for all ¢. To do so, assume by contradiction that ;.1 > B poly(logd)

Vd
Then z; € [A po}y\%g 49 B pc’ly\(/lgg D1 C [y, ry), thus

poly(log d) e—nczt

Vd

—C/ll‘t + Cg.ﬁ? + C4C, < 0.
Hence, from (171) it follows that
poly(log d)

\/Zi )

r1 <3 < B

which gives us the desired contradiction.

Thus, for all ¢,

poly(log d)

— .
Vd

This allows us to push the second term in (170) into the first one (for d large enough), which reduces the recursion to

xng

c. poly(log d) R

T = (1 =nc)az +nC;y Vd ’
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where ¢ > ¢/ /2. By unrolling this last recursion and using zo = 06%\/13‘@‘1), we have that, for ¢ > 1,

poly (log d) poly(log d) N
(1 —nc)"' +nCyC. > (1 —ne) e (172)
Vd Vd =

ly(log d ly (log d) & "
< CG po Y\(/gg ) exp(_ncll/t) + /'7040 pO y Og Z e (cxl4-cf (t—f))7 (173)
(=1

JJt:C(;

where the inequality follows from 1 — 2 < e™”. Since the term in the exponents of the sum is a linear function in ¢, its
maximum value is attained in the endpoints. Thus,

poly(log d) p poly(log d) R
1y < Cg———=—=—=exp(—ncit) + nC4,C,———*tmax{e 1" e~ 11"}
<G = p(—ncit) +nCy NG { }

which implies (166). O

By Lemma E.7 we know that

C
X o S = T6_0T7
1Xilop < =
where C'is independent of C'x by definition. Hence, we can pick Cx such that, for sufficiently large d, the assumptions on
X, in (88) are satisfied. With this in mind, we can use Lemma G.3 to bound the dynamics involving Z; and Lemma E.7 to
claim that the error X; vanishes at least geometrically fast. This concludes the proof of Theorem E.1.

F. Discussion of Isotropic Gaussian Results

Degenerate isotropic Gaussian data. All the arguments of Section 4.1 directly apply for  ~ N(0, c2I), the only
differences being the scaling of the term Tr [B A] (which is additionally multiplied by o) and the constant variance term
o2 (in place of 1) in (6). Our results can be also easily extended to the case of degenerate isotropic Gaussian data, i.e.,
x ~ N(0,X) with \;(X) = 02 fori < d — k and \;(X) = 0 fori > d — k, where \;(X) stands for the i-th eigenvalue of
3} in non-increasing order. In fact, by the rotational invariance of the Gaussian distribution, we can assume without loss
of generality that © = [z, , 24,0, ,0], where (z;) ~ii.q. N'(0,02). Hence, by considering A € R(?~*)*" and
B € R™*(4=k) and substituting d with d — k where suitable, analogous results follow.

Scaling of the learning rate. Theorem 4.6 is stated for n = ©(1/ \/&), as this corresponds to the biggest learning rate for
which our argument works (thus requiring the least amount of steps for convergence). The same result can be proved for
n = O(d~") with k > 1/2. The only piece of the proof affected by this change is the third part of Lemma G.2 (in particular,
the chain of inequalities (187)), which continues to hold as long as 7 is polynomial in d 1.

Assumptions on compression rate r. We expect an analog of Theorem 4.5 (see Theorem D.1 for the formal statement) to
hold for r > 1, as long as d is sufficiently large. In fact, for a fixed d, it appears to be difficult to even characterize the global
minimizer: the choice (12) approaches the lower bound LB,.~1(I) only as d — oo, see Proposition 4.4. We also expect
Theorem 4.6 to hold for » > 1. Here, an additional challenge is that the minimizer has non-zero off-diagonal entries. In
combination with the lack of an exact characterization of the minimizer, this leads to an additional error term that would be
difficult to control with the current tools. At the same time, the restriction r < 1 is likely to be an artifact of the proof as
experimentally (see, for instance, Figure 4) the algorithm still converges to the global optimum for r > 1.

Gaussian initialization in Theorem 4.6. The Gaussian initialization ensures that, with high probability, the off-diagonal
entries of B(t)B(t)" are small. This allows us to approximate higher-order Hadamard powers of B(t)B(t)" with I.
However, in experiments the Gaussian assumption seems to be unnecessary, and we expect the convergence result to hold
for all (non-degenerate) initializations.
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G. Auxiliary Results
Lemma G.1. For any R € R™*" the following holds

IR — diag(R) |, < C[|Rl|,, -

op —
Proof. By definition of the operator norm we have that

IR, = sup [Re|,.

