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Abstract
Learning to predict missing links is important for
many graph-based applications. Existing methods
were designed to learn the association between
observed graph structure and existence of link
between a pair of nodes. However, the causal re-
lationship between the two variables was largely
ignored for learning to predict links on a graph.
In this work, we visit this factor by asking a coun-
terfactual question: “would the link still exist if

the graph structure became different from obser-

vation?” Its answer, counterfactual links, will be
able to augment the graph data for representation
learning. To create these links, we employ causal
models that consider the information (i.e., learned
representations) of node pairs as context, global
graph structural properties as treatment, and link
existence as outcome. We propose a novel data
augmentation-based link prediction method that
creates counterfactual links and learns representa-
tions from both the observed and counterfactual
links. Experiments on benchmark data show that
our graph learning method achieves state-of-the-
art performance on the task of link prediction.

1. Introduction
Link prediction seeks to predict the likelihood of edge exis-
tence between node pairs based on observed graph. Given
the omnipresence of graph-structured data, link predic-
tion has copious applications, such as movie recommen-
dation (Bennett et al., 2007), chemical interaction predic-
tion (Stanfield et al., 2017), and knowledge graph comple-
tion (Kazemi & Poole, 2018). Graph machine learning
methods have been widely applied to solve this problem.
Their standard scheme is to first learn representation vec-
tors of nodes and then learn the association between the
representations of a pair of nodes and the existence of link
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between them. For example, graph neural networks (GNNs)
use neighborhood aggregation to create the representation
vectors: the representation vector of a node is computed
by recursively aggregating and transforming representation
vectors of its neighboring nodes (Kipf & Welling, 2016a;
Hamilton et al., 2017; Wu et al., 2020). Then the vectors
are fed into a binary classification model to learn the associ-

ation. GNN methods have shown predominance in the task
of link prediction (Zhang et al., 2020).

Unfortunately, the causal relationship between graph struc-
ture and link existence was largely ignored in previous work.
Existing methods that learn from association are not able to
capture essential factors to accurately predict missing links
in test data. Take a specific social network as an example.
Suppose Alice and Adam live in the same neighborhood
and they are close friends. The association between neigh-
borhood belonging and friendship could be too strong to
discover the essential factors of friendship such as common
interests or family relationships. Such factors could also be
the cause of them living in the same neighborhood. So, our
idea is to ask a counterfactual question: “would Alice and

Adam still be close friends if they were not living in the same

neighborhood?” If a graph learning model can learn the
causal relationship by answering this counterfactual ques-
tion, it will improve the accuracy of link prediction with
such knowledge. Generally, the questions can be described
as “would the link exist or not if the graph structure became

different from observation?”

As known to many, counterfactual questions are the key
component of causal inference and have been well defined
in literature. A counterfactual question is usually framed
with three factors: context (as a data point), manipulation
(e.g., treatment, intervention, action, strategy), and outcome
(Van der Laan & Petersen, 2007; Johansson et al., 2016).
(To simplify the language, we use “treatment” to refer to
the manipulation in this paper, as readers might be familiar
more with the word “treatment.”) Given certain data context,
it asks what the outcome would have been if the treatment
had not been the observed value. In the scenario of link
prediction, we consider the information of a pair of nodes
as context, graph structural properties as treatment, and link
existence as outcome. Recall the social network example.
The context is the representations of Alice and Adam that
are learned from their personal attributes and relationships
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(b) Train a GNN-based link predictor to predict factual and counterfactual
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Figure 1. The proposed CFLP learns the causal relationship between the observed graph structure (e.g., neighborhood similarity,
considered as treatment variable) and link existence (considered as outcome). In this example, the link predictor would be trained to
estimate the individual treatment effect (ITE) as 1� 1 = 0 so it looks for factors other than neighborhood to predict the factual link.

with others on the social network. The treatment is whether
live in the same neighborhood, which can be identified by
community detection. And the outcome is their friendship.

In this work, we propose a novel concept of “counterfactual
link” that answers the counterfactual question and (based on
this concept) a novel link prediction method (CFLP) that
uses the counterfactual links as augmented data for graph
representation learning. Figure 1 illustrates this two-step
method. Suppose the treatment variable is defined as one
type of global graph structure, e.g., the neighborhood as-
signment discovered by spectral clustering or community
detection algorithms. We are wondering how likely the
neighborhood distribution makes a difference on the link
(non-)existence for each pair of nodes. So, given a pair of
nodes (like Alice and Adam) and the treatment value on this
pair (in the same neighborhood), we find a pair of nodes
(like Helen and Bob) that satisfies two conditions: (1) it
has a different treatment (in different neighborhoods) and
(2) it is the most similar pair with the given pair of nodes.
We name these matched pairs of nodes as counterfactual
links. Note that the outcome of the counterfactual links
can be either 1 or 0, depending on whether there exists an
edge between the matched pair of nodes. The counterfactual
link provides an unobservable outcome to the given pair
of nodes under a counterfactual condition. The process of
creating counterfactual links for all positive and negative
training examples can be viewed as a graph data augmen-
tation method, as it enriches the training set. Then, CFLP
trains a link predictor (which is GNN-based) to learn the
representation vectors of nodes to predict both the observed
factual links and counterfactual links. In this Alice-Adam
example, the link predictor is trained to estimate the individ-
ual treatment effect (ITE) of neighborhood assignment as
1� 1 = 0, where ITE is a metric for the effect of treatment
on the outcome and zero indicates the given treatment has
no effect on the outcome. So, the learner will try to discover

the essential factors on the friendship between Alice and
Adam. CFLP learns from the counterfactual links to find
these factors for graph learning models to accurately predict
missing links.

Contributions. Our main contributions can be summarized
as follows. (1) This is the first work that aims at improving
link prediction by causal inference, specifically, generat-
ing counterfactual links to answer counterfactual questions
about link existence. (2) This work introduces CFLP that
trains GNN-based link predictors to predict both factual
and counterfactual links. It leverages causal relationship be-
tween global graph structure and link existence to enhance
link prediction. (3) CFLP outperforms competitive base-
lines on several benchmark datasets. We analyze the impact
of counterfactual links as well as the choice of treatment
variable. This work sheds insights for improving graph
machine learning with causal analysis, which has not been
extensively studied yet, while the other direction (machine
learning for causal inference) has been studied for long.
Source code of the proposed CFLP method is publicly avail-
able at https://github.com/DM2-ND/CFLP.

