
DOG is SGD’s Best Friend: A Parameter-Free Dynamic Step Size Schedule

Maor Ivgi 1 Oliver Hinder 2 Yair Carmon 1

Abstract
We propose a tuning-free dynamic SGD step
size formula, which we call Distance over Gradi-
ents (DoG). The DoG step sizes depend on sim-
ple empirical quantities (distance from the initial
point and norms of gradients) and have no “learn-
ing rate” parameter. Theoretically, we show that,
for stochastic convex optimization, a slight vari-
ation of the DoG formula enjoys strong, high-
probability parameter-free convergence guaran-
tees and iterate movement bounds. Empirically,
we consider a broad range of vision and language
transfer learning tasks, and show that DoG’s per-
formance is close to that of SGD with tuned
learning rate. We also propose a per-layer variant
of DoG that generally outperforms tuned SGD,
approaching the performance of tuned Adam.
A PyTorch implementation of our algorithms is
available at https://github.com/formll/dog.

1. Introduction
While stochastic optimization methods drive continual im-
provements in machine learning, choosing the optimization
parameters—and particularly the learning rate—remains a
difficulty. Standard methodologies include searching over
a set of learning rates, or simply picking the learning rate
from prior work. The former incurs a substantial computa-
tional overhead, while the latter risks training a suboptimal
model.

The rich literature on adaptive gradient methods (AdaGrad,
Adam, and their many variants) offers optimization algo-
rithms that better exploit problem structure (e.g., Duchi
et al., 2011; Kingma & Ba, 2015; Gupta et al., 2018;
Shazeer & Stern, 2018; Loshchilov & Hutter, 2019). How-
ever, these methods still have a learning rate parameter that
requires tuning. The theoretically-optimal value of this pa-
rameter depends on unknown problem properties. For ex-

1Tel Aviv University 2University of Pittsburgh. Correspon-
dence to: Maor Ivgi <maor.ivgi@cs.tau.ac.il>.

Proceedings of the 40 th
International Conference on Machine

Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

Figure 1. Illustration of DOG for CIFAR-100 classification using
logistic regression on last-layer features of a pre-trained ViT-B/32
(left) or end-to-end fine-tuning of the model (right). The top row
shows the DOG step size sequence ⌘t for different values of the
initial movement r✏, and the bottom row shows that DOG attains
test error on par with carefully tuned SGD (with cosine anneal-
ing), even when varying r✏ by several orders of magnitude. See
details in Appendix E.6.

ample, on convex problems the optimal learning rate of
AdaGrad is related to the distance between the initial point
and the optimal solution, while in non-convex settings it is
related to the function’s smoothness and initial optimality
gap (Gupta et al., 2017; Ward et al., 2019; Faw et al., 2022).

Parameter-free optimization aims to remove the need for
such tuning by designing algorithms that achieve a near-
optimal rate of convergence with almost no knowledge of
the problem properties (Streeter & McMahan, 2012). Most
works in this field (e.g., Luo & Schapire, 2015; Orabona
& Pál, 2016; Cutkosky & Orabona, 2018; Mhammedi &
Koolen, 2020; Bhaskara et al., 2020; Jacobsen & Cutkosky,
2022; Zhang et al., 2022) use advanced online learning
techniques to construct algorithms that, for the funda-
mental setting of stochastic convex optimization (SCO)
with bounded stochastic gradients, achieve optimal rates
of convergence up to logarithmic factors. While practi-
cal parameter-free algorithms exist (e.g. Orabona, 2014;
Orabona & Tommasi, 2017; Kempka et al., 2019; Chen
et al., 2022), there is little research into practical parameter-
free step size selection methods for SGD. Recently, Car-
mon & Hinder (2022) have shown that performing a care-
ful bisection over the SGD step size yields a parameter-
free optimization method that is optimal for SCO up to a

1

https://github.com/formll/dog

DOG is SGD’s Best Friend

double-logarithmic factor. While theoretically novel, on a
practical level the result leaves much to be desired, as it
essentially prescribes the standard recipe of running SGD
multiple times with different learning rates.

Proposed algorithm. In this work, we use key insights
from Carmon & Hinder (2022) to go a step further and
develop a parameter-free step size schedule. For SGD it-
erations of the form xt+1 = xt � ⌘tgt, where xt denotes
the model parameters at the t’th iteration and gt denotes
the stochastic gradient of the loss function, our proposed
dynamic steps size is (for all t � 1)

⌘t =
maxitkxi � x0kqP

itkgik2
. (DOG)

In words, the step size at iteration t is the maximum dis-
tance to between the initial point and observed iterates, di-
vided by the sum of squared stochastic gradient norms, i.e.,
Distance over Gradients (DOG). At the first step, we set
⌘0 to be r✏/kg0k, i.e., we take a normalized gradient step
of size r✏; we show that, as long as r✏ is small, its precise
setting has only mild effect.

Crucially, DOG has no multiplicative “learning rate” pa-
rameter: if one considers step sizes of the form ⌘t =

c · maxitkxi�x0kpP
itkgik2

then c = 1 is a universally good setting

(see Section 2 for a heuristic justification and Section 4.3
for empirical evidence for this claim).

Figure 1 highlights key aspects of DOG. The top row shows
the DOG step size sequence for different values of r✏ in
convex (left) and non-convex (right) stochastic optimiza-
tion problems. The DOG step size increases rapidly (note
the logarithmic x scale) and stabilizes around values close
to the optimal SGD step size with little dependence on r✏.
The bottom row of the figure compares the test errors of
DOG and SGD with various step sizes, showing that (for
all choices of r✏) DOG is on par with well-tuned SGD.

1.1. Summary of results

Theoretical guarantees. In Section 3 we analyze DOG
for stochastic convex optimization with bounded stochastic
gradients and a (potentially unbounded) closed convex do-
main. To present our results, let B denote a ball around the
initial point x0 with radius 3d0, where d0 is the distance
between x0 and an optimum.

First, we show that if the iterates of DOG remain in B, then
with high probability DOG achieves a convergence rate that
is optimal up to a factor of O(log(1 + d0

r✏
)). In practice,

DOG appears to indeed be stable as long as r✏ is sufficiently
small. However, DOG is not always stable: on pathological
functions its iterates can move far from the optimum.

To address this, we consider a theoretical, tamed variant of

DOG, which we call T-DOG, whose step sizes are smaller
by a logarithmic factor. We prove that, with high proba-
bility, the T-DOG iterates never leave B. Thus, we obtain
a high probability parameter-free convergence guarantee is
optimal up logarithmic factors.

To our knowledge, T-DOG is the first parameter-free
stochastic optimization method to attain such theoretical
guarantee,1 and only the third high probability parameter-
free guarantee in the literature (following Carmon & Hin-
der, 2022; Zhang & Cutkosky, 2022).

Empirical study. Our experiments in Section 4 focus on
fine-tuning neural networks, because this is a practically
important setting that still allows for thorough experiments
at a reasonable computational budget. We also perform a
small-scale experiment with training a neural network from
scratch. Our experiments span 23 natural language un-
derstanding and image classification tasks and 8 popular
model architectures.

Our results indicate that, compared to DOG, SGD with a
cosine step size schedule and tuned base learning rarely at-
tains a relative error improvement of more than 5% (e.g.,
the difference between accuracy 95% and 95.25%). For
convex problems (linear probes), the relative difference in
errors is below 1%. In our testbed, well-tuned Adam tends
to outperform both SGD and DOG, but a layer-wise ver-
sion of DOG (which we call L-DOG) closes some of this
performance gap.

We also test the sensitivity of DOG to the value of r✏. We
find that for most model/task combinations, DOG performs
consistently well across a wide range of r✏ values as our
theory predicts. However, in certain cases, choosing r✏ to
be too low results in poor performance. We provide some
preliminary findings showing that this is due in part to batch
normalization.

Put together, our theory and experiments suggest DOG has
the potential to save significant computation currently spent
on learning rate tuning at little or no cost in performance—
especially if we reinvest some of the saved computation in
training a larger model on more data.

2. Algorithm Derivation
Before providing rigorous theoretical guarantees for DOG,
in this section we explain the origin of the algorithm. Our
starting point is the following result by Carmon & Hinder
(2022). Suppose we run T iterations of SGD with fixed

1Carmon & Hinder (2022) guarantee boundedness of the point
they output, but do not have guarantees on intermediate query
points. Orabona & Pál (2021, Lemma 25) show that the algo-
rithm iterates are bounded but not to within a constant factor of
the initial distance to optimality.

2

DOG is SGD’s Best Friend

step size ⌘, i.e., the recursion xt+1 = xt � ⌘gt, where xt

is the SGD iterate and gt is the stochastic gradient at step t.
If, for some c 2 (0, 1), it happens to hold that

⌘ = c · maxkT kxk � x0kqP
kT kgkk2

, (1)

then the averaged iterates satisfies an excess loss bound that
is at most a factor 1

c(1�c2) larger than the worst-case opti-
mal bound achieved by perfectly tuned SGD.2

The condition (1) is an implicit equation: it allows us to
check whether the choice of step size ⌘ is good only after
running T steps of SGD using that ⌘. Solving this implicit
equation therefore requires multiple calls to SGD. We de-
rive the DOG step size sequence by making the equation
explicit: we choose ⌘t so that equation (1) holds at each
step. For c = 1, this yields the step size formula (DOG).
Our reason for choosing c = 1 is that it is the threshold
under which a solution to the implicit equation yields an
optimal rate of convergence. Therefore, in practice we ex-
pect 1 to be close to the highest stable value of c, and thus
obtain the best performance; we verify this empirically in
Section 4.3.

3. Theoretical Analysis
3.1. Preliminaries

Problem setting. Our goal is to minimize a loss function
f : X ! R where X ✓ Rm (including the unconstrained
setting X = Rm as an important special case). We per-
form our analysis under the following standard convexity
assumption.
Assumption 3.1 (Convexity). The function f is convex,
its domain X is closed and convex, and its minimum is
attained at some x? 2 X , i.e., f? := infx2X f(x) = f(x?).

In Appendix A we discuss a possible relaxation of convex-
ity under which our results continue to hold.

To minimize f we assume access to a stochastic gradient

oracle G. When queried at a point x 2 X the oracle re-
turns a stochastic (sub)gradient estimator G(x) satisfying
E[G(x) | x] 2 @f(x). With slight abuse of notation, we
write rf(x) := E[G(x) | x]. We make the following as-
sumption, where k·k denotes the Euclidean norm.
Assumption 3.2 (Bounded stochastic gradients). There ex-
ists some L > 0 such that kG(x)k  L almost surely.

We can relax Assumption 3.2 to a local stochastic gradient
norm; see Appendix B.

2This results holds in the non-stochastic case (Carmon & Hin-
der, 2022, Proposition 1), but a qualitatively similar results holds
with high probability in the stochastic case as well (Carmon &
Hinder, 2022, Proposition 3).

Algorithm statement. We study (projected) SGD with
dynamic learning rate schedule {⌘t}, i.e.,

xt+1 = ProjX (xt � ⌘tgt)

where x0 is a given initialization, gk := G(xk), and
ProjX (·) is the Euclidean projection onto X . To succinctly
state and analyze DOG, we define the following quantities:

rt := kxt � x0k , r̄t = max
kt

rk _ r✏ and Gt :=
tX

k=0

kgtk2,

where a _ b := max{a, b} and r✏ is a small user-specified
initial movement size parameter. With this notation, we
define a family of DOG-like learning rate schedules.
Definition 3.3. A step size schedule is DOG-like if

⌘t =
r̄tp
G0

t

for a positive nondecreasing sequence G0
t that depends only

on x0, g0, . . . , gt and satisfies G0
t � Gt.

