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Abstract
Autoencoders are a popular model in many
branches of machine learning and lossy data com-
pression. However, their fundamental limits, the
performance of gradient methods and the features
learnt during optimization remain poorly under-
stood, even in the two-layer setting. In fact, earlier
work has considered either linear autoencoders
or specific training regimes (leading to vanish-
ing or diverging compression rates). Our paper
addresses this gap by focusing on non-linear two-
layer autoencoders trained in the challenging pro-
portional regime in which the input dimension
scales linearly with the size of the representation.
Our results characterize the minimizers of the pop-
ulation risk, and show that such minimizers are
achieved by gradient methods; their structure is
also unveiled, thus leading to a concise descrip-
tion of the features obtained via training. For
the special case of a sign activation function, our
analysis establishes the fundamental limits for the
lossy compression of Gaussian sources via (shal-
low) autoencoders. Finally, while the results are
proved for Gaussian data, numerical simulations
on standard datasets display the universality of
the theoretical predictions.

1. Introduction
Autoencoders represent a key building block in many
branches of machine learning (Kingma & Welling, 2014;
Rezende et al., 2014), including generative modeling (Ben-
gio et al., 2013) and representation learning (Tschannen
et al., 2018). Prompted by the fact that autoencoders learn
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succinct representations, neural autoencoding techniques
have achieved remarkable success in lossy data compres-
sion, even outperforming classical methods, such as jpeg
(Ballé et al., 2017; Theis et al., 2017; Agustsson et al., 2017).
However, despite the large body of empirical work on neural
autoencoders and compressors, basic theoretical questions
remain poorly understood even in the shallow case:

What are the fundamental performance limits of autoen-

coders? Can we achieve such limits with gradient methods?

What features does the optimization procedure learn?

Prior work has focused either on linear autoencoders (Baldi
& Hornik, 1989; Kunin et al., 2019; Gidel et al., 2019),
on the severely under-parameterized setting in which the
input dimension is much larger than the number of neurons
(Refinetti & Goldt, 2022), or on specific training regimes
(lazy training (Nguyen et al., 2021) and mean-field regime
with a polynomial number of neurons (Nguyen, 2021)), see
Section 2. In contrast, in this paper we consider non-linear

autoencoders trained in the challenging proportional regime,
in which the number of inputs to compress scales linearly
with the size of the representation. More specifically, we
consider the prototypical model of a two-layer autoencoder

x̂(x) := x̂(x,A,B) = A�(Bx). (1)

Here, x 2 R
d is the input to compress, x̂ 2 R

n the recon-
struction, B 2 R

n⇥d the encoding matrix, and A 2 R
d⇥n

the decoding matrix; the activation � : R ! R is applied
element-wise. We aim at minimizing the population risk

R(A,B) := d�1
Ex kx� x̂(x)k22 , (2)

where the expectation is taken over the distribution of
the input x. Our focus is on Gaussian input data, i.e.,
x ⇠ N (0,⌃). When � is the sign function, the encoder
�(Bx) can be interpreted as a compressor, namely, it com-
presses the d-dimensional input signal into n bits. The prob-
lem (2) of compressing a Gaussian source with quadratic
distortion has been studied in exquisite detail in the infor-
mation theory literature (Cover & Thomas, 2006), and the
optimal performance for general encoder/decoder pairs is
known via the rate-distortion formalism which characterizes
the lowest achievable distortion in terms of the rate r = n/d.
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Figure 1. Compression (� ⌘ sign) of the CIFAR-10 “airplane”
class with a two-layer autoencoder. The data is whitened so that
⌃ = I: on top, an example of a grayscale image; on the bottom,
the corresponding whitening. The blue dots are the population
risk obtained via SGD, and they agree well with the solid line
corresponding to the lower bounds of Theorem 4.2 and Proposition
4.3.

Here, we focus on encoders and decoders that form the two-
layer autoencoder (1): we study the fundamental limits of
this learning problem, as well as the performance achieved
by commonly used gradient descent methods.

Main contributions. Taken all together, our results show
that, for two-layer autoencoders, gradient descent methods
achieve a global minimizer of the population risk: this is
rigorously proved in the isotropic case (⌃ = I) and corrob-
orated by numerical simulations for a general covariance ⌃.
Furthermore, we unveil the structure of said minimizer: for
⌃ = I , the optimal decoder has unit singular values; for
general covariance, the spectrum of the decoder exhibits the
same block structure as ⌃, and it can be explicitly obtained
from ⌃ via a water-filling criterion; in all cases, weight-
tying is optimal, i.e., A is proportional to B>. Specifically,
our technical results can be summarized as follows.

• Section 4.1 characterizes the minimizers of the risk (2) for
isotropic data: Theorem 4.2 provides a tight lower bound,
which is achieved by the set (7) of weight-tied orthogonal

matrices, when the compression rate r = n/d  1; for
r > 1, Propositions 4.3 and 4.4 give a lower bound, which
is approached (as d ! 1) by the set (12) of weight-tied
rotationally invariant matrices.

• Section 4.2 shows that the above minimizers are reached
by gradient descent methods for r  1: Theorem 4.5
shows linear convergence of gradient flow for general
initializations, under a weight-tying condition; Theorem
4.6 considers a Gaussian initialization and proves global
convergence of the projected gradient descent algorithm,
in which the encoder matrix B is optimized via a gradient
method and the decoder matrix A is obtained directly via
linear regression.

• Section 5 focuses on data with general covariance ⌃ 6= I .
We observe that experimentally weight-tying is optimal

Figure 2. Compression (� ⌘ sign) of the CIFAR-10 “cat” class
with a two-layer autoencoder. The data is not whitened (⌃ 6= I).
The blue dots are the SGD population risk, and they are close to
the lower bound of Theorem 5.2.

and then derive the corresponding lower bound (see The-
orem 5.2), which is also asymptotically achieved (as
d ! 1) by rotationally invariant matrices with a carefully
designed spectrum (depending on ⌃), see Proposition 5.3.

When � ⌘ sign, our analysis characterizes the fundamental
limits of the lossy compression of a Gaussian source via
two-layer autoencoders. Remarkably, if we restrict to a
certain class of linear encoders for compression, two-layer
autoencoders achieve optimal performance (Tulino et al.,
2013), which can be generally obtained via a message pass-
ing decoding algorithm (Rangan et al., 2019). However,
for general encoder/decoder pairs, shallow autoencoders
fail to meet the information-theoretic bound given by the
rate-distortion curve, see Section 6.

Going beyond the Gaussian assumption on the data, we
provide numerical validation to our theoretical predictions
on standard datasets, both in the isotropic case (Figure 1)
and for general covariance (Figure 2). Additional numerical
results – together with the details of the experimental setting
– are in Appendix I.

Proof techniques. The lower bound on the population risk
of Theorem 4.2 comes from a sequence of relaxations of the
objective function, which eventually allows to apply a trace
inequality. For r � 1, Proposition 4.3 crucially exploits
an inequality for the Hadamard product of PSD matrices
(Khare, 2021), and the asymptotic achievability of Proposi-
tion 4.4 takes advantage of concentration-of-measure tools
for orthogonal matrices. The key quantity in the analysis
of gradient methods is the encoder Gram matrix at itera-
tion t, i.e., B(t)B(t)>. In particular, for gradient flow
(Theorem 4.5), due to the weight-tying condition, tracking
log detB(t)B(t)> leads to a quantitative convergence re-
sult. However, when the weights are not tied, this quantity
does not appear to increase along the optimization trajec-
tory. Thus, for projected gradient descent (Theorem 4.6),
the idea is to decompose B(t)B(t)> into (i) its value at the
optimum (given by the identity), (ii) the contribution due
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to the spectrum evolution (keeping the eigenbasis fixed),
and (iii) the change in the eigenbasis. Via a sequence of
careful approximations, we are able to show that the term
(iii) vanishes. Hence, we can study explicitly the evolution
of the spectrum and obtain the desired convergence.

2. Related Work
Theory of autoencoders. A popular line of work has
focused on two-layer linear autoencoders: Oftadeh et al.
(2020) analyze the loss landscape; Kunin et al. (2019) show
that the minimizers of the regularized loss recover the princi-
pal components of the data and, notably, the corresponding
autoencoder is weight-tied; Bao et al. (2020) prove that
stochastic gradient descent – after a slight perturbation –
escapes the saddles and eventually converges; Gidel et al.
(2019) characterize the time-steps at which the network
learns different sets of features. Rangamani et al. (2018);
Nguyen et al. (2019) prove local convergence for weight-
tied two-layer ReLU autoencoders. Nguyen et al. (2021)
focus on the lazy training regime (Chizat et al., 2019; Jacot
et al., 2018) and bound the over-parameterization needed
for global convergence. Radhakrishnan et al. (2020) show
that over-parameterized autoencoders learn solutions that
are contractive around the training examples. The latent
spaces of autoencoders are studied in (Jain et al., 2021),
where it is shown that such latent spaces can be aligned by
stretching along the left singular vectors of the data. More
closely related to our work, Nguyen (2021) and (Refinetti &
Goldt, 2022) track the gradient dynamics of non-linear two-
layer autoencoders via the mean-field PDE and a system of
ODEs, respectively. However, these analyses are restricted
to diverging and vanishing rates: Nguyen (2021) considers
weight-tied autoencoders with polynomially many neurons
in the input dimension (so that r ! 1); Refinetti & Goldt
(2022) consider the other extreme regime in which the input
dimension diverges (so that r ! 0).

Neural compression. In recent years, compressors based
on neural networks have outperformed traditional schemes
on real-world data in terms of minimizing distortion and
producing visually pleasing reconstructions at reasonable
complexity (Ballé et al., 2017; Theis et al., 2017; Agustsson
et al., 2017; Ballé et al., 2021). These methods typically
use an autoencoder architecture with quantization of the
latent variables, which is trained over samples drawn from
the source. More recently, other architectures such as atten-
tion or diffusion-based models have been incorporated into
neural compressors (Cheng et al., 2020; Liu et al., 2019;
Yang & Mandt, 2022; Theis et al., 2022), and improvements
have been observed. We refer to Yang et al. (2022) for a
detailed review on this topic. Given the remarkable suc-
cess of neural compressors, it is imperative to understand
the fundamental limits of compression using neural archi-

tectures. In this regard, Wagner & Ballé (2021) consider
a highly-structured and low-dimensional random process,
dubbed the sawbridge, and show numerically that the rate-
distortion function is achieved by a compressor based on
deep neural networks trained via stochastic gradient descent.
In contrast, our work considers Gaussian sources, which are
high-dimensional in nature, and provides the fundamental
limits of compression for two-layer autoencoders. Our re-
sults also imply that two-layer autoencoders cannot achieve
the rate-distortion limit on Gaussian data, see Section 6.

Additional related works on rate-distortion formalism and
non-linear inverse problems are discussed in Appendix A.

3. Preliminaries
Notations. We use plain symbols for real numbers (e.g.,
a, b), bold symbols for vectors (e.g., a, b), and capitalized
bold symbols for matrices (e.g., A,B). We let [n] =
{1, . . . , n}, I be the identity matrix and 1 the column vector
containing ones. Given a matrix A, we denote its operator
norm by kAk

op
and its Frobenius norm by kAkF . Given

two matrices A and B of the same shape, we denote their
element-wise (Hadamard/Schur) product by A �B and the
k-th element-wise power by A�k. We write L2(R, µ) for
the space of L2 integrable functions on R w.r.t. the stan-
dard Gaussian measure µ and hk(x) for the k-th normalized
Hermite polynomial (see e.g. O’Donnell (2014)).

Setup. We consider the two-layer autoencoder (1) and aim
at minimizing the population risk (2) for a given rate r =
n/d. In particular, we provide tight lower bounds on the
minimum of the population risk computed on Gaussian input
data with covariance ⌃, i.e.,

bR(r) := min
A,B

R(A,B). (3)

In the isotropic case (⌃ = I), our results hold for any odd
activation � 2 L2(R, µ) after restricting the rows of the en-
coding matrix B to have unit norm. We remark that, when
�(x) = sign(x), the restriction is unnecessary since the ac-
tivation is homogeneous.1 We also note that restricting the
norms of the rows of B prevents the model from entering
the “linear” regime. In fact, when kBkF ⇡ 0, by linearizing
the activation around zero, (1) reduces to the linear model
x̂(x) ⇡ ABx, which exhibits a PCA-like behaviour. For
general covariance ⌃, we consider odd homogeneous acti-
vations, which includes the sign function and monomials of
arbitrary odd degree.

Any function � 2 L2(R, µ) can be expanded in terms of
Hermite polynomials. This allows to perform Fourier analy-
sis in the Gaussian space L2(R, µ), and it provides a natural
tool because of the Gaussian assumption on the data. In

1We say that a function � is homogeneous if there exists an
integer k s.t. �(↵x) = ↵k�(x) for all ↵ 6= 0.
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particular, for odd �, only odd Hermite polynomials occur,
i.e.,

�(x) =
P1
`=0c2`+1h2`+1(x), (4)

where {c`}`2N denote the Hermite coefficients of �. We
also consider the following auxiliary quantity

eR(r) := min
A,k(BD)i,:k2=1

R(A,B), (5)

that defines a minimum of the population risk for the au-
toencoder (1) with a certain norm constraint on the encoder
weights B. Here, D contains the square roots of the eigen-
values of ⌃ (i.e., ⌃ = UD2U> for an orthogonal matrix
U ), and (BD)i,: stands for the i-th row of the matrix BD.
A few remarks about the restricted population risk (5) are
in order. First of all, if � is homogeneous, the minimum of
the restricted population risk (5) and of the unconstrained
one (3) coincide (see Lemma 4.1 and Lemma 5.1). Thus, in
this case, the analysis of eR(r) directly provides results on
the quantity of interest, i.e., bR(r). The technical advantage
of analysing (5) over (3) comes from fact that the expec-
tation with respect to the Gaussian inputs, which arises in
the constrained objective, can be explicitly computed via
the reproducing property of Hermite polynomials (see, e.g.,
O’Donnell (2014)). To exploit this reproducing property,
it is crucial that the inner products hBi,:,xi have the same
scale, which is ensured by picking k(BD)i,:k2 = 1. The
sole dependence of the constraint on the spectrum D (and,
not on a particular choice of U ) stems from the rotational
invariance of the isotropic Gaussian distribution.

4. Main Results
In this section, we consider isotropic Gaussian data, i.e.,
⌃ = D = I . First, we derive a closed form expression
for the population risk in Lemma 4.1. Then, in Theorem
4.2 we give a lower bound on the population risk for r  1
and provide a complete characterization of the autoencoder
parameters (A,B) achieving it. Surprisingly, the minimizer
exhibits a weight-tying structure and the corresponding ma-
trices are rotationally invariant. Later, in Proposition 4.3
we derive an analogous lower bound for r > 1. While it
is hard to characterize the minimizer structure explicitly
for a finite input dimension d (and r > 1), we provide a
sequence {(Ad,Bd)}d2N that meets the lower bound in the
high-dimensional limit (d ! 1), see Proposition 4.4. No-
tably, the elements of this sequence share the key features
(weight-tying, rotational invariance) of the minimizers for
r  1. In Section 4.2 we describe gradient methods that
provably achieve the optimal value of the population risk.
Specifically, we consider gradient flow under a weight-tying
constraint and projected (on the sphere) gradient descent
with Gaussian initialization. The corresponding results are
stated in Theorem 4.5 and Theorem 4.6.

We start by expanding � in a Hermite series to obtain a
closed-form expression for the population risk.
Lemma 4.1. Consider any odd � 2 L2(R, µ) and its Her-

mite expansion given by (4). Then, eR(r) is equivalent to

min
A,kBi,:k2=1

1

d

⇣
Tr
h
A>Af(BB>)

i
� 2c1 · Tr [BA]

⌘
+1,

(6)
where f(x) :=

P1
`=0(c2`+1)2x2`+1

is applied element-

wise. In particular, if �(x) = sign(x), then f(x) =
c21 · arcsin(x) and c1 =

p
2/⇡. Moreover, for any ho-

mogeneous �, we have that bR(r) = eR(r).

The proof of the lemma above is contained in Appendix
B. Note that, if c1 = 0, it is easy to see that the mini-
mum of eR(r) equals 1 and it is attained when A>A is
the zero-matrix. Furthermore, if

P1
`=1(c2`+1)2 = 0, then

�(x) = c21x and we fall back into the simpler case of a lin-
ear autoencoder (Baldi & Hornik, 1989; Kunin et al., 2019;
Gidel et al., 2019). Thus, for the rest of the section, we will
assume that c1 6= 0 and

P1
`=1(c2`+1)2 6= 0.

4.1. Fundamental Limits: Lower Bound on Risk

We begin by providing a tight lower bound for r  1, which
is uniquely achieved on the set of weight-tied orthogonal
matrices Hn,d defined as

Hn,d :=

⇢
eA, eB

>
2 R

d⇥n : eA =
c1
f(1)

· eB
>
, eB eB

>
= I

�
.

(7)
Theorem 4.2. Consider any odd � 2 L2(R, µ) and fix

r  1. Then, the following holds

eR(r) � LBr1(I) := 1�
c21
f(1)

· r,

and equality is achieved iff (A,B) 2 Hn,d.

We note that the minimizers Hn,d of eR(r) do not directly
correspond to the minimizers of the unconstrained popula-
tion risk bR(r), since in general eR(r) 6= bR(r). However, if
� is homogeneous, the “inverse” mapping can be readily
obtained. For instance, when �(x) = sign(x), rescaling the
norms of the rows of B does not affect the compression,
i.e., sign(Bx) = sign(SBx) for any diagonal S with pos-
itive entries. Hence, to obtain a minimizer, it suffices that
the rows of B form any set of orthogonal (not necessarily
normalized) vectors. In contrast, note that A is still defined
with respect to the row-normalized version of B. Similar
arguments hold for homogeneous activations.

We also note that the weight-tying structure (7) observed
in the minimizers of the population risk is related to the
early representation learning literature (Vincent et al., 2008;
Hinton & Salakhutdinov, 2006).
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We now provide a proof sketch for Theorem 4.2 and defer
the full argument to Appendix C.1.

Proof sketch of Theorem 4.2. Using the series expansion of
f(·), we can write

Tr
h
A>Af(BB>)

i
� 2c1 · Tr [BA]

=
1X

`=0

c22`+1

 
Tr


A>A

⇣
BB>

⌘�2`+1
�
�2

c1
f(1)

Tr [BA]

!
.

Thus, the minimization problem in Lemma 4.1 can be re-
duced to analysing each Hadamard power individually:

min
A,kBi,:k2=1

Tr
h
A>A(BB>)�`

i
�

2c1
f(1)

·Tr [BA] . (8)

The crux of the argument is to provide a suitable sequence
of relaxations of (8). The first relaxation gives

Tr
h
(A>A �Q)(BB>

�Q)
i
�

2c1
f(1)

· Tr [BA] , (9)

where Q is any PSD matrix with unit diagonal. Using the
properties of the SVD of Q, (9) can be further relaxed to

nX

i,j=1

Tr
h
AjA

>
j
BjB

>
j

i
�

2c1
f(1)

·

nX

i=1

Tr [BiAi] , (10)

where now Ai,B
>
i
2 R

d⇥n are arbitrary matrices. The key
observation is that
nX

i=1

����
c1
f(1)

·

p

X
�1

A>
i
�

p

XBi

����
2

F

= (10)+
c21

(f(1))2
·n,

with X =
P

n

i=1 A
>
i
Ai. As each relaxation lower bounds

(8) and the Frobenius norm is positive, this argument leads
to the lower bound on eR(r). The fact that the lower bound is
met for any (A,B) 2 Hn,d can be verified via a direct cal-
culation. The uniqueness follows by taking the intersection
of the minimizers of (8) for different values of `.

Next, we move to the case r > 1.
Proposition 4.3. Consider any odd � 2 L2(R, µ) and fix

r > 1, then the following holds:

eR(r) � LBr>1(I) := 1�
r

r +
⇣

f(1)
c21

� 1
⌘ .

The key difference with the proof of the lower bound in
Theorem 4.2 is that the term Tr

h
A>ABB>

i
requires a

tighter estimate. This is due to the fact that the matrix BB>

is no longer full-rank when r > 1. We obtain the desired
tighter bound by exploiting the following result by (Khare,
2021):

A>A �BB>
⌫

1

d
·Diag(BA)Diag(BA)>, (11)

where Diag(BA) stands for the vector containing the di-
agonal entries of BA. The full argument is contained in
Appendix C.2.1.

As for r  1, the bound is met (here, in the limit d ! 1)
by considering weight-tied matrices:

B̂
>
=

p
r · [Id,0d,n�d]U

>, bi =
b̂i

kb̂ik2
, A = �B>,

(12)
where � = c1

c21r+f(1)�c21
and U is uniformly sampled from

the group of rotation matrices. The idea behind the choice
(12) is that, as d ! 1, (BB>)�2` for ` � 2 is close to
the identity matrix, and (11) is attained exactly. The formal
statement is provided below and proved in Appendix C.2.2.
Proposition 4.4. Consider any odd � 2 L2(R, µ) and fix

r > 1. Let A,B be defined as in (12). Then, for any ✏ > 0
the following holds

|R(A,B)� LBr>1(I)|  Cd�
1
2+✏,

with probability 1� c/d2. Here, the constants c, C depend

only on r and ✏.

We note that all the arguments of this section directly apply
to Gaussian data with a covariance matrix of the form ⌃ =
�2Id�k 0(d�k)⇥k

0k⇥(d�k) 0k⇥k

�
. For the details, see Appendix F.

4.2. Gradient Methods Achieve the Lower Bound

In this section, we discuss the achievability of the lower
bound obtained in the previous section via gradient methods.
We study two procedures which find the minimizer of the
population risk R(A,B) under the constraint kBi,:k2 = 1.
Namely, we analyse (i) weight-tied gradient flow on the
sphere and (ii) its discrete version (with finite step size)
without weight-tying, i.e., projected gradient descent.