2. Problem Definition
Notations Let G = (V, E) be an undirected graph of N
nodes, where V = {v1, v2, . . . , vN} is the set of nodes
and E ✓ V ⇥ V is the set of observed links. We denote
the adjacency matrix as A 2 {0, 1}N⇥N , where Ai,j = 1
indicates nodes vi and vj are connected and vice versa. We
denote the node feature matrix as X 2 RN⇥F , where F
is the number of node features and xi indicates the feature
vector of node vi (the i-th row of X).

In this work, we follow the commonly accepted prob-
lem definition of link prediction on graph data (Zhang &
Chen, 2018; Zhang et al., 2020; Cai et al., 2021): Given

https://github.com/DM2-ND/CFLP
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!!

""!

!"

#"!
!"

!!

""! #"!

!"

!!

#"!""!

$"

$!

Graph 
Representation 
Learning

?

?

(b) Graph learning with
causal model (the proposed
idea): leverage the estimated
ITE(Ai,j |Ti,j) to improve the
learning of zi and zj .

Figure 2. Our proposed work improves graph representation learn-
ing by leveraging causal model.

an observed graph G (with validation and testing links
masked off), predict the link existence between every pair of
nodes. More specifically, for the GNN-based link prediction
methods, they learn low-dimensional node representations
Z 2 RN⇥H , where H is the dimensional size of latent space
such that H ⌧ N , and then use Z for the prediction of link
existence between every node pair.

3. Proposed Method
3.1. Improving Graph Learning with Causal Model

Leveraging Causal Model(s) Counterfactual causal infer-
ence aims to find out the causal relationship between treat-
ment and outcome by asking the counterfactual questions
such as “would the outcome be different if the treatment was
different?” (Morgan & Winship, 2015). Figure 2(a) is a typi-
cal example, in which we denote the context (confounder) as
Z, treatment as T , and the outcome as Y . Given the context,
treatments, and their corresponding outcomes, counterfac-
tual inference methods aim to find the effect of treatment on
the outcome, which is usually measured by individual treat-

ment effect (ITE) and its expectation averaged treatment

effect (ATE) (Van der Laan & Petersen, 2007; Weiss et al.,
2015). For a binary treatment variable T = {0, 1}, denoting
g(z, T ) as the outcome of z given the treatment T , we have
ITE(z) = g(z, 1)� g(z, 0), and ATE = Ez⇠Z ITE(z).

Ideally, we need all potential outcomes of the contexts under
all kinds of treatments to study the causal relationships (Mor-
gan & Winship, 2015). However, in reality, the fact that we
can only observe the outcome under one particular treatment
prevents the ITE from being known (Johansson et al., 2016).
Traditional causal inference methods use statistical learning
approaches such as Neyman–Rubin causal model (BCM)
and propensity score matching (PSM) to predict the value
of ATE (Rubin, 1974; 2005).

In this work, we look at link prediction with graph learn-
ing, which is to learn effective node representations Z for

predicting link existence in test data. In Figure 2(b), zi and
zj are representations of nodes vi and vj , and the outcome
Ai,j is the link existence between vi and vj . Here, the ob-
jective is different from classic causal inference. In graph
learning, we want to improve the learning of zi and zj with
the estimation on the effect of treatment Ti,j on the outcome
Ai,j . Specifically, for each pair of nodes (vi, vj), its ITE
can be estimated by

ITE(vi,vj) = g((zi, zj), 1)� g((zi, zj), 0) (1)

and we use this information to improve the learning of Z.

We denote by A the observed adjacency matrix as the fac-

tual outcomes, and denote by A
CF the unobserved matrix

of the counterfactual links when the treatment is different as
the counterfactual outcomes. We denote T 2 {0, 1}N⇥N as
the binary factual treatment matrix, where Ti,j indicates the
treatment of the node pair (vi, vj). We denote T

CF as the
counterfactual treatment matrix where TCF

i,j
= 1�Ti,j . We

are interested in (a) estimating the counterfactual outcomes
A

CF and (b) learning from both factual and counterfactual
outcomes A and A

CF (as observed and augmented data) to
enhance link prediction.

Treatment Variable Previous works on GNN-based link
prediction (Zhang & Chen, 2018; Zhang et al., 2020) have
shown that the message passing-based GNNs are capable
to capture the structural information (e.g., Katz index) for
link prediction. Nevertheless, as illustrated by the Alice-
Adam example in Section 1, the association between such
structural information and actual link existence may be too
strong for models to discover more essential factors than it,
hence resulting in sub-optimal link prediction performance.
Therefore, in this work, we use the global structural role of
each node pair as its treatment. It’s worth mentioning that
the causal model shown in Figure 2(b) does not limit the
treatment to be structural roles, i.e., Ti,j can be any binary
property of node pair (vi, vj). Without the loss of generality,
we use Louvain (Blondel et al., 2008), an unsupervised ap-
proach that has been widely used for community detection,
as an example. Louvain discovers community structure of a
graph and assigns each node to one community. Then we
can define the binary treatment variable as whether these
two nodes in the pair belong to the same community. Let
c : V ! N be any graph mining/clustering method that
outputs the index of community/cluster/neighborhood that
each node belongs to. The treatment matrix T is defined
as Ti,j = 1 if c(vi) = c(vj), and Ti,j = 0 otherwise. For
the choice of c, we suggest methods that group nodes based
on global graph structural information, including but not
limited to Louvain (Blondel et al., 2008), K-core (Bader &
Hogue, 2003), and spectral clustering (Ng et al., 2001).



3.2. Counterfactual Links
To implement the solution based on above idea, we propose
counterfactual links. As aforementioned, for each node pair,
the observed data contains only the factual treatment and
outcome, meaning that the link existence for the given node
pair with an opposite treatment is unknown. Therefore, we
use the outcome from the nearest observed context as a sub-
stitute. This type of matching on covariates is widely used
to estimate treatment effects from observational data (Jo-
hansson et al., 2016; Alaa & Van Der Schaar, 2019). That
is, we want to find the nearest neighbor with the opposite
treatment for each observed node pairs and use the near-
est neighbor’s outcome as a counterfactual link. Formally,
8(vi, vj) 2 V ⇥ V , its counterfactual link (va, vb) is