DOG corresponds to simply setting G
0
t = Gt; in Sec-

tion 3.3 we consider a theoretical (or tamed) DOG-like al-
gorithm for which we guarantee bounded iterates by mak-
ing G

0
t larger than Gt by polylogarithmic factors. Through-

out, we bound the error of the weighted average sequence

x̄t :=
1

Pt�1
k=0 r̄k

t�1X

k=0

r̄kxk. (2)

Finally, to streamline the analysis we define:

dt := kxt � x?k , d̄t := max
kt

dk ,

and
✓t,� := log

✓
60 log(6t)

�

◆
.

Logarithm conventions. Throughout the paper log is
base e and log+(·) := 1 + log(·).

3.2. Optimality gap bounds assuming bounded iterates

In this section, we bound the optimality gap attained by any
DOG-like algorithm. Our bounds depend on the quantities
r̄T and GT , and are nearly optimal when r̄T = O(d0) (i.e.,
the DOG iterates don’t move too far away from x0) and G

0
T

is not much larger than GT . In the next section we describe
a specific DOG-like algorithm that is guaranteed to satisfy
both requirements.

Convexity and Jensen’s inequality imply that x̄t satisfies

f(x̄t)� f?  1
Pt�1

k=0 r̄k

t�1X

k=0

r̄k hrf(xk), xk � x?i . (3)

3

DOG is SGD’s Best Friend

The sum in the RHS decomposes to two components:

t�1X

k=0

r̄k hgk, xk � x?i

| {z }
weighted regret

�
t�1X

k=0

r̄k h�k, xk � x?i

| {z }
noise

, (4)

where �k := gk �rf(xk). We give probability 1 bounds
for the weighted regret (Lemma 3.4) and high probability
bounds for the noise term (Lemma 3.5). In each case, the
key challenge is replacing a-priori bounds on d0 (or the
domain size) with the empirically observed r̄T . We present
and discuss each lemma in turn.

Lemma 3.4 (Weighted regret bound). If X is a closed con-

vex set then any DOG-like scheme (Definition 3.3) satisfiesPt�1
k=0 r̄k hgk, xk � x?i  r̄t(2d̄t + r̄t)

p
G0

t�1, 8t � 1.

The proof of Lemma 3.4 appears in Appendix D.1. While it
is similar to the analysis of adaptive SGD (where ⌘t = ⇢p

Gt

(Gupta et al., 2017)), there are a couple of key differ-
ences. First, the DOG step sizes can increase, which typi-
cally makes adaptive gradient methods difficult to analyze
(Reddi et al., 2018). We bypass this difficulty by consider-
ing regret weighted by r̄k, which factors out the increasing
portion of the step size. Second, the standard adaptive SGD
analysis yields a bound proportional to d̄

2
t (typically further

bounded using the domain diameter) rather than r̄td̄t as in
our bound. This is a crucial difference, since—as we soon
argue—r̄t “cancels” when dividing through by

P
k<t r̄k,

while d̄t does not. We obtain the improved result by keep-
ing around the last term in a telescoping sum, a trick similar
to Carmon & Hinder (2022, Lemma 1).

Next, we handle the noise term in (4), recalling the notation
�t := gt �rf(xt) and ✓t,� := log 60 log(6t)

� .

Lemma 3.5 (Noise bound). Under Assumption 3.2, for all

� 2 (0, 1), T 2 N and L > 0 we have

P

9t  T :

�����

t�1X

k=0

r̄k h�k, xk � x?i

����� � bt

!
 �

where bt = 8r̄t�1d̄t�1

q
✓t,�Gt�1 + ✓2t,�L

2.

The proof of Lemma 3.5 appears in Appendix D.2 and
is based on a new concentration bound, Lemma D.2,
which allows us to bound the noise term despite having
no deterministic bound on the magnitude of the martin-
gale difference sequence r̄k h�k, xk � x?i. The proof of
Lemma D.2 involves combining time-uniform Bernstein
bounds (Howard et al., 2021) and a general bound on
the cumulative sums of sequence products (Lemma C.2),
which may be of independent interest.

Combining the above results, we obtain the following.

Proposition 3.6. For all � 2 (0, 1) and L > 0, if Assump-

tion 3.1, Assumption 3.2, and Definition 3.3 hold then with

probability at least 1 � �, for every t  T the optimality

gap f(x̄t)� f? is

O

0

@
(d0 + r̄t)

q
G0

t�1 +Gt�1✓t,� + L2✓2t,�
P

i<t r̄i/r̄t

1

A.

Proof. Follows from Equations (3) and (4), Lemma 3.4,
Lemma 3.5 and the fact that d̄t  d0 + r̄t.

The following algebraic fact shows that there is always
an iteration ⌧  T where the denominator

P
i<t

r̄i
r̄t

�
⌦(T/ log r̄T

r✏
); see Appendix C.3 for proof.

Lemma 3.7. Let s0, s1, . . . , sT be a positive nondecreas-

ing sequence. Then

max
tT

X

i<t

si

st
� 1

e

✓
T

log+(sT /s0)
� 1

◆
.

Combining Proposition 3.6 and Lemma 3.7 yields the fol-
lowing (see short proof in Appendix C.3).

Corollary 3.8. Under the setting of Proposition 3.6, let

⌧ 2 argmaxtT

P
i<⌧

r̄i
r̄t

. Then, with probability at least

1� �, the optimality gap f(x̄⌧)� f? is

O

0

@log+

✓
r̄⌧

r✏

◆ (d0 + r̄⌧)
q

G0
⌧�1 +G⌧�1✓⌧,� + L2✓2⌧,�

T

1

A.

Corollary 3.8 is immediately useful when X is bounded
but its exact diameter is unknown, for example when X is
a polytope as is common in two-stage stochastic program-
ming (Nemirovski et al., 2009).

Simplifying the bound for typical DOG trajectories.
Suppose that r̄T = O(d0) and note that Assump-
tion 3.2 DOG satisfies G

0
t = Gt  L

2
T . Substitut-

ing into Corollary 3.8 yields an optimality gap bound of
O

⇣
d0Lp

T
✓T,� log

r̄T
r✏

⌘
, which is minimax optimal up to a

term double-logarithmic in T and logarithmic in 1
r✏

(Agar-
wal et al., 2012).

Furthermore, in realistic DOG trajectories, even the multi-
plicative term log r̄T

r✏
is likely too pessimistic. This is be-

cause r̄t typically increases rapidly for t0 < 1000 steps
and then plateaus (see Figure 12 in the appendix). Conse-
quently, r̄i/r̄t � 1

10 for most of the optimization trajectory,
and

P
i<t

r̄i
r̄t

� t
10 � t0. Substituting back into Proposi-

tion 3.9, we get that x̄T is O
⇣

d0Lp
T�t0

✓T,�

⌘
suboptimal.

4

DOG is SGD’s Best Friend

DOG can run wild. While DOG is empirically stable,
there exist (non-stochastic) examples where r̄t grows much
larger than d0: in Appendix D.4 we describe a variant of
Nemirovski’s function (Nemirovski & Yudin, 1983; Ne-
mirovski, 1994) for which r̄t = r✏

p
t and therefore r̄t/d0

diverges as t grows. Next, we show that by slightly decreas-
ing the DOG step sizes we can guarantee that r̄T /d0  3
with high probability.

3.3. Iterate stability bound

This section introduces a new DOG-like step size scheme
whose iterates are guaranteed to remain bounded with high
probability. We call this scheme T-DOG, where the T
stands for “theoretical” or “tamed.” The step sizes depend
on the iteration budget T , the failure probability �, and an
upper bound L on the stochastic gradient norms (defined in
Assumption 3.2), and are given by ⌘t = r̄t/

p
G0

t, where

G
0
t = 84✓T,� log

2
+(t+ 1)(Gt�1 + 16✓T,�L

2), (T-DOG)

using G�1 := 0. The dependencies on T, � and L are weak,
since ✓t,� := log

⇣
log(6t)

�

⌘
and the L-dependent term (that

barely grows with t) will typically be smaller than the term
proportional to Gt�1.

With the definition of T-DOG in hand, we are ready to state
its key property: guaranteed iterate stability.

Proposition 3.9. Suppose that Assumptions 3.1 and 3.2

hold and r✏  3d0. For any � 2 (0, 1), and T 2 N, the

iterations of T-DOG satisfy P(r̄T > 3d0)  �.

We defer the full proof to Appendix D.5 and proceed to
highlight the key argument by proving the result in the
noiseless case.

Proof of Proposition 3.9 in the noiseless case. In this case
we have gk = rf(xk) and therefore hgk, xk � x?i �
f(xk) � f? � 0. Substituting into (5) and rearranging
gives d2k+1 � d

2
k  ⌘

2
kkgkk2. Assuming by induction that

r̄t  3d0 and telescoping yields

d
2
t+1 � d

2
0


tX

k=0

r̄
2
kkgkk2

G0
k

(i)
 r̄

2
t

84

tX

k=0

Gk �Gk�1

(Gk + L2) log2+
Gk+L2

L2

(ii)
 r̄

2
t

84
(iii)
 9d20

84
=) dt+1  2d0,

where (i) uses that kgkk2 = Gk � Gk�1 (with the short-
hand G�1 := 0) and

G
0
k � 84(Gk + L

2) log2+
Gk + L

2

L2

since Gk  kL
2 for all k  t, (ii) uses Lemma C.3 with

ak = Gk + L
2, and (iii) uses r̄t  3d0 again. There-

fore, rt+1  dt+1 + d0  3d0 by the triangle inequality,
completing the induction step.

Finally, we state the main guarantee for T-DOG.

Theorem 3.10. Suppose that Assumptions 3.1 and 3.2

hold. For any � 2 (0, 1
2), T 2 N, consider T it-

erations of T-DOG with r✏  3d0. Then for ⌧ 2
argmaxtT

P
i<⌧ r̄i/r̄t we have, with probability at least

1� 2�, that f(x̄⌧)� f? is upper bounded by

O

✓
c�,r✏,T

d0

p
G⌧ + L2

T

◆
 O

✓
c�,r✏,T

d0Lp
T

◆
,

where c�,r✏,T = log+ (T) log+

⇣
d0
r✏

⌘
log
⇣

log+(T)
�

⌘
.

Proof. Follows by Corollary 3.8, Proposition 3.9 and
(T-DOG).

Theorem 3.10 yields the optimal convergence bound (Agar-
wal et al., 2012) up to logarithmic factors. Moreover, to the
best of our knowledge our method is the first to produce an
iterate bound of the form r̄T = O(d0). In Appendix D.6
we discuss how this iterate bound can lead to better conver-
gence rates in least squares problems.