The optimization objective in Lemma 4.1 is equivalent (up
to a scaling independent of (A,B)) to

min
A,kBi,:k2=1

Tr
h
A>A · f(BB>)

i
� 2 · Tr [BA] , (13)

where we have rescaled the function f by 1/c21. This fol-
lows from the fact that the multiplicative factor c1 can be
pushed inside A. Note that such scaling does not affect the
properties of gradient-based algorithms (modulo a constant
change in their speed). Hence, without loss of generality,
we will state and prove all our results for the problem (13).

Weight-tied gradient flow. We start by considering the
weight-tied setting

A = �B>, � 2 R. (14)
This is motivated by the fact that the lower bounds on the
population risk are approached by weight-tied matrices (see
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Theorem 4.2 and Proposition 4.4). We keep the presenta-
tion brief and informal, and the formal setup is deferred to
Appendix D. Note that for all A,B under the weight-tying
constraint (14), the optimal �⇤ in (13) can be found exactly.
Thus, to optimize (13), we perform a (Riemannian) gradient
flow on B with rows constrained to the unit sphere, where
at each time t we pick the optimal �⇤(t):

@bi(t)

@t
= �J i(t)rbi (�

⇤(t),B(t)), (15)

where bi(t) stands for the i-th row of B(t) and J i(t)
projects the gradient rbi (�(t),B(t)) of (13) under the
weight-tying constraint on the unit sphere (see (64)-(65) in
Appendix D for the exact expressions). This ensures that
kbi(t)k2 = 1 along the gradient flow trajectory.

Theorem 4.5 (Informal). For any r  1, the gradient flow

(15) initialized with full rank unit-row norm B converges to

a global minimizer of (13), given by BB> = I .

Proof sketch of Theorem 4.5. It can be readily shown that the
B’s for which BB> = I are the unique minimizers of (13)
under the weight-tying constraint and they satisfy the station-
ary point condition of the gradient flow (15). However, if B
becomes not full-rank, such subspaces are never escaped by
the gradient flow (15) (see Lemma D.2). Hence, the proce-
dure would fail to converge to the global minimizer that has
full-rank. We show that, under the full-rank initialization,
this does not happen by lower bounding the time derivative
of log det (B(t)B(t)>) (see Lemma D.3), which vanishes
uniquely at BB> = I . This ensures that the solution of
(15) will not saturate to a low-rank subspace.

In Appendix D, we also provide a quantitative bound on the
convergence time (see Lemma D.4). We remark that Theo-
rem 4.5 holds for any d and for all full-rank initializations.

Projected gradient descent. We now move to the setting
where the encoder and decoder weights are not weight-
tied. In this case, we consider the commonly used Gaussian
initialization and prove a result for sufficiently large d. The
Gaussian initialization allows us to relax the requirement
on f : we only need c2 = 0, as opposed to the previous
assumption that c2` = 0 for any ` 2 N (see the statement
of Lemma 4.1). Specifically, we consider the following
algorithm to minimize (13):

A(t) = B(t)>
�
f(B(t)B(t)>)

��1

B0(t) :=B(t)� ⌘rB(t),B(t+ 1) := proj(B0(t)),
(16)

where A(t) is the optimal matrix for a fixed B(t) and rB(t)

(see (86) in Appendix E) is the projected gradient of the ob-
jective (13) with respect to B(t). Furthermore, proj(B0(t))
rescales all the rows to have unit norm. It will become ap-
parent from the proof of Theorem 4.6 that the inversion in
the definition of A(t) is indeed well defined. We remark

that (16) can be viewed as the discrete counterpart of the
Riemannian gradient flow for the weight-tied case (with
the optimal A(t) in place of the weight-tying), where the
application of proj(·) keeps the rows of B(t) of unit norm.
In the related literature, this procedure is often referred to as
Riemannian gradient descent (see, e.g., Absil et al. (2009)).
Alternatively, (16) may be viewed as coordinate descent
(Wright, 2015) on the objective (13), where the step in A is
performed exactly.

Our main result is that the projected gradient descent (16)
converges to the global optimum of (13) for large enough d
(with high probability). We give a sketch of the argument
and defer the complete proof to Appendix E.

Theorem 4.6. Consider the projected gradient descent

(16) applied to the objective (13) for any f of the form

f(x) = x +
P
`=3 c

2
`
x`, where

P
`=3 c

2
`
< 1. Initialize

the algorithm with B(0) equal to a row-normalized Gaus-

sian, i.e., B0
i,j
(0) ⇠ N (0, 1/d), B(0) = proj(B0(0)). Let

the step size ⌘ be ⇥(1/
p
d). Then, for any r < 1 and suffi-

ciently large d, with probability at least 1�Ce�cd
, we have

that B(t)B(t)> converges to I , which is the unique global

optimum of (13). Moreover, defining t = T/⌘, we have the

following bound on the rate of convergence

��B(t)B(t)> � I
��
op

 C(1� c)T ,

where C > 0 and c 2 (0, 1] are universal constants depend-

ing only on r and f .

Proof sketch of Theorem 4.6. Let B(0)B(0)> =
U⇤(0)U> be the singular value decomposition (SVD) of
the encoder Gram matrix. Then, the idea is to decompose
B(t)B(t)> at each step of the projected gradient descent
dynamics as

B(t)B(t)> = I +Z(t) +X(t), (17)

where Z(t) = U(⇤(t)� I)U>. Here, I is the global opti-
mum towards which we want to converge; Z(t) captures the
evolution of the eigenvalues while keeping the eigenbasis
fixed, as U comes from the SVD at initialization; and X(t)
is the remaining error term capturing the change in the eigen-
basis. The update on ⇤(t) is given by ⇤(t+ 1) = g(⇤(t)),
where g : Rn

! R
n admits an explicit expression. Hence,

in light of this explicit expression, if we had X(t) ⌘ 0, then
the desired convergence would follow from the analysis of
the recursion for ⇤(t) (see Lemma G.3).

The main technical difficulty lies in carefully controlling
the error term X(t). In particular, we will show that X(t)
decays for large enough d, which means that dynamics
(17) is well approximated by I + Z(t). The proof can be
broken down in four steps. In the first step, we compute
the leading order term of rB(t) (see Lemma E.2 and E.3).
This simplifies the formula for rB(t), which can then be

6
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expressed as an explicit nonlinear function of Z(t) and
X(t). In the second step, we perform a Taylor expansion
of rB(t), seen as a matrix-valued function in Z(t) and
X(t) (see Lemma E.4). The intuition for this expansion
comes from the fact that X(t) is a small quantity, and also
kZ(t)k

op
! 0 as t ! 1. In the third step, we show that

the norm of rB(t) vanishes sufficiently fast (see Lemma
E.5), which implies that the projection step B(t + 1) :=
proj(B0(t)) has a negligible effect (see Lemma E.6). After
doing these estimates, we finally obtain an explicit recursion
for X(t). In the fourth step, we analyse this recursion (see
Lemma E.7): first, we show that the error does not amplify
too strongly (as in Gronwall’s inequality); then, armed with
this worst-case estimate, we can prove an exponential decay
for X(t), which suffices to conclude the argument.

Further discussions on the results in this section can be
found in Appendix F.

5. Extension to General Covariance
In this section, we consider a Gaussian source with general
covariance structure, i.e., ⌃ = UD2U>. Without loss of
generality, the matrix D can be written as

D = Diag([D1, · · · , D1| {z }
⇥k1

| · · · |DK , · · · , DK| {z }
⇥kK

]), (18)

where
P

K

i=1 ki = d, ki � 1 and Di > Di+1 � 0. We start
by deriving a closed-form expression for the population risk,
similar to Lemma 4.1. Its proof is given in Appendix B.
Lemma 5.1. Let � 2 L2(R, µ) be an odd homogeneous

activation, then eR(r) is equal to the minimum of

1

d

⇣
Tr
h
A>Af(BB>)

i
� 2c1 · Tr [BDA] + Tr

⇥
D2⇤⌘

(19)

under the constraint kBi,:k2 = 1. Moreover, bR(r) = eR(r).

Lemma 5.1 can be extended to any odd � 2 L2(R, µ) at the
cost of losing the equivalence between bR(r) and eR(r).

We restrict the theoretical analysis to proving a lower bound
on (19) in the weight-tied setting (14). This lower bound
is achieved via the choice of A,B in Proposition 5.3, and
we give numerical evidence (see Figure 6 in Appendix I)
that gradient descent saturates the bound without the weight-
tying constraint. Thus, we expect our lower bound to hold
also for general (not necessarily weight-tied) matrices. The
lower bound is given by the minimum of

1

d

0

@g(1)

n

 
KX

i=1

�i

!2

+
KX

i=1

✓
c21

�2
i

si
� 2c1Di�i +D2

i

◆1

A

(20)
over all �i � 0 and

0  si  min{ki, n}, 1 
P

K

i=1si  min{d, n}. (21)

Here g(x) := f(x)� c21x, and we use the convention that
02

0 = 0 and c

0 = +1 for c > 0. We can also explicitly
characterize the optimal si,�i. The optimal si are obtained
via a water-filling criterion:

s = [k1, · · · , kid(n)�1, res(n), 0, · · · , 0], (22)

where s = [s1, · · · , sk], id(n) denotes the first position
at which min{n, d} �

Pid(n)
i=1 ki < 0, and res(n) :=

min{n, d} �
Pid(n)�1

i=1 ki. The �i can also be expressed
explicitly in terms of f, si, Di. This is summarized in the
following theorem.

Theorem 5.2. Consider the objective (19) under the weight-

tied constraint (14). Then,

(19) � LB(D) := min
si,�i

(20), (23)

where �i � 0 and the si satisfy (21). Furthermore, the

minimizers of (20) are the si obtained via the water-filling
criterion (22) and

�i =

8
><

>:

si
c1

·

 
g(1)

c21n

PM⇤
j=1 sj�j+D1

g(1)

c21n

PM⇤
j=1 sj+1

��i

!
, i  M⇤,

0, i > M⇤,

(24)

where �j = D1 �Dj and M⇤
is smallest index such that

g(1)

c21n

P
M

⇤+1
j=1 sj(DM⇤+1 �Dj) +DM⇤+1  0.

If no such index exists, then M⇤ = K.

We give a high-level overview of the proof below, and the
complete argument is provided in Appendix H.

Proof sketch of Theorem 5.2. We first show that (23) holds.
Consider the following block decomposition of B having
the same block structure as D:

B = [�1B1| · · · |�KBK ], (25)

where Bj 2 R
n⇥kj with k(Bj)i,:k2 = 1 and {�j}

K

j=1

are diagonal matrices with
P

K

j=1 �
2
j
= I . Each Bi plays

a similar role to the B in the isotropic case. The crucial
bound for this step comes from Theorem A in Khare (2021):

(�iBiB
>
i
�i)

�2
⌫

1

si
·Diag(�2

i
)Diag(�2

i
)>,

where si = rank(BiB
>
i
). Now, ignoring the (PSD) cross-

terms for i 6= j we can proceed as in the proof of Proposition
4.3 to arrive at (20). It then remains to minimize (20), which
is done using tools from convex analysis.

Asymptotic achievability. We show that the lower bound
in Theorem 5.2 can be asymptotically (i.e, as d ! 1)

7
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Figure 3. Performance comparison for the compression (� ⌘ sign)
of an non-isotropic Gaussian source for k = (20, 20, 35, 25) and
(D1, D2, D3, D4) = (2, 1.5, 1, 0.8).

achieved by using the block form (25), after carefully pick-
ing Bi for each block. Specifically, first we generate a
matrix U 2 R

n⇥n which is sampled uniformly from the
group of orthogonal matrices. Next, we choose each Bi

such that B̂iB̂
>
i

= n

ki
UDiU

>, where Di is a diagonal
matrix with

(Di)v,v =

(
1, if

P
i�1
j=1 kj < v 

P
i

j=1 kj ,

0, otherwise,

and the rows of Bi are given by bi =
b̂i

kb̂ik2
. Furthermore,

we pick �2
i
= �i

n
I and A = �B>. The scalings �i and

� are chosen such that �i := ��i are the minimizers of
(20) for si as in (21). This is formalized in the following
proposition.
Proposition 5.3. Assume A,B are constructed as de-

scribed above and fix r > 0. Also assume that, for all

i, ki
n

converges to a strictly positive number as d ! 1.

Then, for any ✏ > 0, with probability 1� c

d2 ,

|R(A,B)� LB(D)|  Cd�
1
2+✏,

where LB(D) is defined in (23), and the constants c, C only

depend on r, ✏ and limd!1
ki
n

.

The proof of this lemma is similar to that of Proposition 4.4,
and it is provided in Appendix H.

Taken together, Proposition 5.3 and Theorem 5.2 show that
the optimal B exhibits the block structure (25), which
agrees with the block structure (18) of the data covari-
ance. The individual blocks are orthogonal in the sense
that B>

i
�i�jBj = 0. Furthermore, we expect each block

to have the same form as the minimizers in the isotropic
case, up to some scaling. Such a structure is also confirmed
by the numerical experiments: for instance, it is observed in
the setting considered for Figure 6 in Appendix I.

Interpretation of the water-filling solution. To provide an
intuitive illustration of the property of solutions in Propo-
sition 5.3, consider the case of K = 2 and k1 = k2. In

this case, the eigenvalues of BB> will take only the two
values �1,�2 corresponding to the two blocks. For rate
r  k1/d = 1/2, we have �2 = 0 since water-filling im-
plies that only the block corresponding to D1 is utilized by
B. For rate r > 1/2, we have �2 > 0, as soon as

✓
1 +

2c21
f(1)� c21

r

◆
D2 > D1.

The inequality can be obtained by evaluating explicitly the
condition stated in Theorem 5.2 below Equation (24) in this
special case. Furthermore, in the limit r ! 1, we have that
�1
�2

!
D1
D2

. This means that, for sufficiently large rates, the
weight given by the encoder to each block is proportional to
the corresponding eigenvalue of the data.

The water-filling behaviour can be observed in a setting
with four blocks in Figure 3. Namely, at each of the rates
{k1/d, (k1+k2)/d, (k1+k2+k3)/d, (k1+k2+k3+k4)/d}
that correspond to the earlier blocks being utilized to their
full capacity, the derivative of the lower bound experiences
a “jump” at which the next �i becomes positive.

6. Discussion
Population vs. empirical loss. All our results hold for the
optimization of the population loss. Extending them to the
empirical loss is an interesting direction for future research.
One possible way forward is to exploit progress towards re-
lating the landscape of empirical and population losses, see
e.g. (Mei et al., 2018). We remark that, in the simulations
of gradient descent, we always use the tempered straight-
through estimator of the sign activation (see Appendix I
for details). Thus, another promising direction is to show
that, in the low-temperature regime (i.e., when the differen-
tiable approximation of the sign becomes almost perfect),
the gradient-based scheme converges to the minimizer of
the population risk.

Optimality of two-layer autoencoders. This paper charac-
terizes the minimizers of the expected `2 error incurred by
two-layer autoencoders, and it shows that the minimum er-
ror is achieved, under certain conditions, by gradient-based
algorithms. Thus, for the special case in which � ⌘ sign, a
natural question is to what degree the model (1) is suitable
for data compression. Let us fix the encoder to be a rotation-
ally invariant matrix, i.e., B = U⇤V > with U ,V indepen-
dent and distributed according to the Haar measure and ⇤
having bounded entries. Then, the information-theoretically
optimal reconstruction error can be computed via the replica
method from statistical mechanics (Tulino et al., 2013) and,
in a number of scenarios, it coincides with the error of a
Vector Approximate Message Passing (VAMP) algorithm
(Rangan et al., 2019; Schniter et al., 2016). Furthermore,
it is also possible to optimize the spectrum ⇤ to minimize
the error, which leads to the singular values of B being all

8
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Figure 4. Performance comparison for the compression (� ⌘ sign)
of an isotropic Gaussian source.

1 (Ma et al., 2021).2 Surprisingly, for a compression rate
r  1, the optimal error found in (Ma et al., 2021) coin-

cides with the minimizer of the population loss given by
Theorem 4.2. Hence, two-layer autoencoders are optimal
compressors under two conditions: (i) r  1, and (ii) fixed
encoder given by a rotationally invariant matrix. Both con-
ditions are sufficient and also necessary. For r > 1, VAMP
outperforms the two-layer autoencoder. Moreover, for a
general encoder/decoder pair, the information-theoretically
optimal reconstruction error is given by the rate-distortion
function, which outperforms two-layer autoencoders for
all r > 0. This picture is summarized in Figure 4: the
blue curve represents the lower bound of Theorem 4.2 (for
r  1) and Proposition 4.3 (for r > 1), which is met by
either running GD on the population risk (blue crosses) or
SGD on samples taken from a isotropic Gaussian (green
triangles) when d = 100;3 this lower bound meets the per-
formance of VAMP (red curve) if and only if r  1; finally,
the rate distortion function (orange curve) provides the best
performance for all r > 0.

Universality of Gaussian predictions. Figure 4 (and also
Figure 6 in Appendix I) show that gradient descent achieves
the minimum of the population risk for the compression of
Gaussian sources. Going beyond Gaussian inputs, to real-
world datasets, Figures 1-2 (as well as those in Appendix I)
show an excellent agreement between our predictions (using
the empirical covariance of the data) and the performance
of autoencoders trained on standard datasets (CIFAR-10,
MNIST). As such, this agreement provides a clear indication
of the universality of our predictions. In this regard, a flurry
of recent research (see e.g. (Hastie et al., 2022; Hu & Lu,
2022; Loureiro et al., 2021; Goldt et al., 2022; Dudeja et al.,

2More specifically, Ma et al. (2021) consider an expectation
propagation (EP) algorithm (Minka, 2001; Opper et al., 2005;
Fletcher et al., 2016; He et al., 2017), which has been related to
various forms of approximate message passing (Ma & Ping, 2017;
Rangan et al., 2019).

3For further details on the experimental setup, see Appendix I.

2022; Montanari & Saeed, 2022; Wang et al., 2022)) has
proved that the Gaussian predictions actually hold in a much
wider range of models. While none of the existing works
exactly fits the setting considered in this paper, this gives
yet another indication that our predictions should remain
true more generally. The rigorous characterization of this
universality is left for future work.

The choice of the activation function. The sign activation
function constitutes an important special case of our analysis.
However, our results hold for a broader class of activations.
In particular, under the restriction that the rows of the en-
coder B lie on the unit sphere, all the results apply for any

odd activation. The reason to fix the norm of the rows of the
encoder is to prevent the network from entering the linear
regime (e.g., by scaling B ! ✏B and A !

1
✏
A). In fact, in

the linear regime, perfect recovery can be achieved and this
case has been well studied, see e.g. (Baldi & Hornik, 1989;
Kunin et al., 2019; Gidel et al., 2019). We also note that, if
the activation function is homogeneous, the restriction on
the norm of the rows of B can be lifted, as the norm can be
scaled out. Extending our analysis to activation functions
that are not odd (e.g., ReLU) is an exciting avenue for future
research. To achieve this goal, we expect that novel ideas
will be needed, since our current approach relies on the fact
that the Hermite expansion of the activation function (4) has
only odd monomials.
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A. Additional Related Works
Rate-distortion formalism. Lossy compression of stationary sources is a classical problem in information theory, and
several approaches have been proposed, including vector quantization (Gray, 1984), or the usage of powerful channel codes
(Korada & Urbanke, 2010; Ciliberti et al., 2006; Wainwright et al., 2010). The rate-distortion function characterizes the
optimal trade-off between error and size of the representation for the compression of an i.i.d. source (Shannon, 1948;
1959; Cover & Thomas, 2006). However, computing the rate-distortion function is by itself a challenging task. The
Blahut-Arimoto scheme (Blahut, 1972; Arimoto, 1972) provides a systematic approach, but it suffers from the issue of
scalability (Lei et al., 2022). Consequently, to compute the rate-distortion of empirical datasets, approximate methods based
on generative modeling have been proposed (Yang & Mandt, 2021; Lei et al., 2022).

Non-linear inverse problems. The task of estimating a signal x from non-linear measurements y = �(Bx) has appeared
in many areas, such as 1-bit compressed sensing where �(z) = sign(z) (Boufounos & Baraniuk, 2008), or phase retrieval
where �(z) = |z| (Candes et al., 2013; 2015). While the focus of these problems is different from ours (e.g., compressed
sensing has often an additional sparsity assumption), the ideas and proof techniques developed in this paper might be
beneficial to characterize the fundamental limits and the performance of gradient-based methods for general inverse
reconstruction tasks, see e.g. (Ma et al., 2021; Matsumoto & Mazumdar, 2022).

B. Closed Forms for the Population Risk
For the proofs of Lemmas 4.1 and 5.1 in the current section, we assume that the rows of B have non-zero norm, hence, in
particular, they may be chosen to have unit norm. In the end of the section, we elaborate on why this assumption holds true.

Let us also mention that we call � odd in L2 sense. For this particular case, it means that �(x) = �(�x) for x 6= 0 and
|�(0)| < C, where C is some universal constant. This concern is purely technical, since the main application of our results
is 1-bit compression. Namely, we do not set �(0) = sgn(0) = 0. In fact, this would mean that the compressed sequence can
take values in {�1, 0, 1}, which would not result in 1-bit compression, but rather in log2(3)-bits compression. It is safe to
ignore this technicality and intuitively assume that �(0) = 0.