(va, vb) = argmin
va,vb2V

{h((vi, vj), (va, vb)) | Ta,b = 1�Ti,j},

(2)
where h(·, ·) is a metric of measuring the distance between a
pair of node pairs (a pair of contexts). Nevertheless, finding
the nearest neighbors by computing the distance between
all pairs of node pairs is extremely inefficient and infeasible
in application, which takes O(N4) comparisons (as there
are totally O(N2) node pairs). Hence we implement Eq. (2)
using node-level embeddings. Specifically, considering that
we want to find the nearest node pair based on both the raw
node features and structural features, we take the state-of-
the-art unsupervised graph representation learning method
MVGRL (Hassani & Khasahmadi, 2020) to learn the node
embeddings X̃ 2 RN⇥F̃ from the observed graph (with
validation and testing links masked off). We use X̃ to find
the nearest neighbors of node pairs. Therefore, 8(vi, vj) 2
V ⇥ V , we define its counterfactual link (va, vb) as

(va, vb) = argmin
va,vb2V

{d(x̃i, x̃a) + d(x̃j , x̃b) | (3)

Ta,b = 1� Ti,j , d(x̃i, x̃a) + d(x̃j , x̃b) < 2�},

where d(·, ·) is specified as the Euclidean distance on the
embedding space of X̃, and � is a hyperparameter that de-
fines the maximum distance that two nodes are considered
as similar. When no node pair satisfies the above equation
(i.e., there does not exist any node pair with opposite treat-
ment that is close enough to the target node pair), we do
not assign any nearest neighbor for the given node pair to
ensure all the neighbors are similar enough (as substitutes)
in the feature space. Thus, the counterfactual treatment ma-
trix T

CF and the counterfactual adjacency matrix A
CF are

defined as

TCF

i,j
, ACF

i,j
=

8
><

>:

1� Ti,j , Aa,b , if 9 (va, vb) 2 V ⇥ V
satisfies Eq. (3);

Ti,j , Ai,j , otherwise.
(4)

It is worth noting that the node embeddings X̃ and the
nearest neighbors are computed only once and do not change

during the learning process. X̃ is only used for finding the
nearest neighbors.

Learning from Counterfactual Distributions Let PF

be the factual distribution of the observed contexts and
treatments, and PCF be the counterfactual distribution
that is composed of the observed contexts and opposite
treatments. We define the empirical factual distribution
P̂F ⇠ PF as P̂F = {(vi, vj , Ti,j)}Ni,j=1, and define
the empirical counterfactual distribution P̂CF ⇠ PCF as
P̂CF = {(vi, vj , TCF

i,j
)}N

i,j=1. Unlike traditional link pre-
diction methods that take only P̂F as input and use the
observed outcomes A as the training target, we take ad-
vantage of the counterfactual distribution by using it as the
augmented training data. That is, we use P̂CF as a comple-
mentary input and use the counterfactual outcomes ACF as
the training target for the counterfactual data samples.

3.3. Learning from Counterfactual Links

In this subsection, we present the design of our model as
well as the training method. The input of the model in CFLP
includes (1) the observed graph data A and raw feature
matrix X, (2) the factual treatments TF and counterfactual
treatments TCF , and (3) the counterfactual links data ACF .
The output contains link prediction logits in bA and bACF

for the factual and counterfactual adjacency matrices A and
A

CF , respectively.

Graph Learning Model The model consist of two train-
able components: a graph encoder f and a link decoder g.
The graph encoder generates representation vectors of nodes
from graph data. And the link decoder projects the represen-
tation vectors of node pairs into the link prediction logits.
The choice of the graph encoder f can be any end-to-end
GNN model. Without the loss of generality, here we use the
commonly used graph convolutional network (GCN) (Kipf
& Welling, 2016a). Each layer of GCN is defined as

H
(l) = f (l)(A,H(l�1);W(l)) = �(D̃� 1

2 ÃD̃
� 1

2H
(l�1)

W
(l)),

(5)
where l is the layer index, Ã = A + I is the adjacency
matrix with added self-loops, D̃ is the diagonal degree
matrix D̃ii =

P
j
Ãij , H(0) = X, W(l) is the learnable

weight matrix at the l-th layer, and �(·) denotes the nonlin-
ear activation ReLU. We denote Z = f(A,X) 2 RN⇥H

as the output from the encoder’s last layer, i.e., the H-
dimensional representation vectors of nodes. Following pre-
vious works (Zhang & Chen, 2018; Zhang et al., 2020), we
compute the representation of a node pair as the Hadamard
product of the vectors of the two nodes. That is, the repre-
sentation for the node pair (vi, vj) is zi � zj 2 RH , where
� stands for the Hadamard product.

For the link decoder that predicts whether a link exists be-



tween a pair of nodes, we opt for simplicity and adopt
a simple decoder based on multi-layer perceptron (MLP),
given the representations of node pairs and their treatments.
That is, the decoder g is defined as

bA = g(Z,T), s.t. bAi,j = MLP([zi � zj , Ti,j ]), (6)
bACF = g(Z,TCF ), s.t. bACF

i,j
= MLP([zi � zj , TCF

i,j
]), (7)

where [·, ·] stands for the concatenation of vectors, and bA
and bACF can also be used for estimating the observed ITE
as aforementioned in Eq. (1).

During the training process, data samples from the empirical
factual distribution P̂F and the empirical counterfactual dis-
tribution P̂CF are fed into decoder g and optimized towards
A and A

CF , respectively. That is, for the two distributions,
the loss functions are as follows:

LF =
1

N2

NX

i=1

NX

j=1

Ai,j · log bAi,j (8)

+ (1�Ai,j) · log(1� bAi,j),

LCF =
1

N2

NX

i=1

NX

j=1

ACF

i,j
· log bACF

i,j
(9)

+ (1�ACF

i,j
) · log(1� bACF

i,j
).

Balancing Counterfactual Learning In the training pro-
cess, the above loss minimizations train the model on both
the empirical factual distribution P̂F ⇠ PF and empirical
counterfactual distribution P̂CF ⇠ PCF that are not neces-
sarily equal – the training examples (node pairs) do not have
to be aligned. However, at the stage of inference, the test
data contains only observed (factual) samples. Such a gap
between the training and testing data distributions exposes
the model in the risk of covariant shift, which is a common
issue in counterfactual representation learning (Johansson
et al., 2016; Assaad et al., 2021).