4. Experiments
To test DOG in practical scenarios, we perform extensive
experiments over a diverse set of tasks and model archi-
tectures in both the vision and language domains. We
construct a testbed that consists of over 20 tasks and 7
model architecture, covering natural language understand-
ing and computer vision (Section 4.1). In this testbed we
compare DOG to SGD and Adam (Section 4.2), show-
ing that DOG performs on par with tuned SGD, but not
as well as tuned Adam. Nevertheless, a per-layer ver-
sion of DOG (defined below) closes much of this gap with
Adam without requiring tuning. We also use our testbed
to analyze the sensitivity of DOG to its fixed parameters
(Section 4.3), demonstrate its effectiveness in convex lo-
gistic regression settings (Section 4.4). Finally, we ap-
ply DOG and L-DOG to fine-tuning a CLIP model on
ImageNet (Section 4.5) and training a CIFAR10 model
from scratch (Section 4.6), and provide preliminary com-
parison to previously-proposed tuning free methods (Sec-
tion 4.7). A PyTorch implementation of DOG is available
at https://github.com/formll/dog.

Layer-wise DOG. Neural models in general and
transformer-based models in particular often benefit from
using a per-parameter or per-layer step sizes (Kingma &
Ba, 2015; You et al., 2020). With this in mind, we consider

5

https://github.com/formll/dog

DOG is SGD’s Best Friend

a per-layer version of DOG, which we call L-DOG, where
we apply the (DOG) formula separately for every layer.
Namely, if we consider x

l
t to be the weights in layer3

l

at step t, then we set the learning rate for that layer to
be ⌘

l
t =

maxitkxl
i�xl

0kpP
itkgl

ik2+✏
, where ✏ = 10�8 is added to the

denominator for numerical stability. While we do not
provide theoretical guarantees for L-DOG, we show below
that it performs well in practice.

4.1. Fine-tuning testbed

Our main experiments focus on fine-tuning pre-trained
models, which allows us to experiment with advanced
models while also thoroughly tuning the learning rate for
the baseline optimizers, using an academic computational
budget.

Common hyperparameters. For each baseline algo-
rithm, we use best-practice learning rate schedule (cosine
annealing for all experiments, with a warm-up stage for
language experiments) and sweep over the peak learning
rate for each model/task pair. We give each pair a fixed
step budget designed to suffice for convergence, perform-
ing evaluation throughout the training. In all cases, we
use polynomial decay averaging4 as proposed by Shamir
& Zhang (2013), and select the best checkpoint (either av-
eraged or not) based on evaluation performance. We repeat
relevant learning setups with 5 different seeds, and report
the mean performance across the seeds. For simplicity, we
do not use weight decay throughout. The complete set of
hyper-parameters appears in Appendix E.

Natural language understanding (NLU). To test
DOG’s efficacy in modern NLU, we use it to fine-tune
transformer language models (Vaswani et al., 2017) on
the well-studied GLUE benchmark (Wang et al., 2019b)
which measures models’ performance on diverse text
classification tasks (listed in Appendix E.3).

Additionally, we fine-tune models on SQuAD 1.1, a ques-
tion answering dataset (Rajpurkar et al., 2016). We fine-
tune a RoBERTa-base (Liu et al., 2019) checkpoint and T5-
base (Raffel et al., 2020).5 For each task, we use the official
evaluation metrics defined in by Wang et al. (2019b) and
Rajpurkar et al. (2016) as well as their original proposed
splits, and report the results over the evaluation set.

Computer vision. We also fine-tune 5 models architec-
tures on 12 different computer vision tasks from the VTAB

3More precisely, our implementation treats each element in the
PyTorch .parameters() list as a separate layer.

4We apply the weight averaging with a fixed parameter (� =
8, following (Levy et al., 2020)); we did not try any other param-
eter in our experiments.

5Throughout the paper we often use the shorthand names
RoBERTa-b and T5-b, respectively.

benchmark (Zhai et al., 2019) (see Appendix E.3); of the
other 7 tasks in VTAB, 5 are trivial (accuracy greater than
99%) and 2 have small validation splits leading to unre-
liable model selection. We follow the training, validation
and test splits defined in VTAB, and report performance
on the test split (using the validation split for model selec-
tion). We fine-tune 5 models: VGG11 (Simonyan & Zis-
serman, 2014), ResNet50 (He et al., 2016), Densenet121
(Huang et al., 2017), ViT-B/32 (Dosovitskiy et al., 2021),
and ConvNeXt-T (Liu et al., 2022), where the ViT model
is pre-trained on ImageNet 21K and the others are trained
on ImageNet 1K (Deng et al., 2009).

Normalized performance metric. Since the perfor-
mance metrics in our testbed vary substantially across tasks
and models, they are challenging to compare in aggregate.
To address this, we consider the following notion of rel-

ative error difference (RED), that provides a normalized
measure of a difference between two model’s performance.
In particular, given a task and a model architecture, let errx
be the error6 of the model when trained with optimizer x
(Adam or SGD with a certain learning rate, or L-DOG)
and let errDOG be the error when trained with DOG. Then

RED(errx, errDOG) :=
errDOG � errx

errDOG
.

A positive RED value indicates that optimizer x is bet-
ter than DOG, and a negative value indicates the opposite.
When the absolute value of RED is beneath a few percent-
age points, the compared methods are nearly equivalent.

Setting r✏. Our theoretical analysis suggest that the par-
ticular choice of r✏ does not matter as long as it is suffi-
ciently small relative to the distance between the weight
initialization x0 to the optimum. Consequently, for vision
experiments we set r✏ = ↵ · (1 + kx0k) for ↵ = 10�4, as-
suming that the distance to the optimum is more than 0.01%
of the initialization norm. For language experiments, this
assumption turned out to be wrong (causing DOG to di-
verge in some cases), and we decreased ↵ to 10�6 for
DOG and to 10�8 for L-DOG, where the additive 10�6

term was too large in some layers. We believe that 10�6

and 10�8 should be good defaults for DOG and L-DOG,
respectively, though networks with batch normalization or
different initialization schemes could require a larger value;
see Section 4.3 for additional discussion.

4.2. Comparison of fine-tuning performance

Figure 2 depicts the median, IQR (inter-quantile range) and
mean RED of each model,7 when trained with SGD and

6We consider the error to be 1 minus the respective perfor-
mance metric, as detailed in Table 2.

7When aggregating results over tasks, we always report the
RED statistics across tasks, where for each task we average the
RED values over seeds. See Appendix E.5 for details.

6

DOG is SGD’s Best Friend

Figure 2. Relative error difference statistics (median, mean, and error bars showing IQR) across tasks for each model, as a function of
peak learning rate. The red horizontal line and shaded region indicate the median and IQR RED for L-DOG, respectively.

Adam with different peak learning rates. The figure shows
that, when comparing across models, there is no good de-
fault learning rate for neither SGD nor Adam. Moreover,
even for a single model only very specific SGD learning
rate performs well, while most are considerably inferior to
using DOG. Even when tuned to the best fixed learning-
rate value per model (which we refer to as model tuned

LR), some tasks may still fail (compared to DOG) as in-
dicated by the large IQR and the gap between the mean
(triangles) and the median RED (circles) in models such as
ViT-B/32 ad Densenet121. While Adam also requires tun-
ing, it is somewhat less sensitive than SGD to the choice
of peak learning rate. For a full breakdown of performance
per task, see Figure 5 and Tables 4 and 5 in Appendix F.1.

DOG performs similarly to well-tuned SGD in 79 out of the
80 model/task combinations in our testbed. The one excep-
tion is tuning T5-b on CoLA, where DOG behaves errati-
cally while SGD succeeds only with a few learning rates. In
contrast, both Adam and L-DOG achieved reasonable per-
formance consistently. DOG’s poor performance on CoLA
results in high RED measures for this case, which draw the
mean RED (triangles) above the median one in Figure 2 for
T5-b. We further analyze this exception in Appendix F.3
and show that choosing significantly smaller r✏ for DOG
alleviates the problem.

Figure 3 (top) compares DOG to SGD with model tuned
LR as defined above, as well as instance tuned LR, where
for each model/task pair we select the best learning rate,
at a computational expense 6–7 times larger than running
DOG. The performance of DOG remains close to that of
SGD with instance-tuned LR, with the largest median RED
observed for ResNet50 and ViT-B/32.

Figure 3 (bottom) compares DOG to model-tuned and
instance-tuned Adam, as well as to L-DOG. In a few cases
(namely ResNet50 and ConvNeXt-T) the gaps between
DOG and Adam are significant, and favor Adam. We hy-
pothesize this is due to Adam’s per-parameter step-sizes
and momentum mechanisms, which DOG does not exploit.
L-DOG, which has per-layer steps, has positive median
RED for all models, and narrows the gap between DOG
and Adam, particularly for ResNet50.

The instance-tuned baselines consume significantly more

Figure 3. RED median (bar chart) and IQR (error bars) of each
model on the set of applicable tasks. Top: Comparison with SGD
when the LR is optimally tuned per model (model tuned LR) or per
task (instance tuned LR). DOG is competitive with model-tuned
SGD and often performs nearly as well as instance-tuned SGD.
Bottom: Comparison of DOG with adaptive optimizers. L-DOG
closes most of the gap to Adam.

compute than DOG and L-DOG. In Appendix F.2 we
equalize the compute budget by reducing the number of
steps for SGD and Adam. This makes DOG outperform
instance-tune SGD in most cases, and brings L-DOG sub-
stantially closer to Adam.

4.3. Sensitivity of DOG’s fixed parameters

Initial movement size r✏. Our theory suggests that all
sufficiently small choices of r✏ should perform similarly,
but choosing r✏ too large (compared to the initial distance
to the optimum) can hurt the performance of the algorithm.
In Figure 4 (left) we plot the test performance as a function
of r✏ for 8 model/task combinations. For 7 out of the 8,
DOG is highly robust to the value of r✏ as long as it small
enough, as predicted. However, ResNet50 on CIFAR-100
(bottom left) is an exception, where smaller values of r✏

result in an accuracy drop. We hypothesize this is due to
scale invariance introduced by batch normalization (BN),
and provide supporting evidence for that in Appendix F.4
(Figure 8), where we show that DOG is insensitive to r✏

7

DOG is SGD’s Best Friend

Figure 4. Performance metrics of models trained with DOG as a
function of ⌘0 (left) or the base learning rate (right).

when we turn off BN. In the appendix we also provide a
complementary diagnostic for r✏ sensitivity by plotting ⌘t

vs. ⌘0 for different values of t (see Figure 6).

Base learning rate. For this experiment only, we con-
sider variants of DOG with different values of base learn-
ing, i.e., step sizes of the form ⌘t = c · maxitkxi�x0kpP

itkgik2
with

different values of c. We expect optimal performance when
c is close to 1. More specifically, we expect the algorithm
to be unstable when c > 1 and to be slower to converge
(and less likely to generalize well) when c < 1. As can be
observed in Figure 4 (right), values around c = 1 perform
well for all models. For smaller values, there is indeed in-
ferior performance in some models (mainly ResNet50 and
RoBERTa-b)—indicating T-DOG would not work well in
practice—while larger values result in divergence (in 6 out
of 8 cases). Hence, the useful range for c is very narrow
(about [0.5, 1.5]) and tuning it is not likely to produce sig-
nificant improvements. This is in contrast to Adam and
SGD which generally require searching over a space span-
ning a few orders of magnitude to properly train a model.