]l =1
Note that by Cauchy-Schwarz, the following holds for ||y, = 1:
(y, Rr) < || Rz|l,,
and the inequality is met when y is aligned with Rx. Hence, we get

sup (y, Rz) = || Rel|,,
lyll,=1

and, thus, the operator norm can be rewritten as

|Blly, = sup [Rall,= sup  (y, Re).

llll,= llzll,=lyll,=1

Note also that [|diag(R)][,, is equal to the maximal diagonal element (in absolute value). Hence, by letting e; be the i-th
element of the canonical basis, we get

|diag(R)||,, = sup|R;;| < sup |(e;, Re;)| < ol Slﬁpu (y,Rz) = ||R|,, -
v v z|[;=[lyll;=1

In this view, an application of triangle inequality, i.e.,

IR~ diag(R)]|,, < | B, + |diag(R)|

op —

<2[R|

|op op?

finishes the proof. O

Lemma G.2. Consider the matrix A; = UAtUT, where the matrix U is distributed according to the Haar measure and it
is independent from the diagonal matrix A;. Further, assume that all the diagonal entries of Ay are bounded in absolute
value by a constant. Then, the following results hold.

1. We have that, with probability at least 1 — 1/d2,

log d
IgngI(At)mlﬁc 7 (174)

for some absolute constant ¢ > 0.

2. Let Dy = diag(A;). Then,

where )
o = ﬁTI‘(At ) y

and D), is a diagonal matrix such that, with probability at least 1 — 1/d?,

logd
max [(D%}); ;] < ¢ .
ma (D] < e
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3. Assume that, forallt € N,
Aoy < Ce™ M, (176)
P

where ¢, C' > 0 are absolute constants and 1 = ©(1/~/d). Then, with probability at least 1 — 1/d?,

logd
supmax [(Ay)i ;| <c ) , (177)
t>0 #J ’
logd
sup max il <c . (178)
t>13ze[n1‘( il Vd

Proof. We start by proving (174). Consider the metric measure space (SO(d), || - ||, P). Here, SO(d) denotes the special
orthogonal group containing all d x d orthogonal matrices with determinant 1 (i.e., all rotation matrices), and P is the
uniform probability measure on SO(d), i.e., the Haar measure. Given a diagonal matrix A; and two indices 4, j € [d], define
f:S0(d) — Ras

f(M) = (MAM"), ;. (179)

Note that

(M) — f(M')] = [(MAM"); ; — (M Ay(M')T), ]
<|(MAM )i — (M'AMT); |+ [(MAM T — (M'A(M")T), 5
<|((M = MYAMT); | + [(M'A(M — M")T), ;] (180)
< (M — M)AM ||+ || M'Ay(M — M) ||
<2\ M — M'||p||Atllop|| M |lop < 2[|M — M| £]| Atlop,

where in the fourth inequality we use that, for any two matrices and in the fifth
inequality we use that || M ||,, = 1 as M € SO(d). Hence, f has Lipschitz constant upper bounded by 2||A;|,, and an
application of Theorem 5.2.7 of (Vershynin, 2018) gives that

B(f(U) — Ef(U)]] > u) < 2exp (—mﬁA’“”) 7 ash)

where c¢; is a universal constant.

Let u; denote the i-th row of U. Then,
f(U) = (ui,Atuj). (182)

Suppose that ¢ # j. Since U is distributed according to the Haar measure, u; is uniform on the unit sphere and u; is
uniformly distributed on the unit sphere in the orthogonal complement of u; (see Section 1.2 of (Meckes, 2019)). Thus,
(w;,u;) has the same distribution as (—w;, u;), which implies that, whenever i # j

E[f(U)] = 0. (183)

By combining (181)-(183) with a union bound over ¢, j, we have that

2
max UAU ;| > u) < 2d% ex du . (184)
P(max |( g p
Ao

As || A¢]|op is upper bounded by a universal constant, the result (174) readily follows.

For the second part, note that
(Di)ii = (ui, Ayui). (185)

Furthermore, the following chain of equalities hold

]Ethzz ZEthz:

1
(Dt)i,i] = ETT(Dt% (186)
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where the first equality uses that the u;’s have the same (marginal) distribution, and the last term does not contain an
expectation since Tr(D;) = Tr(A;) = 25:1 (A4);i, which does not depend on U. Therefore, by using (181) and by
performing a union bound over ¢ € [n], the result (175) follows.

For the third part, by performing a union bound over ¢ > 0 in (184), we have that (177) holds with probability at least

(o)
2 ex <2 exp (—co du? e
; p( 2||At||op> Z p(=es )
SZZexp( co du? eC'LntJ)
t=0
1 o0
<2 {—‘ exp (—co du? e©?
; ; ( )