To force the distributions of representations of factual dis-
tributions and counterfactual distributions to be similar, we
adopt the discrepancy distance (Mansour et al., 2009; Jo-
hansson et al., 2016) as another training objective to reg-
ularize the representation learning. That is, we use the
following loss term to minimize the distance between the
learned representations from P̂F and P̂CF :

Ldisc = disc(P̂F

f
, P̂CF

f
), where disc(P,Q) = ||P �Q||F ,

(10)
where || · ||F denotes the Frobenius Norm, and P̂F

f
and

P̂CF

f
denote the node pair representations learned by graph

encoder f from factual distribution and counterfactual dis-
tribution, respectively. Specifically, the learned representa-
tions for (vi, vj , Ti,j) and (vi, vj , TCF

i,j
) are [zi � zj , Ti,j ]

(Eq. (6)) and [zi � zj , TCF

i,j
] (Eq. (7)), respectively.

Algorithm 1 CFLP
Input: f , g, A, X, n epochs, n epoch ft
Compute T as presented in Section 3.1.
Compute T

CF ,ACF by Eqs. (3) and (4).
// model training

for epoch in range(n epochs) do
Z = f(A,X).
Get bA and bACF via g with Eqs. (6) and (7).
Update ⇥f and ⇥g with L. (Eq. (11))

end for
// decoder fine-tuning

Freeze ⇥f and re-initialize ⇥g .
Z = f(A,X).
for epoch in range(n epochs ft) do

Get bA via g with Eq. (6).
Update ⇥g with LF . (Eq. (8))

end for
// inference

Z = f(A,X).
Get bA and bACF via g with Eqs. (6) and (7).
Output: bA for link prediction, bACF .

Training During the training of CFLP, we want the model
to be optimized towards three targets: (1) accurate link
prediction on the observed outcomes (Eq. (8)), (2) accurate
prediction on the counterfactual links (Eq. (9)), and (3)
regularization on the representation spaces learned from
P̂F and P̂CF (Eq. (10)). Therefore, the overall training loss
of our proposed CFLP is

L = LF + ↵ · LCF + � · Ldisc, (11)

where ↵ and � are hyperparameters to control the weights
of counterfactual outcome estimation (link prediction) loss
and discrepancy loss.

Summary Algorithm 1 summarizes the whole process of
CFLP. The first step is to compute the factual and coun-
terfactual treatments T, TCF as well as the counterfactual
links ACF . Then, the second step trains the graph learning
model on both the observed factual link existence and gen-
erated counterfactual link existence with the integrated loss
function (Eq. (11)). Note that the discrepancy loss (Eq. (10))
is computed on the representations of node pairs learned by
the graph encoder f , so the decoder g is trained with data
from both P̂F and P̂CF without balancing the constraints.
Therefore, after the model is sufficiently trained, we freeze
the graph encoder f and fine-tune g with only the factual
data. Finally, after the decoder is sufficiently fine-tuned,
we output the link prediction logits for both the factual and
counterfactual adjacency matrices.

Complexity The complexity of the first step (finding
counterfactual links with nearest neighbors) is propor-



Table 1. Statistics of datasets used in the experiments.
Dataset CORA CITESEER PUBMED FACEBOOK OGB-DDI

# nodes 2,708 3,327 19,717 4,039 4,267
# links 5,278 4,552 44,324 88,234 1,334,889
# validation node pairs 1,054 910 8,864 17,646 235,371
# test node pairs 2,110 1,820 17,728 35,292 229,088

tional to the number of node pairs. When � is set as a
small value to obtain indeed similar node pairs, this step
(Eq. (3)) uses constant time. Moreover, the computation
in Eq. (3) can be parallelized. Therefore, the time com-
plexity is O(N2/C) where C is the number of processes.
For the complexity of the second step (training counter-
factual learning model), the GNN encoder has time com-
plexity of O(LH2N + LH|E|) (Wu et al., 2020), where L
is the number of GNN layers and H is the size of node
representations. Given that we sample the same num-
ber of non-existing links as that of observed links during
training, the complexity of a three-layer MLP decoder is
O(((H + 1) · dh + dh · 1)|E|) = O(dh(H + 2)|E|), where
dh is the number of neurons in the hidden layer. Therefore,
the second step has linear time complexity w.r.t. the sum of
node and edge counts.

Limitations First, as mentioned above, the computation of
finding counterfactual links has a worst-case complexity of
O(N2). Second, CFLP performs counterfactual prediction
with only a single treatment; however, there are quite a few
kinds of graph structural information that can be considered
as treatments. Future work can leverage the rich structural
information by bundled treatments (Zou et al., 2020) in the
generation of counterfactual links.

4. Experiments
4.1. Experimental Setup

We conduct experiments on five benchmark datasets includ-
ing citation networks (CORA, CITESEER, PUBMED (Yang
et al., 2016)), social network (FACEBOOK (McAuley &
Leskovec, 2012)), and drug-drug interaction network (OGB-
DDI (Wishart et al., 2018)) from the Open Graph Bench-
mark (OGB) (Hu et al., 2020). For the first four datasets,
we randomly select 10%/20% of the links and the same
numbers of disconnected node pairs as validation/test sam-
ples. The links in the validation and test sets are masked
off from the training graph. For OGB-DDI, we used the
OGB official train/validation/test splits. Statistics for the
datasets are shown in Table 1, with more details in Ap-
pendix. We use K-core (Bader & Hogue, 2003) clusters as
the default treatment variable. We evaluate CFLP on three
commonly used GNN encoders: GCN (Kipf & Welling,
2016a), GSAGE (Hamilton et al., 2017), and JKNet (Xu

et al., 2018). We compare the link prediction performance
of CFLP against Node2Vec (Grover & Leskovec, 2016),
MVGRL (Hassani & Khasahmadi, 2020), VGAE (Kipf &
Welling, 2016b), SEAL (Zhang & Chen, 2018), LGLP (Cai
et al., 2021), and GNNs with MLP decoder. We report aver-
aged test performance and their standard deviation over 20
runs with different random parameter initializations. Other
than the most commonly used of Area Under ROC Curve
(AUC), we report Hits@20 (one of the primary metrics on
OGB leaderboard) as a more challenging metric, as it ex-
pects models to rank positive edges higher than nearly all
negative edges.