4.4. Convex optimization

We also evaluate DOG on convex optimization tasks,
matching the assumptions of our theoretical analysis. To do
so, we perform multi-class logistic regression on features
obtained from the computer vision models in our testbed,
i.e., linear probes. We find that model-tuned SGD performs
on par or worse than DOG, while instance-tuned SGD
barely gains any advantage (Figure 9), with RED values
well under 1% (corresponding to the difference between
accuracies 90% and 90.1%). Moreover, even in this sim-
ple setting, SGD is sensitive to the choice of learning rate,
which differ significantly between models (Figure 10).

Table 1. ImageNet top-1 validation accuracies after fine-tuning a
CLIP ViT-B/32 model for 25K training steps, with and without
polynomial decay averaging (see Section 4.5).

Algorithm LR Acc. w/o avg. Acc. w/ avg.

SGD

1e-03 60.70% 60.49%
3e-03 73.62% 73.54%
1e-02 76.82% 76.80%
3e-02 77.51% 77.54%
1e-01 75.73% 75.71%

DOG - 74.78% 77.22%

AdamW
1e-05 78.23% 78.25%
3e-05 79.04% 79.01%
1e-04 75.02% 74.97%

L-DOG - 78.20% 80.12%

4.5. Fine-tuning on ImageNet

To complement our main fine-tuning testbed, we perform
a more limited experiment involving ImageNet as a down-
stream task, which is more expensive to tune due its larger
scale. We fine-tune a ViT-B/32 CLIP model (Radford et al.,
2021) and compare DOG and L-DOG to training with SGD
as well as to an AdamW (Loshchilov & Hutter, 2019) train-
ing prescription similar to Wortsman et al. (2022); see Ap-
pendix E.7 for additional details. Table 1 shows the Ima-
geNet top-1 validation accuracies of the final model check-
points, with and without the polynomial decay averaging
used throughout our experiments. DOG performs similarly
to SGD, but both algorithm perform significantly worse
than AdamW, perhaps due to an insufficient iteration bud-
get. L-DOG performs well in this setting, improving on
AdamW by a little over 1 point.

4.6. Training from scratch

We conduct a preliminary experiment with training a model
from scratch, specifically a Wide ResNet 28-10 (Zagoruyko
& Komodakis, 2016) on CIFAR-10 (Krizhevsky, 2009);
see Appendix E.8 for details. Table 3 shows the test ac-
curacy of the final checkpoint, with and without the poly-
nomial averaging used throughout our experiments. Here
DOG performs on par with the setting’s canonical training
prescription of SGD with momentum 0.9 and learning rate
0.1 (Cubuk et al., 2019). In this setting Adam produces
poorer results, and L-DOG is 0.5 point worse than tuned
Adam with the best learning rate, perhaps due to not reach-
ing convergence.

4.7. Comparison to other tuning-free methods

We perform preliminary comparisons between DOG and
L-DOG and other methods for removing the learning rate
parameter: the Stochastic Polyak Step (Loizou et al., 2021),
and D-Adaptation (Defazio & Mishchenko, 2022). In both

8

DOG is SGD’s Best Friend

cases, we find that DOG and L-DOG provide better perfor-
mance on most tasks and on average (see Tables 6 and 7).
We provide detailed results in Appendix G, where we also
discuss the practical prospects of the bisection procedure
of Carmon & Hinder (2022).

5. Related Work
Previous attempts to design theoretically principled and
practical optimization algorithms that do not require learn-
ing rate tuning approach the problem from a variety of
perspectives, resulting in a large variety of proposed algo-
rithms. Rolinek & Martius (2018); Vaswani et al. (2019);
Paquette & Scheinberg (2020) lift classical line search tech-
nique from non-stochastic optimization to the stochastic
setting, while Berrada et al. (2020); Loizou et al. (2021)
do the same for the classical Polyak step size (Polyak,
1987; Hazan & Kakade, 2019). Asi & Duchi (2019) de-
velop a class of algorithms based on stochastic proximal
methods and demonstrate their improved robustness both
theoretically and empirically. Schaul et al. (2013) use a
stochastic quadratic approximation for designing learning
rates that maximize the expected one-step objective de-
crease. Chandra et al. (2022) nest hypergradient descent to
make a method that is insensitive to initial hyper-parameter
choices. However, none of these results are parameter-free
in the same sense as DOG: they either do not have con-
verges guarantees, or have suboptimality bounds that blow
up polynomially when the method’s parameters do not
match a problem-dependent value. In contrast, parameter-
free methods have converges rates that depend at most log-
arithmically on algorithmic parameters.

While the parameter-free optimization literature has fo-
cused mainly on theoretical schemes, a number of works
also include empirical studies (Orabona, 2014; Orabona &
Tommasi, 2017; Kempka et al., 2019; Chen et al., 2022).
In particular, Orabona & Tommasi (2017) build on coin-
betting schemes to design an algorithm for training neural
networks that has AdaGrad-style convergence guarantees
for quasi-convex functions, showing promising results on
neural network training problems. In recent work Chen
et al. (2022) obtain improved empirical results with an al-
gorithm that leverages coin betting and truncated linear
models. However, this method lacks theoretical guarantees.

In recent independent work Defazio & Mishchenko (2022)
propose a parameter-free dynamic step size schedule of
dual averaging. While our work has the same motiva-
tion and shares a number of technical similarities (includ-
ing the use of weighted regret bounds and an indepen-
dently obtained Lemma 3.7) the proposed algorithms are
quite different, and dual averaging is rarely used in train-
ing neural networks. (See additional discussion in Ap-
pendix G.3). Moreover, Defazio & Mishchenko (2022)

only prove parameter-free rates of convergence in the
non-stochastic setting, while we establish high probabil-
ity guarantees in the stochastic setting. Concurrently with
our work, Defazio & Mishchenko (2023) heuristically ex-
tended their dual averaging scheme to SGD- and Adam-like
algorithms, reporting promising experimental results.

Finally, a number neural network optimization methods—
LARS (You et al., 2017a), LAMB (You et al., 2017b),
Adafactor (Shazeer & Stern, 2018), and Fromage (Bern-
stein et al., 2020)—use the norm of neural network weights
to scale the step size. DOG and L-DOG are similar in also
using a norm to scale their step size, but they differ from
prior work by considering the distance from initialization
rather than the norm of the weights. We believe that this
difference is crucial in making DOG parameter-free, while
the above-mentioned method have a learning-rate param-
eter to tune (though Bernstein et al. (2020) report that a
single default value works well for across different tasks).

6. Limitations and Outlook
Our theoretical and empirical results place DOG as a
promising step toward a new generation of principled and
efficient tuning-free optimization algorithms. However,
much additional work is necessary for these algorithms to
become ubiquitous. First, it is important to understand how
to correctly combine DOG with proven technique such as
momentum, per-parameter learning rates, and learning rate
annealing—this is a challenge both from a theoretical and
a practical perspective. Second, it is important to gain a
better understanding of situations where DOG is more sen-
sitive to the choice of r✏ than theory would have us ex-
pect. Our preliminary investigations suggest a connection
to batch normalization, and following that lead could lead
to even more robust training methods. Finally, while our
experiments aim to cover a broad range of tasks and archi-
tectures, future work needs to explore DOG in additional
settings, particularly those involving training from scratch.

Acknowledgments
We thank Mitchell Wortsman, Simon Kornblith, Francesco
Orabona and our anonymous reviewers for their insight-
ful comments. This work was supported by the NSF-
BSF program, under NSF grant #2239527 and BSF grant
#2022663. MI acknowledges support from the Israeli coun-
cil of higher education. OH acknowledges support from
Pitt Momentum Funds, and AFOSR grant #FA9550-23-1-
0242. YC acknowledges support from the Israeli Science
Foundation (ISF) grant no. 2486/21, the Alon Fellowship,
the Yandex Initiative for Machine Learning, and the Len
Blavatnik and the Blavatnik Family Foundation.

9

DOG is SGD’s Best Friend

References
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Is-
ard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M.,
Levenberg, J., Mané, D., Monga, R., Moore, S., Mur-
ray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B.,
Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Va-
sudevan, V., Viégas, F., Vinyals, O., Warden, P., Watten-
berg, M., Wicke, M., Yu, Y., and Zheng, X. TensorFlow:
Large-scale machine learning on heterogeneous systems,
2015. URL https://www.tensorflow.org/.
Software available from tensorflow.org.

Agarwal, A., Bartlett, P. L., Ravikumar, P., and Wain-
wright, M. J. Information-theoretic lower bounds on
the oracle complexity of stochastic convex optimization.
IEEE Transactions on Information Theory, 58(5):3235–
3249, 2012.

Arrow, K. J. and Enthoven, A. C. Quasi-concave program-
ming. Econometrica: Journal of the Econometric Soci-

ety, pp. 779–800, 1961.

Asi, H. and Duchi, J. C. The importance of better models
in stochastic optimization. Proceedings of the National

Academy of Sciences, 116(46):22924–22930, 2019.

Bar Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo,
D., Magnini, B., and Szpektor, I. The second PASCAL
recognising textual entailment challenge. In Proceedings

of the Second PASCAL Challenges Workshop on Recog-

nising Textual Entailment, 2006.

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wain-
wright, M., Küttler, H., Lefrancq, A., Green, S., Valdés,
V., Sadik, A., et al. Deepmind lab. arXiv:1612.03801,
2016.

Bentivogli, L., Dagan, I., Dang, H. T., Giampiccolo, D.,
and Magnini, B. The fifth PASCAL recognizing tex-
tual entailment challenge. In Text Analysis Conference

(TAC), 2009.

Bernstein, J. R., Vahdat, A., Yue, Y., and Liu, M.-Y. On the
distance between two neural networks and the stability
of learning. arXiv:2002.03432, 2020.

Berrada, L., Zisserman, A., and Kumar, M. P. Training neu-
ral networks for and by interpolation. In International

Conference on Machine Learning (ICML), 2020.

Bhaskara, A., Cutkosky, A., Kumar, R., and Purohit, M.
Online learning with imperfect hints. In International

Conference on Machine Learning (ICML), 2020.

Carmon, Y. and Hinder, O. Making SGD parameter-free.
In Conference on Learning Theory (COLT), 2022.

Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C.,
and Liang, P. S. Unlabeled data improves adversarial
robustness. Advances in Neural Information Processing

Systems (NeurIPS), 2019.

Cer, D. M., Diab, M. T., Agirre, E., Lopez-Gazpio, I.,
and Specia, L. Semeval-2017 task 1: Semantic textual
similarity multilingual and crosslingual focused evalua-
tion. In International Workshop on Semantic Evaluation,
2017.

Chandra, K., Xie, A., Ragan-Kelley, J., and Meijer, E. Gra-
dient descent: The ultimate optimizer. Advances in Neu-

ral Information Processing Systems (NeurIPS), 2022.

Chen, K., Langford, J., and Orabona, F. Better parameter-
free stochastic optimization with ODE updates for coin-
betting. In AAAI Conference on Artificial Intelligence,
2022.

Cheng, G., Han, J., and Lu, X. Remote sensing image scene
classification: Benchmark and state of the art. Proceed-

ings of the IEEE, 105(10):1865–1883, 2017.

Cimpoi, M., Maji, S., Kokkinos, I., Mohamed, S., and
Vedaldi, A. Describing textures in the wild. In Con-

ference on Computer Vision and Pattern Recognition

(CVPR), 2014.

Comet.ML. Comet.ML home page, 2021. URL https:
//www.comet.ml/.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. AutoAugment: Learning augmentation strategies
from data. In Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2019.