Proof of Lemma 4.1. Opening up the two-norm gives

Ekx�A�(Bx)k22 = Ekxk22 + EkA�(Bx)k22 � 2Ehx,A�(Bx)i. (26)

Since x ⇠ N (0, I), we get
Ekxk22 = d. (27)

Let B> = [b1, . . . , bn] 2 R
d⇥n and A = [a1, . . . ,an] 2 R

d⇥n, with kbik2 = kBi,:k = 1. Rewriting the second term in
(26) gives

EkA�(Bx)k22 =
nX

i,j=1

hai,aji · E [�(hbi,xi) · �(hbj ,xi)] . (28)

Using the reproducing property of Hermite coefficients (see, e.g., Chapter 11 in (O’Donnell, 2014)), since the random
variables hbi,xi and hbj ,xi are hbi, bji-correlated, we have

E [h2`+1(hbi,xi) · h2`+1(hbj ,xi)] = hbi, bji
2`+1, E [h2`+1(hbi,xi) · h2k+1(hbj ,xi)] = 0,

for k 6= `. This gives that

E [�(hbi,xi) · �(hbj ,xi)] =
1X

`=0

(c2`+1)
2
hbi, bji

2`+1 = f(hbi, bji),

and, hence, using (28) we arrive to

EkA�(Bx)k22 =
nX

i,j=1

hai,aji · f(hbi, bji) = Tr
h
A>A · f(BB>)

i
. (29)

13
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Rearranging the last term in (26) gives

Ehx,A�(Bx)i =
dX

i=1

nX

j=1

ai
j
· E[xi�(hbj ,xi)], (30)

where ai
j

stands for the i-th coordinate of the vector aj and xi stands for the i-th coordinate of the vector x. Let us now
compute the inner expected value for each pair (i, j). Notice that the random variables hbj ,xi and xi are jointly Gaussian
with zero mean and covariance matrix e⌃ 2 R

2⇥2:

e⌃21 = e⌃12 = Exihbj ,xi = Ebi
j
x2
i
= bi

j
, e⌃11 = Ehbj ,xi

2 = kbjk
2
2 = 1, e⌃22 = Ex2

i
= 1.

Hence, the random vectors (hbj ,xi, xi) and
⇣
y1, b

i

j
· y1 +

q
1� (bi

j
)2 · y2

⌘
, with (y1, y2) ⇠ N (0, I)

are identically distributed. In this view, we obtain

E[xi�(hbj ,xi)] = E

h⇣
bi
j
· y1 +

q
1� (bi

j
)2 · y2

⌘
�(y1)

i

= bi
j
· E[y1�(y1)] +

q
1� (bi

j
)2 · E[y2] · E[�(y1)] = c1 · b

i

j
,

(31)

where we applied the reproducing property to conclude that E[y1�(y1)] = c1. Consequently, by combining (30) and (31),
we get that

Ehx,A�(Bx)i = c1 ·
dX

i=1

nX

j=1

ai
j
bi
j
= c1 · Tr [BA] . (32)

By combining (26), (27), (29) and (32), we obtain the desired expression for eR(r).

Assume now that � is homogeneous. Then, in (28) and (30), the norm of bi can be pushed into the corresponding ai and,
hence, we obtain

min
A,B

Ekx�A�(Bx)k22 = min
A,kBik2=1

Ekx�A�(Bx)k22,

which proves that bR(r) = eR(r).

Finally, consider the case �(x) = sign(x). Then, Grothendieck’s identity (see, e.g., Lemma 3.6.6 in (Vershynin, 2018))
gives

E�(hbi,xi)�(hbj ,xi) =
2

⇡
arcsin(hbi, bji) ) f(x) =

2

⇡
arcsin(x).

Recalling that the first Hermite coefficient of �(x) = sign(x) is equal to
q

2
⇡

finishes the proof.

Proof of Lemma 5.1. The proof of Lemma 5.1 follows from similar arguments as that of Lemma 4.1. Given this, we only
explain the key differences. We first show that it is enough to consider ⌃ = D2. Given the SVD ⌃ = UD2U>, we have
x = UDx̃, where x̃ ⇠ N (0, I). Now, we can push the rotation U in A,B:

kx�A�(Bx)k2 =
���Dx̃�U>A�(BUDx̃)

���
2
.

Thus, after replacing A with U>A and B with BU , we may assume that x = Dx̃.

We again open up the two-norm

Ekx�A�(Bx)k22 = Ekxk22 + EkA�(Bx)k22 � 2Ehx,A�(Bx)i. (33)

For the first term, we clearly have
Ekxk22 = Tr

⇥
D2⇤ .
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Now, for the second term we write
EkA�(Bx)k22 = EkA�(BDx̃)k22,

where x̃ ⇠ N (0, I) . Thus, as in the proof of Lemma 4.1, we have

EkA�(BDx̃)k22 = Tr
h
A>A · f(BD2B>)

i
.

Similarly, for the last term we obtain

Ehx,A�(Bx)i = Ehx̃,DA�(BDx̃)i = c1Tr [DABD] .

Finally, since � is homogeneous, by abuse of notation we can replace BD by any B with unit-norm rows. This follows
from the fact that, similarly to the proof of Lemma 4.1 (namely, equations (28) and (30)), we have that

EkA�(BDx̃)k22 =
nX

i,j=1

hai,aji · E [�(h(BD)i,:, x̃i) · �(h(BD)j,:, x̃i)] ,

Ehx̃,DA�(BDx̃)i =
dX

i=1

nX

j=1

ai
j
· E[(Di,i · x̃i) · �(h(BD)j,:, x̃i)],

(34)

which, by homogeneity, readily gives that the norm of (BD)i,: can be pushed into the corresponding ai.

As a result, the statement of Lemma 5.1 readily follows by comparing the terms.

Rows of B are non-zero. We show that the assumption holds true by contradiction. Without loss of generality, assume that
the first n0

 n rows of B are zero vectors. Hence, from (34) we can see that the following holds:

EkA�(BDx̃)k22 =
nX

i,j=n0+1

hai,aji · E [�(h(BD)i,:, x̃i) · �(h(BD)j,:, x̃i)]

+
X

in0 ^ j>n0

hai,aji · E [�(0) · �(h(BD)j,:, x̃i)]

+
X

i>n0 ^ jn0

hai,aji · E [�(0) · �(h(BD)i,:, x̃i)] +
X

i,jn0

hai,aji · �(0)
2

=
nX

i,j=n0+1

hai,aji · E [�(h(BD)i,:, x̃i) · �(h(BD)j,:, x̃i)] +
X

i,jn0

hai,aji · �(0)
2

�

nX

i,j=n0+1

hai,aji · E [�(h(BD)i,:, x̃i) · �(h(BD)j,:, x̃i)] ,

(35)

where in the fourth line we used that for x̃ ⇠ N (0, I), as � is odd, the following identity holds:

E [�(h(BD)j,:, x̃i)] = 0,

and the last inequality follows from the fact that for the Gram matrix M of the vectors {ai}
n
0

i=1:
X

i,jn0

hai,aji · �(0)
2 = �(0)2 · h1,M1i � 0.

Similarly, one can verify that

Ehx̃,DA�(BDx̃)i =
dX

i=1

nX

j=n0+1

ai
j
· E[(Di,i · x̃i) · �(h(BD)j,:, x̃i)]. (36)

Combining (35) and (36), and recalling the population risk form in (33), we conclude that

R(A,B) � R(A:,n0+1:,Bn0+1:,:),
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where A:,n0+1: and Bn0+1:,: are obtained by removing the zero columns/rows from A and B, respectively. This means
that considering a matrix B with zero rows is equivalent to looking at a smaller rate r0 < r. We show in Theorem 4.2,
Proposition 4.3 and Theorem 5.2 that the population risk is monotone in the rate. Thus, having zero rows in B is clearly
sub-optimal.

C. Proofs of Lower Bound on Loss (Section 4.1)
C.1. Case r  1

C.1.1. LOWER BOUND ON eR(r)

Lemma C.1. Let A = [a1, . . . ,an] 2 R
d⇥n

and B> = [b1, . . . , bn] 2 R
d⇥n

, with kbik2 = 1 for i 2 [n]. Let c1 and f(·)
be defined as per Lemma 4.1. Then, the following bound holds:

Ll(A,B) := Tr
h
A>A · (BB>)�(2`+1)

i
�

2c1
f(1)

· Tr [BA] � �
c21

(f(1))2
· n. (37)

Proof of Lemma C.1. For any symmetric P ,Q,T 2 R
n⇥n, a direct computation readily gives that

Tr [P · (Q � T )] = Tr [(P �Q) · T )] . (38)

Thus, by taking P = A>A, Q = (BB>)�` and T = (BB>)�(`+1), we obtain

Tr
h
A>A · (BB>)�(2`+1)

i
= Tr

h
(A>A � (BB>)�`) · (BB>

� (BB>)�`)
i
.

Note that BB> is PSD and, therefore, (BB>)�` is also PSD by Schur product theorem. Furthermore, as the rows of B
have unit norm, (BB>)�` has unit diagonal. As a result, if we show that, for any PSD matrix Q with unit diagonal entries,

Tr
h
(A>A �Q) · (BB>

�Q)
i
�

2c1
f(1)

· Tr [BA] � �
c21

(f(1))2
· n, (39)

then the claim (37) immediately follows.

As Q is a PSD matrix with unit diagonal, it admits the following decomposition

Q =
nX

i=1

uiu
>
i
, Di = Diag(ui),

nX

i=1

D2
i
= I. (40)

In this view, defining
Ai = ADi, Bi = DiB,

we can rewrite the LHS of (39) in a more convenient form for further analysis. In particular, for the second term we deduce
the following

Tr [BA] = Tr [AB] = Tr

"
A ·

 
nX

i=1

D2
i

!
·B

#
=

nX

i=1

Tr
⇥
A ·D2

i
·B
⇤
=

nX

i=1

Tr [(ADi) · (DiB)] =
nX

i=1

Tr [AiBi] .

Let us now rearrange the first term of (39). Notice that

(A>A �Q)i,j =
nX

k=1

hai,aji · u
i

k
uj

k
=

nX

k=1

hai · u
i

k
,aj · u

j

k
i =

nX

k=1

((ADk)
>
· (ADk))i,j =

nX

k=1

(A>
k
Ak)i,j .

In the same fashion we get

(BB>
�Q)i,j =

nX

k=1

(BkB
>
k
)i,j ,
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from which we deduce that

Tr
h
(A>A �Q) · (BB>

�Q)
i
=

nX

i,j=1

Tr
h
A>

i
AiBjB

>
j

i
.

Therefore, the proof of (39) can be obtained by proving that, for any matrices A1, . . . ,An 2 R
d⇥n and B1, . . . ,Bn 2

R
n⇥d,

nX

i,j=1

Tr
h
A>

i
AiBjB

>
j

i
�

2c1
f(1)

·

nX

i=1

Tr [AiBi] +
c21

(f(1))2
Tr [I] � 0. (41)

To show the last claim, let us define the following matrices

X =
nX

i=1

A>
i
Ai, Y =

nX

i=1

BiB
>
i
, Z =

nX

i=1

BiAi,

which allows us to rewrite the statement of (41) as

Tr


XY �

2c1
f(1)

·Z +
c21

(f(1))2
· I

�
� 0. (42)

Note that X is PSD, hence it has a symmetric square root, which we denote by
p
X . Using the continuity of the quantities

involved in the LHS of (42), we can assume without loss of generality that X is invertible. In fact, the following quantities
are continuous: trace, matrix product, matrix transpose. In addition, we can always introduce a small perturbation to Ai’s
which makes X full-rank. Thus, it suffices to show that (42) holds for Ai’s such that X is invertible.

In this view, for any matrix T 2 R
n⇥n, we have

0 

nX

i=1

����
c1
f(1)

· TA>
i
�

p

XBi

����
2

F

=
nX

i=1

Tr

✓
c1
f(1)

· TA>
i
�

p

XBi

◆
·

✓
c1
f(1)

·AiT
>
�B>

i

p

X

◆�

=
nX

i=1

Tr


c21

(f(1))2
· TA>

i
AiT

>
�

2c1
f(1)

p

XBiAiT
> +XBiB

>
i

�

= Tr


c21

(f(1))2
· TXT>

�
2c1
f(1)

p

XZT> +XY

�
, (43)

where in the second line we used that Tr [M ] = Tr
h
M>

i
for any M , and Tr [MN ] = Tr [NM ] for any M ,N .

As X is invertible, its square root
p
X is invertible. As X is also PSD, its inverse, i.e., X�1, is PSD and, hence, it has a

symmetric square root, i.e.,
p

X�1. In this view, we get that
p

X�1 = (
p

X)�1.

Thus, by picking T = (
p
X)�1, we obtain

T>T = T 2 = X�1, T>pX = T
p

X = I.

Using these observations, we deduce that the RHS of (43) is equal to the LHS of (42), which concludes the proof.

C.1.2. MATRICES IN Hn,d ARE THE ONLY MINIMIZERS

Lemma C.2. Let A 2 R
d⇥n

and B> = [b1, . . . , bn] 2 R
d⇥n

, with kbik2 = 1 for i 2 [n]. Let c1 and f(·) be defined as

per Lemma 4.1. Then, we have that the set of minimizers of

Tr
h
A>A · f(BB>)

i
� 2c1 · Tr [BA] (44)

coincides with the set Hn,d of weight-tied orthogonal matrices .
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Proof of Lemma C.2. A direct computation immediately shows that the lower bound (37) is achieved for all ` 2 N by
matrices (A,B) that belong to the set Hd,n. Define the sets of minimizers of (37) as follows

M` := argmin
A,B:kbik2=1

L`(A,B) =

(
(AB,B) : AB 2 argmin

A
L`(A,B), B 2 argmin

B:kbik2=1
L`(AB,B)

)
.

We will now show that
1\

l=0

M` = Hn,d. (45)

As the Taylor coefficients of f(·) are non-negative, (45) readily gives that the set of minimizers of (44) coincides with Hn,d.
Futher, recall that c1 6= 0 and

P1
`=1(c2`+1)2 6= 0 and, hence, (45) is the union of the linear term (` = 0) and at least one

non-linear (` > 0) term.

We first prove that it is enough to consider the case r = 1. Thus, assume that the result holds for n = d and consider now
n < d. We have that, for any orthogonal matrix O 2 R

d⇥d,

Ex kx�A�(Bx)k22 = Ex kOx�A�(BOx)k22

= Ex

���x�O>A�(BOx)
���
2

2
,

(46)

where in the first step we have used the rotational invariance of x, and in the second step we have multiplied the argument of
the norm by the orthogonal matrix O>. Thus, (46) gives that (A,B) 2 Hn,d if and only if (O>A,BO) 2 Hn,d.

Let us write the SVD of B as UDV >, where U 2 R
n⇥n,V 2 R

d⇥d are orthogonal matrices and D 2 R
n⇥d is a

(rectangular) diagonal matrix. Thus, by taking O = V , one can assume that B has the form (B1:n,1:n,01:n,1:d�n), where
B1:n,1:n denotes the left n ⇥ n sub-matrix of B and 01:n,1:d�n denotes a n ⇥ (d � n) matrix of 0’s. We also write the
decompositions A = ((A1:n,1:n)>, (An+1:d,1:n)>)> and x = (x1:n,xn+1:d), where A1:n,1:n (resp. An+1:d,1:n) denotes
the top n⇥ n (resp. bottom (d� n)⇥ n) sub-matrix of A, and x1:n (resp. xn+1:d) denotes the first n (resp. last d� n)
components of x. Hence, the objective (2) can be expressed (up to the constant multiplicative factor d�1) as the sum of

R1(A,B) = E

h
kx1:n �A1:n,1:n�(B1:n,1:nx1:n)k

2
i

and
R2(A,B) = E

h
kxn+1:d �An+1:d,1:n�(B1:n,1:nx1:n)k

2
i
.

As xn+1:d has zero mean and it is independent from x1:n, we have that

R2(A,B) = d� n+ E

h
kAn+1:d,1:n�(B1:n,1:nx1:n)k

2
i
,

which is minimized by setting An+1:d,1:n to 0. Note that R1 depends only on A1:n,1:n,B1:n,1:n (and not on An+1:d,1:n),
hence its minimizers are (A1:n,1:n,B1:n,1:n) 2 Hn,n by our assumption on the r = 1 case. As a result, by using that
(A,B) 2 Hd,n if and only if (O>A,BO) 2 Hd,n, we conclude that all the minimizers of the desired objective have the
form O((A1:n,1:n)>, (01:n�d,1:n)>)> and (B1:n,1:n,01:n,1:d�n)O

>, i.e., they form the set Hn,d defined in (7).

It remains to prove the result for r = 1. First, consider ` = 0. In this case, we have

L0(A,B) = Tr
h
A>ABB>

i
�

2c1
f(1)

· Tr [BA]

= Tr
h
B>A>AB

i
�

2c1
f(1)

· Tr [AB]

= kABk
2
F
�

2c1
f(1)

· Tr [AB] , (47)

where we have used that the trace is invariant under cyclic permutation. Notice that the minimizer of (47) is clearly
AB = c1

f(1)Id.
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Consider some ` � 1. As AB = c1
f(1)Id and A,B are square matrices, B is invertible and A>A = c

2
1

(f(1))2 · (BB>)�1.
Thus,

L`(A,B) = Tr
h
A>A(BB>)�(2`+1)

i
�

2c1
f(1)

· Tr [BA]

=
c21

(f(1))2
· Tr

h
(BB>)�1(BB>)�(2`+1)

i
�

2c21
(f(1))2

· n.

(48)

Let P = BB>. Note that P is symmetric and, hence, also its inverse is symmetric. Then, by using (38), we have that

Tr
h
P�1P �(2`+1)

i
= Tr

h
(P�1

� P )P �2`
i
. (49)

An application of Theorem 5 in (Visick, 2000) gives that

P � P�1
⌫ I, (50)

where ⌫ denotes majorization in the PSD sense. We now show that P � P�1 = I . To do so, suppose by contradiction that

P � P�1 = I +R,

for some R ⌫ 0 such that R 6= 0. Hence,

Tr
h
(P�1

� P )P �2`
i
= Tr

h
P �2`

i
+Tr

h
RP �2`

i
= n+Tr

h
RP �2`

i
, (51)

where in the last equality we use that P (and, consequently, P �2`) has unit diagonal. By the Schur product theorem,
P �2`

� 0 and, hence, it admits a square root. Thus, we get

Tr
h
RP �2`

i
= Tr

hp
P �2`

·R ·

p
P �2`

i
.

It is easy to see that the matrix
p
P �2`

·R ·

p
P �2` is PSD and, thus,

Tr
hp

P �2`
·R ·

p
P �2`

i
� 0,

where the inequality is strict if and only if the corresponding matrix has only zero eigenvalues. However, for any non-zero
v 2 R

n, we have that
uv :=

p
P �2`

· v 6= 0,

since
p
P �2` is strictly positive definite (as P �2`

� 0) and, thus, it does not have 0 eigenvalues. Hence, if

v>
·

p
P �2`

·R ·

p
P �2`

· v = u>
v Ruv = 0,

then uv 6= 0 is an eigenvector of R corresponding to a zero eigenvalue. In this view, if
p

P �2`
·R ·

p
P �2` has all zero

eigenvalues, then all eigenvalues of R are zero. As R cannot be the zero matrix, by using (51), we conclude that

Tr
h
(P�1

� P )P �2`
i
> n. (52)

By combining (48), (49) and (52), we have that L`(A,B) > �c21n/(f(1))
2, which contradicts with the fact that (A,B) is

a minimizer (since any (A0,B0) 2 Hn,d achieves the value of �c21n/(f(1))
2). Therefore, we conclude that P � P�1 = I .

At this point, we show that P � P�1 = I implies that P = I . Note that P is a Gram matrix, and let its basis be
{b1, · · · , bn}. Define

b0
i
= bi � b̃i,

where b̃i is orthogonal projection of bi onto the space spanned by {bj}nj 6=i
. From a well-known result (see, for instance,

Theorem 2.1 in (del Pino & Galaz, 1995)) we have that

P�1
ii

=
1

kb0
i
k
2
2

. (53)
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Hence, we obtain that
kb0

i
k2  kbik2 = 1, (54)

where the inequality is sharp only if bi is orthogonal to all {bj}nj 6=i
. Then, from (53), we deduce

n = Tr [I] = Tr
⇥
P � P�1⇤ =

nX

i=1

kbik
2
2 ·

1

kb0
i
k
2
2

=
nX

i=1

1

kb0
i
k
2
2

. (55)

By combining (54) and (55), we conclude that {bi}i2[n] form an orthonormal basis, and, hence, P = I . This means that
(45) holds for r = 1 since

(44) =
1X

`=1

(c2`+1)
2
· L`(A,B),

which concludes the proof.

Proof of Theorem 4.2. It follows by combining the results of Lemma C.1 and C.2.

C.2. Case r > 1

C.2.1. LOWER BOUND ON eR(r)

Proof of Proposition 4.3. An application of Theorem A in (Khare, 2021) gives that

Tr
h
A>ABB>

i
= h1, (A>A �BB>)1i �

1

d
h1, (Diag(BA)Diag(BA)>)1i =

1

d
(Tr [BA])2 ,

where Diag(BA) 2 R
n stands for the vector with entries corresponding to the diagonal of the matrix BA. Hence, we have

Tr
h
A>A · f(BB>)

i
�2c1 ·Tr [BA] �

c21
d
(Tr [BA])2+

1X

`=1

(c2`+1)
2
·Tr
h
A>A · (BB>)�2`+1

i
�2c1 ·Tr [BA] . (56)

Define ↵ := f(1)� c21. Then, for any � 2 [0, 1], we can rewrite the RHS of (56) as


c21
d
(Tr [BA])2 � 2(1� �)c1 · Tr [BA]

�
+

1X

`=1

(c2`+1)
2
·

✓
Tr
h
A>A · (BB>)�2`+1

i
�

2�c1
↵

· Tr [BA]

◆
. (57)

The first term in (57) is a quadratic polynomial in Tr [BA]. Hence, we have that

c21
d
(Tr [BA])2 � 2(1� �)c1 · Tr [BA]

�
� �d(1� �)2. (58)

Define Be := [B,01:n,1:n�d] and A>
e
:= [A>,01:n,1:n�d]. One can readily verify that the traces in the second term of

(57) remain unchanged if we replace A and B with Ae and Be, respectively. Note that Ae,Be are square matrices, hence
we can apply Lemma C.1 (which readily generalizes to a different scaling in front of the second trace) to get

1X

`=1

(c2`+1)
2
·

✓
Tr
h
A>A · (BB>)�2`+1

i
�

2�c1
↵

· Tr [BA]

◆
� �

1X

`=1

(c2`+1)
2
·
�2c21
↵2

n = �
�2c21
↵

n. (59)

By combining (56), (57), (58) and (59), we obtain that

1

d

⇣
Tr
h
A>A · f(BB>)

i
� 2 · Tr [AB]

⌘
+ 1 � 1� (1� �)2 �

�2c21
↵

r. (60)

By taking � = ↵/(c21r + ↵) and re-arranging the RHS of (60), the desired result readily follows.
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C.2.2. ASYMPTOTIC ACHIEVABILITY OF THE LOWER BOUND

Lemma C.3. Let A,B be defined as in (12). Then, for any ✏ > 0, we have that, with probability at least 1� c/d2,

���
⇣
Tr
h
A>Af(BB>)

i
� 2c1Tr [AB]

⌘
�
�
�2c21rn+ �2↵n� 2c1�n

����  Cn
1
2+✏.