Besides performance comparison on link prediction, we will
answer two questions to suggest a way of choosing a treat-
ment variable for creating counterfactual links: (Q1) Does
CFLP sufficiently learn the observed averaged treatment

effect (ATE) derived from the counterfactual links? (Q2)
What is the relationship between the estimated ATE learned
in the method and the prediction performance? If the answer
to Q1 is yes, then the answer to Q2 will indicate how to
choose treatment based on observed ATE. To answer the
Q1, we calculate the observed ATE ( dATEobs) by comparing
the observed links in A and created counterfactual links
A

CF that have opposite treatments. And we calculate the
estimated ATE ( dATEest) by comparing the predicted links
in bA and predicted counterfactual links bACF . Formally,
dATEobs and dATEest are defined as

dATEobs =
1

N2

NX

i=1

NX

j=1

{T� (A�A
CF ) (12)

+ (1N⇥N �T)� (ACF �A)}
i,j
.

dATEest =
1

N2

NX

i=1

NX

j=1

{T� (bA� bACF ) (13)

+ (1N⇥N �T)� (bACF � bA)}
i,j
.

The treatment variables we will investigate are gener-
ally graph clustering or community detection methods,
such as K-core (Bader & Hogue, 2003), stochastic block
model (SBM) (Karrer & Newman, 2011), spectral clus-
tering (SpecC) (Ng et al., 2001), propagation clustering
(PropC) (Raghavan et al., 2007), Louvain (Blondel et al.,
2008), common neighbors (CommN), Katz index, and
hierarchical clustering (Ward) (Ward Jr, 1963). We use



Table 2. Link prediction performances measured by Hits@20. Best performance and best baseline performance are marked with bold and
underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 49.96±2.51 47.78±1.72 39.19±1.02 24.24±3.02 23.26±2.09
MVGRL 19.53±2.64 14.07±0.79 14.19±0.85 14.43±0.33 10.02±1.01
VGAE 45.91±3.38 44.04±4.86 23.73±1.61 37.01±0.63 11.71±1.96
SEAL 51.35±2.26 40.90±3.68 28.45±3.81 40.89±5.70 30.56±3.86
LGLP 62.98±0.56 57.43±3.71 – 37.86±2.13 –
GCN 49.06±1.72 55.56±1.32 21.84±3.87 53.89±2.14 37.07±5.07
GSAGE 53.54±2.96 53.67±2.94 39.13±4.41 45.51±3.22 53.90±4.74
JKNet 48.21±3.86 55.60±2.17 25.64±4.11 52.25±1.48 60.56±8.69

Our proposed CFLP with different graph encoders
CFLP w/ GCN 60.34±2.33 59.45±2.30 34.12±2.72 53.95±2.29 52.51±1.09
CFLP w/ GSAGE 57.33±1.73 53.05±2.07 43.07±2.36 47.28±3.00 75.49±4.33
CFLP w/ JKNet 65.57±1.05 68.09±1.49 44.90±2.00 55.22±1.29 86.08±1.98

Table 3. Link prediction performances measured by AUC. Best performance and best baseline performance are marked with bold and
underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 84.49±0.49 80.00±0.68 80.32±0.29 86.49±4.32 90.83±0.02
MVGRL 75.07±3.63 61.20±0.55 80.78±1.28 79.83±0.30 81.45±0.99
VGAE 88.68±0.40 85.35±0.60 95.80±0.13 98.66±0.04 93.08±0.15
SEAL 92.55±0.50 85.82±0.44 96.36±0.28 99.60±0.02 97.85±0.17
LGLP 91.30±0.05 89.41±0.13 – 98.51±0.01 –
GCN 90.25±0.53 71.47±1.40 96.33±0.80 99.43±0.02 99.82±0.05
GSAGE 90.24±0.34 87.38±1.39 96.78±0.11 99.29±0.04 99.93±0.02
JKNet 89.05±0.67 88.58±1.78 96.58±0.23 99.43±0.02 99.94±0.01

Our proposed CFLP with different graph encoders
CFLP w/ GCN 92.55±0.50 89.65±0.20 96.99±0.08 99.38±0.01 99.44±0.05
CFLP w/ GSAGE 92.61±0.52 91.84±0.20 97.01±0.01 99.34±0.10 99.83±0.05
CFLP w/ JKNet 93.05±0.24 92.12±0.47 97.53±0.17 99.31±0.04 99.94±0.01

JKNet (Xu et al., 2018) as default graph encoder.

Implementation details and supplementary experimental
results (e.g., sensitivity on �, ablation study on LCF and
Ldisc) can be found in Appendix. Source code is available
in supplementary material.

4.2. Experimental Results

Link Prediction Tables 2 and 3 show the link prediction
performance of Hits@20 and AUC by all methods. LGLP
on PUBMED and OGB-DDI are missing due to the out of
memory error when running the official code package from
the authors. We observe that our CFLP on different graph
encoders achieve similar or better performances compared
with baselines. The only exception is the AUC on FACE-
BOOK where most methods have close-to-perfect AUC. As
AUC is a relatively easier metric comparing with Hits@20,
most methods achieved good performance on AUC. We ob-
serve that CFLP with JKNet almost consistently achieves
the best performance and outperforms baselines significantly
on Hits@20. Specifically, comparing with the best baseline,
CFLP improves relatively by 16.4% and 0.8% on Hits@20

and AUC, respectively. Comparing with the best perform-
ing baselines, which are also GNN-based, CFLP benefits
from learning with both observed link existence (A) and
our defined counterfactual links (ACF ).

ATE with Different Treatments Tables 4 and 5 show
the link prediction performance, dATEobs, and dATEest of
CFLP (with JKNet) when using different treatments. The
treatments in Tables 4 and 5 are sorted by the Hits@20
performance. Bigger ATE indicates stronger causal relation-
ship between the treatment and outcome, and vice versa.
We observe: (1) the rankings of dATEest and dATEobs are pos-
itively correlated with Kendell’s ranking coefficient (Abdi,
2007) of 0.67 and 0.57 for CORA and CITESEER, respec-
tively. Hence, CFLP was sufficiently trained to learn the
causal relationship between graph structure information and
link existence; (2) dATEobs and dATEest are both negatively
correlated with the link prediction performance, showing
that we can pick a proper treatment prior to training a model
with CFLP. Using the treatment that has the weakest causal
relationship with link existence is likely to train the model
to capture more essential factors on the outcome, in a way
similar to denoising the unrelated information from the rep-



Table 4. Results of CFLP with different treatments on CORA.
(sorted by Hits@20)

Hits@20 dATEobs
dATEest

K-core 65.6±1.1 0.002 0.013±0.003
SBM 64.2±1.1 0.006 0.023±0.015
CommN 62.3±1.6 0.007 0.053±0.021
PropC 61.7±1.4 0.037 0.059±0.065
Ward 61.2±2.3 0.001 0.033±0.012
SpecC 59.3±2.8 0.002 0.033±0.011
Louvain 57.6±1.8 0.025 0.138±0.091
Katz 56.6±3.4 0.740 0.802±0.041

Table 5. Results of CFLP with different treatments on CITESEER.
(sorted by Hits@20)

Hits@20 dATEobs
dATEest

SBM 71.6 ±1.9 0.004 0.005 ±0.001
K-core 68.1±1.5 0.002 0.010±0.002
Ward 67.0±1.7 0.003 0.037±0.009
PropC 64.6±3.6 0.141 0.232±0.113
Louvain 63.3±2.5 0.126 0.151±0.078
SpecC 59.9±1.3 0.009 0.166±0.034
Katz 57.3±0.5 0.245 0.224±0.037
CommN 56.8±4.9 0.678 0.195±0.034

resentations. While methods that learn from only observed
data may assume strongly positive correlation for this treat-
ment, the counterfactual data are more useful to complement
the partial observations for learning better representations.