Cutkosky, A. Artificial constraints and hints for unbounded
online learning. In Conference on Learning Theory

(COLT), 2019.

Cutkosky, A. and Orabona, F. Black-box reductions for
parameter-free online learning in Banach spaces. In Con-

ference on Learning Theory (COLT), 2018.

Dagan, I., Glickman, O., and Magnini, B. The PASCAL
recognising textual entailment challenge. In Machine

learning challenges. Evaluating predictive uncertainty,

visual object classification, and recognising tectual en-

tailment. Springer, 2006.

Davis, D. and Drusvyatskiy, D. Stochastic model-based
minimization of weakly convex functions. SIAM Journal

on Optimization, 29(1):207–239, 2019.

Defazio, A. and Mishchenko, K. Parameter free dual av-
eraging: Optimizing lipschitz functions in a single pass.
In OPT 2022: NeurIPS Workshop on Optimization for

Machine Learning, 2022.

10

https://www.tensorflow.org/
https://www.comet.ml/
https://www.comet.ml/

DOG is SGD’s Best Friend

Defazio, A. and Mishchenko, K. Learning-rate-free learn-
ing by D-adaptation. In International Conference on Ma-

chine Learning (ICML), 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. ImageNet: A large-scale hierarchical image
database. In Conference on Computer Vision and Pat-

tern Recognition (CVPR), 2009.

Dolan, W. B. and Brockett, C. Automatically construct-
ing a corpus of sentential paraphrases. In International

Workshop on Paraphrasing (IWP2005), 2005.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference

on Learning Representations (ICLR), 2021.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient
methods for online learning and stochastic optimization.
Journal of Machine Learning Research, 12(7), 2011.

Faw, M., Tziotis, I., Caramanis, C., Mokhtari, A., Shakkot-
tai, S., and Ward, R. The power of adaptivity in
SGD: Self-tuning step sizes with unbounded gradients
and affine variance. In Conference on Learning Theory

(COLT), 2022.

Fei-Fei, L., Fergus, R., and Perona, P. Learning genera-
tive visual models from few training examples: An in-
cremental Bayesian approach tested on 101 object cate-
gories. In CVPR Workshop, 2004.

Giampiccolo, D., Magnini, B., Dagan, I., and Dolan, B.
The third PASCAL recognizing textual entailment chal-
lenge. In ACL-PASCAL Workshop on Textual Entailment

and Paraphrasing, 2007.

Gupta, V., Koren, T., and Singer, Y. A unified approach
to adaptive regularization in online and stochastic opti-
mization. arXiv:1706.06569, 2017.

Gupta, V., Koren, T., and Singer, Y. Shampoo: Precondi-
tioned stochastic tensor optimization. In International

Conference on Machine Learning (ICML), 2018.

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers,
R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J.,
Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van
Kerkwijk, M. H., Brett, M., Haldane, A., del Rı́o, J. F.,
Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C.,
and Oliphant, T. E. Array programming with NumPy.
Nature, 585(7825):357–362, 2020.

Hazan, E. and Kakade, S. Revisiting the Polyak step size.
arXiv:1905.00313, 2019.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. Conference on Computer Vi-

sion and Pattern Recognition (CVPR), 2016.

Hinder, O., Sidford, A., and Sohoni, N. Near-optimal meth-
ods for minimizing star-convex functions and beyond. In
Conference on Learning Theory (COLT), 2020.

Howard, S. R., Ramdas, A., McAuliffe, J., and Sekhon,
J. Time-uniform, nonparametric, nonasymptotic confi-
dence sequences. The Annals of Statistics, 49(2):1055–
1080, 2021.

Huang, G., Liu, Z., and Weinberger, K. Q. Densely con-
nected convolutional networks. In Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017.

Iyer, S., Dandekar, N., and Csernai, K. First quora dataset
release: Question pairs, 2017. URL https://data
.quora.com/First-Quora-Dataset-Relea
se-Question-Pairs.

Jacobsen, A. and Cutkosky, A. Parameter-free mirror de-
scent. In Conference on Learning Theory (COLT), 2022.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei,
L., Lawrence Zitnick, C., and Girshick, R. CLEVR: A
diagnostic dataset for compositional language and ele-
mentary visual reasoning. In Conference on Computer

Vision and Pattern Recognition (CVPR), 2017.

Kaggle and EyePacs. Kaggle diabetic retinopathy detec-
tion, 2015. URL https://www.kaggle.com/c/d
iabetic-retinopathy-detection/data.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the polyak-łojasiewicz condition. In European Confer-

ence on Machine Learning and Principles and Practice

of Knowledge Discovery in Databases (ECML/PKDD),
2016.

Kempka, M., Kotlowski, W., and Warmuth, M. K. Adap-
tive scale-invariant online algorithms for learning linear
models. In International Conference on Machine Learn-

ing (ICML), 2019.

Kingma, D. P. and Ba, J. ADAM: A method for stochastic
optimization. In International Conference on Learning

Representations (ICLR), 2015.

Kleinberg, B., Li, Y., and Yuan, Y. An alternative view:
When does SGD escape local minima? In International

Conference on Machine Learning (ICML), 2018.

11

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data

DOG is SGD’s Best Friend

Krizhevsky, A. Learning multiple layers of features from
tiny images. Technical report, University of Toronto,
2009.

Levesque, H. J., Davis, E., and Morgenstern, L. The Wino-
grad schema challenge. In International Conference on

Principles of Knowledge Representation and Reasoning,
2011.

Levy, D., Carmon, Y., Duchi, J. C., and Sidford, A. Large-
scale methods for distributionally robust optimization.
Advances in Neural Information Processing Systems

(NeurIPS), 2020.

Lhoest, Q., Villanova del Moral, A., Jernite, Y., Thakur,
A., von Platen, P., Patil, S., Chaumond, J., Drame, M.,
Plu, J., Tunstall, L., Davison, J., Šaško, M., Chhablani,
G., Malik, B., Brandeis, S., Le Scao, T., Sanh, V., Xu,
C., Patry, N., McMillan-Major, A., Schmid, P., Gugger,
S., Delangue, C., Matussière, T., Debut, L., Bekman, S.,
Cistac, P., Goehringer, T., Mustar, V., Lagunas, F., Rush,
A., and Wolf, T. Datasets: A community library for
natural language processing. In Conference on Empiri-

cal Methods in Natural Language Processing (EMNLP):

System Demonstrations, 2021.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
RoBERTa: A robustly optimized BERT pretraining ap-
proach. arXiv:1907.11692, 2019.

Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T.,
and Xie, S. A ConvNet for the 2020s. In Conference

on Computer Vision and Pattern Recognition (CVPR),
2022.

Loizou, N., Vaswani, S., Laradji, I. H., and Lacoste-Julien,
S. Stochastic Polyak step-size for SGD: An adaptive
learning rate for fast convergence. In International

Conference on Artificial Intelligence and Statistics (AIS-

TATS), 2021.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In International Conference on Learning Rep-

resentations (ICLR), 2019.

Luo, H. and Schapire, R. E. Achieving all with no pa-
rameters: AdaNormalHedge. In Conference on Learning

Theory (COLT), 2015.

Mangasarian, O. L. Pseudo-convex functions. In Stochastic

optimization models in finance. Elsevier, 1975.

Matthey, L., Higgins, I., Hassabis, D., and Lerchner,
A. dSprites: Disentanglement testing Sprites dataset.
https://github.com/deepmind/dsprites-dataset/, 2017.

Mhammedi, Z. and Koolen, W. M. Lipschitz and
comparator-norm adaptivity in online learning. In Con-

ference on Learning Theory (COLT), 2020.

Nemirovski, A. On parallel complexity of nonsmooth con-
vex optimization. Journal of Complexity, 10(4):451–
463, 1994.

Nemirovski, A. and Yudin, D. Problem complexity and

method efficiency in optimization. Wiley-Interscience,
1983.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
Robust stochastic approximation approach to stochastic
programming. SIAM Journal on Optimization, 19(4):
1574–1609, 2009.

Nesterov, Y. and Polyak, B. T. Cubic regularization of
Newton method and its global performance. Mathemat-

ical Programming, 108(1):177–205, 2006.

Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B.,
and Ng, A. Reading digits in natural images with unsu-
pervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning 2011,
2011.

Nilsback, M.-E. and Zisserman, A. Automated flower clas-
sification over a large number of classes. In Indian Con-

ference on Computer Vision, Graphics and Image Pro-

cessing (ICVGIP), 2008.

Orabona, F. Simultaneous model selection and op-
timization through parameter-free stochastic learning.
Advances in Neural Information Processing Systems

(NeurIPS), 2014.

Orabona, F. and Pál, D. Coin betting and parameter-free
online learning. In Advances in Neural Information Pro-

cessing Systems (NeurIPS), 2016.

Orabona, F. and Pál, D. Parameter-free stochas-
tic optimization of variationally coherent functions.
arXiv:2102.00236, 2021.

Orabona, F. and Tommasi, T. Training deep networks with-
out learning rates through coin betting. In Advances

in Neural Information Processing Systems (NeurIPS),
2017.

Paquette, C. and Scheinberg, K. A stochastic line search
method with expected complexity analysis. SIAM Jour-

nal on Optimization, 30(1):349–376, 2020.

Parkhi, O. M., Vedaldi, A., Zisserman, A., and Jawahar, C.
Cats and dogs. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2012.

12

DOG is SGD’s Best Friend

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,
Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B.,
Fang, L., Bai, J., and Chintala, S. PyTorch: An im-
perative style, high-performance deep learning library.
In Advances in Neural Information Processing Systems

(NeurIPS), 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011.

Polyak, B. T. Introduction to Optimization. Optimization
Software, Inc, 1987.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International Conference on

Machine Learning (ICML), 2021.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21:
1–67, 2020.

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P.
SQuAD: 100,000+ questions for machine comprehen-
sion of text. In Conference on Empirical Methods in

Natural Language Processing (EMNLP), 2016.

Reddi, S. J., Kale, S., and Kumar, S. On the convergence
of Adam and beyond. In International Conference on

Learning Representations (ICLR), 2018.

Rolinek, M. and Martius, G. L4: Practical loss-based step-
size adaptation for deep learning. In Advances in Neural

Information Processing Systems (NeurIPS), 2018.

Schaul, T., Zhang, S., and LeCun, Y. No more pesky
learning rates. In International Conference on Machine

Learning (ICML), 2013.

Shamir, O. and Zhang, T. Stochastic gradient descent for
non-smooth optimization: Convergence results and opti-
mal averaging schemes. In International Conference on

Machine Learning (ICML), 2013.

Shazeer, N. and Stern, M. Adafactor: Adaptive learning
rates with sublinear memory cost. In International Con-

ference on Machine Learning (ICML), 2018.

Simonyan, K. and Zisserman, A. Very deep convo-
lutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning,
C. D., Ng, A., and Potts, C. Recursive deep models for
semantic compositionality over a sentiment treebank. In
Conference on Empirical Methods in Natural Language

Processing (EMNLP), 2013.

Streeter, M. and McMahan, H. B. No-regret algorithms for
unconstrained online convex optimization. In Advances

in Neural Information Processing Systems (NeurIPS),
2012.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. Going deeper with convolutions. In Con-

ference on Computer Vision and Pattern Recognition

(CVPR), 2015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information

Processing Systems (NeurIPS), 2017.