Thus, choosing � = c1

c21r+↵
the loss approaches 1� r

r+ ↵
c21

, i.e., with the same probability,

�����

✓
1 +

1

d

⇣
Tr
h
A>Af(BB>)

i
� 2c1Tr [AB]

⌘◆
�

 
1�

r

r + ↵

c21

!�����  Cd�
1
2+✏.

Here, the constants c, C depend only on r and ✏.

We start by proving the following.
Lemma C.4. Let B̂,B be defined as in (12). Then, for any ✏ > 0, we have that, with probability at least 1� c/d2,

max
i,j

�����
(BB>)i,j

(B̂B̂
>
)i,j

� 1

�����  Cn� 1
2+✏.

Here, the constants c, C depend only on r and ✏.

Proof. If U 2 R
n⇥n is sampled uniformly from SO(n), then it follows from rotational invariance that any fixed row or

column is uniformly distributed on the n-dimensional sphere S
n�1. Thus, any fixed row of U is distributed as g/ kgk2,

where g ⇠ N (0, I/n). Now, it follows from the concentration of kgk2 (see e.g. Theorem 3.1.1 in (Vershynin, 2018)) that
kkgk2 � 1k

 2
 Cn� 1

2 , where k·k
 2

denotes the sub-Gaussian norm. Denote by gd 2 R
d the first d components of gd.

Then, by the same reasoning, it holds that k
p
r kgdk2 � 1k

 2
 cd�

1
2 . Looking at the definition of B̂, we have that, for

any fixed i, the distribution of its rows is given by b̂i ⇠
p
rgd/ kgk2. Furthermore, for any pair of indices i, j, we have that

(BB>)i,j

(B̂B̂
>
)i,j

=
1

kb̂ik2 · kb̂jk2
.

Hence,

P

 �����
(BB>)i,j

(B̂B̂
>
)i,j

� 1

�����  n� 1
2+✏

!
= P

 �����
1

kb̂ik2 · kb̂jk2
� 1

�����  n� 1
2+✏

!
 C exp

✓
�
d✏

C

◆
.

Now a simple union bound over all rows gives us

P

 
max
i,j

�����
1

kb̂ik2 · kb̂jk2
� 1

�����  n� 1
2+✏

!
 Cn exp

✓
�
d✏

C

◆


C

d2
,

which implies the desired result.

Next, we bound the traces of the terms BB>(BB>)�(2`+1). We start with the case ` = 0.
Lemma C.5. Let B be defined as in (12). Then, for any ✏ > 0, with probability at least 1� c/d2,

���Tr
h
BB>(BB>)

i
� rn

���  Cd
1
2+✏.

Here, the constants c, C depend only on r and ✏.

Proof. Note that

Tr
h
BB>(BB>)

i
=
X

i,j

⇣
(BB>)i,j

⌘2
=
X

i,j

0

B@

⇣
(BB>)i,j

⌘2

⇣
(B̂B̂

>
)i,j
⌘2 � 1

1

CA
⇣
(B̂B̂

>
)i,j
⌘2

+Tr
h
B̂B̂

>
(B̂B̂

>
)
i
.
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Thus, an application of Lemma C.4 gives that, with probability at least 1� c/d2,
���Tr
h
BB>(BB>)

i
� Tr

h
B̂B̂

>
(B̂B̂

>
)
i���  Tr

h
B̂B̂

>
(B̂B̂

>
)
i
· Cd�

1
2+✏. (61)

Since the trace is invariant under cyclic permutation, we readily have that

Tr
h
B̂B̂

>
(B̂B̂

>
)
i
= rn. (62)

By combining (61) and (62), the desired result follows.

Finally, we consider the higher order terms for ` � 1.
Lemma C.6. Let B be defined as in (12). Then, for any ✏ > 0, we have that, with probability at least 1� c/d2,

sup
`�1

���Tr
h
BB>(BB>)�(2`+1)

i
� n

���  C log2 n.

Here, the constants c, C depend only on r and ✏.

Proof. We first observe that

Tr
h
BB>(BB>)�(2`+1)

i
=
X

i,j

⇣
(BB>)i,j

⌘2`+2
= n+

X

i 6=j

⇣
(BB>)i,j

⌘2`+2
.

An application of Lemma C.4 gives that, with probability 1� c/d2,

sup
`�1

X

i 6=j

⇣
(BB>)i,j

⌘2`+2
 sup

`�1

X

i 6=j

⇣
(1 + Cd�1/2+✏) · (B̂B̂

>
)i,j
⌘2`+2

. (63)

Furthermore, by using the first part of Lemma G.2 with A = B̂B̂
>

, we have that, with probability at least 1� 1/n2, the
RHS of (63) is lower bounded by

sup
`�1

X

i 6=j

 
(1 + Cd�1/2+✏) · C

r
log n

n

!2`+2

 C log2 n,

which implies the desired result.

At this point, we are ready to give the proof of Lemma C.3.

Proof of Lemma C.3. Recall that {(c2`+1)2}1`=0 denote the Taylor coefficients of f(x). By using that A = �B>, our
objective becomes

Tr
h
A>Af(BB>)

i
� 2c1Tr [AB] = �2Tr

h
BB>f(BB>)

i
� 2c1�n

= �2
1X

`=0

(c2`+1)
2Tr

h
BB>(BB>)�(2`+1)

i
� 2c1�n

= �2c21rn+ �2
1X

`=1

(c2`+1)
2n� 2c1�n

+ �2c21

⇣
Tr
h
BB>(BB>)

i
� rn

⌘
+ �2

1X

`=1

(c2`+1)
2
⇣
Tr
h
BB>(BB>)�(2`+1)

i
� n

⌘
.

Then, by bounding the last two terms with Lemma C.5 and Lemma C.6, the desired result follows.

Proof of Proposition 4.4. The proof is a direct application of Lemma C.3.
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D. Global Convergence of Weight-tied Gradient Flow (Theorem 4.5)
We start by giving a formal recap of the weight-tied gradient flow considered in Section 4.2. Under the weight-tying
constraint (14), the objective (13) has the following form

 (�,B) := �2
· Tr

h
B>B · f(BB>)

i
� 2�n

= �2
·

nX

i,j=1

hbi, bji · f (hbi, bji)� 2�n,
(64)

where kbik2 = 1 for all i. Note that the optimal �⇤ can be found exactly, since (64) is a quadratic polynomial in �. In this
view, to optimize (64), we perform a gradient flow on {bi}ni=1, which are regarded as vectors on the unit sphere, and pick
the optimal �⇤ at each time t. Formally,

�(t) =
nP

n

i,j=1 hbi, bji · f (hbi, bji)
,

@bi(t)

@t
= �J i(t)rbi (�(t),B(t)),

(65)

where J i(t) := I � bi(t)bi(t)> projects the gradient rbi (�(t),B(t)) onto the tangent space at the point bi(t) (see (69)
for the closed form expression). This ensures that kbi(t)k2 = 1 along the gradient flow trajectory. The described procedure
can be viewed as Riemannian gradient flow, due to the projection of the gradient rbi (�(t),B(t)) on the tangent space of
the unit sphere. We now present the formal counterpart of Theorem 4.5.
Theorem D.1. Fix r  1. Let B(t) be obtained via the gradient flow (65) applied to  defined in (64). Let the initialization

B(0) have unit-norm rows and rank(B(0)) = n. Then, as t ! 1, B(t)B(t)> converges to I , which is the unique global

optimum of (64). Moreover, define the residual

�(t) = Tr
⇥
(B(t)B(t)> � I) · f(B(t)>B(t))

⇤
� 0,

which vanishes at the minimizer, and let T be the first time such that �(T ) = �. Then,

T � 1{�(0) > nf(1)} · f(1) · log det(B(0)B(0)>)� 1{�  nf(1)} ·
2f2(1)

�
· log det(B(0)B(0)>). (66)

In words, if the residual at initialization is bigger than nf(1), then it takes at most constant time to reach the regime in
which the convergence is linear in the precision �. We also note that by choosing the optimal �⇤, the function � can be
related to the objective (64) by  (�⇤,B(t)) = �

n

f(1)+�(t)
n

. Hence, (66) gives a quantitative convergence in terms of the
objective function as well.

We now are ready to present the proof of Theorem D.1. Let B> = [b1, · · · , bn]. Recall that, under the weight-tying (14),
the objective in (13) can be re-written as

�2
·

nX

i,j=1

hbi, bji · f (hbi, bji)� 2�n. (67)

By the definition in Theorem D.1, the residual �(t) is given by

�(t) :=
nX

i 6=j

hbi, bji · f (hbi, bji) . (68)

In this view, in accordance with (65), we study the following gradient flow:
8
>><

>>:

@bk(t)
@t

= ��2(t) ·
h
Jk(t)

P
i 6=j

bj(t) · g(hbk(t), bj(t)i)
i
,

�(t) =
n

nf(1) + �(t)
,

kbk(0)k2 = 1,

(69)
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where g(x) := x · f 0(x) + f(x), and we have rescaled the time of the dynamics by a factor 2 to omit the factor 2 in front of
�2(t). From here on, we will suppress the time notation when it is clear from the context, for the sake of simplicity. Note
that one of the terms is absent in the summation, due to the fact that by definition of the operator Jk:

Jkbk = 0.

In addition, since Jk defines the projection of the gradient on the tangent space at the point bk of the unit sphere, along the
trajectory of the gradient flow (69) we have that kbkk2 = 1.

The gradient flow (69) is well-defined (i.e., its solution exists and it is unique) when its RHS is Lipschitz continuous (see,
for instance, (Santambrogio, 2017)). It suffices to check the Lipschitz continuity of g(·). Note that both xf 0(x) and f(x) are
Lipschitz continuous on any interval [�1 + �, 1� �] for some � > 0. Hence, the RHS of (69) is Lipschitz continuous, if

max
i 6=j

|hbi, bji|  1� �, (70)

where � is bounded away from 0 uniformly in t.

Recall that, by the assumption of Theorem D.1, we have that rank(B(0)B(0)>) = n, hence det(B(0)B(0)>) � "1 for
some "1 > 0. Thus, from the result in Lemma D.3, we obtain that

det(B(t)B(t)>) � "1. (71)

Let 0 < �1 < �2 < . . . < �n denote the eigenvalues of B(t)B(t)> in increasing order. Then, (71) directly gives that

�1

nY

i=2

�i � "1 > 0.

Since B(t)B(t)> has unit diagonal, we have that
P

n

i=1 �i = n. Hence, the smallest possible value of �1 during the
gradient flow dynamics can be inferred from

�1 �
"1Q
n

i=2 �i

,

by picking the largest possible
Q

n

i=2 �i given the constraint
P

n

i=2 �i  n. This is achieved by taking

�i =
n

n� 1
, 8i 2 {2, · · · , n},

which gives
nY

i=2

�i =

✓
n

n� 1

◆n�1

=

✓
1 +

1

n� 1

◆n�1

 C,

where C is a universal constant, since the RHS converges from below to Euler’s number as n increases. This proves that
�1 is bounded away from zero uniformly in t. As a result, we can readily conclude that (70) holds. To see this last claim,
consider a vector v which has 1 on position i and �signhbi, bji on position j. Hence, we have that

2�1 = �1 · kvk
2
2  v>(B(t)B(t)>)v = 2� 2 · |hbi, bji| ) |hbi, bji|  1� �1.

Notice that
�(t)  (n2

� n)f(1),

since xf(x)  f(1) for |x|  1. Hence, we have that �(t) � 1
nf(1) > 0. In this view, along the trajectory of the gradient

flow (69), the quantity �(t) is strictly decreasing until convergence, by the property of gradient flow.

Lemma D.2 (Characterization of stationary points). Consider the gradient flow (69). Then, the following holds:

(A) Any orthogonal set of bi is a stationary point and a global minimizer.

(B) The gradient flow (69) never escapes any subspace spanned by a set of linearly dependent bi. However, for each such

subspace there exists a direction in which (67) can be improved.
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Proof of Lemma D.2. Recall that �(t) > 0 and {bi}ni=1. Then, the stationary point condition can be expressed as

Jk

X

j 6=k

bj · g (hbk, bji) = 0, 8k 2 [n]. (72)

Thus, any orthogonal set of vectors is clearly a stationary point by definition of g(·). Moreover, (67) is minimized iff

BB> = I as xf(x) is an even function since f(·) is odd.

Note that the kernel of the operator Jk is spanned by the vector bk. Thus, the condition (72) is equivalent to
X

j 6=k

bj · g (hbk, bji) = �k · bk,

for some �k 2 R. One can readily verify that g(x) = 0 if and only if x = 0. Thus, either (i) bk is orthogonal to bj for
all j 6= k and �k = 0, or (ii) bk lies in the span of {bj}j 6=k. If condition (i) holds for all k 2 [n], then {bi}ni=1 form an
orthogonal set of vectors and we fall in category (A). If condition (ii) holds for some k 2 [n], then we fall in category (B).

Now, let us show that, if {bi}ni=1 spans a sub-space of dimension smaller than n, then there is a direction along which the
value of (67) can be improved. Since the {bi}ni=1 are linearly dependent, there exists u of unit norm such that

hu, bji = 0, 8j 2 [n]. (73)

For some k 2 [n], consider the perturbation

b̂k =
1

p
1 + �2

· (bk + � · u),

which has unit norm as hbk,ui = 0. Recall that (67) can be expressed as

�2

0

@2 ·
nX

j 6=k

D
b̂k, bj

E
f
⇣D

b̂k, bj
E⌘

+
⇡

2
+

nX

i,j 6=k

hbi, bji f (hbi, bji)

1

A� 2�n. (74)

Here, � is chosen to be the minimizer of the quantity (74) having fixed {bj}j 6=k and b̂k. Thus, in order to prove that the
population risk gets smaller by replacing bk with b̂k for any � > 0, it suffices to show that the following quantity

nX

j 6=k

D
b̂k, bj

E
f
⇣D

b̂k, bj
E⌘

, (75)

is decreasing with �. This last claim follows from the chain of inequalities below:

(75) =
1

p
1 + �2

X

j 6=k

hbk, bji · f

✓
1

p
1 + �2

hbk, bji

◆
(76)

=
1

p
1 + �2

X

j 6=k

hbk, bji ·
1X

`=0

✓
c2`+1

c1

◆2

·

✓
1

p
1 + �2

◆2`+1

· hbk, bji
2`+1 (77)



✓
1

p
1 + �2

◆2X

j 6=k

hbk, bji ·
1X

`=0

✓
c2`+1

c1

◆2

· hbk, bji
2`+1 (78)

=
1

1 + �2

X

j 6=k

hbk, bji · f (hbk, bji) <
X

j 6=k

hbk, bji · f (hbk, bji) , (79)

where in the second line we substitute the Taylor expansion of f(·), the inequality in the third line uses that the coefficients
{c22`+1}

1
`=0 are all non-negative, and the last inequality follows from the fact that � > 0.

Finally, we show that the gradient flow (69) does not escape the degenerate sub-space. If dim(span({bi}ni=1)) < n, then
there exists u 2 R

d such that (73) holds. By projecting the gradient expression (72) onto u, we have
*
u,Jk

X

j 6=k

bj · g (hbk, bji)

+
= 0.
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Hence, for any k 2 [n], the directional derivative of bk in the direction of u is equal to zero, and the gradient flow does not
escape the low-rank sub-space, which concludes the proof.

In next lemma we show that, if at initialization {bi}ni=1 spans a sub-space of dimension n, then it will never get stuck in a
low-rank sub-space.
Lemma D.3 (Linearly independent {bi}ni=1 stay linearly independent). Consider the gradient flow (69) with full rank

initialization, i.e., rank(B(0)B(0)>) = n. Then, the following holds

@

@t
log det(B(t)B(t)>) � 2�(t)2 · �(t) � 0,

where B(t)> = [b1(t), · · · , bn(t)] and �(t) is defined in (68). In particular, this implies that {bi}ni=1 stay full-rank along

the gradient flow trajectory.

Proof of Lemma D.3. Applying the chain rule and using that the time derivative of B is given by the gradient flow (69)
implies that

@

@t
log det(BB>) = Tr

"
(BB>)�1

·

 
@B

@t
·B> +B ·

@B>

@t

!#
,

where
@bk
@t

= ��(t)2 ·

0

@Jk

X

j 6=k

bj · g (hbk, bji)

1

A .

Let us compute the quantity ⌧
@bk
@t

, b`

�
=

✓
@B

@t
·B>

◆

k,`

.

By definition of Jk, we have that

Jk

X

j 6=k

bj · g (hbk, bji) =
X

j 6=k

bj · g (hbk, bji)�
X

j 6=k

bk · hbk, bji · g (hbk, bji) .

Note that *
X

j 6=k

bk · hbk, bji · g (hbk, bji) , b`

+
=
h
Diag

h
1>((BB>

� I) � g(BB>))
i
·BB>

i

k,`

,

and that
*
X

j 6=k

bj · g (hbk, bji) , b`

+
=
h
g(BB>) ·BB>

i

k,`

� g(1) · [BB>]k,`.

By combining these last four equations, we conclude that

@B

@t
·B> = ��(t)2

⇣
g(BB>) ·BB>

� g(1) ·BB>
�Diag

h
1>((BB>

� I) � g(BB>))
i
·BB>

⌘
.

Furthermore,

B·
@B>

@t
=

✓
@B

@t
·B>

◆>
= ��(t)2

⇣
BB>

· g(BB>)� g(1) ·BB>
�BB>

·Diag
h
1>((BB>

� I) � g(BB>))
i⌘

.

Hence, by using the cyclic property of the trace, we get that

@

@t
log det(BB>) = 2�(t)2 · Tr

h
Diag

h
1>((BB>

� I) � g(BB>))
ii

� 2�(t)2 · Tr
h
g(BB>)� g(1) · I

i

= 2�(t)2 ·
nX

i 6=j

hbi, bji · g (hbi, bji) + 0,
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Now, note that
xg(x) = x2f 0(x) + xf(x) � 0,

since x2f 0(x) and xf(x) are non-negative functions, which concludes the proof.

The result of Lemma D.3 gives that det(BB>) is non-decreasing. Hence, if �min(BB>) > � > 0 at initialization, then
this quantity will be bounded away from zero during the gradient flow dynamics and the gradient flow will not get stuck in a
low-rank solution. Therefore, by Lemma D.2, the gradient flow converges to a global minimum, in which the rows of B are
orthogonal vectors with unit norm. The speed at which this happens is characterized by the next lemma.

Lemma D.4 (Rate of convergence). Consider the gradient flow (69) with full rank initialization, i.e., rank(B(0)B(0)>) =
n. Let T be the time at which �(T ) hits the value � > 0. Then, the following holds

T  � det(B(0)B(0)>) ·

✓
f(1) · 1{�(0) > n · f(1)}+

2f2(1)

�
· 1{�  n · f(1)}

◆
. (80)

Proof of Lemma D.4. For all t, we have that Tr
⇥
B(t)B(t)>

⇤
= n, which implies that det(B(t)B(t)>)  1 and, as a

consequence, that log det(B(t)B(t)>)  0. From Lemma D.3, we know that

@

@t
log det(B(t)B(t)>) � 2�(t)2 · �(t).

In this view, using the exact expression (69) for �(t), we get

� log det(B(0)B(0)>) � log det(B(t)B(t)>)� log det(B(t)B(t)>) �

Z
t

0

2
⇣
f(1) + �(s)

n

⌘2 · �(s)ds. (81)

Stage 1. Assume that �(0) > n · f(1), and let T1 be such that �(T1) = n · f(1). Recall that the function �(t) is decreasing
and note that x/(1 + x)2 is decreasing for x 2 [1,+1). In this view, we can lower bound the integrand in the RHS of (81)
for all t  T1 by

2 · �(0)
⇣
f(1) + �(0)

n

⌘2 �
2(n� 1)

nf(1)
�

1

f(1)
, (82)

where the first inequality follows from the definition (68) of �(·), which readily implies that �(0)  f(1) · n(n� 1). Hence,
by combining (81) with the lower bound (82), we get

T1  �f(1) · log det(B(0)B(0)>).

Stage 2. Assume that �(0)  n · f(1). Let � 2 (0, n · f(1)] be the desired precision which should be reached during the
gradient flow, and let T2 be such that �(T2) = �. As �(t) is decreasing, we have that

1
⇣
f(1) + �(t)

n

⌘2 �
1

⇣
f(1) + �(0)

n

⌘2 �
1

4f2(1)
, (83)

where in the last step we use that �(0)  n · f(1). Hence, by combining (81) with the lower bound (83), we get

� log det(B(0)B(0)>) �
1

2f2(1)
· T2�,

which implies that

T2  �
2f2(1) · log det(B(0)B(0)>)

�
.

By combining the results of both stages, the desired result (80) readily follows.