5. Related Work
Link Prediction With its wide applications, link predic-
tion has drawn attention from many research communi-
ties including statistical machine learning and data mining.
Stochastic generative methods based on stochastic block
models (SBM) are developed to generate links (Mehta et al.,
2019). In data mining, matrix factorization (Menon & Elkan,
2011), heuristic methods (Philip et al., 2010; Martı́nez et al.,
2016), and graph embedding methods (Cui et al., 2018) have
been applied to predict links in the graph. Heuristic methods
compute the similarity score of nodes based on their neigh-
borhoods. These methods can be generally categorized into
first-order, second-order, and high-order heuristics based on
the maximum distance of the neighbors. Graph embedding
methods learn latent node features via embedding lookup
and use them for link prediction (Perozzi et al., 2014; Tang
et al., 2015; Grover & Leskovec, 2016; Wang et al., 2016).

In the past few years, GNNs have shown promising results
on various graph-based tasks with their ability of learning
from features and custom aggregations on structures (Kipf
& Welling, 2016a; Hamilton et al., 2017; Ma et al., 2021;
Jiang et al., 2022). With node pair representations and an
attached MLP or inner-product decoder, GNNs can be used

for link prediction (Davidson et al., 2018; Yang et al., 2018;
Zhang et al., 2020; Yun et al., 2021; Zhu et al., 2021b;
Wang et al., 2021a;b). For example, VGAE used GCN to
learn node representations and reconstruct the graph struc-
ture (Kipf & Welling, 2016b). SEAL extracted a local sub-
graph around each target node pair and then learned local
subgraph representation for link prediction (Zhang & Chen,
2018). Following the scheme of SEAL, Cai & Ji (2020)
proposed to improve local subgraph representation learning
by multi-scale graph representation. And LGLP proposed
to invert the local subgraphs to line graphs (Cai et al., 2021).
However, little work has studied to use causal inference for
improving link prediction.

Causal Inference Causal inference methods usually re-
weighted samples based on propensity score (Rosenbaum
& Rubin, 1983; Austin, 2011) to remove confounding bias
from binary treatments. Recently, several works studied
about learning treatment invariant representation to predict
the counterfactual outcomes (Shalit et al., 2017; Li & Fu,
2017; Yao et al., 2018; Yoon et al., 2018; Hassanpour &
Greiner, 2019a;b; Bica et al., 2020). Few recent works
combined causal inference with graph learning (Sherman
& Shpitser, 2020; Bevilacqua et al., 2021; Lin et al., 2021;
Feng et al., 2021). For example, Sherman & Shpitser (2020)
proposed network intervention to study the effect of link
creation on network structure changes.

As a mean of learning the causality between treatment and
outcome, counterfactual prediction has been used for a va-
riety of applications such as recommender systems (Wang
et al., 2020b; Xu et al., 2020), health care (Alaa & van der
Schaar, 2017; Pawlowski et al., 2020), and decision mak-
ing (Kusner et al., 2017; Pitis et al., 2020). To infer the
causal relationships, previous work usually estimated the
ITE via function fitting models (Kuang et al., 2017; Wager
& Athey, 2018; Kuang et al., 2019; Assaad et al., 2021).

Graph Data Augmentation Graph data augmentation
(GDA) methods generate perturbed or modified graph
data (Zhao et al., 2021a;b) to improve the generalizabil-
ity of graph machine learning models. Two comprehensive
surveys of graph data augmentation are given by Zhao et al.
(2022) and Ding et al. (2022). So far, most GDA methods
have been focusing on node-level tasks (Park et al., 2021)
and graph-level tasks (Liu et al., 2022; Luo et al., 2022). Due
to the non-Euclidean structure of graphs, most GDA work fo-
cused on modifying the graph structure. E.g., edge dropping
methods (Rong et al., 2019; Zheng et al., 2020; Luo et al.,
2021) drop edges during training to reduce overfitting. Zhao
et al. (2021a) used link predictor to manipulate the graph
structure and improve the graph’s homophily. Recently,
several works also combined GDA with self-supervised
learning objectives such as contrastive learning (You et al.,



2020; 2021; Zhu et al., 2021a) and consistency loss (Wang
et al., 2020a; Feng et al., 2020). Nevertheless, GDA for link
prediction has been under-explored.

6. Conclusion and Future Work
In this work, we presented the novel concept of counter-
factual link and a novel graph learning method for link
prediction (CFLP). The counterfactual links answered the
counterfactual questions on the link existence and were used
as augmented training data, with which CFLP accurately
predicted missing links by exploring the causal relation-
ship between global graph structure and link existence. Ex-
tensive experiments demonstrated that CFLP achieved the
state-of-the-art performance on benchmark datasets. This
work sheds insights that a good use of causal models (even
basic ones) can greatly improve the performance of (graph)
machine learning tasks such as link prediction. We note
that the use of more sophistically designed causal models
may lead to larger improvements for machine learning tasks,
which can be a valuable future direction for the research
community. Other than cluster-based global graph struc-
ture as treatment, other choices (with both empirical and
theoretical analyses) are also worthy of exploration.
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A. Additional Dataset Details
In this section, we provide some additional dataset details. All the datasets used in this work are publicly available.

Citation Networks CORA, CITESEER, and PUBMED are citation networks that were first used by Yang et al. (2016) and
then commonly used as benchmarks in GNN-related literature (Kipf & Welling, 2016a; Veličković et al., 2017). In these
citation networks, the nodes are published papers and features are bag-of-word vectors extracted from the corresponding
paper. Links represent the citation relation between papers. We loaded the datasets with the DGL1 package.