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel,
G., and Lacoste-Julien, S. Painless stochastic gradi-
ent: Interpolation, line-search, and convergence rates.
In Advances in Neural Information Processing Systems

(NeurIPS), 2019.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A.
R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Po-
lat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde,
D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H.,
Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contrib-
utors. SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python. Nature Methods, 17:261–
272, 2020.

Vovk, V. On-line regression competitive with reproduc-
ing kernel hilbert spaces. In Theory and Applications of

Models of Computation (TAMC), 2006.

Wang, A., Pruksachatkun, Y., Nangia, N., Singh, A.,
Michael, J., Hill, F., Levy, O., and Bowman, S. R. Super-
GLUE: A stickier benchmark for general-purpose lan-
guage understanding. In Advances in Neural Informa-

tion Processing Systems (NeurIPS), 2019a.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. R. GLUE: A multi-task benchmark and
analysis platform for natural language understanding. In
International Conference on Learning Representations

(ICLR), 2019b.

13

DOG is SGD’s Best Friend

Ward, R., Wu, X., and Bottou, L. AdaGrad stepsizes:
Sharp convergence over nonconvex landscapes. In In-

ternational Conference on Machine Learning (ICML),
2019.

Warstadt, A., Singh, A., and Bowman, S. R. Neural net-
work acceptability judgments. Transactions of the Asso-

ciation for Computational Linguistics, 7:625–641, 2019.

Wes McKinney. Data Structures for Statistical Computing
in Python. In Proceedings of the 9th Python in Science

Conference, 2010.

Wightman, R. PyTorch image models. https://gith
ub.com/rwightman/pytorch-image-model
s, 2019.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In Conference of the North American

Chapter of the Association for Computational Linguis-

tics (NAACL), 2018.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite,
Y., Plu, J., Xu, C., Le Scao, T., Gugger, S., Drame, M.,
Lhoest, Q., and Rush, A. Transformers: State-of-the-art
natural language processing. In Conference on Empiri-

cal Methods in Natural Language Processing (EMNLP):

System Demonstrations, 2020.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., et al. Model
soups: averaging weights of multiple fine-tuned models
improves accuracy without increasing inference time. In
International Conference on Machine Learning (ICML),
2022.

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba,
A. Sun database: Large-scale scene recognition from
abbey to zoo. In Conference on Computer Vision and

Pattern Recognition (CVPR), 2010.

Xiao, J., Ehinger, K. A., Hays, J., Torralba, A., and Oliva,
A. Sun database: Exploring a large collection of scene
categories. International Journal of Computer Vision,
119(1):3–22, 2016.

You, Y., Gitman, I., and Ginsburg, B. Large batch training
of convolutional networks. arXiv:1708.03888, 2017a.

You, Y., Gitman, I., and Ginsburg, B. Scaling SGD batch
size to 32k for ImageNet training. arXiv:1708.03888,
2017b.

You, Y., Li, J., Reddi, S., Hseu, J., Kumar, S., Bhojanapalli,
S., Song, X., Demmel, J., Keutzer, K., and Hsieh, C.-
J. Large batch optimization for deep learning: Training
BERT in 76 minutes. In International Conference on

Learning Representations (ICLR), 2020.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In British Machine Vision Conference (BMVC), 2016.

Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P.,
Riquelme, C., Lucic, M., Djolonga, J., Pinto, A. S.,
Neumann, M., Dosovitskiy, A., Beyer, L., Bachem, O.,
Tschannen, M., Michalski, M., Bousquet, O., Gelly,
S., and Houlsby, N. A large-scale study of representa-
tion learning with the visual task adaptation benchmark.
arXiv:1910.04867, 2019.

Zhang, J. and Cutkosky, A. Parameter-free regret in high
probability with heavy tails. In Advances in Neural In-

formation Processing Systems (NeurIPS), 2022.

Zhang, Z., Cutkosky, A., and Paschalidis, I. PDE-based
optimal strategy for unconstrained online learning. In
International Conference on Machine Learning (ICML),
2022.

Zhou, Y., Yang, J., Zhang, H., Liang, Y., and Tarokh, V.
SGD converges to global minimum in deep learning via
star-convex path. In International Conference on Learn-

ing Representations (ICLR), 2019.

14

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

DOG is SGD’s Best Friend

A. Relaxing the Convexity Assumption
This section describes relaxations of convexity under which our main theoretical results still hold. In particular, our results
naturally extend to star-convex functions (Nesterov & Polyak, 2006) which satisfy

f(x)� f?  hrf(x), x� x?i for all x 2 X .

Our results also extend (with changed constants) to quasarconvex functions (Hinder et al., 2020), which require that f(x)�
f?  c hrf(x), x� x?i holds for some c < 1 and all x 2 X . A further relaxation of star convexity requires it to hold
only along the optimization trajectory:
Assumption A.1 (Zhou et al. (2019, Definition 2)). There exists x? 2 argminx f(x) and constant c < 1 such that the
iterates of SGD satisfy

f(xk)� f?  c hrf(xk), xk � x?i for all k

almost surely.

Zhou et al. (2019) introduce this notion of a “star-convex path” and provide some empirical evidence that it may hold when
training deep neural networks with SGD (see also Kleinberg et al. (2018) for a related assumption). Zhou et al. (2019) also
prove that the assumption suffices to prove that SGD converges to the global minimizer; it suffices for DOG for similar
reasons.

When substituting Assumption 3.1 with Assumption A.1 our analysis goes through unchanged, except we can no longer use
Jensen’s inequality to argue directly about the suboptimality of the point x̄⌧ . Instead, Theorem 3.10 with Assumption A.1
says that, with probability at least 1� �,

⌧�1X

k=0

!k(f(xk)� f?)  O

✓
c�,r✏,T · d0

p
G⌧ + L2

T

◆
,

with !k := r̄kPt�1
i=0 r̄i

and ⌧ and c�,r✏,T as defined in Theorem 3.10. (Note that Assumption A.1 implies
Pt�1

k=0 !k(f(xk)�

f?) 
Pt�1

k=0 !k hrf(xk), xk � x?i which replaces (3)).

We can turn the above bound into a constnat-probability guarantee for a specific T-DOG iterate xK by sampling K ⇠ !

and using Markov’s inequality:

P

f(xK)� f?  e

⌧�1X

k=0

!k(f(xk)� f?)

!
 e

�1
.

To obtain a high probability guarantee, we can make l = dlog 1
� e independent draws from !, denoted K1, . . . ,Kl and use

the fact that

P

min
il

f(xKi)� f?  e

⌧�1X

k=0

!k(f(xk)� f?)

!
 �.

Finding the i that minimizes f(xKi) requires a logarithmic number of evaluations of the exact objective. When this is not
feasible, we can instead consider a statistical learning setup where we have sample access to stochastic functions F (x)
such that EF (x) = f(x) for all x and, almost surely, F is L? Lipschitz in a ball of radius 3d0 around x0. (The stochastic
subgradient oracle G(x) is then implemented by sampling F and returning its subgradient at x). We can then sample T

new stochastic functions F1, . . . , FT and select K? 2 argmink2{K1,...,Kl}
PT

i=1 Fi(xk). Straightforward application of
Hoeffding’s inequality shows that (when r̄T  3d0)

f(xK?)� f?  min
il

f(xKi)� f? +O

L?d0p

T

r
log

1

�

!

with probability at least 1� �.

We remark that the literature contains a plethora of other convexity relaxations such as quasiconvexity (Arrow & Enthoven,
1961), pseudoconvexity (Mangasarian, 1975), Polyak-Łojasiewicz conditons (Karimi et al., 2016) and weak convexity
(Davis & Drusvyatskiy, 2019). Exploring the convergence of DOG under these additional convexity relaxations is left to
future work.

15

DOG is SGD’s Best Friend

B. Relaxing the Global Stochastic Gradient Bound Assumption
Our results continue to hold essentially unchanged if we replace Assumption 3.2 (globally bounded stochastic gradient
norm) with the following.
Assumption B.1 (Pointwise bounded stochastic gradients). There exists some continuous function ` : X ! R such that
kG(x)k  `(x) almost surely.

In particular, if we set
L? := max

x2X :kx�x0k3kx0�x?k
`(x)

then Theorem 3.10 holds under Assumption B.1 for any L � L?. For full details and proof, refer to the arXiv version of
our paper, available at https://arxiv.org/abs/2302.12022, where we use Assumption B.1 throughout.

Assumption B.1 meaningfully relaxes Assumption 3.2 when ` can grow very large in X . For example, consider uncon-
strained least squares problems (with X = Rm) with stochastic gradient oracle G(x) = (ha, xi � b)a for random a 2 Rm

and b 2 R, such that kak  1 and |b|  1 hold with probability 1. In this case, there is no global upper bound on kG(x)k,
but Assumption B.1 holds with `(x) = kxk+ 1 and L? = 3kx?k+ 1 (assuming x0 = 0).

However, to apply the (T-DOG) formula, one still requires an a-priori upper bound on L?. In the above least-squares
example, it is possible to bound L? given an upper bound D on d0 = kx?k. However, if such a bound is available, then it
is also possible to constrain the domain to a ball of radius D, where a global norm bound holds. Indeed, for all examples
that we are aware of that have an a-priori bound on L?, this bound on L? arises from a bound on d0.8 In the arXiv version
of our paper we solve this issue by changing the T-DOG formula to ⌘t = r̄t/

p
G0

t with

G
0
t = 84✓2T,� log

2
+

✓
t¯̀2t
¯̀2
0

◆
(Gt�1 + 16¯̀2t)

where ¯̀
t := maxit `(xi). This variant of T-DOG attains essentially the same guarantees as the one presented here, but

requires no prior knowledge of L?.

We note that Assumption B.1 and techniques similar to the T-DOG variant described above have previously appeared in
the parameter-free online learning literature (Cutkosky, 2019; Mhammedi & Koolen, 2020). However, these works do not
also guarantee that the iterates remain close to the optimal solution and therefore do not obtain our dependence on the local
Lipshitz constant L?.

C. Useful Algebraic Facts
C.1. Lemma C.1

Lemma C.1. Let a0, . . . , at be a nondecreasing sequence of nonnegative numbers. Then

tX

k=1

ak � ak�1p
ak

 2(
p
at �

p
a0).

Proof. We have
tX

k=1

ak � ak�1p
ak

=
tX

k=1

(
p
ak �p

ak�1)(
p
ak +

p
ak�1)p

ak
 2

tX

k=1

�p
ak �p

ak�1

�
 2(

p
at �

p
a0).

C.2. Lemma C.2

Lemma C.2. Let a1, . . . , aT and b1, . . . , bT be sequences in R such that {ai} is nonnegative and nondecreasing. Then,

for all t  T , �����

tX

i=1

aibi

�����  2at max
it

�����

tX

i=1

bi

�����.

8We thank an anonymous reviewer for pointing this out.

16

https://arxiv.org/abs/2302.12022

DOG is SGD’s Best Friend

Proof. Let a0i = ai � ai�1 and Bi =
P

ji bi. Then (by discrete integration by parts)

tX

i=1

aibi =
tX

i=1

ai (Bi �Bi�1) =
t�1X

i=1

(ai � ai+1)Bi + atBt = atBt �
t�1X

i=1

a
0
i+1Bi.