< C’\/gZexp (—02 du? eCt) ,
t=0

(187)

where the first inequality follows from (176) and the last one from n = ©(1/ \/E) Choosing u = ck\’/ggd we can get that
b:=exp (762 d u2) < 1 and, hence, the following holds

b

S et S Ct+1 1
Zexp (_62 dUZ) < ;eXp (—62 duz) = - < &

where the first inequality uses that e > 1 + ¢ and the second inequality follows from the definition of b. This concludes the

proof of (177). The proof of (178) uses an analogous union bound on ¢ > 0. O]
Lemma G.3. Let \° = {)\,--- |\ be a set of numbers in R such that
A =min A >6 >0, A\ :=max\) < M < +oo, Z)\g =n.
i€[n] i€[n] =
Let the values {\!}I'_, be updated according to the equation below
AL =X 4 | FOAL) — ZF (A5 ] =GN, (188)

where F(-) is defined as per Lemma E.4, n = © (1/\/&) and X\t := {\} - | AL} Then, for large enough d, we have

N =1 < (1—cs-n)|A -1

and thus after t iterations
|\l — 1] < max{(M — 1), (1 — 8)} exp(—cs - nt),

where ¢, C' > 0 are constants.

Proof. We first show by induction that >~ A! = n holds for all ¢. In fact,
i=1

ZM“ Z)\ +1n ZF i/\ﬁ-%ZF(A;)

i=1 i=1 j=1

=n+n X_:F Z =n.
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Now, we will show the convergence of \! . and A, .. To do so, we assume that !, .. < M and A%, > § holds at time
step t (we will verify this later). Define the function g : R — R as
gx)=xz+n(Flx)—z-C). (189)

By taking the derivative, we have that, for sufficiently large d,
g'(x) =1+n(F'(z) - C) >0,
as || F'|| < C. This implies that ¢(-) is a monotone increasing function, which gives that

max g(A!) = g(\!

icn) maa:)

min g(A;) = g(Apin)-
i€[n]

(190)

Note that the updates on Xl? in (188) have a common part for all ¢ € [n], i.e.,
P
n j=1

where we used that || F'||o < C. In this view, by definition of ¢ and (190), we have

/\frJLralac = G()‘inax’ A )7
Atin = G\, A,

min

(191)

which means that the min/max value at the previous step are mapped to the min/max value at the next step of (188). Using

n
1 t_ :
that = > Al = 1 we can write

=1
1 o 1«
AT =X+ EZ)\E -F(\) *)\f'ﬁzF(A;)
j=1 j=1
1 — )\t)\t ALNE
Y 1 N 192
e nz:: a+/\t (a+A5)? (192)
2a+)\t+)\t AL — N
=X +7 —ZA - )(J”)
(a+ A2 (o + A%)
Recall that we assumed X!, < M and X!, > 4. In this view, we get the following bound
200+ AL AE)(AL L — AL 208
maz)‘t ( J)( t ]) ()‘ﬁnaw At) ) Lv (193)
! (@4 Alae)?(a+ A7) 7 (a+ M)

which is justified as follows

v (Bt A + 25) Anas — A7) — O . (20 + Npaz + Aj) Anac
e (4 Alar)?(a + A7)? e (@4 Alar) (o + A7)
2a0-1-6
t ty .
(Amam )‘]) (Oé—i- M)2(a + M)Q?

b ez > 1since > 1" | A = n. Hence, using the previous observation about mapping of extremes in
(191) and the observation above, we get from (192) that

where we used that \!

200
AL <t - E oty e
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which leads to

I 206
ANAL 1<\ — .,E ALty
max max n n i |:( max j) (O[ + M)4]
200
t t _ .
- )‘max |:()‘maw ) (a + M)4:|

()‘fnam_ )(1_77(a3>a§4)4) (Aﬁnaz_ )(1—0617)7

where we used that Z /\t = n in the first equality. Hence, using that \!, .. > T1as > =1 )\t = n we have
Jj=1

|)‘H—1 | - /\H—l 1< |Amaw - ‘ (1 —cd- 77)

max max
Similarly to the previous bound, we get that

(20 + Al + A A — AY) ;
< (0 + Ay 2(c + A2 ><”

min

200
AL\t A\t —
min (o + MY’

min”\j

¢
= A3)

(195)

(196)

since A . < \;. Hence, using the previous observation about mapping of extremes in (191) and the observation above, we
deduce from (192) that
1 = 200
A —1> (N, — 1) — AN — A ————
206 206 1 ¢ 2
= (X . —1)—p-AL . . Lz M
( min ) n min (O[+M)4 +77 (a+M)4 n 7:21( ’L> (197)
2a0
> (AL, —1 (AL — —_—
= ()‘:nzn - 1) ' (1 —co- 77)’
where in the second inequality we used Jensen’s inequality for 22 as >_"" =1 j = n. Hence, we get the following
i = 1 =1 = Ay < i = 1] - (1= 3 - ), (198)

. t nooyt
since Ay, Slasy i Aj=n

In this view, the assumptions A, < M and \f , >

to one after each iteration. Recalling that by the assumption on initialization
max ‘)‘? - 1| < max{(M - l)a (1 - 5)}3

the claim follows.

H. Proofs for General Covariance

Lemma H.1. Assume that {7; }ic[k], {3i }ic| k) minimize

B <Efi1 Dﬂ’i)Q
(9(1) n+ Y, l) .