Social Network The FACEBOOK dataset2 is a social network constructed from friends lists from Facebook (McAuley &
Leskovec, 2012). The nodes are Facebook users and links indicate the friendship relation on Facebook. The node features
were constructed from the user profiles and anonymized by McAuley & Leskovec (2012).

Drug-Drug Interaction Network The OGB-DDI dataset was constructed from a public Drug database (Wishart et al.,
2018) and provided by the Open Graph Benchmark (OGB) (Hu et al., 2020). Each node in this graph represents an
FDA-approved or experimental drug and edges represent the existence of unexpected effect when the two drugs are taken
together. This dataset does not contain any node features, and it can be downloaded with the dataloader3 provided by OGB.

B. Details on Implementation and Hyperparameters
All the experiments in this work were conducted on a Linux server with Intel Xeon Gold 6130 Processor (16 Cores @2.1Ghz),
96 GB of RAM, and 4 RTX 2080Ti cards (11 GB of RAM each). Our method are implemented with Python 3.8.5 with
PyTorch. Source code is publicly available at https://github.com/DM2-ND/CFLP.

Baseline Methods For baseline methods, we use official code packages from the authors for MVGRL4 (Hassani &
Khasahmadi, 2020), SEAL5 (Zhang & Chen, 2018), and LGLP6 (Cai et al., 2021). We use a public implementation for
VGAE7 (Kipf & Welling, 2016b) and OGB implementations8 for Node2Vec and baseline GNNs. For fair comparison, we
set the size of node/link representations to be 256 of all methods.

CFLP We use the Adam optimizer with a simple cyclical learning rate scheduler (Smith, 2017), in which the learning
rate waves cyclically between the given learning rate (lr) and 1e-4 in every 70 epochs (50 warmup steps and 20 annealing
steps). We implement the GNN encoders with torch_geometric9 (Fey & Lenssen, 2019). Same with the baselines, we
set the size of all hidden layers and node/link representations of CFLP as 256. The graph encoders all have three layers
and JKNet has mean pooling for the final aggregation layer. The decoder is a 3-layer MLP with a hidden layer of size 64
and ELU as the nonlinearity. As the Euclidean distance used in Eq. (3) has a range of [0,1), the value of � depends on
the distribution of all-pair node embedding distances, which varies for different datasets. Therefore, we set the value of �
as the �pct-percentile of all-pair node embedding distances. Commands for reproducing the experiments are included in
README.md.

Hyperparameter Searching Space We manually tune the following hyperparameters over range: lr 2
{0.005, 0.01, 0.05, 0.1, 0.2}, ↵ 2 {0.001, 0.01, 0.1, 1, 2}, � 2 {0.001, 0.01, 0.1, 1, 2}, �pct 2 {10, 20, 30}.

Treatments For the graph clustering or community detection methods we used as treatments, we use the implementation
from scikit-network

10 for Louvain (Blondel et al., 2008), SpecC (Ng et al., 2001), PropC (Raghavan et al., 2007),
1
https://github.com/dmlc/dgl

2
https://snap.stanford.edu/data/ego-Facebook.html

3
https://ogb.stanford.edu/docs/linkprop/#data-loader

4
https://github.com/kavehhassani/mvgrl

5
https://github.com/facebookresearch/SEAL_OGB

6
https://github.com/LeiCaiwsu/LGLP

7
https://github.com/DaehanKim/vgae_pytorch

8
https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred/ddi

9
https://pytorch-geometric.readthedocs.io/en/latest/

10
https://scikit-network.readthedocs.io/

https://github.com/DM2-ND/CFLP
https://github.com/dmlc/dgl
https://snap.stanford.edu/data/ego-Facebook.html
https://ogb.stanford.edu/docs/linkprop/#data-loader
https://github.com/kavehhassani/mvgrl
https://github.com/facebookresearch/SEAL_OGB
https://github.com/LeiCaiwsu/LGLP
https://github.com/DaehanKim/vgae_pytorch
https://github.com/snap-stanford/ogb/tree/master/examples/linkproppred/ddi
https://pytorch-geometric.readthedocs.io/en/latest/
https://scikit-network.readthedocs.io/


Table 6. Link prediction performances measured by Hits@50. Best performance and best baseline performance are marked with bold and
underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 63.64±0.76 54.57±1.40 50.73±1.10 43.91±1.03 24.34±1.67
MVGRL 29.97±3.06 26.48±0.98 16.96±0.56 17.06±0.19 12.03±0.11
VGAE 60.36±2.71 54.68±3.15 41.98±0.31 51.36±0.93 23.00±1.66
SEAL 51.68±2.85 54.55±1.77 42.85±2.03 57.20±1.85 40.85±2.97
LGLP 71.43±0.75 69.98±0.16 – 56.22±0.49 –
GCN 64.93±1.62 63.38±1.73 39.20±6.47 69.90±0.65 73.70±3.99
GSAGE 63.18±3.39 61.71±2.43 54.81±2.67 62.53±4.24 86.83±3.85
JKNet 62.64±1.40 62.26±2.10 45.16±3.18 68.81±1.76 91.48±2.41

Our proposed CFLP with different graph encoders
CFLP w/ GCN 72.61±0.92 69.85±1.11 55.00±1.95 70.47±0.77 62.47±1.53
CFLP w/ GSAGE 73.25±0.94 64.75±2.27 58.16±1.40 63.89±2.08 83.32±3.61
CFLP w/ JKNet 75.49±1.54 77.01±1.92 62.80±0.79 71.41±0.61 93.07±1.14

Table 7. Link prediction performances measured by Average Precision (AP). Best performance and best baseline performance are marked
with bold and underline, respectively.