Proof of Theorem D.1. Theorem D.1 is a compilation of the results presented in current section.
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E. Global Convergence of Projected Gradient Descent (Theorem 4.6)
Recall from statement of Theorem 4.6 that

f(x) = x+
1X

`=3

c2
`
x`,

with
P1
`=3 c

2
`
< 1. We also define ↵ =

P1
`=3 c

2
`
, and we assume that ↵ > 0. In fact, if ↵ = 0, then the algorithm trivially

converges after one step. We denote by C, c uniform positive constants (depending only on r and ↵) the value of which
might change from term to term. To make the notation lighter we will also but the time t as a subscript (for example B(t)
becomes Bt).

We analyze the following projected gradient descent procedure for minimizing the population risk
nX

i,j=1

hai,aji · f

✓⌧
bi

kbik2
,

bj
kbjk2

�◆
� 2

nX

i=1

⌧
ai,

bi
kbik2

�
. (84)

Given unit-norm initial {bi}i2[n], at each step we pick the optimal value of A given B

At = B>
t

⇣
f(BtB

>
t
)
⌘�1

. (85)

Then, we update Bt with a gradient step and a projection on the sphere to keep the unit norm:

B0
t
:= Bt � ⌘rBt , Bt+1 := proj(B0

t
).

Here, the operator proj(M) normalizes the rows of M to be of unit norm and each row of rBt is defined as the
corresponding row of the gradient of Bt, i.e.,

(rBt)k,: = �2Jkak + 2
X

j 6=k

hak,ajiJkbj

| {z }
:=r1

Bt
(part 1)

+
1X

l=3

`c2
`

X

j 6=k

hak,ajihbk, bji
l�1Jkbj

| {z }
:=r2

Bt
(part 2)

, (86)

where Jk := I � bkb
>
k

and we have omitted the iteration number t on {aj , bj}j2[n] to keep notation light. Note that in (86)
the norms kbik2, kbjk2 no longer appear as the projection step enforces kbik2 = 1. At each step of the projected gradient
descent dynamics, we decompose BtB

>
t

as follows:

BtB
>
t
= I +Zt +Xt, (87)

where B0B
>
0 = U⇤0U

>, Zt = U(⇤t � I)U> and ⇤t+1 = g(⇤t) for some function g : Rn
! R

n which defines the
spectrum evolution. Here, U is an orthogonal matrix that importantly does not depend on t and ⇤t is the diagonal matrix
containing the eigenvalues (i.e., U⇤tU

> is the SVD). We also define XD

t
:= Diag(Xt) and XO

t
:= Xt �XD

t
.

For now we will make the following assumptions, which will be proved later in the argument. There exist universal constants
C,CX > 0 and � 2 (0, 1) (depending only on r) such that, with probability at least 1� Ce�cd,

inf
t�0

�min(Zt) � �1 + �r,

sup
t�0

kZtkop  C,

sup
t�0

kXtkop  CX

poly(log d)
p
d

,

k⇤t � Ikop  C e�c⌘t.

(88)

Here, poly(log d) is used to denote polynomial powers of log d, i.e., (log d)C for some universal constant C. In the
assumptions (88), we specifically distinguish the constant CX in the bound on kXtkop from the others. This important
distinction between C and CX will be apparent later to show that assumptions (88) indeed hold. Note also that, for
sufficiently large d, (88) implies that

sup
t�0

kXtkop  1. (89)

We are now ready to give the proof Theorem 4.6. For the convenience of the reader we restate it here.
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Theorem E.1. Consider the projected gradient descent algorithm as described above applied to the objective (13) for any

f of the form f(x) = x+
P
`=3 c

2
`
x`, where

P
`=3 c

2
`
< 1. Initialize the algorithm with B0 equal to a row-normalized

Gaussian, i.e., (B0
0)i,j ⇠ N (0, 1/d), (B0)i, : = ProjSd�1

�
(B0

0)i,:
�
. Let the step size ⌘ be ⇥(1/

p
d). Then, for any r < 1,

we have that at any time t = T/⌘, with probability at least 1� Ce�cd
,

���BtB
>
t
� I

���
op

 C(1� c)T ,

where C > 0 and c 2 (0, 1] are universal constants depending only on r and f .

Let Et := E(Xt,Zt) 2 R
n⇥n be a generic matrix whose operator norm is upper bounded by

��Et
��
op

 C

✓
poly(log d)

p
d

· kZtk
1/2
op

+ kXtk
2
op

+ kXtkopkZtk
1/2
op

◆
. (90)

We highlight that the constant in front of the upper-bound on the error term Et is independent of CX and t.
Lemma E.2 (Bound for the matrix inverse). Assume that (88) holds. Then, for all sufficiently large n, with probability at

least 1� 1/d2, jointly for all t � 0 and ` � 3, the following bounds hold

k(BtB
>
t
� I)�`kop  kEt

kop, (91)

k
�
f(BtB

>
t
)
��1

� (↵I +BtB
>
t
)�1

kop  kEt
kop, (92)

where ↵ was defined as ↵ =
P1
`=3 c

2
`

.

Proof of Lemma E.2. Note that, for any square matrices R,S 2 R
n⇥n,

kR � Skop 
p
nkSkop max

i,j

|Ri,j |. (93)

Thus, for ` � 3,
���(BtB

>
t
� I)�`

���
op


p
n
���(BtB

>
t
� I)�(`�3)

���
op

max
i,j

|((BtB
>
t
� I)�3)i,j |

=
p
n
���(BtB

>
t
� I)�(`�3)

���
op

max
i 6=j

|((BtB
>
t
� I)�3)i,j |

=
p
n
���(BtB

>
t
� I)�(`�3)

���
op

max
i 6=j

|((Zt +Xt)
�3)i,j |,

(94)

where in the first line we use (93), in the second line we use that ((BtB
>
t
� I)�3)i,i = 0 for i 2 [n] and in the third line we

use the decomposition (87).

Let us bound the off-diagonal entries of Xt via (88) and the off-diagonal entries of Zt via Lemma G.2. This gives that,
with probability at least 1� 1/d2, jointly for all t � 0,

max
i 6=j

|((Zt +Xt)
�3)i,j |  (C + CX)3

✓
poly(log d)

d

◆3/2

. (95)

We will condition on this event (without explicitly mentioning it every time) for the reminder of the argument. By combining
(94) and (95), we have that

���(BtB
>
t
� I)�`

���
op


p
n

"
(C + CX)3

✓
poly(log d)

d

◆3/2
#���(BtB

>
t
� I)�(`�3)

���
op



���(BtB
>
t
� I)�(`�3)

���
op

(96)

where the last inequality holds for all sufficiently large n. Note that, for any square matrices R,S, an application of Theorem
1 in (Visick, 2000) gives that

kR � Skop  kRkopkSkop. (97)
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Hence,
k(BtB

>
t
� I)�`kop 

���(BtB
>
t
� I)�(`�3)

���
op

k(BtB
>
t
� I)�3kop. (98)

Now, by using again (97) and the assumptions (88), we have that, for ` 2 [3],

k(BtB
>
t
� I)�`kop  C. (99)

Thus, by combining (96) and (99), we obtain that
���(BtB

>
t
� I)�(`�3)

���
op

is uniformly bounded in `, which together with

(98) gives that
k(BtB

>
t
� I)�`kop  Ck(BtB

>
t
� I)�3kop. (100)

We remark here that C is independent of l and CX . This means that it suffices to prove the claim (91) for ` = 3.

To do so, define H := 11>
� I , hence, since BtB

>
t

has unit diagonal, we have that

(BtB
>
t
� I)�3 = (BtB

>
t
� I)�3 �H = (U(⇤t � I)U> +XO

t
+XD

t
)�3 �H = (Zt �H +XO

t
�H +XD

t
�H)�3

= (Zt �H +XO

t
)�3 = (Zt �H)�3 + 3(Zt �H)�2 �XO

t
+ 3(Zt �H) � (XO

t
)�2 + (XO

t
)�3.

Using again (97) and that, by Lemma G.1 for any R 2 R
n⇥n,

kR �Hkop = kR� diag(R)kop  CkRkop,

we get

k(BtB
>
t
� I)�3kop  C

⇣
k(Zt �H)�3kop + kZtk

2
op
kXO

t
kop + kZtkopkX

O

t
k
2
op

+ kXO

t
k
3
op

⌘

 C
⇣
k(Zt �H)�3kop + kZtk

1/2
op

kXO

t
kop + kXO

t
k
2
op

⌘
,

(101)

where the second step holds since
���XO

t

���
op

 1 and kZtkop  C by (88)-(89). Another application of (93) gives that

k(Zt �H)�3kop = k(Zt �H)�2 �Ztkop 
p
n ·max

i 6=j

|(Zt)i,j |
2
· kZtkop

 C
log d
p
d

· kZtkop  C
log d
p
d

· kZtk
1/2
op

,
(102)

where the second passage follows from Lemma G.2 and the last from kZtkop  C. By combining (101) and (102), the
proof of (91) for ` = 3 is complete.

To prove (92), define the following quantity

Y :=
1X

`=3

c2
`
(BtB

>
t
� I)�`.

By definition of f(·) we have that
f(BtB

>
t
) = ↵I +BtB

>
t
+ Y ,

which implies that
�
f(BtB

>
t
)
��1

= (↵I +BtB
>
t
+ Y )�1

= (I + Y (↵I +BtB
>
t
)�1)�1(↵I +BtB

>
t
)�1

=

✓
I +

1X

k=1

(�1)k(Y (↵I +BtB
>
t
)�1)k

◆
(↵I +BtB

>
t
)�1.

(103)

By definition (90), we have that
��Et

��
op

 1/2 under assumptions (88) for sufficiently large d. Hence, by the result (91) we
have just proved, k(BtB

>
t
� I)�`kop  1/2, which implies that

P1
`=3 c

2
`
k(BtB

>
t
� I)�`kop  ↵/2. Thus, we have

kY (BtB
>
t
+ ↵I)�1

kop  kY kopk(BtB
>
t
+ ↵I)�1

kop 
↵

2
·
1

↵


1

2
. (104)
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Therefore, we can conclude that

k
�
f(BtB

>
t
)
��1

� (↵I +BtB
>
t
)�1

kop  k(↵I +BtB
>
t
)�1

kop ·

1X

k=1

kY (↵I +BtB
>
t
)�1

k
k

op


1

↵
·

kY (↵I +BtB
>
t
)�1

kop

1� kY (↵I +BtB
>
t
)�1kop


2

↵
· kY kopk(↵I +BtB

>
t
)�1

kop


2

↵2
· kY kop,

(105)

where the third inequality uses (104). By bounding kY kop via (91), the proof of (92) is complete.

Lemma E.3 (Bound for the Schur product with A>A). Assume that (88) holds, and let At be given by (85). Then, we have

that, with probability at least 1� 1/d2, jointly for all t � 0 and ` � 2,

���A>
t
At � (BtB

>
t
� I)�`

���
op

 kEt
kop. (106)

Proof of Lemma E.3. We have that

kA>
t
At � (BtB

>
t
� I)�`kop  kA>

t
At � (BtB

>
t
� I)�2kop

���(BtB
>
t
� I)�(`�2)

���
op

 C||A>
t
At � (BtB

>
t
� I)�2kop,

(107)

where the first inequality uses (97) and the second inequality uses that
���(BtB

>
t
� I)�(`�2)

���
op

is uniformly bounded in l,

which follows from (96) and (99).

Let us now focus on bounding the RHS of (107). An application of Lemma E.2 gives that
�
f(BtB

>
t
)
��1

= (↵I +BtB
>
t
)�1 +E1,

where
kEkop 

��Et
��
op

.

Hence, by using (85), we get that

A>
t
At = ((↵I +BtB

>
t
)�1Bt +E>

1 Bt)(B
>
t
(↵I +BtB

>
t
)�1 +B>

t
E1)

= BtB
>
t
(↵I +BtB

>
t
)�2 +E>

1 BtB
>
t
(↵I +BtB

>
t
)�1 + (↵I +BtB

>
t
)�1BtB

>
t
E1 +E>

1 BtB
>
t
E1,
(108)

where we rearranged the first term in (108) using that BtB
>
t

and (↵I +BtB
>
t
)�1 commute. By using the assumptions

(88), we have that

kBtB
>
t
kop  C, kE1kop  1/2, k(↵I +BtB

>
t
)�1

kop 
1

↵
.

Hence, we can upper bound the operator norm of the last three terms in (108) as
���E>

1 BtB
>
t
(↵I +BtB

>
t
)�1 + (↵I +BtB

>
t
)�1BtB

>
t
E1 +E>

1 BtB
>
t
E1

���
op

 CkE1kop. (109)

Let us now take a closer look at the first term in (108). Recall that

BtB
>
t
= U⇤tU

> +Xt.

As the operator norm is sub-multiplicative, we have that

kXt · (↵I +BtB
>
t
)�2

kop  CkXtkop. (110)
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Furthermore,

U⇤tU
>(↵I +U⇤tU

> +Xt)
�2 = U⇤tU

>�(I +Xt(↵I +U⇤tU
>)�1)(↵I +U⇤tU

>)
��2

= U⇤tU
>T�1

1 T�1
2 T�1

1 T�1
2 ,

(111)

where we have defined
T 1 = ↵I +U⇤tU

>, T 2 = I +Xt(↵I +U⇤tU
>)�1.

By expanding T�1
2 as in (103)-(105), we get

kT�1
2 � Ikop  CkXtkop,

or equivalently
T�1

2 = I +E2,

with kE2kop  CkXtkop. In this view, looking at (111) we have

U⇤tU
>T�1

1 T�1
2 T�1

1 T�1
2 = U⇤tBU>T�1

1 (I +E2)T
�1
1 (I +E2).

All the terms which involve E2 can be controlled. We provide the analysis for two terms of different nature, the rest follows
from similar arguments. As kT�1

1 kop  1/↵ and k⇤tkop  C, we have that

kU⇤tU
>T�1

1 E2T
�1
1 E2kop  kT�1

1 k
2
op
kE2k

2
op


C

↵2
kXtk

2
op


C

↵2
kXtkop,

kU⇤tU
>T�1

1 IT�1
1 E2kop  kT�1

1 k
2
op
kE2kop 

C

↵2
kXtkop,

where we have also used that kXtkop is bounded via assumptions (88). Furthermore, a simple manipulation gives

U⇤tU
>T�2

1 = U⇤tU
>(↵I +U⇤tU

>)�2 = U⇤t(↵I +⇤t)
�2U> = U�(⇤t)U

>,

where �(x) = x

(↵+x)2 . As a result,
���U⇤tU

>T�1
1 T�1

2 T�1
1 T�1

2 �U�(⇤t)U
>
���
op

 C kXtkop ,

which implies that

kBtB
>
t
(↵I +BtB

>
t
)�2

�U�(⇤t)U
>
kop  CkXtkop. (112)

By combining (108), (109) and (112), we have that

kA>
t
At �U�(⇤t)U

>
kop  C

�
kXtkop + kE1kop

�
. (113)

At this point, we are ready to analyze the operator norm of kA>
t
At � (BtB

>
t
� I)�2kop:

A>
t
At � (BtB

>
t
� I)�2 = (U�(⇤t)U

> +E3) � (U(⇤t � I)U> +Xt)
�2

�H

= (U�(⇤t)U
> +E3) � ((U(⇤t � I)U>)�2 +X�2

t
+ 2(U(⇤t � I)U>) �Xt) �H,

(114)

where we have defined H := 11>
� I and kE3kop  C

�
kXtkop + kE1kop

�
. We now decompose the quantity into three

terms:
A>

t
At � (BtB

>
t
� I)�2 = S1 + S2 + S3,

where

S1 = (U�(⇤t)U
>
�U(⇤t � I)U>

�H) �U(⇤t � I)U>,

S2 = H �E3 � ((U(⇤t � I)U>)�2 +X�2
t

+ 2(U(⇤t � I)U>) �Xt),

S3 = H �U�(⇤t)U
>
� (X�2

t
+ 2(U(⇤t � I)U>) �Xt).
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We proceed to bound each of these terms separately.

We start with S1. As �(x) is differentiable for x � 0, the derivative of �(x) is bounded for any compact interval I ✓ R+.
Hence, �(x) is locally Lipschitz on I with Lipschitz constant CI > 0, which implies that

|�(x)� �(1)| =

�����(x)�
1

(1 + ↵)2

����  CI |x� 1|.

By assumption (88), we have that ⇤t � 0 and k⇤tkop  C, hence
����U�(⇤t)U

>
�

1

(1 + ↵)2
I

����
op

 CI · kZtkop. (115)

Hence, an application of Lemma G.2 gives that, with probability at least 1� 1/d2,

sup
t�0

m

✓
U�(⇤t)U

>
�

1

(1 + ↵)2
I

◆
 c

r
log d

d
, (116)

where c > 0 is a universal constant. Another application of Lemma G.2 also gives that, with the same probability,

sup
t�0

m
⇣
U(⇤t � I)U>

⌘
 c

r
log d

d
. (117)

As a result, we obtain the bound

kS1kop = k([U�(⇤t)U
>
� 1/(1 + ↵)2I] �U(⇤t � I)U>

�H) �U(⇤t � I)U>
kop  C

log d
p
d
kZtkop. (118)

Here, the first equality is due to the fact that we are taking the Hadamard product with the matrix H which has 0
on the diagonal, hence we can add multiples of the identity to U�(⇤t)U

>; and the second inequality uses (93) with
R = [U�(⇤t)U

>
� 1/(1 + ↵)2I] �U(⇤t � I)U>

�H and S = U(⇤t � I)U> in combination with (116)-(117).

Next, we bound kS2kop. We inspect the terms appearing in the expression for S2 one by one. First note that we can omit
H in the expression since, by Lemma G.1 for any square matrix R

kR �Hkop  CkRkop. (119)

Hence, by using (97), we get

kH �E3 � ((U(⇤t � I)U>)�2kop  CkE3kopkZtk
2
op

kH �E3 �X
�2
t
kop  CkE3kopkXtk

2
op

kH �E3 � 2(U(⇤t � I)U>) �Xt)kop  CkE3kopkXtkopkZtkop,

which leads to the bound

kS2kop  CkE3kop

�
kXtk

2
op

+ kZtk
2
op

+ kXtkopkZtkop

�
. (120)

Finally, we bound kS3kop. Consider the term

k[H �U�(⇤t)U
>
� 2(U(⇤t � I)U>] �Xtkop.

Then, by using (119) and (115), we have

kH �U�(⇤t)U
>
kop =

����H � [U�(⇤t)U
>
�

1

(1 + ↵)2
I]

����
op

 C

����U�(⇤t)U
>
�

1

(1 + ↵)2
I

����
op

 CkZtkop. (121)

Hence, in conjunction with (97), we get

kH �U�(⇤t)U
>
� 2U(⇤t � I)U>

kop  C · kZtk
2
op
,

33



Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods

which invoking (97) one more time gives

k[H �U�(⇤t)U
>
� 2(U(⇤t � I)U>] �Xtkop  CkZtk

2
op
kXtkop.

Furthermore, by combining (97) and (121), we get

k[H �⇤�(⇤t)⇤
>] �X�2

t
kop  CkZtkopkXtk

2
op
.

Thus,
kS3kop  C(kZtk

2
op
kXtkop + kZtkopkXtk

2
op
). (122)

Recall that, from assumptions (88)-(89), kXtkop , kZtkop  C. Then, by combining the bounds in (118), (120) and (122),
the desired result readily follows.

By exploiting the above lemmas, we are able to make the following approximation for the gradient.
Lemma E.4 (Gradient approximation). Assume that (88) holds, and let rBt be given by (86). Further define � = 1 + ↵
and F (x) = 1+x

(�+x)2 . Then, for all sufficiently large n, with probability 1� 1/d2, jointly for all t � 0,

����
1

2
rBtB

>
t
+ ↵F (Zt)� ↵Diag (F (Zt)) (I +Zt)�

2↵

�3
XO

t
�

↵

�2
XD

t

����
op

 kEt
kop. (123)

Proof of Lemma E.4. We start by showing that, with probability 1� 1/d2, jointly for all t � 0,
����
1

2
rBt + ↵(↵I +BtB

>
t
)�2Bt � ↵Diag

⇣
(↵I +BtB

>
t
)�2(BtB

>
t
)
⌘
Bt

����
op

 kEt
kop. (124)

Let us first consider the term r
1
Bt

, which can be equivalently expressed as

r
1
Bt

= 2
�
�A>

t
+Diag(BtAt)Bt + TBt �Diag(T (BtB

>
t
))Bt

�
,

where T = A>
t
At �Diag(A>

t
At). It is then easy to verify that

1

2
r

1
Bt

= �A>
t
+A>

t
AtBt + Diag(BtAt)Bt �Diag(A>

t
AtBtB

>
t
)Bt. (125)

Using Lemma E.2, we get

A>
t
At = ((↵I +BtB

>
t
)�1 +E1)BtB

>
t
((↵I +BtB

>
t
)�1 +E1), (126)

where kE1kop  kEt
kop. It follows from (88) that kBtB

>
t
kop  C. Hence, using that BtB

>
t

and (↵I + BtB
>
t
)

commute in conjunction with k(↵I +BtB
>
t
)�1

kop  1/↵ we get

A>
t
At = BtB

>
t
(↵I +BtB

>
t
)�2 +E2, (127)

where kE2kop  kEt
kop. Noting that 1

↵+x
�

↵

(↵+x)2 = x

(↵+x)2 and using the spectral theorem for the symmetric matrix
BtB

>
t

, we can further rewrite (127) as

A>
t
At = (↵I +BtB

>
t
)�1

� ↵(↵I +BtB
>
t
)�2 +E2. (128)

With similar arguments, by Lemma E.2, we can write

BtAt = BtB
>
t
(↵I +BtB

>
t
)�1 +E3, (129)

where kE3kop  kEt
kop. Noting that 1� ↵

↵+x
= x

↵+x
, again by the spectral theorem for BtB

>
t

, we get

BtAt = I � ↵(↵I +BtB
>
t
)�1 +E3, (130)
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and, consequently, we obtain

Diag(BtAt)Bt = Bt � ↵Diag((↵I +BtB
>
t
)�1)Bt +E4, (131)

where kE4kop  kEt
kop. Using (128) and 1� ↵

↵+x
= 1

x+↵ , we get

Diag(A>
t
AtBtB

>
t
)Bt = Diag((↵I +BtB

>
t
)�1BtB

>
t
)Bt � ↵Diag((↵I +BtB

>
t
)�2BtB

>
t
)Bt +E5

= Bt � ↵Diag((↵I +BtB
>
t
)�1)Bt � ↵Diag((↵I +BtB

>
t
)�2BtB

>
t
)Bt +E5,

(132)

where kE5kop  kEt
kop.