Then, for any i < j, we must have §; = min{s; + §;, k; }.

48

o follow from (196) and (198) since the extremes are getting closer
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Proof of Lemma H.1. Since the {¥; };c|x], {5 }ie[x] are optimal, if we fix two indices 4 < j the corresponding ¥;,¥;, 8;, 5;
are optimal among all y;, v;, s, §; satisfying

0<y =7 =% +9 <n,

0<s;+s;=s:=8§ +8 <min{n, k; +k;}.

Thus, we proceed by analysing the solution for two fixed indices under the constraints (200) (keeping all other 4;, §; for
! ¢ {i,j} fixed). Note that, for each fixed (vy;,;) satisfying the constraints (200), the following objective

2 2
Y + i — min
Sio S5 S0 (201)

s.t. Slgk“ Sjgkj, Si—‘r-Sj:S

is equivalent to finding optimal ranks for (199). Importantly, in (201) we consider continuous (s;, s;). This relaxation has
the same minimum, since we will show that the optimal s;, s; have integer values. We may also assume that y; > 0 as
otherwise clearly s; = min{s, k;} is optimal.

Since (201) is strictly convex (on the domain given by the constraints), we can find its unique minimizer by finding a solution
to the KKT conditions:

2 2

Vi 75

—57+()\+/Li):0, _;;+(A+Nj):07 ,ui,,ujZO, ui(si—kzi):(), /,Lj(Sj—k/’j):(L s =38; + s;.
[ J

If s; = k; or s; = 0, then the claim is readily obtained. We will now prove that, if this is not the case, then we can find new
Si, 55, %, 7Y; which achieve a better value.

We first show that for s; < k;,0 < s; < k;

2 2 2
l+7a:%l+%1:l_ (202)
S; Sj S S S
Note that, in this case, p; = p; = 0, so the first two KKT conditions imply
B_ova=2
S; S5 '
Thus, we have
Vi _ %ty X (203)

Si Sj Si + 55 s

from which (202) is immediate.

For the case s; = k; and s; < k;, we have that p; > p; = 0, hence

- A Fms A =2
S; Sj

2
From the previous case, we know that without the constraints on k;, k; the optimal value in (201) is % Thus,

2
W
S; Sj S

Now, for € > 0, define 5; = s; + €,5; = s; — €. Note that, as s; < k; and s; > 0, we can choose € small enough such that
0 <5; < k;,0 <'s; < kj;. Atthis point, let us simply choose 7;,7; such that
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which as in (202), (203) implies that

~2 2 2 2 2
L L Y%, (204)
S S5 S S; Sj
We also have 7; > ~;, as otherwise B B
HLP Y
S; S; Sj Sj
would be a contradiction. This gives that
Dirvi + Dy < Diyi + Dy,
which implies that our new choice achieves a lower value for (199), thus giving the desired contradiction.
O
Lemma H.2. Assume that f, f; are differentiable strictly convex functions on R such that
JO) < [0 <0, i<j lim fi(m)=+oc, lim_fi(m;)=—oc, (205)
mi;—r—+00 m;—r—00
and
£(0) = f'(0) =0, liI}rl 1 (m) = +oc. (206)
m——+00
Then, the objective given by
K K
i i (my = i 207
Tg}g})f(mHZ;fz(mz)v m= m (207)
has a unique minimizer. It is uniquely characterised by being of the form (my, ..., mar,0,...,0) and satisfying

7n=§§(@f940f00m7 mf=«—ﬂY40f)WUZO, f/(m) + fl(m;) >0, i€ [M]. (208)

Furthermore, it can be obtained via binary search by finding the largest index M, such that the corresponding m; are all
strictly positive.

While the assumptions of this theorem might seem technical, most of them can be relaxed. However, we note that all such
assumptions are fulfilled by the setting being studied and relaxing them would come at the cost of the readability of the
proof of Lemma H.2.

Proof of Lemma H.2. We start by showing that (207) has a unique minimizer. Recall that f and f; are strictly convex
functions, and, hence, their derivatives f’ and f/ are increasing. From (206), we also obtain that lim,, o f'(m) = +o0.
By monotonicity, we have f/(m;) > f/(0). Therefore,

m——+o0

lim f/(m)+ Z fl(m;) = +oo,
and thus

m——+o0

K
lim f(m) + Z film;) = 4o0.
i=1

As a consequence, the objective achieves its infimum. Therefore, as f(m) + Zfil fi(my) is strictly convex, the minimum
is unique.

Notice that Slater’s condition is satisfied, since the feasible set of (207) has an interior point. Hence, {mi}fil is a unique
minimizer of (207) if and only if it satisfies the following KKT conditions (for the “if and only if”’ statement, see for instance
page 244 in Boyd et al. (2004)):

1. Stationary condition: f'(m) + f/(m;) — A; = 0.
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2. Primal feasibility: m; > 0.