CORA CITESEER PUBMED FACEBOOK OGB-DDI

Node2Vec 88.53±0.42 84.42±0.48 87.15±0.12 99.07±0.02 98.39±0.04
MVGRL 76.47±3.07 67.40±0.52 82.00±0.97 82.37±0.35 81.12±1.77
VGAE 89.89±0.50 86.97±0.78 95.97±0.16 98.60±0.04 95.28±0.11
SEAL 89.08±0.57 88.55±0.32 96.33±0.28 99.51±0.03 98.39±0.21
LGLP 93.05±0.03 91.62±0.09 – 98.62±0.01 –
GCN 91.42±0.45 90.87±0.52 96.19±0.88 99.42±0.02 99.86±0.03
GSAGE 91.52±0.46 89.43±1.15 96.93±0.11 99.27±0.06 99.93±0.01
JKNet 90.50±0.22 90.42±1.34 96.56±0.31 99.41±0.02 99.95±0.01

Our proposed CFLP with different graph encoders
CFLP w/ GCN 93.77±0.49 91.84±0.20 97.16±0.08 99.40±0.01 99.60±0.03
CFLP w/ GSAGE 93.55±0.49 90.80±0.87 97.10±0.08 99.29±0.06 99.88±0.04
CFLP w/ JKNet 94.24±0.28 93.92±0.41 97.69±0.13 99.35±0.02 99.96±0.01

and Ward (Ward Jr, 1963). We used implementation of K-core (Bader & Hogue, 2003) from networkx.11 We used
SBM (Karrer & Newman, 2011) from a public implementation by Funke & Becker (2019).12 For CommN and Katz, we
set Ti,j = 1 if the number of common neighbors or Katz index between vi and vj are greater or equal to 2 or 2 times the
average of all Katz index values, respectively. For SpecC, we set the number of clusters as 16. For SBM, we set the number
of communities as 16. These settings are fixed for all datasets.

C. Additional Experimental Results and Discussions
Link Prediction Tables 6 and 7 show the link prediction performance of Hits@50 and Average Precision (AP) by all
methods. LGLP on PUBMED and OGB-DDI are missing due to the out of memory error when running the code package
from the authors. Similar to the results in Tables 2 and 3, we observe that our CFLP on different graph encoders achieve
similar or better performances compared with baselines, with the only exception of AP on FACEBOOK where most methods
have close-to-perfect AP. From Tables 2, 3, 6 and 7, we observe that CFLP achieves improvement over all GNN architectures
(averaged across datasets). Specifically, CFLP improves 25.6% (GCN), 12.0% (GSAGE), and 36.3% (JKNet) on Hits@20,
9.6% (GCN), 5.0% (GSAGE), and 17.8% (JKNet) on Hits@50, 5.6% (GCN), 1.6% (GSAGE), and 1.9% (JKNet) on AUC,
and 0.8% (GCN), 0.8% (GSAGE), and 1.8% (JKNet) on AP. We note that CFLP with JKNet almost consistently achieves
the best performance and outperforms baselines significantly on Hits@50. Specifically, compared with the best baseline,
CFLP improves relatively by 6.8% and 0.9% on Hits@50 and AP, respectively.

11
https://networkx.org/documentation/

12
https://github.com/funket/pysbm

https://networkx.org/documentation/
https://github.com/funket/pysbm


Table 8. Link prediction performance of CFLP (w/ JKNet) on CORA and CITESEER when removing LCF or Ldisc or both versus normal
setting.

CORA CITESEER
Hits@20 AUC Hits@20 AUC

CFLP (↵ = 0) 58.58±0.23 89.16±0.93 65.49±2.18 91.01±0.64
CFLP (� = 0) 62.27±0.84 92.96±0.34 66.92±1.84 91.98±0.17
CFLP (↵ = � = 0) 58.52±0.83 88.79±0.28 64.69±3.25 90.61±0.64
CFLP 65.57±1.05 93.05±0.24 68.09±1.49 92.12±0.47

Table 9. Link prediction performance of CFLP (w/ JKNet) on CORA and CITESEER with node embeddings (X̃) learned from different
methods.

CORA CITESEER OGB-DDI
Hits@20 AUC Hits@20 AUC Hits@20 AUC

(MVGRL) 65.57±1.05 93.05±0.24 68.09±1.49 92.12±0.47 86.08±1.98 99.94±0.01
(GRACE) 62.54±1.41 92.28±0.69 68.68±1.75 93.80±0.36 82.30±3.32 99.93±0.01
(DGI) 61.04±1.52 92.99±0.49 72.17±1.08 93.34±0.51 85.61±1.66 99.94±0.01

Ablation Study on Losses For the ablative studies of LCF (Eq. (9)) and Ldisc (Eq. (10)), we show their effect by removing
them from the integrated loss function (Eq. (11)). Table 8 shows the results of CFLP on CORA and CITESEER under
different settings (↵ = 0, � = 0, ↵ = � = 0, and original setting). We observe that CFLP in the original setting achieves
the best performance. The performance drops significantly when having ↵ = 0, i.e., not using any counterfactual data during
training. We note that having � = 0, i.e., not using the discrepancy loss, also lowers the performance. Therefore, both LCF

and Ldisc are essential for improving the link prediction performance.

Ablation Study on Node Embedding X̃ As the node embedding X̃ is used in the early step of CFLP for finding
the counterfactual links, the quality of X̃ may affect the later learning process. Therefore, we also evaluate CFLP with
different state-of-the-art unsupervised graph representation learning methods: MVGRL (Hassani & Khasahmadi, 2020),
DGI (Velickovic et al., 2019), and GRACE (Zhu et al., 2020). Table 9 shows the link prediction performance of CFLP (w/
JKNet) on CORA and CITESEER with different node embeddings. We observe that the choice of the method for learning X̃

does have an impact on the later learning process as well as the link prediction performance. Nevertheless, Table 9 shows
CFLP’s advantage can be consistently observed with different choices of methods for learning X̃, as CFLP with X̃ learned
from all three methods showed promising link prediction performance.

Sensitivity Analysis of ↵ and � Figure 3 shows the AUC performance of CFLP on CORA with different combinations of
↵ and �. We observe that the performance is the poorest when ↵ = � = 0 and gradually improves and gets stable as ↵ and
� increase, showing that CFLP is generally robust to the hyperparameters ↵ and �, and the optimal values are easy to locate.

Sensitivity Analysis of � Figure 4 shows the Hits@20 and AUC performance on link prediction of CFLP (with JKNet)
on CORA and CITESEER with different treatments and �pct. We observe that the performance is generally good when
10  �pct  20 and gradually get worse when the value of �pct is too small or too large, showing that CFLP is robust to �
and the optimal � is easy to find.
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(a) AUC performance.
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(b) Hits@20 performance.

Figure 3. Performance of CFLP on CORA w.r.t different combinations of ↵ and �.
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(a) Performances of CFLP on CORA when using K-
core as treatment.
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(b) Performances of CFLP on CORA when using SBM
as treatment.
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(c) Performances of CFLP on CITESEER when using
K-core as treatment.
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(d) Performances of CFLP on CITESEER when using
SBM as treatment.

Figure 4. Hits@20 and AUC performances of CFLP (w/ JKNet) on CORA and CITESEER with different treatments w.r.t. different �pct
value.