With this in mind, we get back to (125). Combining the results of (128), (131) and (132) we get

r
1
Bt

= �(↵I +BtB
>
t
)�1Bt| {z }

�A>
t

+(↵I +BtB
>
t
)�1Bt � ↵(↵+BtB

>
t
)�2Bt| {z }

A>
t AtBt

+Bt � ↵Diag((↵I +BtB
>
t
)�1)Bt| {z }

Diag(BtAt)Bt

�Bt + ↵Diag((↵I +BtB
>
t
)�1)Bt + ↵Diag((↵I +BtB

>
t
)�2BtB

>
t
)Bt| {z }

�Diag(A>
t AtBtB>

t )Bt

+E6

= �↵(↵I +BtB
>
t
)�2Bt + ↵Diag((↵I +BtB

>
t
)�2BtB

>
t
)Bt +E6,

(133)

where kE6kop  kEt
kop.

Let us now analyze the second part of the gradient which involves terms of the form below for ` � 3:

r
2,k,`
Bt

:= c2
`
· ` ·

X

j 6=k

hak,ajihbk, bji
(`�1)Jkbj .

Now, from the fact that
Jk = I � bkb

>
k
,

we can write

c2
`
· ` ·

X

j 6=k

hak,ajihbk, bji
(`�1)Jkbj = c2

`
· ` ·

X

j 6=k

hak,ajihbk, bji
(`�1)(bj � hbk, bjibk). (134)

The second term of the RHS gives the following contribution to the Bt update

Diag(A>
t
At(BtB

>
t
� I)�`)Bt.

By recalling that kA>
t
Atkop  C and kBtkop  C, we have

kDiag(A>
t
At(BtB

>
t
� I)�`)Btkop  CkA>

t
At(BtB

>
t
� I)�`kopkBtkop  Ck(BtB

>
t
� I)�`kop. (135)

Now, for ` < 5, we upper bound the RHS of (135) via Lemma E.2, which gives that

kDiag(A>
t
At(BtB

>
t
� I)�`)Btkop  CkEt

kop. (136)

Furthermore, if we follow passages analogous to (94)-(95) (the only difference being that we exchange the roles of the
Hadamard powers 3 and `� 3), we have that, with probability at least 1� 1/d2, jointly for all t � 0 and ` � 5,

kDiag(A>
t
At(BtB

>
t
� I)�`)Btkop  C

p
nkEt

kop

✓
poly(log d)

d

◆(`�3)/2

 CkEt
kop

✓
poly(log d)

d

◆(`�4)/2

,

(137)

for sufficiently large d.
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Define the following quantity:

Y = (A>
t
At) � (BtB

>
t
� I)�(`�1). (138)

In this view, the first term in (134) can be written as Y Bt. For l < 5, by Lemma E.3 we have that kY kop  kEt
kop, hence

kY Btkop  CkEt
kop as kBtkop  C. Furthermore, with probability at least 1� 1/d2, jointly for all t � 0 and ` � 5, we

have

kY Btkop  CkY kop = C
p
nk(A>

t
At) � (BtB

>
t
� I)�2kop max

i,j

|(BtB
>
t
� I)i,j |

`�3


p
nkEt

kop max
i,j

|(BtB
>
t
� I)i,j |

`�3


p
nkEt

kop

"
(C + CX)`�3

✓
poly(log d)

d

◆(`�3)/2
#

 (C + CX)`�3
kEt

kop

✓
poly(log d)

d

◆(`�4)/2

.

(139)

Here, in the second line we use Lemma E.3; and in the third line we bound the off-diagonal entries of Xt via (88) and the
off-diagonal entries of Zt via Lemma G.2. Hence, by combining (137) and (139), we conclude that

��r2
Bt

��
op

 CkEt
kop + kEt

kop

1X

`=5

(C + CX)`�3c2
`
`

✓
poly(log d)

p
d

◆`�4

 CkEt
kop, (140)

where we used that the series
P1
`=5(C + CX)`�3c2

`
`
⇣

(poly(log d)p
d

⌘`�4
converges to a finite value for all sufficiently large

d, since (C + CX)poly(log d)p
d

< 1. This finishes the proof of (124).

We now further analyse the gradient in (124). Defining F (x) = 1+x

(�+x)2 , with � = 1 + ↵, we can write

1

2
rBtB

>
t
= �↵F (Zt +Xt) + ↵Diag (F (Zt +Xt))) + ↵Diag (F (Zt +Xt))) (Zt +Xt) +Et. (141)

By a slight abuse of notation, we will denote by F (l)(0) the l-th derivative of the unidimensional function F (x) = 1+x

(�+x)2

computed at x = 0. Here, F (Zt +Xt) is defined by the spectral theorem (note that indeed Zt +Xt = BtB
>
t
� I is

symmetric).

We will now compute the error we incur if in (141) we replace F (Xt +Zt) by F (Zt). We first consider the case when
kZtkop > �

3 . In this case, we have that
���F (Zt +Xt)� F (Zt)� F (1)(0)Xt

���
op

 C kXtkop  C kZtkop kXtkop . (142)

Here, the second inequality trivially holds since kZtkop > �

3 . To prove the first inequality, let DF be the derivative of the
matrix-valued function F (M) = (I +M)(�I +M)�2. Then, by evaluating this derivative for M = Zt in the direction
of Xt, we obtain

DF (Zt)Xt = �(I+Zt)(�I+Zt)
�1Xt(�I+Zt)

�2
�(I+Zt)(�I+Zt)

�2Xt(�I+Zt)
�1+Xt(�I+Zt)

�2. (143)

To verify this expression we first note that the derivative of the function G(M) = M�1 in the direction of X is given
by DG(M)X = �M�1XM�1. Now, (143) easily follows from the product rule applied to F (Z) = (I + Z)(�I +
Z)�1(�I +Z)�1. By the assumptions in (88), we have that Zt, (�I +Zt)�1 are uniformly bounded, hence the map DF
is uniformly bounded as well. This implies that

kF (Zt +Xt)� F (Zt)kop  C kXtkop .

As
��F (1)(0)Xt

��
op

 C kXtkop, we readily obtain (142).
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Now we consider the case where kZtkop 
�

3 . First note that, by (88), kXtkop 
�

3 . Hence,

F (Zt +Xt) =
1X

`=0

F (`)(0)
(Zt +Xt)`

`!
.

The series above converges absolutely since F (`)(0) scales as `!
�` poly(`). To see this, first we note that, if h(x) = 1

(�+x)2 ,
then h(`)(0) = (�1)`(`+ 1)! 1

�`+2 . Thus, by the product rule, F (`)(0) = (�1)`(`+ 1)! 1
�`+2 + (�1)`�1`! 1

�`+1 which has
the desired asymptotic behaviour. Expanding the brackets and applying the triangle inequality yields
�����F (Zt +Xt)�

1X

`=0

F (`)(0)
Z`

t

`!
� F (1)(0)Xt

�����
op



1X

`=2

F (`)(0)
kXtk

`

op

`!
+

1X

`=2

F (`)(0)
1

`!

`�1X

i=1

✓
`

i

◆
kZtk

i

op
kXtk

`�i

op
.

As kZtkop , kXtkop 
�

3 , we have

1X

`=2

F (`)(0)
kXtk

`

op

`!
 kXtk

2
op

1X

`=2

F (`)(0)
⇣�
3

⌘`�2 1

`!
 C kXtk

2
op

,

and

1X

`=2

F (`)(0)
1

`!

`�1X

i=1

✓
`

i

◆
kZtk

i

op
kXtk

`�i

op


1X

`=2

F (`)(0)
1

`!
2`
⇣�
3

⌘`�2
kZtkop kXtkop  C kZtkop kXtkop .

By combining the last three expressions and using that

F (Zt) =
1X

`=0

F (`)(0)
Z`

t

`!
,

we obtain ���F (Xt +Zt)� F (Zt)� F (1)(0)Xt

���
op

 C
⇣
kXtkop kZtkop + kXtk

2
op

⌘
. (144)

As the map DF is uniformly bounded, we have

kF (Zt)� F (0)Ik
op

 C kZtkop . (145)

By combining (144), (145) and (141), we obtain

1

2
rBtB

>
t
= �↵F (Zt) + ↵Diag (F (Zt)) (I +Zt)� ↵F (1)(0)Xt + ↵Diag

⇣
XtF

(1)(0)
⌘
+ ↵XtF (0) +Et. (146)

Using that F (0) = 1
�2 and F (1)(0) = 1

�2 (1�
2
�
), we finally obtain

1

2
rBtB

>
t
= �↵F (Zt) + ↵Diag (F (Zt)) (I +Zt) +

2↵

�3
XO

t
+

↵

�2
XD

t
+Et, (147)

which concludes the proof.

Now let us return to the update equation of BtB
>
t

during the gradient step

B0
t
B0>

t
= (Bt � ⌘rBt)(Bt � ⌘rBt)

> = BtB
>
t
� ⌘ ·rBtB

>
t
� ⌘ ·Bt(rBt)

> + ⌘2 ·rBt(rBt)
>. (148)

Note that we can control the terms Bt(rBt)
> and rBtB

>
t

via Lemma E.4. In this view, it remains to argue that the
contribution of the term ⌘2 ·rBt(rBt)

> and of the projection step are of order ⌘
��Et

��
op

. For convenience of the upcoming
lemmas we define the following quantity:

erBt := 2
⇣
�↵(↵I +BtB

>
t
)�2Bt + ↵Diag

⇣
(↵I +BtB

>
t
)�2(BtB

>
t
)
⌘
Bt

⌘
. (149)
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Lemma E.5. Assume that (88) holds, and let rBt be given by (86) with ⌘  C/
p
d. Then, for all sufficiently large n, with

probability 1� 1/d2, jointly for all t � 0:

⌘2
��rBt(rBt)

>��
op

 ⌘
��Et

��
op

.

Proof of Lemma E.5. We start by showing that

kerBtkop  C(kXtkop + kZtkop). (150)

Recall that kBtkop, k(↵I +BtB
>
t
)�2

kop  C. Hence, the following chain of inequalities holds

kerBtkop  kBtkop ·

����↵(↵I +BtB
>
t
)�2 + ↵Diag

⇣
(↵I +BtB

>
t
)�2(BtB

>
t
)
⌘���

op

 C
����↵(↵I +BtB

>
t
)�2(I �BtB

>
t
+BtB

>
t
) + ↵Diag

⇣
(↵I +BtB

>
t
)�2(BtB

>
t
)
⌘���

op

 C
⇣���(↵I +BtB

>
t
)�2(Zt +Xt)

���
op

+
���(↵I +BtB

>
t
)�2BtB

>
t
�Diag

⇣
(↵I +BtB

>
t
)�2(BtB

>
t
)
⌘���

op

⌘

 C (kXtkop + kZtkop + kF (Xt +Zt)�Diag(F (Xt +Zt))kop) ,

(151)

where we recall the definition F (x) = 1+x

(�+x)2 , with � = 1+↵. By combining (144) and (145) (in the proof of Lemma E.4),
we have

kF (Xt +Zt)� F (0)Ikop  C(kXtkop + kZtkop),

As kDiag(M)kop  CkMkop for any matrix M , we also have that

kDiag(F (Xt +Zt))� F (0)Ikop  C(kXtkop + kZtkop).

Hence,

kF (Xt +Zt)�Diag(F (Xt +Zt))kop  C(kXtkop + kZtkop),

which finishes the proof of (150).

At this point, recall from (124) and (149) that
���rBt �

erBt

���
op


��Et

��
op

. (152)

Thus, ��rBtr
>
Bt

��
op

 2
���erBtE

t

���
op

+
���erBt(erBt)

>
���
op

+
��(Et)2

��
op

.

Recalling the previous bound on kerBtkop in (150) and using the assumptions in (88), we get that
���erBtE

t

���
op

,
��Et

��2
op

 CkEt
kop,

and

⌘2kerBtk
2
op

 C⌘(kXtk
2
op

+ kXtkop kZtkop) + C⌘2 kZtk
2
op

 C⌘

✓
1
p
d
kZtkop + kXtk

2
op

+ kXtkop kZtkop

◆
 C⌘

��Et
��
op

,
(153)

where we have also used that ⌘  C/
p
d. This concludes the proof.

The next lemma controls the contribution of the projection step.
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Lemma E.6 (Projection step). Assume that (88) holds and ⌘  C/
p
d. Then, for all sufficiently large n, with probability

1� 1/d2, jointly for all t � 0:

kproj(B0
t
)�B0

t
kop  ⌘

��Et
��
op

,

which implies that, by differentiability of the bilinear form,

kproj(B0
t
)proj(B0

t
)> �B0

t
(B0

t
)>kop  ⌘

��Et
��
op

.

Proof of Lemma E.6. Recall that the objective (84) does not depend on the norm of {bi}ni=1, hence (rBt)i,: is orthogonal
to (Bt)i,:, which implies that

proji(B
0
t
) =

(Bt)i,: � ⌘(rBt)i,:p
1 + ⌘2k(rBt)i,:k

2
.

Let us define

Dt := Diag

 
1p

1 + ⌘2k(rBt)1,:k
2
, . . . ,

1p
1 + ⌘2k(rBt)n,:k

2

!
.

Then, we obtain the following compact form:

proj(B0
t
) = Dt(Bt � ⌘rBt) = DtB

0
t
.

In this view, it remains to bound kDt � Ikop. In more details, by (150) and (152), we have

krBtkop  kerBtkop + kEt
kop  C(kXtkop + kZtkop + kEt

kop)  C 0,

where C 0 > 0 is a universal constant (independent of CX , n, d). Hence, by recalling that kBtkop  C by assumption (88),
we have

kproj(B0
t
)�B0

t
kop = k(Dt � I)(Bt � ⌘rBt)kop  C kDt � Ik

op
.

Note that function 1/
p
1 + x is differentiable at 0, hence, we have that for small enough ⌘ (which follows from ⌘  C/

p
d):

�����
1p

1 + ⌘2k(rBt)i,:k
2
� 1

�����  C⌘2k(rBt)i,:k
2.

In this view, we have

kDt � Ikop  C⌘2krBtk
2
op

 C⌘2kerBtk
2
op

+ C⌘2kerBtkkE
t
kop + C⌘2kEt

k
2.

Inspecting each term one by one and applying (150) in conjunction with ⌘  C/
p
d gives that

⌘2
��Et

��2
op

 C⌘
��Et

��
op

,

⌘2kerBtkkE
t
kop  C⌘kEt

kop,

⌘2kerBtk
2
op

 C⌘
��Et

��
op

,

where in the last step we have used (153). This concludes the proof.

In this view, using (148) and Lemmas E.4, E.5 and E.6, we obtain

I +Zt+1 +Xt+1 = Bt+1B
>
t+1 = I +Zt +Xt + 4⌘↵F (Zt)� 2⌘↵Diag(F (Zt))(I +Zt)

� 2⌘↵(I +Zt)Diag(F (Zt))�
8↵⌘

�3
XO

t
�

4↵⌘

�2
XD

t
+ ⌘Et.

(154)

Furthermore, we have that

Diag(F (Zt))(I +Zt) = (Diag(F (Zt)� F (0)I) + F (0)I) (I +Zt)

=
1

�2
(I +Zt) + (Diag(F (Zt)� F (0)I)) (I +Zt)

=
1

�2
(I +Zt) +

✓
1

n
Tr [F (Zt)� F (0)I] +D0

t

◆
(I +Zt),

(155)
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where D0
t

is a diagonal matrix such that, with probability at least 1 � 1/d2, its entries are upper bounded in modulus
by C log dp

d
kZtk

1/2
op . The last passage follows from Lemma G.2. Note that 1

�2 (I + Zt) = 1
n
Tr [F (0)I] and recall that

kZtkop  C. Hence, (155) implies that

Diag(F (Zt))(I +Zt) =
1

n
Tr [F (Zt)] (I +Zt) +Et. (156)

Similarly, we have that

(I +Zt)Diag(F (Zt)) =
1

n
Tr [F (Zt)] (I +Zt) +Et. (157)

By combining (156)-(157) with (154) and using that Xt = XO

t
+XD

t
, we get

Zt+1 +Xt+1 =

✓
1�

8↵

�3
⌘

◆
XO

t
+

✓
1�

4↵

�2
⌘

◆
XD

t
+Zt + 4⌘↵F (Zt)

� 4⌘↵
1

n
Tr [F (Zt)] (I +Zt) + ⌘Et.

(158)

Hence, we can write the following system capturing the dynamics of the spectrum Zt and of the errors (XO

t
,XD

t
)

Zt+1 = Zt + 4⌘↵F (Zt)� 4⌘↵
1

n
Tr [F (Zt)] (I +Zt), (159)

XD

t+1 =

✓
1�

4↵

�2
⌘

◆
XD

t
+ ⌘Et, (160)

XO

t+1 =

✓
1�

8↵

�3
⌘

◆
XO

t
+ ⌘Et. (161)

Here, the operator norm of Et is upper bounded as in (90), where we recall that the constant C is uniformly bounded in t.

In the view of (159), one can readily see that the updates on the spectrum of Zt follow the one described in Lemma G.3 and,
thus, converges exponentially. This means that the set of assumptions on Zt in (88) is satisfied by suitably picking C.

Now it only remains to take care of Xt. If we write xD
t

=
���XD

t

���
op

, xO
t
=
���XO

t

���
op

, zt = kZtk
1/2
op

, then recalling the

definition of Et in (90), (160), (161) we have that

xD

t+1 

✓
1�

4↵

�2
⌘

◆
xD

t
+ ⌘CD

✓
poly(log d)

p
d

· zt + (xD

t
+ xO

t
)2 + (xD

t
+ xO

t
)zt

◆
(162)

xO

t+1 

✓
1�

8↵

�3
⌘

◆
xO

t
+ ⌘CO

✓
poly(log d)

p
d

· zt + (xD

t
+ xO

t
)2 + (xD

t
+ xO

t
)zt

◆
. (163)

Since both of these recursive bounds are monotone in xD
t
, xO

t
, we can dominate them as follows. If we recursively define xt

by

xt+1 =

✓
1� ⌘min

⇢
4↵

�2
,
8↵

�3

�◆
xt + ⌘max{CD, CO}

✓
poly(log d)

p
d

· zt + (xt + xt)
2 + (xt + xt)zt

◆
, (164)

then by monotonicity max{xD
t
, xO

t
}  xt. Thus, we only need to analyse the recursion (164), which we do in the following

lemma. Note that the condition zt  Ce�ct⌘ required by Lemma E.7 holds by (88).
Lemma E.7 (Error decay). Let {zt}1t=0 be a non-negative exponentially decaying sequence, i.e., zt  Cze�⌘czt, and

consider a non-negative sequence {xt}
1
t=0 such that at each time-step t the following condition holds for ⌘ = ⇥(1/

p
d)

and sufficiently large d:

xt+1 = (1� ⌘c1)xt + ⌘C2 · zt · xt + ⌘C3x
2
t
+ ⌘C4 ·

poly(log d)
p
d

· zt, (165)

with x0 = 0. Then, the following holds

xt  C
poly(log d)

p
d

· Te�cT , (166)

where T = t⌘.
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Proof of Lemma E.7. We proceed in two parts. In the first part, we show that our recursion does not blow up in t = K/⌘
steps. In the second part, zt  Cz exp(�czK) will be small, which allows us to deduce (166).

Error does not blow up in finite time. Let t = K/⌘ where K is such that K/⌘ 2 N. We start by analysing the simpler
recursion

xt+1 = (1� ⌘c1)xt + ⌘C2 · zt · xt + ⌘C4 ·
poly(log d)

p
d

· zt.

By hypothesis, zt  Cz . Hence, we arrive to

xt+1 = (1� ⌘c1)xt + ⌘C2Cz · xt + ⌘C4Cz

poly(log d)
p
d

.

Writing C5 = C2Cz � c1, unrolling the recursion on the RHS and using x0 = 0 gives

xt+1 = ⌘C4Cz

poly(log d)
p
d

tX

j=0

(1 + ⌘C5)
j

 ⌘C4Cz

poly(log d)
p
d

K/⌘X

j=0

e⌘C5j

= ⌘C4Cz

poly(log d)
p
d

· eC5K

K/⌘X

j=0

e�C5⌘(t�j)

 ⌘C4Cz

poly(log d)
p
d

·
eC5K

1� e�⌘C5
,

where the inequality holds for t  K/⌘ and we have used 1 + x  ex. For small enough ⌘, we have that

⌘

1� e�C5⌘


2

C5
,

hence, for all t  K/⌘,

xt+1  2
poly(log d)

p
d

C4Cz

C5
exp(C5K). (167)

Let us now go back to our original recursion (165), which contains the term x2
t
. We claim that this recursion satisfies a

bound like (167). Assume by contradiction that it exceeds the bound

xt  4
poly(log d)

p
d

C4Cz

C5
exp(C5K) (168)

for the first time at step t0. Then, for all t < t0, (168) holds. Noting that x2
t
 4poly(log d)p

d

C4Cz
C5

exp(C5K)xt we define

C 0
5 = C2Cz + 4C3

poly(log d)p
d

C4Cz
C5

exp(C5K)� c1. By unrolling the recursion exactly as before, we obtain

xt+1  2
poly(log d)

p
d

C4Cz

C 0
5

exp(C 0
5K)  3

poly(log d)
p
d

C4Cz

C5
exp(C5K), (169)

for d large enough. Here, the second inequality follows for large d, since it is clear from the definitions that |C5 � C 0
5|

vanishes for large d. This shows that we cannot violate (168), thus (169) holds for all t  K/⌘.