3. Complementary slackness: \;m; = 0.

4. Dual feasibility: \; > 0.
In particular, the uniqueness of the minimizer implies that the KKT conditions have a unique solution. Thus, we only need
to show that the m; found by this procedure satisfy the above equations.

We now show that the active set A := {i : m; > 0} for the optimal m; is monotone, meaning that A = [M] for some
M < K. We prove the statement by contradiction. Assume that there exists m; = 0 and m; > 0 where ¢ < j. Recall that
fj’ is strictly increasing, which by the ordering condition (205) implies that

K K
F0) + f (Z mz) < fim)+ ' (Z me) :

=1 (=1

Hence, taking some sufficiently small mass from m; and redistributing it in m; will decrease the objective value in (207),
which concludes the proof.

Fix M < K. We now show that the solution of the following system of equations
f'(m) + fi(m;) =0, Vi<M (209)

exists and unique. Note that this system comes from the 1. and 3. KKT conditions.

As f,i’ is strictly monotone, its inverse exists and, hence, from (209) we get

m; = (= f)) 7 (f'(m), (210)
which gives
M
m=Y (=)' (' (m)). 11)
i=1

Let us argue the existence and uniqueness of the solution of equation (211) for a fixed M. Recall that f; is increasing and,

thus, — f/ is decreasing. The inverse of a decreasing function is decreasing, hence (— f/) ! is decreasing. Recalling that f” is

increasing and that the composition of an increasing and a decreasing function is decreasing, it follows that (—f/)~1(f’(m))
is decreasing. By assumption f/(0) < 0 and f/ is increasing such that lim,,, 4 fi(m;) = +oo, therefore the value
(—f1)~71(0) is well-defined and

K2

Thus, we have that

is a strictly decreasing function with
mlililm gu(m) = —oo,  gum(0) > 0.
In this view, the solution of (211) exists and unique.

Next, we elaborate on why (210) is well-defined given the solution of (211). Note that, by our assumptions,

hence, the same holds for (— f/)~*, and, thus, due to continuity the quantity
(=) =)

is well-defined for any x € R. Given this, we readily have that the solution of the system (209) exists and unique.
Furthermore, this solution can be found using (211) and (210). Note also that (211) and (210) agree with (208).
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We now show that the following procedure finds the optimal active set A* = [M™*]. Let m;(M), i < M be a solution of

(209) for fixed value of M < K, and define m(M) := Zfil m;(M). Using (211) and (210) find the smallest M such that

the corresponding m s (M) is non-negative, then M* = M — 1if M > 1, otherwise, m = m; = 0, Vi € [K]. If no such
M was found, M* = [K]. To show that the described procedure in fact gives the optimal active set A* = [M*], we need to
prove that

1. If M < M*, then m;(M) > 0.
2. If M > M*, then mp; (M) < 0.

Clearly, these two conditions imply that the active set of the minimizer is given by [M*], and it can be found via binary
search.

We start by proving the first property. Note that, by the KKT conditions on the optimizer M *, we have that

First assume that m (M) > m(M™*). By monotonicity, it follows from (210) that

mZ(M) < 7’)’Li(]\4*)7

but o - Ny y
m(M*) =3 mi(M*) + Y mi(M7) 2 mi(M*) > mi(M) = m(M),
=1 i=M+1 i=1 i=1

where we have used that m,;(M*) > 0, which is a contradiction. Thus, we have that m(M) < m(M™*). Again, by (210)
and monotonicity,
ml(M) > mi(M*),

and, hence, all m;(M) are non-negative.

We finally argue the second property. We start by proving a weaker statement, i.e., there exists ¢ > M™ + 1 such that
m; (M) < 0. Assume that m(M) < m(M*). By (210) and monotonicity

hence, the following holds:

M M* M M* M M
m(M) = "mi(M) =Y _mi(M)+ > mi(M)>> mi(M*)+ > mi(M)=m(M)+ Y mi(M),
=1 =1 i=M*+1 =1 i=M*+1 i=M*+1

which since m(M) < m(M™*) implies that Ef\i A+ 41 Mi(M) is a negative quantity. Thus, there exists i > M* + 1 such
that m; (M) < 0. Assume now that m(M) > m(M™). Recall that only the minimizer satisfies the KKT conditions, thus

F{(m(M7)) + f3,(0) = 0,
which, as f’ is increasing, implies that
f(m(M)) + f1,(0) > 0.
By construction of m s (M), we know that
f(m(M) + frr(mar (M) = 0,
thus, by monotonicity of f}, we have m (M) < 0.

It remains to show that it suffices to check mps(M) < 0 and not an arbitrary m, (M) for i > M* + 1. Assume that
m; (M) < 0 for some ¢ < M. Recall that by assumption

f£i(0) < fu(0) <0,
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and by construction we have
fi(mi(M)) = far(mar(M)) = — f'(m(M)).