Therefore
�����

tX

i=1

aibi

�����
(i)
 |atBt|+

t�1X

i=1

��a0i+1

��
!
max
i<t

|Bi| 

|at|+

t�1X

i=1

|ai+1 � ai|
!
max
it

|Bi|
(ii)
 2at max

it
|Bi| ,

where we used (i) the triangle and Hölder’s inequality, and (ii) that at is nonnegative and nondecreasing and thereforePt�1
i=1 |ai+1 � ai| = at � a1  at.

C.3. Proof of Lemma 3.7

Proof. Define K := dlog(sT /s0)e, and n := b T
K c. Then, we have

log

✓
sT

s0

◆
�

K�1X

k=0

log

✓
sn(k+1)

snk

◆
� K min

k<K
log

✓
sn(k+1)

snk

◆
.

Rearranging and using the definition of K gives

min
k<K

log

✓
sn(k+1)

snk

◆


log
⇣

sT
s0

⌘

K
 1 =) min

k<K

sn(k+1)

snk
 e.

where the implication follows from monotonicity of the exponential function. Therefore,

max
tT

X

i<t

si

st
� max

t2[n,T]
n
st�n

st
= max

kK
n
sn(k�1)

snk
� ne

�1 = e
�1

�
T

dlog(sT /s0)e

⌫
� e

�1 T

log(sT /s0) + 1
� e

�1
,

where the first inequality uses that s is positive nondecreasing sequence and the second inequality uses mink<K
sn(k+1)

snk
 e

as shown above.

C.4. Lemma C.3

Recall that log+(z) := 1 + log(t).

Lemma C.3. Let a�1, a0, a1, . . . , at be a nondecreasing sequence of nonnegative numbers, then

tX

k=0

ak � ak�1

ak log
2
+(ak/a�1)

 1.

Proof. We have

tX

k=0

ak � ak�1

ak log
2
+(ak/a�1)


tX

k=0

Z ak/a�1

ak�1/a0

d↵

↵ log2+(↵)
=

Z at/a�1

1

d↵

↵ log2+(↵)


Z 1

1

d↵

↵ log2+(↵)
=


1

1 + log(↵)

�1

1

= 1.

17

DOG is SGD’s Best Friend

D. Proofs for Section 3
D.1. Proof of Lemma 3.4

Proof. Using xk+1 = ProjX (xk � ⌘kgk) we obtain the standard inequality d
2
k+1  kxk � ⌘kgk � x?k2 = d

2
k �

2⌘k hgk, xk � x?i+ ⌘
2
kkgkk2. Rearranging this gives:

hgk, xk � x?i 
d
2
k � d

2
k+1

2⌘k
+

⌘kkgkk2

2
. (5)

Therefore,
Pt�1

k=0 r̄k hgk, xk � x?i is at most

1

2

t�1X

k=0

r̄k

⌘k
(d2k � d

2
k+1)

| {z }
(A)

+
1

2

t�1X

k=0

r̄k⌘kkgkk2

| {z }
(B)

.

We will bound the terms (A) and (B) in turn, beginning with the former:

(A) =
t�1X

k=0

q
G0

k(d
2
k � d

2
k+1) = d

2
0

p
G0

0 � d
2
t

q
G0

t�1 +
t�1X

k=1

d
2
k

✓q
G0

k �
q
G0

k�1

◆

(i)
 d̄

2
t

p
G0

0 � d
2
t

q
G0

t�1 + d̄
2
t

t�1X

k=1

✓q
G0

k �
q
G0

k�1

◆
=
q

G0
t�1

�
d̄
2
t � d

2
t

� (ii)
 4r̄td̄t

q
G0

t�1.

Inequality (i) uses dk  d̄t and that G0
k is nondecreasing as per Definition 3.3. Inequality (ii) holds since, for s 2

argmaxkt dk, we have d̄
2
t � d

2
t = d

2
s � d

2
t = (ds � dt)(ds + dt)  kxs � xtk(ds + dt)  (r̄s + r̄t)(ds + dt)  4r̄td̄t.

Bounding the second term (B), we have:

(B) =
t�1X

k=0

r̄
2
kkgkk2p

G0
k


t�1X

k=0

r̄
2
kkgkk2p

Gk
 r̄

2
t

t�1X

k=0

kgkk2p
Gk

 2r̄2t
p
Gt�1,

where the final inequality uses the standard Lemma C.1 with ak = Gk =
P

ikkgik2.

D.2. Proof of Lemma 3.5

We begin by citing the following corollary of a general bound due to Howard et al. (2021). (Recall that ✓t,� :=

log 60 log(6t)
�).

Corollary D.1 (Carmon & Hinder (2022, Corollary 1)). Let c > 0 and Xt be a martingale difference sequence adapted

to Ft such that |Xt|  c with probability 1 for all t. Then, for all � 2 (0, 1), and X̂t 2 Ft�1 such that |X̂t|  c with

probability 1,

P

0

@9t  T :

�����

tX

s=1

Xs

����� � 4

vuut✓t,�

tX

s=1

⇣
Xs � X̂s

⌘2
+ c2✓2t,�

1

A  �.

Next, we connect Corollary D.1 with a handy algebraic fact (Lemma C.2) to obtain the following result, which underpins
Lemma 3.5.

Lemma D.2. Let S be the set of nonnegative and nondecreasing sequences. Let c > 0 and let Xt be a martingale difference

sequence adapted to Ft such that |Xt|  c with probability 1 for all t. Then, for all � 2 (0, 1), and X̂t 2 Ft�1 such that

|X̂t|  c with probability 1,

P

0

@9t  T, 9{yi}1i=1 2 S :

�����

tX

i=1

yiXi

����� � 8yt

vuut✓t,�

tX

i=1

⇣
Xi � X̂i

⌘2
+ c2✓2t,�

1

A  �.

18

DOG is SGD’s Best Friend

Proof. Follows from Lemma C.2 (with yi and Xi taking the roles of ai and bi, respectively), and Corollary D.1 that bounds
maxit

���
P

it Xi

��� for all t  T .

Proof of Lemma 3.5. For k 2 [T] define the random variables:

Yk = r̄kd̄k, Xk =

⌧
�k,

xk � x?

d̄k

�
, and X̂k = �

⌧
rf(xk),

xk � x?

d̄k

�
.

From these definitions we get
t�1X

k=0

YkXk =
t�1X

k=0

r̄k h�k, xk � x?i .

Therefore,

P

9t  T :

�����

t�1X

k=0

r̄k h�k, xk � x?i

����� � 8r̄t�1d̄t�1

q
✓t,�Gt�1 + L2✓2t,�

!

 P

0

@9t  T :

�����

t�1X

k=0

YkXk

����� � 8Yt

vuut✓t,�

t�1X

k=0

⇣
Xk � X̂k

⌘2
+ L2✓2t,�

1

A  �

where the last inequality uses Lemma D.2.

D.3. Proof of Corollary 3.8

Proof. If T > 2 log+(r̄T /r✏) then the corollary follows by Proposition 3.6 and Lemma 3.7 with st = r̄t. For the corner
case when T  2 log+(r̄T /r✏) we use that f(x̄⌧) � f?  O(Ld̄⌧)  O(L(r̄⌧ + d0)) where the first inequality uses (3),
Cauchy-Schwarz and that krf(xt)k  L; the second inequality uses the triangle inequality.

D.4. DOG can Diverge on a Pathological Instance

Consider the following variant of Nemirovski’s function (Nemirovski & Yudin, 1983; Nemirovski, 1994) defined on Rm:

f(x) = max
im

max

⇢
[x]i,�

1p
m
[x]i

�
,

where [x]i denotes the i’th coordinate of x and [x0]i = 10r✏/
p
m for all i, so that d0 = 10r✏ > r✏. We show that applying

DOG on this function gives r̄T /d0 =
p
T/10 for all T  m, meaning that the ratio r̄T /d0 can be made arbitrarily large

by increasing T and m.

Define
i(x) := min argmax

im

⇢
[x]i,�

[x]ip
m

�
,

i.e., i(x) is the smallest coordinate which is candidate for providing a subgradient. Using this notation, a valid subgradient
for f is:

rf(x) =

(
ei(x) xi(x) > 0

� 1p
m
ei(x) otherwise

where ej is a vector with one in the jth entry and zero elsewhere. With this subgradient choice for k  m the iterates
become:

[xk]j =

(
10r✏/

p
m� r✏ j < k

10r✏/
p
m j � k

(6)

and therefore r̄k =
p
kr✏ =

p
kd0/10 as claimed. We confirm (6) by induction. Since [x0]i = 10r✏/

p
m for all i, the

expression (6) holds for k = 0. If (6) holds for all k  n < m then

rf(xk) = ek

19

DOG is SGD’s Best Friend

and therefore Gn = n so that ⌘n = r✏
p
np

n
= r✏ and xn+1 = xn �

p
np
n
r✏en, meaning that

[xn+1]j =

(
10r✏/

p
m� r✏ j < n+ 1

10r✏/
p
m j � n+ 1

which completes the induction.

D.5. Proof of Proposition 3.9

To show iterate boundedness in the stochastic setting we define the stopping time

⌧ = min{t : r̄t > 3d0},

so that the event {r̄T  3d0} is the same as {⌧ > T}. Let ⌘k denote the sequence of T-DOG step sizes (for given L, T

and �). To facilitate our analysis we also define the following truncated step size sequence:

⌘̃k :=

(
⌘k k < ⌧

0 otherwise.
(7)

Truncating the step size allows us to rigorously handle the possibility that r̄T exceeds 3d0. In particular, the following
holds for {⌘̃k} but not for {⌘k}. (Recall that �t := gt �rf(xk)).

Lemma D.3. Under Assumption 3.2 the truncated T-DOG step sizes (7) satisfy, for all t  T ,

⌘̃t 2 �(g0, . . . , gt�1) , (8)

|⌘̃t h�, xt � x?i| 
6d20

82✓T,�
for � 2 {gt,rf(xt),�t} , (9)

tX

k=0

⌘̃
2
kkgkk2  9d20

84✓T,�
, and (10)

tX

k=0

(⌘̃k hgk, xk � x?i)2  122d40
84✓T,�

. (11)

Proof. The bound (8) holds directly from the definition of (T-DOG) and (7).

To see the bound (9), first note that that k�kk  kgkk + krf(xk)k  2L. Since G
0
t � 4284L2

✓
2
T,� for all t, the

Cauchy-Schwartz inequality gives

|⌘̃t h�t, xt � x?i| 
r̄tp
G0

t

k�tkdt 
1

2 · 82✓T,�
r̄T dt 

6d20
82✓T,�

,

where the last inequality uses again r̄t  3d0 and dt  d0 + r̄t by the triangle inequality. Bounds for |⌘̃t h�, xt � x?i| for
� 2 {gt,rf(xt)} follow by the same argument.

To establish (10), first note that
Pt

k=0 ⌘̃
2
kkgkk2 

P⌧�1
k=0 ⌘

2
kkgkk2 by the definition of ⌘̃k. Furthermore

⌧�1X

k=0

⌘
2
kkgkk2 =

⌧�1X

k=0

r̄
2
kkgkk2

G0
k

(i)


r̄
2
⌧�1

84✓T,�

⌧�1X

k=0

Gk �Gk�1

(Gk + L2) log2+
Gk+L2

L2

(ii)
 9d20

84✓T,�
,

where (i) uses that kgkk2 = Gk �Gk�1 (with the shorthand G�1 := 0) and

G
0
k � 84✓T,�(Gk + L

2) log2+(k + 1) � 84✓T,�(Gk + L
2) log2+

Gk + L
2

L2
;

since kgkk  L and Gk  kL
2, while (ii) uses Lemma C.3 with ak = Gk + L

2 and r̄⌧�1  3d0.