Convergence of errors xt to zero. We now choose K large enough so that

zt = Cze
�⌘czt <

c1
2C2

, 8t � K/⌘.
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Hence, the term corresponding to ⌘C2ztxt can be pushed inside the (1� ⌘c1)xt term. Consequently, we can equivalently
study the following dynamics

xt+1 = (1� ⌘c01)xt + ⌘C3x
2
t
+ ⌘C4Cz

poly(log d)
p
d

e�⌘czt, (170)

where c01 = c1/2. Here, we initialize again at t = 0, but now starting at

x0 = C6
poly(log d)

p
d

,

where C6 = 4C4Cz
C5

exp(C5K), corresponding to the bound in (168). Rearranging we have

xt+1 = xt + ⌘

✓
�c01xt + C3x

2
t
+ C4Cz

poly(log d)
p
d

e�⌘czt
◆
. (171)

As the last term inside the brackets vanishes when d ! 1, we have two roots of the polynomial inside the brackets,
corresponding to the fixed points of the iteration. The left root rl scales as

rl  Cl

poly(log d)
p
d

e�⌘czt,

and the right root rr as

rr �
c01
C3

� C
poly(log d)

p
d

e�⌘czt.

In addition, it is easy to see that both roots are non-negative.

Next, we prove that xt  C poly(log d)p
d

for all t. We will show this by contradiction. At initialization we have

x0 = C6
poly(log d)

p
d

.

Choose A,B as follows:
A := max{Cl, C6}, B = C7A.

We first note that, for small enough ⌘ and large enough d, we can choose C7 such that x
t̃
 Apoly(log d)p

d
implies x

t̃+1 

B poly(log d)p
d

. We now show that xt  B poly(log d)p
d

for all t. To do so, assume by contradiction that xt+1 > B poly(log d)p
d

.

Then xt 2 [Apoly(log d)p
d

, B poly(log d)p
d

] ✓ [rl, rr], thus

�c01xt + C3x
2
t
+ C4Cz

poly(log d)
p
d

e�⌘czt < 0.

Hence, from (171) it follows that

xt+1  xt  B
poly(log d)

p
d

,

which gives us the desired contradiction.

Thus, for all t,

x2
t
 B

poly(log d)
p
d

xt.

This allows us to push the second term in (170) into the first one (for d large enough), which reduces the recursion to

xt+1 = (1� ⌘c001)xt + ⌘C4Cz

poly(log d)
p
d

e�⌘czt,

42



Fundamental Limits of Two-layer Autoencoders, and Achieving Them with Gradient Methods

where c001 � c01/2. By unrolling this last recursion and using x0 = C6
poly(log d)p

d
, we have that, for t � 1,

xt = C6
poly(log d)

p
d

(1� ⌘c001)
t + ⌘C4Cz

poly(log d)
p
d

tX

`=1

(1� ⌘c001)
t�`e�⌘cz` (172)

 C6
poly(log d)

p
d

exp(�⌘c001 t) + ⌘C4Cz

poly(log d)
p
d

tX

`=1

e�⌘(cz`+c
00
1 (t�`)), (173)

where the inequality follows from 1 � x  e�x. Since the term in the exponents of the sum is a linear function in `, its
maximum value is attained in the endpoints. Thus,

xt  C6
poly(log d)

p
d

exp(�⌘c001 t) + ⌘C4Cz

poly(log d)
p
d

tmax{e�⌘czt, e�⌘c
00
1 t},

which implies (166).

By Lemma E.7 we know that

kXtkop 
C
p
d
· Te�cT ,

where C is independent of CX by definition. Hence, we can pick CX such that, for sufficiently large d, the assumptions on
Xt in (88) are satisfied. With this in mind, we can use Lemma G.3 to bound the dynamics involving Zt and Lemma E.7 to
claim that the error Xt vanishes at least geometrically fast. This concludes the proof of Theorem E.1.

F. Discussion of Isotropic Gaussian Results
Degenerate isotropic Gaussian data. All the arguments of Section 4.1 directly apply for x ⇠ N (0,�2I), the only
differences being the scaling of the term Tr [BA] (which is additionally multiplied by �) and the constant variance term
�2 (in place of 1) in (6). Our results can be also easily extended to the case of degenerate isotropic Gaussian data, i.e.,
x ⇠ N (0,⌃) with �i(⌃) = �2 for i  d� k and �i(⌃) = 0 for i > d� k, where �i(⌃) stands for the i-th eigenvalue of
⌃ in non-increasing order. In fact, by the rotational invariance of the Gaussian distribution, we can assume without loss
of generality that x = [x1, · · · , xd�k, 0, · · · , 0], where (xi) ⇠i.i.d. N (0,�2). Hence, by considering A 2 R

(d�k)⇥n and
B 2 R

n⇥(d�k) and substituting d with d� k where suitable, analogous results follow.

Scaling of the learning rate. Theorem 4.6 is stated for ⌘ = ⇥(1/
p
d), as this corresponds to the biggest learning rate for

which our argument works (thus requiring the least amount of steps for convergence). The same result can be proved for
⌘ = ⇥(d�) with  � 1/2. The only piece of the proof affected by this change is the third part of Lemma G.2 (in particular,
the chain of inequalities (187)), which continues to hold as long as ⌘ is polynomial in d�1.

Assumptions on compression rate r. We expect an analog of Theorem 4.5 (see Theorem D.1 for the formal statement) to
hold for r > 1, as long as d is sufficiently large. In fact, for a fixed d, it appears to be difficult to even characterize the global
minimizer: the choice (12) approaches the lower bound LBr>1(I) only as d ! 1, see Proposition 4.4. We also expect
Theorem 4.6 to hold for r � 1. Here, an additional challenge is that the minimizer has non-zero off-diagonal entries. In
combination with the lack of an exact characterization of the minimizer, this leads to an additional error term that would be
difficult to control with the current tools. At the same time, the restriction r < 1 is likely to be an artifact of the proof as
experimentally (see, for instance, Figure 4) the algorithm still converges to the global optimum for r � 1.

Gaussian initialization in Theorem 4.6. The Gaussian initialization ensures that, with high probability, the off-diagonal
entries of B(t)B(t)> are small. This allows us to approximate higher-order Hadamard powers of B(t)B(t)> with I .
However, in experiments the Gaussian assumption seems to be unnecessary, and we expect the convergence result to hold
for all (non-degenerate) initializations.
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G. Auxiliary Results
Lemma G.1. For any R 2 R

n⇥n
the following holds

kR� diag(R)k
op

 C kRk
op

.

Proof. By definition of the operator norm we have that

kRk
op

= sup
kxk2=1

kRxk2 .

Note that by Cauchy-Schwarz, the following holds for kyk2 = 1:

hy,Rxi  kRxk2 ,

and the inequality is met when y is aligned with Rx. Hence, we get

sup
kyk2=1

hy,Rxi = kRxk2 ,

and, thus, the operator norm can be rewritten as

kRk
op

= sup
kxk2=1

kRxk2 = sup
kxk2=kyk2=1

hy,Rxi.

Note also that kdiag(R)k
op

is equal to the maximal diagonal element (in absolute value). Hence, by letting ei be the i-th
element of the canonical basis, we get

kdiag(R)k
op

= sup
i

|Ri,i|  sup
i

|hei,Reii|  sup
kxk2=kyk2=1

hy,Rxi = kRk
op

.

In this view, an application of triangle inequality, i.e.,

kR� diag(R)k
op

 kRk
op

+ kdiag(R)k
op

 2 kRk
op

,

finishes the proof.

Lemma G.2. Consider the matrix At = U⇤tU
>

, where the matrix U is distributed according to the Haar measure and it

is independent from the diagonal matrix ⇤t. Further, assume that all the diagonal entries of ⇤t are bounded in absolute

value by a constant. Then, the following results hold.

1. We have that, with probability at least 1� 1/d2,

max
i 6=j

|(At)i,j |  c

r
log d

d
, (174)

for some absolute constant c > 0.

2. Let Dt = diag(At). Then,

Dt = ↵I +D0
t
,

where

↵ =
1

n
Tr(⇤t),

and D0
t

is a diagonal matrix such that, with probability at least 1� 1/d2,

max
i2[n]

|(D0
t
)i,i|  c

log d
p
d
. (175)
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3. Assume that, for all t 2 N,

k⇤tkop  Ce�c⌘t, (176)

where c, C > 0 are absolute constants and ⌘ = ⇥(1/
p
d). Then, with probability at least 1� 1/d2,

sup
t�0

max
i 6=j

|(At)i,j |  c

r
log d

d
, (177)

sup
t�0

max
i2[n]

|(D0
t
)i,i|  c

log d
p
d
. (178)

Proof. We start by proving (174). Consider the metric measure space (SO(d), k · kF ,P). Here, SO(d) denotes the special
orthogonal group containing all d ⇥ d orthogonal matrices with determinant 1 (i.e., all rotation matrices), and P is the
uniform probability measure on SO(d), i.e., the Haar measure. Given a diagonal matrix ⇤t and two indices i, j 2 [d], define
f : SO(d) ! R as

f(M) = (M⇤tM
>)i,j . (179)

Note that

|f(M)� f(M 0)| = |(M⇤tM
>)i,j � (M 0⇤t(M

0)>)i,j |

 |(M⇤tM
>)i,j � (M 0⇤tM

>)i,j |+ |(M 0⇤tM
>)i,j � (M 0⇤t(M

0)>)i,j |

 |((M �M 0)⇤tM
>)i,j |+ |(M 0⇤t(M �M 0)>)i,j |

 k(M �M 0)⇤tM
>
kF + kM 0⇤t(M �M 0)>kF

 2kM �M 0
kF k⇤tkopkMkop  2kM �M 0

kF k⇤tkop,

(180)

where in the fourth inequality we use that, for any two matrices A and B, kABkF  kAkopkBkF , and in the fifth
inequality we use that kMkop = 1 as M 2 SO(d). Hence, f has Lipschitz constant upper bounded by 2k⇤tkop and an
application of Theorem 5.2.7 of (Vershynin, 2018) gives that

P(|f(U)� E[f(U)]| � u)  2 exp

✓
�c1

du2

2k⇤tkop

◆
, (181)

where c1 is a universal constant.

Let ui denote the i-th row of U . Then,
f(U) = hui,⇤tuji. (182)

Suppose that i 6= j. Since U is distributed according to the Haar measure, ui is uniform on the unit sphere and uj is
uniformly distributed on the unit sphere in the orthogonal complement of ui (see Section 1.2 of (Meckes, 2019)). Thus,
(ui,uj) has the same distribution as (�ui,uj), which implies that, whenever i 6= j

E[f(U)] = 0. (183)

By combining (181)-(183) with a union bound over i, j, we have that

P(max
i 6=j

|(U⇤tU
>)i,j | � u)  2d2 exp

✓
�c1

du2

2k⇤tkop

◆
. (184)

As k⇤tkop is upper bounded by a universal constant, the result (174) readily follows.

For the second part, note that
(Dt)i,i = hui,⇤tuii. (185)

Furthermore, the following chain of equalities hold

E[(Dt)i,i] =
1

n

nX

i=1

E[(Dt)i,i] = E

"
1

n

nX

i=1

(Dt)i,i

#
=

1

n
Tr(Dt), (186)
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where the first equality uses that the ui’s have the same (marginal) distribution, and the last term does not contain an
expectation since Tr(Dt) = Tr(At) =

P
d

i=1(⇤t)i,i, which does not depend on U . Therefore, by using (181) and by
performing a union bound over i 2 [n], the result (175) follows.

For the third part, by performing a union bound over t � 0 in (184), we have that (177) holds with probability at least

2
1X

t=0

exp

✓
�c1

du2

2k⇤tkop

◆
 2

1X

t=0

exp
�
�c2 d u

2 eC⌘t
�

 2
1X

t=0

exp
⇣
�c2 d u

2 eCb⌘tc
⌘

 2

⇠
1

⌘

⇡ 1X

t=0

exp
�
�c2 d u

2 eCt
�

 C
p

d
1X

t=0

exp
�
�c2 d u

2 eCt
�
,

(187)

where the first inequality follows from (176) and the last one from ⌘ = ⇥(1/
p
d). Choosing u = c log dp

d
we can get that

b := exp
�
�c2 d u2

�
< 1 and, hence, the following holds

1X

t=0

exp
�
�c2 d u

2
�eCt



1X

t=0

exp
�
�c2 d u

2
�Ct+1

=
b

1� bC


1

d3
,

where the first inequality uses that et � 1 + t and the second inequality follows from the definition of b. This concludes the
proof of (177). The proof of (178) uses an analogous union bound on t � 0.

Lemma G.3. Let �0 = {�0
1, · · · ,�

0
n
} be a set of numbers in R such that

�0
min

:= min
i2[n]

�0
i
� � > 0, �0

max
:= max

i2[n]
�0
i
 M < +1,

nX

j=1

�0
j
= n.

Let the values {�t

i
}
n

i=1 be updated according to the equation below

�t+1
i

= �t

i
+ ⌘

0

@F (�t

i
)� �t

i
·
1

n

nX

j=1

F (�t

j
)

1

A = G(�t

i
,�t), (188)

where F (·) is defined as per Lemma E.4, ⌘ = ⇥
⇣
1/
p
d
⌘

and �t := {�t
1, · · · ,�

t
n
}. Then, for large enough d, we have

���t+1
i

� 1
��  (1� c� · ⌘)

���t

i
� 1
��

and thus after t iterations ���t

i
� 1
��  max{(M � 1), (1� �)} exp(�c� · ⌘t),

where c, C > 0 are constants.

Proof. We first show by induction that
nP

i=1
�t

i
= n holds for all t. In fact,

nX

i=1

�t+1
i

=
nX

i=1

�i + ⌘

0

@
nX

i=1

F (�t

i
)�

nX
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�t

i
·
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nX
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F (�t

j
)

1

A
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0

@
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F (�t

i
)�
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F (�t

j
)

1

A = n.
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Now, we will show the convergence of �t

min
and �t

max
. To do so, we assume that �t

max
 M and �t

min
� � holds at time

step t (we will verify this later). Define the function g : R ! R as

g(x) := x+ ⌘ (F (x)� x · C) . (189)

By taking the derivative, we have that, for sufficiently large d,

g0(x) = 1 + ⌘ (F 0(x)� C) > 0,

as kF 0
k1  C. This implies that g(·) is a monotone increasing function, which gives that

max
i2[n]

g(�t

i
) = g(�t

max
),

min
i2[n]

g(�t

i
) = g(�t

min
).

(190)

Note that the updates on �t

i
in (188) have a common part for all i 2 [n], i.e.,

������
1

n

nX

j=1

F (�t

j
)

������
 C,

where we used that kFk1  C. In this view, by definition of g and (190), we have

�t+1
max

= G(�t

max
,�t),

�t+1
min

= G(�t

min
,�t),

(191)

which means that the min/max value at the previous step are mapped to the min/max value at the next step of (188). Using

that 1
n

nP
i=1

�t

i
= 1 we can write

�t+1
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= �t

i
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0
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(192)

Recall that we assumed �t
max

 M and �t

min
� �. In this view, we get the following bound

�t

max
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which is justified as follows
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,

where we used that �t
max

� 1 since
P

n

i=1 �
t

i
= n. Hence, using the previous observation about mapping of extremes in

(191) and the observation above, we get from (192) that

�t+1
max

 �t

max
� ⌘ ·

1

n

nX

j=1


(�t
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j
) ·
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�
, (194)
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which leads to

�t+1
max

� 1  �t

max
� 1� ⌘ ·

1

n

nX

j=1


(�t
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� �t
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◆
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(195)

where we used that
nP

j=1
�t

j
= n in the first equality. Hence, using that �t

max
� 1 as

P
n

j=1 �
t

j
= n we have

|�t+1
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� 1| = �t+1
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� 1  |�t
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� 1| · (1� c� · ⌘). (196)

Similarly to the previous bound, we get that
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,

since �t

min
 �t. Hence, using the previous observation about mapping of extremes in (191) and the observation above, we

deduce from (192) that
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(197)

where in the second inequality we used Jensen’s inequality for x2 as
P

n

j=1 �
t

j
= n. Hence, we get the following

|�t+1
min

� 1| = 1� �t+1
min

 |�t

min
� 1| · (1� c� · ⌘), (198)

since �t

min
 1 as

P
n

j=1 �
t

j
= n.

In this view, the assumptions �t
max

 M and �t

min
� � follow from (196) and (198) since the extremes are getting closer

to one after each iteration. Recalling that by the assumption on initialization

max
i

|�0
i
� 1|  max{(M � 1), (1� �)},

the claim follows.

H. Proofs for General Covariance
Lemma H.1. Assume that {�̂i}i2[K], {ŝi}i2[K] minimize

�

⇣P
K

i=1 Di�i
⌘2

⇣
g(1) · n+

P
K

i=1
�2
i
si

⌘ . (199)

Then, for any i < j, we must have ŝi = min{ŝi + ŝj , ki}.
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Proof of Lemma H.1. Since the {�̂i}i2[K], {ŝi}i2[K] are optimal, if we fix two indices i < j the corresponding �̂i, �̂j , ŝi, ŝj
are optimal among all �i, �j , si, sj satisfying

(
0 < �i + �j = � := �̂i + �̂j  n,

0 < si + sj = s := ŝi + ŝj  min{n, ki + kj}.
(200)

Thus, we proceed by analysing the solution for two fixed indices under the constraints (200) (keeping all other �̂l, ŝl for
l /2 {i, j} fixed). Note that, for each fixed (�i, �j) satisfying the constraints (200), the following objective

�2
i

si
+

�2
j

sj
! min

si,sj

s.t. si  ki, sj  kj , si + sj = s

(201)

is equivalent to finding optimal ranks for (199). Importantly, in (201) we consider continuous (si, sj). This relaxation has
the same minimum, since we will show that the optimal si, sj have integer values. We may also assume that �j > 0 as
otherwise clearly si = min{s, ki} is optimal.

Since (201) is strictly convex (on the domain given by the constraints), we can find its unique minimizer by finding a solution
to the KKT conditions:

�
�2
i

s2
i

+ (�+ µi) = 0, �
�2
j

s2
j

+ (�+ µj) = 0, µi, µj � 0, µi(si � ki) = 0, µj(sj � kj) = 0, s = si + sj .

If si = ki or sj = 0, then the claim is readily obtained. We will now prove that, if this is not the case, then we can find new
esi, esj , e�i, e�j which achieve a better value.

We first show that for si < ki, 0 < sj < kj

�2
i

si
+

�2
j

sj
= �i

�

s
+ �j

�

s
=

�2

s
. (202)

Note that, in this case, µi = µj = 0, so the first two KKT conditions imply

�i
si

=
p

� =
�j
sj

.

Thus, we have
�i
si

=
�j
sj

=
�i + �j
si + sj

=
�

s
, (203)

from which (202) is immediate.

For the case sj = kj and si < ki, we have that µj � µi = 0, hence

�i
si

=
p

�+ µi 

p
�+ µj =

�j
sj

.

From the previous case, we know that without the constraints on ki, kj the optimal value in (201) is �
2

s
. Thus,

�2
i

si
+

�2
j

sj
�

�2

s
.

Now, for ✏ > 0, define esi = si + ✏, esj = sj � ✏. Note that, as si < ki and sj > 0, we can choose ✏ small enough such that
0 < esi < ki, 0 < esj < kj . At this point, let us simply choose e�i, e�j such that

e�i
esi

=
e�j
esj
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which as in (202), (203) implies that
e�2
i

esi
+
e�2
j

esj
=

�2

s


�2
i

si
+

�2
j

sj
. (204)

We also have e�i > �i, as otherwise
e�i
esi

<
�i
si


�j
sj

<
e�j
esj

would be a contradiction. This gives that

Di�i +Dj�j < Die�i +Dje�j ,

which implies that our new choice achieves a lower value for (199), thus giving the desired contradiction.

Lemma H.2. Assume that f, fi are differentiable strictly convex functions on R such that

f 0
i
(0) < f 0

j
(0) < 0, i < j, lim

mi!+1
f 0
i
(mi) = +1, lim

mi!�1
f 0
i
(mi) = �1, (205)

and

f(0) = f 0(0) = 0, lim
m!+1

f 0(m) = +1. (206)

Then, the objective given by

min
mi�0

f (m) +
KX

i=1

fi(mi), m =
KX

i

mi (207)

has a unique minimizer. It is uniquely characterised by being of the form (m1, . . . ,mM , 0, . . . , 0) and satisfying

m =
MX

i=1

⇣
(�f 0

i
)
�1

� f 0
⌘
(m), mi =

⇣
(�f 0

i
)
�1

� f 0
⌘
(m) � 0, f 0(m) + f 0

i
(mi) � 0, i 2 [M ]. (208)

Furthermore, it can be obtained via binary search by finding the largest index M , such that the corresponding mi are all

strictly positive.

While the assumptions of this theorem might seem technical, most of them can be relaxed. However, we note that all such
assumptions are fulfilled by the setting being studied and relaxing them would come at the cost of the readability of the
proof of Lemma H.2.

Proof of Lemma H.2. We start by showing that (207) has a unique minimizer. Recall that f and fi are strictly convex
functions, and, hence, their derivatives f 0 and f 0

i
are increasing. From (206), we also obtain that limm!+1 f 0(m) = +1.

By monotonicity, we have f 0
i
(mi) � f 0

i
(0). Therefore,

lim
m!+1

f 0(m) +
KX

i=1

f 0
i
(mi) = +1,

and thus

lim
m!+1

f(m) +
KX

i=1

fi(mi) = +1.

As a consequence, the objective achieves its infimum. Therefore, as f(m) +
P

K

i=1 fi(mi) is strictly convex, the minimum
is unique.

Notice that Slater’s condition is satisfied, since the feasible set of (207) has an interior point. Hence, {mi}
K

i=1 is a unique
minimizer of (207) if and only if it satisfies the following KKT conditions (for the “if and only if” statement, see for instance
page 244 in Boyd et al. (2004)):

1. Stationary condition: f 0(m) + f 0
i
(mi)� �i = 0.
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2. Primal feasibility: mi � 0.