Since f/ is a decreasing function, we get that — f'(m(M)) < f/(0). Recalling that f/(0) < f},(0), we get — f'(m(M)) <
f1,(0) and, hence, by monotonicity of f}, we obtain that m; (M) < 0, which concludes the proof. O

Lemma H.3. The minimizer of (20) can be computed in log(K) steps via binary search by finding the smallest index M*
such that
g1 M*+1
AL

~—

—

Then, the optimal active set has the form A = [M*] and corresponding non-zero (3; , for i < M*, are computed as

S; 9(21) ZjE.A SjAj + Dl

cln

B=21. —Ai |, (213)
@ 3%173 Dljeasit1

where Aj = D1 — Dj.
Proof of Lemma H.3. By rescaling g(x) as % and B; as ¢13;, we may without loss of generality assume that ¢; = 1.
1

From the results of Lemma H.2, by a direct computation, we get that for A = [M]

A M siA; + Dy
% vai1 sitl

Bj(M)ij(M)ZSj'< —Ag),VjSM,

thus, applying the described binary search procedure to find M* such that M* + 1 = min (arg min,; 1[m (M) > 0])
finishes the proof.

We now elaborate on the computations. For the compactness of the notation, we omit the dependence on active set in m;’s
and m. We apply Lemma H.2 with

g(l x2
fay =20 w2 @) =T ape
which gives
2¢(1) 2x
") = (z) = == — 2D,
flay="== e filz)=1
Hence, we obtain that
i 2Dz -
(g ) = 2D
2
and, thus, by (211) we obtain
M Mo M g(1) M M
m= Z(‘fz‘l)il(f,(m)) =—f'(m)- Z Ez + ZDZSL =, ZSi + ZDiSi-
i=1 i=1 i=1 i=1 i=1
In this view, we get
it, Disi

and, hence, since by (210) the following holds
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we get

1 M 2g(1 M
2Dj N f’(m) 2Dj (49(71) Zi:l s; + ]_) — 4975 ) . Zi:l D;s;
j—————" =5
2 2-(@2jﬁlsi+1)

K it Dysi+ Dy — 225 Disi+ #0370 Dusi — “U 33 Dis; — Di+ Dy
. ﬁqu si+1

:8j-

gD s sid + Dy
g() ~M —45
po 22:1 sit+1

where A; = Dy — D;. Itis easy to verify that the condition

M*+1

1
% Sj(DA1*+1—Dj)+DM*+1 SO

j=

[

described in the statement of the lemma is equivalent to Sy« 1(M* 4+ 1) = mpr«41(M* 4+ 1) < 0, which concludes the
proof. O

Proof of Theorem 5.2. We start by showing how the lower bound reduces to the objective in (20). Consider the following
block decomposition of B in accordance with D as in (25)

B =[I'1B,| - |'xBgk],

where B; € R™*% with ||(B;); .|| = 1 and {T;}/<, are diagonal matrices.

Since we require || B; .||z = 1, the I'; must satisfy
K
Z =1 (214)
j=1
Thus, up to a multiplicative factor 1/d and an additive term Tr [DZ] , the objective (19) can be written as:
K
B2 (Tr [Mf(M)]) — 2¢:8- Y Dy - Tx [T2], (215)

i=1

where M = Zfil M,; = Zfil I';B;B, T;. Recall that f(z) = 2z + g(z), where g is the sum of odd monomials.
Hence, we will be able to lower bound the terms in the first trace of (215) in a similar fashion to Proposition 4.4. Note that

Tr [M?] = (1, M{*1),
so applying Theorem A in Khare (2021) gives that

(T;B;B]T;)°? = — - Diag(T?)Diag(T?) ",

1
Si
where s; = rank(B; B, ). Thus, we have the bound

T [M?] > — (T [17))

8
Since xg(x) > 0, we can lower bound the rest of the terms with the identity, i.e.,

Tr [Mg(M)] = (1, M o g(M)1) > g(1) - n
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as Diag(M) = I. Consequently, neglecting the cross-terms Tr [M; M ;] (as the trace of the product of PSD matrices is
non-negative) we arrive at

Tr[Mf(M)] > n4c?- Z (Tr I‘2

Defining v; := Tr [I‘f] > 0, we arrive at the following lower bound on (215):

K 2 K
? <g<1> ety Z) —28- Divi, (216)
i=1 " i=1

where, with an abuse of notation, we rescale g(1) := g(1)/c? and 3 := ¢1 3. Now, by choosing 3; := /3v; and using that
ZiKzl ~; = n due to (214), the objective (216) is seen to be equivalent to (20). This shows that (19) > LB(D). We now
give a brief outline of how one can obtain the optimal s; and 3; for (20).