3. Complementary slackness: �imi = 0.

4. Dual feasibility: �i � 0.

In particular, the uniqueness of the minimizer implies that the KKT conditions have a unique solution. Thus, we only need
to show that the mi found by this procedure satisfy the above equations.

We now show that the active set A := {i : mi > 0} for the optimal mi is monotone, meaning that A = [M ] for some
M  K. We prove the statement by contradiction. Assume that there exists mi = 0 and mj > 0 where i < j. Recall that
f 0
j

is strictly increasing, which by the ordering condition (205) implies that

f 0
i
(0) + f 0

 
KX

`=1

m`

!
< f 0

j
(mj) + f 0

 
KX

`=1

m`

!
.

Hence, taking some sufficiently small mass from mj and redistributing it in mi will decrease the objective value in (207),
which concludes the proof.

Fix M  K. We now show that the solution of the following system of equations

f 0(m) + f 0
i
(mi) = 0, 8i  M (209)

exists and unique. Note that this system comes from the 1. and 3. KKT conditions.

As f 0
i

is strictly monotone, its inverse exists and, hence, from (209) we get

mi = (�f 0
i
)�1(f 0(m)), (210)

which gives

m =
MX

i=1

(�f 0
i
)�1(f 0(m)). (211)

Let us argue the existence and uniqueness of the solution of equation (211) for a fixed M . Recall that f 0
i

is increasing and,
thus, �f 0

i
is decreasing. The inverse of a decreasing function is decreasing, hence (�f 0

i
)�1 is decreasing. Recalling that f 0 is

increasing and that the composition of an increasing and a decreasing function is decreasing, it follows that (�f 0
i
)�1(f 0(m))

is decreasing. By assumption f 0
i
(0) < 0 and f 0

i
is increasing such that limmi!+1 fi(mi) = +1, therefore the value

(�f 0
i
)�1(0) is well-defined and

(�f 0
i
)�1(0) > 0.

Thus, we have that

gM (m) =
MX

i=1

(�f 0
i
)�1(f 0(m))�m

is a strictly decreasing function with
lim

m!+1
gM (m) = �1, gM (0) > 0.

In this view, the solution of (211) exists and unique.

Next, we elaborate on why (210) is well-defined given the solution of (211). Note that, by our assumptions,

lim
mi!+1

f 0
i
(mi) = +1, lim

mi!�1
f 0
i
(mi) = �1,

hence, the same holds for (�f 0
i
)�1, and, thus, due to continuity the quantity

(�f 0
i
)�1(x)

is well-defined for any x 2 R. Given this, we readily have that the solution of the system (209) exists and unique.
Furthermore, this solution can be found using (211) and (210). Note also that (211) and (210) agree with (208).
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We now show that the following procedure finds the optimal active set A⇤ = [M⇤]. Let mi(M), i  M be a solution of
(209) for fixed value of M  K, and define m(M) :=

P
M

i=1 mi(M). Using (211) and (210) find the smallest M such that
the corresponding mM (M) is non-negative, then M⇤ = M � 1 if M � 1, otherwise, m = mi = 0, 8i 2 [K]. If no such
M was found, M⇤ = [K]. To show that the described procedure in fact gives the optimal active set A⇤ = [M⇤], we need to
prove that

1. If M < M⇤, then mi(M) � 0.

2. If M > M⇤, then mM (M)  0.

Clearly, these two conditions imply that the active set of the minimizer is given by [M⇤], and it can be found via binary
search.

We start by proving the first property. Note that, by the KKT conditions on the optimizer M⇤, we have that

mi(M
⇤) � 0.

First assume that m(M) > m(M⇤). By monotonicity, it follows from (210) that

mi(M) < mi(M
⇤),

but

m(M⇤) =
MX

i=1

mi(M
⇤) +

M
⇤X

i=M+1

mi(M
⇤) �

MX

i=1

mi(M
⇤) >

MX

i=1

mi(M) = m(M),

where we have used that mi(M⇤) � 0, which is a contradiction. Thus, we have that m(M)  m(M⇤). Again, by (210)
and monotonicity,

mi(M) � mi(M
⇤),

and, hence, all mi(M) are non-negative.

We finally argue the second property. We start by proving a weaker statement, i.e., there exists i � M⇤ + 1 such that
mi(M) < 0. Assume that m(M) < m(M⇤). By (210) and monotonicity

mi(M) > mi(M
⇤),

hence, the following holds:

m(M) =
MX

i=1

mi(M) =
M

⇤X

i=1

mi(M) +
MX

i=M⇤+1

mi(M) >
M

⇤X

i=1

mi(M
⇤) +

MX

i=M⇤+1

mi(M) = m(M⇤) +
MX

i=M⇤+1

mi(M),

which since m(M) < m(M⇤) implies that
P

M

i=M⇤+1 mi(M) is a negative quantity. Thus, there exists i � M⇤ + 1 such
that mi(M) < 0. Assume now that m(M) � m(M⇤). Recall that only the minimizer satisfies the KKT conditions, thus

f 0(m(M⇤)) + f 0
M
(0) � 0,

which, as f 0 is increasing, implies that
f 0(m(M)) + f 0

M
(0) � 0.

By construction of mM (M), we know that

f 0(m(M)) + f 0
M
(mM (M)) = 0,

thus, by monotonicity of f 0
M

we have mM (M)  0.

It remains to show that it suffices to check mM (M)  0 and not an arbitrary mi(M) for i � M⇤ + 1. Assume that
mi(M)  0 for some i  M . Recall that by assumption

f 0
i
(0) < f 0

M
(0) < 0,
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and by construction we have
f 0
i
(mi(M)) = f 0

M
(mM (M)) = �f 0(m(M)).

Since f 0
i

is a decreasing function, we get that �f 0(m(M)) < f 0
i
(0). Recalling that f 0

i
(0) < f 0

M
(0), we get �f 0(m(M)) <

f 0
M
(0) and, hence, by monotonicity of f 0

M
we obtain that mM (M)  0, which concludes the proof.

Lemma H.3. The minimizer of (20) can be computed in log(K) steps via binary search by finding the smallest index M⇤

such that

g(1)

c21n

M
⇤+1X

j=1

sj(DM⇤+1 �Dj) +DM⇤+1  0. (212)

Then, the optimal active set has the form A = [M⇤] and corresponding non-zero �i , for i  M⇤
, are computed as

�i =
si
c1

·

0

@
g(1)
c21n

P
j2A sj�j +D1

g(1)
c21n

P
j2A sj + 1

��i

1

A , (213)

where �j = D1 �Dj .

Proof of Lemma H.3. By rescaling g(x) as g(x)
c21

and �i as c1�i, we may without loss of generality assume that c1 = 1.
From the results of Lemma H.2, by a direct computation, we get that for A = [M ]

�j(M) = mj(M) = sj ·

 
g(1)
n

P
M

i=1 si�i +D1

g(1)
n

P
M

i=1 si + 1
��j

!
, 8j  M,

thus, applying the described binary search procedure to find M⇤ such that M⇤ + 1 = min (argminM 1[mM (M) > 0])
finishes the proof.

We now elaborate on the computations. For the compactness of the notation, we omit the dependence on active set in mi’s
and m. We apply Lemma H.2 with

f(x) =
g(1)

n
· x2, fi(x) =

x2

si
� 2Dix,

which gives

f 0(x) =
2g(1)

n
· x, f 0

i
(x) =

2x

si
� 2Di.

Hence, we obtain that

(�f 0
i
)�1(x) =

si · (2Di � x)

2
,

and, thus, by (211) we obtain

m =
MX

i=1

(�f 0
i
)�1(f 0(m)) = �f 0(m) ·

MX

i=1

si
2
+

MX

i=1

Disi = �
g(1)

n
·m ·

MX

i=1

si +
MX

i=1

Disi.

In this view, we get

m =

P
M

i=1 Disi
g(1)
n

P
M

i=1 si + 1
,

and, hence, since by (210) the following holds

mj = (�f 0
j
)�1(f 0(m)),
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we get

mj = sj ·
2Dj � f 0(m)

2
= sj ·

2Dj

⇣
g(1)
n

P
M

i=1 si + 1
⌘
�

2g(1)
n

·
P

M

i=1 Disi

2 ·
⇣

g(1)
n

P
M

i=1 si + 1
⌘

= sj ·
g(1)
n

P
M

i=1 Djsi +Dj �
g(1)
n

P
M

i=1 Disi +
g(1)
n

P
M

i=1 D1si �
g(1)
n

P
M

i=1 D1si �D1 +D1

g(1)
n

P
M

i=1 si + 1
=

= sj ·

 
g(1)
n

P
M

i=1 si�i +D1

g(1)
n

P
M

i=1 si + 1
��j

!
,

where �j = D1 �Dj . It is easy to verify that the condition

g(1)

n

M
⇤+1X

j=1

sj(DM⇤+1 �Dj) +DM⇤+1  0

described in the statement of the lemma is equivalent to �M⇤+1(M⇤ + 1) = mM⇤+1(M⇤ + 1)  0, which concludes the
proof.

Proof of Theorem 5.2. We start by showing how the lower bound reduces to the objective in (20). Consider the following
block decomposition of B in accordance with D as in (25)

B = [�1B1| · · · |�KBK ],

where Bj 2 R
n⇥kj with k(Bj)i,:k2 = 1 and {�j}

K

j=1 are diagonal matrices.

Since we require kBi,:k2 = 1, the �i must satisfy

KX

j=1

�2
j
= I. (214)

Thus, up to a multiplicative factor 1/d and an additive term Tr
⇥
D2⇤, the objective (19) can be written as:

�2 (Tr [Mf(M)])� 2c1� ·

KX

i=1

Di · Tr
⇥
�2
i

⇤
, (215)

where M =
P

K

i=1 M i :=
P

K

i=1 �iBiB
>
i
�i. Recall that f(x) = c21x + g(x), where g is the sum of odd monomials.

Hence, we will be able to lower bound the terms in the first trace of (215) in a similar fashion to Proposition 4.4. Note that

Tr
⇥
M2

i

⇤
= h1,M�2

i
1i,

so applying Theorem A in Khare (2021) gives that

(�iBiB
>
i
�i)

�2
⌫

1

si
·Diag(�2

i
)Diag(�2

i
)>,

where si = rank(BiB
>
i
). Thus, we have the bound

Tr
⇥
M2

i

⇤
�

1

si

�
Tr
⇥
�2
i

⇤�2

Since xg(x) � 0, we can lower bound the rest of the terms with the identity, i.e.,

Tr [Mg(M)] = h1,M � g(M)1i � g(1) · n
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as Diag(M) = I . Consequently, neglecting the cross-terms Tr [M iM j ] (as the trace of the product of PSD matrices is
non-negative) we arrive at

Tr [Mf(M)] � g(1) · n+ c21 ·
KX

i=1

1

si

�
Tr
⇥
�2
i

⇤�2
.

Defining �i := Tr
⇥
�2
i

⇤
� 0, we arrive at the following lower bound on (215):

�2

 
g(1) · n+

KX

i=1

�2
i

si

!
� 2� ·

KX

i=1

Di�i, (216)

where, with an abuse of notation, we rescale g(1) := g(1)/c21 and � := c1�. Now, by choosing �i := ��i and using thatP
K

i=1 �i = n due to (214), the objective (216) is seen to be equivalent to (20). This shows that (19) � LB(D). We now
give a brief outline of how one can obtain the optimal si and �i for (20).

For finding the optimal si, it is more natural to still consider (216). Due to the block form (25), the si have to satisfy the
constraints in (21). Note that (216) evaluated at the optimal � is equal to

(216) � �

⇣P
K

i=1 Di�i
⌘2

⇣
g(1) · n+

P
K

i=1
�2
i
si

⌘ . (217)

The optimal si for this objective are water-filled, i.e.,
8
><

>:

s = [n, 0, · · · , 0], n  k1,

s = [k1, k2, · · · , kK ], d  n,

s = [k1, · · · , kid(n)�1, res(n), 0, · · · , 0] otherwise,
(218)

where s = [s1, · · · , sk] and id(n) denotes the first position at which

min{n, d}�

id(n)X

i=1

ki < 0,

and

res(n) = min{n, d}�

id(n)�1X

i=1

ki.

This follows directly from Lemma H.1. It only remains to show that the optimal �i can be obtained via (24), which is done
in Lemma H.3. This concludes the proof.

Proof of Proposition 5.3. Except for terms of the form Tr
h
BiB

>
i
BjB

>
j

i
, all the other terms can be estimated as in the

proof of Proposition 4.4. The only technical difference is that all the constants now depend on the ratios ki
n

.

We will show that, with probability at least 1� c exp (�cd✏), for all i 6= j,

Tr
h
BiB

>
i
BjB

>
j

i
 n

1
2+✏. (219)

Thus, by a simple union bound, we have that, with probability at least 1� c

d2 , this bound holds jointly for all pairs Bi,Bj .
It follows as in the proof of Lemma C.3 that we can write

BiB
>
i
= P iUDiU

>P i,

where by abuse of notation we pushed the factor n

ki
in Di (which will only affect the constants c, C). Here, P i is a diagonal

matrix such that, for any ✏ > 0, with probability at least 1� c exp (�cd✏), we have that

kP i � Ik
op

 n� 1
2+✏.
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To see this, first observe that ⇥ : (Rn⇥n)4 7! R given by ⇥(X1,X2,X3,X4) = Tr
h
X1UDiU

>X2X3UDjU
>X4

i

is differentiable (as it is the composition of the trace function with 4-linear form). Since by construction

Tr
h
UDiU

>UDjU
>
i
= Tr [0] = 0,

this implies that, with probability at least 1� c

d2 ,

0  Tr
h
BiB

>
i
BjB

>
j

i

= Tr
h
P iUDiU

>P iP jUDjU
>P j

i

= Tr
h
P iUDiU

>P iP jUDjU
>P j

i
� Tr

h
UDiU

>UDjU
>
i

 Cnn� 1
2+✏,

where in the last step we used that the derivative of the trace function is bounded by n · k·k
op

. Thus, (219) holds.

By construction, the sum of all the cross terms is of the form
X

i 6=j

Tr [M iM j ] ,

where M i = �iBiB
>
i
�i, �2

i
= �i

n
I and

P
K

i=1 �i = n. We have
������

X

i 6=j

Tr [M iM j ]

������
=

������

X

i 6=j

�i�j
n2

Tr
h
BiB

>
i
BjB

>
j

i
������



X

i 6=j

�i�j
n2

���Tr
h
BiB

>
i
BjB

>
j

i���

 C
X

i 6=j

�i�j
n2

n
1
2+✏

 Cn
1
2+✏,

where in the third step we used a union bound on (219) and in the last step we used
P

K

i=1
�i

n
= 1.

I. Details of Experiments and Additional Numerical Results
We first describe the training details and the whitening procedure that is used to preprocess natural images for MNIST
(Figure 8) and CIFAR-10 (Figures 1, 5 and 7). Next, we give some remarks about the experiments concerning VAMP
(Figure 4) and about the discontinuous behaviour of the derivative of the lower bound highlighted in Figure 6. In addition,
we present additional numerical experiments which cover extra classes of natural images.

Activation function and weight parameterization. Note that the derivative of the sign activation is zero almost everywhere
(except one point, which is the origin). In this view, we cannot use conventional gradient-based algorithms to find the
optimal set of parameters for an autoencoder with the sign activation. We tackle this issue by using a straight-through
estimator (see, for instance, (Yin et al., 2019)) of the sign activation. During the forward pass the activations of the first
layer are computed for �(x) = sign(x), while during the backward pass �(x) = tanh(x/⌧) is used. Here, the temperature
parameter ⌧ > 0 controls how well the differentiable surrogate tanh(x/⌧) approximates sign(x), as

lim
⌧!0

tanh(x/⌧) = sign(x), 8x 2 R \ {0}.

More precisely, the differentiable approximation becomes more accurate for smaller values of ⌧ . However, we also note that
extremely small values of ⌧ might cause numerical issues, since the derivative of the differentiable surrogate diverges at the
origin as ⌧ ! 0. For the numerical experiments, we pick ⌧ 2 [0.01, 0.2], with the exact value depending on the specific
setting.
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Figure 5. Compression (� ⌘ sign) of the CIFAR-10 “dog” class with a two-layer autoencoder. The data is whitened so that ⌃ = I: on
top, an example of a grayscale image; on the bottom, the corresponding whitening. The blue dots are the population risk obtained via
SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 4.2 and Proposition 4.3. Here, the effect of
the number of augmentations used per image is shown. For the left plot each image was augmented 10 times, while for the right plot each
image was augmented 15 times.

Note that the constraint on the encoder weights kBi,:k2 = 1 can be enforced via a simple reparameterization that forces the
rows of B to lie on the unit sphere Sd�1. More precisely, we use the following classical differentiable reparameterization of
B> = [b1, · · · , bn], where bi =

b̂i

kb̂ik
2

, with {b̂i}ni=1 being the trainable parameters. We note that it is not clear a priori

whether we need to impose the constraints directly for the straight-through estimator, since during the forward pass we use
the norm-agnostic sign function.

Augmentation and whitening. For the experiments on natural images, we augment the data of each class 15 times. This is
done to emulate the optimization of the population risk, since the amount of initial data (approximately 5000 samples per
class) leads to a gap between empirical and population risks, especially for high rates. The effect of the data augmentation is
represented in Figure 5 for a whitened CIFAR-10 class. It can be seen that a mild amount of augmentation, i.e., ⇥10 and
⇥15, is already enough for our purposes, and the difference between the two plots is rather small. Notably, this amount
of augmentation brings the dataset to the scale of the original data when all classes are considered (around 50000 training
examples).

The whitening procedure used in the experiments concerning isotropic data is performed as follows: given the centered

augmented data X 2 R
nsamples⇥d, we compute its empirical covariance matrix given by

⌃̂ =
1

nsamples � 1
·

nsamplesX

i=1

Xi,:X
>
i,:,

and then we multiply each input by the inverse square root of it, i.e.,

X̂i,: = ⌃̂
� 1

2Xi,:.

The resulting whitened images are represented in Figures 1, 5 and 8.

In the experiments concerning non-isotropic data (Figures 2 and 9), we center the data with the empirical mean and divide
by a scalar empirical variance computed across all the pixels, which is the standard preprocessing procedure widely used for
computer vision tasks.

VAMP experiments. For the VAMP experiments, we implement the State Evolution (SE) recursion which exactly
characterizes the limiting performance of VAMP as d ! 1, see (Schniter et al., 2016; Rangan et al., 2019) for an overview.
We then plot the fixed point of said SE recursion. A concrete description for VAMP is provided by Algorithm 2 in (Fletcher
et al., 2018), which however covers a more general multi-layer setting.

“Jumps” of the lower bound derivative. The derivative switch described in Figure 6 does not necessarily happen precisely
at the point when the block is filled. A switch may occur at a later point since, even if si > 0, the corresponding optimal �i

may be 0. Intuitively, this phenomenon occurs in cases when it is still better to put more mass in the block where the rank is
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Figure 6. Compression (� ⌘ sign) of a non-isotropic Gaussian source, whose covariance matrix is obtained by taking k = (20, 20, 35, 25)
and (D1, D2, D3, D4) = (2, 1.5, 1, 0.8) for the left plot, and k = (30, 40, 30) and (D1, D2, D3) = (2, 1, 0.7) for the right plot. The
blue crosses (Population Risk Minimizer, PRM) are obtained by optimizing (19) via GD. The green triangles are obtained by training an
autoencoder via SGD on Gaussian samples with the given covariance structure. The red solid line plots the derivative of the population
risk computed using a finite differences scheme. Note that the derivative jumps when the corresponding blocks are getting filled, although
this may not happen in general, see Appendix I. A similar behavior can be observed in the isotropic case at r = 1, as there is only one
block to fill (see Figure 4).

utilized to the fullest (sj = kj). This corresponds to the following condition on the derivatives of the objective (20):

@(20)
@�i

(0) >
@(20)
@�j

(�⇤
j
),

where �⇤
i

stands for the optimal �i and j denotes the first index at which �⇤
j
> 0. This behaviour occurs when the spectrum

D has a large variation in scale, e.g.,
D = [5, 0.02, 0.01].

In this case, the last components will be utilized for n significantly larger than k1 (n = k1 precisely characterizes the point
where the rank of the first block of B, i.e., B1, is the maximum possible). Note that, for this choice of D, the plot of the
derivative analogous to Figure 6 will not indicate such prominent “jumps”. In fact, the contribution of the last components
to the derivative value is less significant in comparison to the analogous quantity evaluated for the top-most eigenvalues.

Additional experimental data. We also provide additional numerical simulations, similar to those presented in the body of
the paper. In particular, we provide more class variations for the natural data experiments (MNIST and CIFAR-10).
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Figure 7. Compression (� ⌘ sign) of the CIFAR-10 “horse” class (left) and “ship” class (right) with a two-layer autoencoder. The data
is whitened so that ⌃ = I: on top, an example of a grayscale image; on the bottom, the corresponding whitening. The blue dots are
the population risk obtained via SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 4.2 and
Proposition 4.3. Here, in both cases the amount of augmentations per image is equal to 15.

Figure 8. Compression (� ⌘ sign) of the MNIST “8” class (left) and “4” class (right) with a two-layer autoencoder. The data is whitened

so that ⌃ = I: on top, an example of a grayscale image; on the bottom, the corresponding whitening. The blue dots are the population
risk obtained via SGD, and they agree well with the solid line corresponding to the lower bounds of Theorem 4.2 and Proposition 4.3.
Here, in both cases the amount of augmentations per image is equal to 10.

Figure 9. Compression (� ⌘ sign) of the CIFAR-10 “airplane” class (left) and “deer” class (right) with a two-layer autoencoder. The data
is not whitened (⌃ 6= I). The blue dots are the SGD population risk, and they are close to the lower bound of Theorem 5.2. Here, in both
cases the amount of augmentations per image is equal to 15.
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