For finding the optimal s;, it is more natural to still consider (216). Due to the block form (25), the s; have to satisfy the
constraints in (21). Note that (216) evaluated at the optimal S is equal to

(Zfil Dz‘%‘)2

(216) > — A 217)
(9(1) MY Zﬁ)
The optimal s; for this objective are water-filled, i.e.,
S:[n,07~~',0], ngkh
S:[khkg,"' ,kKL dén, (218)
s = [ki, -, kian)—1,1es(n),0,--- ,0] otherwise,
where s = [s1, - - , sk] and id(n) denotes the first position at which
id(n)
min{n,d} — Z ki <0,
i=1
and
id(n)—1

res(n) = min{n,d} — Z k;.

This follows directly from Lemma H.1. It only remains to show that the optimal 3; can be obtained via (24), which is done
in Lemma H.3. This concludes the proof. O

Proof of Proposition 5.3. Except for terms of the form Tr {BiBZ-T B; BH , all the other terms can be estimated as in the

proof of Proposition 4.4. The only technical difference is that all the constants now depend on the ratios %

We will show that, with probability at least 1 — cexp (—cd€), for all i # 7,
Tr [BiBiTBijT] < pite, (219)

Thus, by a simple union bound, we have that, with probability at least 1 — —, this bound holds jointly for all pairs B;, B;.
It follows as in the proof of Lemma C.3 that we can write

B,B] =P,UDU'P

where by abuse of notation we pushed the factor - T in D; (which will only affect the constants ¢, C'). Here, P; is a diagonal
matrix such that, for any € > 0, with probability at least 1 — cexp (—cd®), we have that

1P; — 1|, <n=3te
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To see this, first observe that © : (R"*™)* s R given by O(X 1, X2, X3, X4) = Tr [XlUDiUTX2X3UDjUTX4}
is differentiable (as it is the composition of the trace function with 4-linear form). Since by construction

Tr [UDiUTUDjUT} — Tr[0] = 0,
this implies that, with probability at least 1 — 7,
T T
0<Tr [BiBi B,B] }
~Tr |PUDU' P,P;UD;U" P;|
~Tr [PUDU P;P;UD;U"P;| - Tt [UD:UUD;U|
< C'mf%“,

where in the last step we used that the derivative of the trace function is bounded by 7 - ||-[|,,,,- Thus, (219) holds.

By construction, the sum of all the cross terms is of the form

> Tr[MiM;],
i#j

where M; = I;B; B/ T;, T? = % and I | 7 = n. We have

S T [MM]| = Z’Y;ZjTr [BZ-BZTBJ-B;—]

i#] i
Vi
TL2

i#£]

<OX Wb
i "

< Cn3te,

<

Tr |B:B] B,B] | ’

where in the third step we used a union bound on (219) and in the last step we used Zfil L =1 O

I. Details of Experiments and Additional Numerical Results

We first describe the training details and the whitening procedure that is used to preprocess natural images for MNIST
(Figure 8) and CIFAR-10 (Figures 1, 5 and 7). Next, we give some remarks about the experiments concerning VAMP
(Figure 4) and about the discontinuous behaviour of the derivative of the lower bound highlighted in Figure 6. In addition,
we present additional numerical experiments which cover extra classes of natural images.

Activation function and weight parameterization. Note that the derivative of the sign activation is zero almost everywhere
(except one point, which is the origin). In this view, we cannot use conventional gradient-based algorithms to find the
optimal set of parameters for an autoencoder with the sign activation. We tackle this issue by using a straight-through
estimator (see, for instance, (Yin et al., 2019)) of the sign activation. During the forward pass the activations of the first
layer are computed for o(z) = sign(x), while during the backward pass o () = tanh(x/7) is used. Here, the temperature
parameter 7 > 0 controls how well the differentiable surrogate tanh(z/7) approximates sign(x), as
}ig})tanh(x/T) =sign(z), VzeR\ {0}

More precisely, the differentiable approximation becomes more accurate for smaller values of 7. However, we also note that
extremely small values of 7 might cause numerical issues, since the derivative of the differentiable surrogate diverges at the
origin as 7 — 0. For the numerical experiments, we pick 7 € [0.01, 0.2], with the exact value depending on the specific
setting.
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Figure 5. Compression (o0 = sign) of the CIFAR-10 “dog” class with a two-layer autoencoder. The data is whitened so that 3 = I: on
top, an example of a grayscale image; on the bottom, the corresponding whitening. The blue dots are the population risk obtained via
SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 4.2 and Proposition 4.3. Here, the effect of
the number of augmentations used per image is shown. For the left plot each image was augmented 10 times, while for the right plot each
image was augmented 15 times.

Note that the constraint on the encoder weights || B; .||z = 1 can be enforced via a simple reparameterization that forces the

rows of B to lie on the unit sphere S?~!. More precisely, we use the following classical differentiable reparameterization of

B" =[by,--- ,b,], where b; = ﬁ, with {b;}"_, being the trainable parameters. We note that it is not clear a priori
12

whether we need to impose the constraints directly for the straight-through estimator, since during the forward pass we use

the norm-agnostic sign function.

Augmentation and whitening. For the experiments on natural images, we augment the data of each class 15 times. This is
done to emulate the optimization of the population risk, since the amount of initial data (approximately 5000 samples per
class) leads to a gap between empirical and population risks, especially for high rates. The effect of the data augmentation is
represented in Figure 5 for a whitened CIFAR-10 class. It can be seen that a mild amount of augmentation, i.e., x 10 and
%15, is already enough for our purposes, and the difference between the two plots is rather small. Notably, this amount
of augmentation brings the dataset to the scale of the original data when all classes are considered (around 50000 training
examples).

The whitening procedure used in the experiments concerning isotropic data is performed as follows: given the centered
augmented data X € R"semplesX? we compute its empirical covariance matrix given by

Dgamples

5-_ 1 . > XX/,
i=1

Nsamples — 1
and then we multiply each input by the inverse square root of it, i.e.,
~ A 1
Xi,: =X 2AXi,:-

The resulting whitened images are represented in Figures 1, 5 and 8.

In the experiments concerning non-isotropic data (Figures 2 and 9), we center the data with the empirical mean and divide
by a scalar empirical variance computed across all the pixels, which is the standard preprocessing procedure widely used for
computer vision tasks.

VAMP experiments. For the VAMP experiments, we implement the State Evolution (SE) recursion which exactly
characterizes the limiting performance of VAMP as d — oo, see (Schniter et al., 2016; Rangan et al., 2019) for an overview.
We then plot the fixed point of said SE recursion. A concrete description for VAMP is provided by Algorithm 2 in (Fletcher
et al., 2018), which however covers a more general multi-layer setting.

“Jumps” of the lower bound derivative. The derivative switch described in Figure 6 does not necessarily happen precisely
at the point when the block is filled. A switch may occur at a later point since, even if s, > 0, the corresponding optimal 3;
may be 0. Intuitively, this phenomenon occurs in cases when it is still better to put more mass in the block where the rank is
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Figure 6. Compression (o = sign) of a non-isotropic Gaussian source, whose covariance matrix is obtained by taking k = (20, 20, 35, 25)
and (D1, D2, D3, D4) = (2,1.5,1,0.8) for the left plot, and k = (30, 40, 30) and (D1, D2, D3) = (2,1,0.7) for the right plot. The
blue crosses (Population Risk Minimizer, PRM) are obtained by optimizing (19) via GD. The green triangles are obtained by training an
autoencoder via SGD on Gaussian samples with the given covariance structure. The red solid line plots the derivative of the population
risk computed using a finite differences scheme. Note that the derivative jumps when the corresponding blocks are getting filled, although
this may not happen in general, see Appendix I. A similar behavior can be observed in the isotropic case at r = 1, as there is only one
block to fill (see Figure 4).

utilized to the fullest (s; = k;). This corresponds to the following condition on the derivatives of the objective (20):

0(20) - 0(20)
0B; 0B;

where [} stands for the optimal /3; and j denotes the first index at which Bj* > 0. This behaviour occurs when the spectrum
D has a large variation in scale, e.g.,

(0) (57),

D = [5,0.02,0.01].

In this case, the last components will be utilized for n significantly larger than k; (n = k; precisely characterizes the point
where the rank of the first block of B, i.e., B, is the maximum possible). Note that, for this choice of D, the plot of the
derivative analogous to Figure 6 will not indicate such prominent “jumps”. In fact, the contribution of the last components
to the derivative value is less significant in comparison to the analogous quantity evaluated for the top-most eigenvalues.

Additional experimental data. We also provide additional numerical simulations, similar to those presented in the body of
the paper. In particular, we provide more class variations for the natural data experiments (MNIST and CIFAR-10).
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Figure 7. Compression (¢ = sign) of the CIFAR-10 “horse” class (left) and “ship” class (right) with a two-layer autoencoder. The data
is whitened so that 3 = I: on top, an example of a grayscale image; on the bottom, the corresponding whitening. The blue dots are
the population risk obtained via SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 4.2 and
Proposition 4.3. Here, in both cases the amount of augmentations per image is equal to 15.
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Figure 8. Compression (o = sign) of the MNIST “8” class (left) and “4” class (right) with a two-layer autoencoder. The data is whitened
so that 3 = I: on top, an example of a grayscale image; on the bottom, the corresponding whitening. The blue dots are the population
risk obtained via SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 4.2 and Proposition 4.3.
Here, in both cases the amount of augmentations per image is equal to 10.
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Figure 9. Compression (o = sign) of the CIFAR-10 “airplane” class (left) and “deer” class (right) with a two-layer autoencoder. The data

is not whitened (3 # I). The blue dots are the SGD population risk, and they are close to the lower bound of Theorem 5.2. Here, in both
cases the amount of augmentations per image is equal to 15.
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