20

DOG is SGD’s Best Friend

The final bound (11) follows immediately from (10) by noting that

tX

k=0

(⌘̃k hgk, xk � x?i)2 
tX

k=0

⌘̃
2
kkgkk2d2k  (4d0)

2
tX

k=0

⌘̃
2
kkgkk2,

where the first inequality follows from Cauchy-Schwartz and the second inequality from the fact that only terms with k < ⌧

contribute to the sum.

The above properties allow us to establish the following concentration bound.

Lemma D.4. In the setting of Lemma D.3,

P

9t  T :

t�1X

k=0

⌘̃k h�k, x? � xki > d
2
0

!
 �.

Proof. Consider the filtration Ft = �(g0, . . . , gt) and define Xt = ⌘̃t h�t, x? � xti and X̂t = �⌘̃t hrf(xt), x? � xti.
Then, by (8) we have that Xt is martingale difference sequence adapted to Ft and X̂t 2 Ft�1. Moreover, by (9) we
have that max{|Xt|, |X̂t|}  c almost surely for c = 24d2

0
84✓T,�

. Substituting into Corollary D.1 (and shifting the start of the
summation from 1 to 0) we have

P

0

@9t  T :

�����

t�1X

k=0

Xk

����� � 4

vuut✓t,�

t�1X

k=0

⇣
Xk � X̂k

⌘2
+ c2✓2t,�

1

A  �.

Noting that Xt � X̂t = ⌘̃t hgt, x? � xti and substituting the definition of c and the bound (11) gives, for every t < T ,

4

vuut✓t,�

t�1X

k=0

⇣
Xk � X̂k

⌘2
+ c2✓2t,�  4

s

✓t,�
122d40
84✓T,�

+

✓
6✓t,�d20
82✓T,�

◆2

 d
2
0,

concluding the proof of lemma.

Finally, we show that the event defined in Lemma D.4 implies the desired distance bound.

Lemma D.5. In the setting of Proposition 3.9, if
Pt�1

k=0 ⌘̃k h�k, x? � xki  d
2
0 for all t  T then ⌧ > T , i.e., r̄T  3d0.

Proof. To condense notation, let Bt := maxt0t
Pt0�1

k=0 ⌘̃k h�k, x? � xki, so that the claim becomes Bt  d
2
0 implies

⌧ > t for all t  T . We prove the claim by induction on t. The basis of the induction is that ⌧ > 0 always holds since
r̄0 = r✏  3d0 by assumption. For the induction step, we assume that Bt�1 implies ⌧ � t and show that Bt  d

2
0 implies

⌧ > t. To that end, we use hrf(xt), xt � x?i � f(xt)� f? � 0 to rearrange (5) and obtain

d
2
k+1 � d

2
k  ⌘

2
kkgkk2 + 2⌘k h�k, x? � xki

for all k. Summing this inequality from k = 0 to k = t� 1, we get

d
2
t � d

2
0 

t�1X

k=0

⌘
2
kkgkk2 + 2

t�1X

k=0

⌘k h�k, x? � xki =
t�1X

k=0

⌘̃
2
kkgkk2 + 2

t�1X

k=0

⌘̃k h�k, xk � x?i ,

where the equality holds since ⌧ > t � 1 and therefore ⌘k = ⌘̃k for all k  t � 1. Now, by the bound (10) we havePt�1
k=0 ⌘̃

2
kkgkk2  92

84✓T,�
d
2
0  d

2
0. Moreover,

Pt�1
k=0 ⌘̃k h�k, xk � x?i  Bt  d

2
0 by definition and assumption, from

which we conclude that d2t  4d20 and hence rt  d0 + dt  3d0. Since r̄t = max{r̄t�1, rt} and r̄t�1  3d0 by the
induction assumption, we have that r̄t  3d0 as well, concluding the proof.

Proposition 3.9 follows immediately from Lemmas D.4 and D.5.

21

DOG is SGD’s Best Friend

D.6. Illustrating DOG’s guarantees for least squares problems

In order to illustrate the advantage of T-DOG’s iterate boundedness guarantee, we now instantiate Theorem 3.10 and
Proposition 3.9 for the following stochastic least squares problem. Let P be a distribution over pairs (a, b) 2 Rm ⇥R, and
for (a, b) ⇠ P consider the gradient oracle

G(x) = (ha, xi � b)a+ �x,

corresponding to the objective function

f(x) =
1

2
E(a,b)⇠P (ha, xi � b)2 +

1

2
�kxk2.

For simplicity, we set x0 = 0.

Using �-strong-convexity of f we can crudely bound the initial distance to optimality by D =
p
2f(0)/� > d0, noting

that f(0) = 1
2Ebb

2 can be easily estimated from samples. If we also assume that kak  A and |b|  B with probability 1,
then L = O((A2 + �)D +AB) is an upper bound on the stochastic gradient norm in the set X = {x | kxk  D}.

The crudeness of the upper bound D =
p
2f(0)/� only affects T-DOG’s rate of convergence through a lower order term.

Specifically, the bound d̄T  O(kx?k) guarantees that G⌧  O(((A2 + �)kx?k + AB)2T), and therefore Theorem 3.10
implies that (with high probability) T-DOG’s optimality gap is

eO

(A2 + �)kx?k2 +ABkx?kp

T
+

(A2 + �)kx?k
p
f(0)/�)

T

!
.

Since f(0)  1
2B

2, the L-dependent term is of lower order as long as � = !(A2
/T).

For previously-proposed general purpose9 parameter-free methods (e.g. Orabona & Pál, 2016; Cutkosky & Orabona, 2018;
Carmon & Hinder, 2022) the iterates xt may be anywhere inside X = {x | kxk  D}.10 Therefore, the best bounds for
GT would still involve the crude bound D, and be of the form GT  O(((A2+�)D+AB)2T), leading to a worse overall
error bound when kx?k ⌧ D. Furthermore, as we explain in Appendix B, for T-DOG with L as given above, there is no
need to explicitly constrain the domain to X = {x | kxk  D}.

E. Experiment Details
E.1. Environment settings

All experiments were based on PyTorch (Paszke et al., 2019) (version 1.12.0).

Language experiments were done with the transformers (Wolf et al., 2020) library (version 4.21.0) and tracked using the
Comet.ML (Comet.ML, 2021). All datasets were provided by the Datasets library (Lhoest et al., 2021) (version 2.4.0) and
were left as is, including train-eval-test splits.

Vision experiments were based on the pytorch-image-models (timm, version0.7.0dev0) repository (Wightman, 2019), with
TensorFlow datasets (version 4.6.0) as a dataset backend (Abadi et al., 2015).

To support the training and analysis of the results, we used numpy (Harris et al., 2020), scipy (Virtanen et al., 2020),
pandas (Wes McKinney, 2010) and scikit-learn (Pedregosa et al., 2011).

E.2. Implementation details

Whenever possible, we used existing scripts and recipes provided by timm and transformers to fine-tune the models. We
implemented DOG, L-DOG and the polynomial model averaging as a subclass of PyTorch Optimizer interface. We provide
implementation of both in https://github.com/formll/dog.

9There exist parameter-free methods specialized to least-squares problems that obtain better without requiring an a-priori bound on
the solution norm (Vovk, 2006).

10Carmon & Hinder (2022) guarantee boundedness of the point they output, but do not have guarantees on the magnitude of interme-
diate query points.

22

https://github.com/formll/dog

DOG is SGD’s Best Friend

Table 2. Configuration used for each dataset in our testbed (Section 4.1). For all language tasks, we used the batch size as in Liu et al.
(2019), and at least 150% the number of steps used there, in order to ensure convergence. Learning rate (LR) warmup and annealing
refers to tuning with SGD and Adam. In all cases, both DOG and L-DOG used neither warmup nor annealing.
Task Batch size Steps Metric LR warmup LR annealing Grad. clipping
VTAB datasets 128 20K Accuracy None Cosine None
SQuAD 48 5475 F1 10% Cosine 1
SST-2 32 31407 Accuracy 10% Cosine 1
CoLA 32 10000 Matthews correlation 10% Cosine 1
MRPC 32 1734 F1 10% Cosine 1
STSB 32 3281 Pearson correlation 10% Cosine 1
QNLI 32 49218 Accuracy 10% Cosine 1
RTE 32 10000 Accuracy 10% Cosine 1
QQP 32 160625 F1 10% Cosine 1
MNLI 32 184218 Accuracy 10% Cosine 1

E.3. Datasets

The datasets used in the language experiments are: CoLA (Warstadt et al., 2019), SST-2 (Socher et al., 2013), MRPC
(Dolan & Brockett, 2005), QQP (Iyer et al., 2017), STS-B (Cer et al., 2017), MNLI (Williams et al., 2018), QNLI
(Rajpurkar et al., 2016), and RTE (Dagan et al., 2006; Bar Haim et al., 2006; Giampiccolo et al., 2007; Bentivogli et al.,
2009). Following Liu et al. (2019), we discard WNLI (Levesque et al., 2011) as it was found to be ill-defined and was
reformulated differently in SuperGLUE (Wang et al., 2019a).

The datasets used in the vision experiments are: The tasks are Caltech101 (Fei-Fei et al., 2004), CIFAR-100 (Krizhevsky,
2009), CLEVR-Dist (Johnson et al., 2017), DMLab (Beattie et al., 2016), dSprites-Ori (Matthey et al., 2017), DTD
(Cimpoi et al., 2014), Flowers102 (Nilsback & Zisserman, 2008), Pets (Parkhi et al., 2012), Resisc45 (Cheng et al., 2017),
Retinopathy (Kaggle & EyePacs, 2015), Sun397 (Xiao et al., 2010; 2016), and SVHN (Netzer et al., 2011).

E.4. Models

When fine-tuning RoBERTa (from the ‘roberta-base’ checkpoint) on classification tasks, we follow the common technique
of prepending an CLS token to the input, and feeding its final representation to a one hidden-layer, randomly initialized
MLP that is used as a classification head. For SQuAD, the classification head is tasked with multi-label classification,
predicting the probability that each word (token) in the input is the beginning/end of the answer span, and we then used
the span that has the maximum likelihood as the model’s output. When fine-tuning T5 (from the ‘t5-base’ checkpoint),
we treated all tasks as sequence-to-sequence tasks, translating classification labels to appropriate words (e.g. 0/1 to pos-
itive/negative) and then evaluated accuracy with exact match. The computer vision pre-trained models were accessed
via timm, and had randomly initialized classification heads. The strings used to load the models were: ‘convnext tiny’,
‘resnet50’, ‘densenet121’, ‘vit base patch32 224 in21k’ and ‘vgg11’.

E.5. Hyper-parameters

We trained each model/tasks combination a fixed number of steps (see Table 2), performing evaluation every 500 update
steps (except for the smaller datasets Caltech101, DTD, Flowers102 and Pets where we evaluated every 200) with both the
latest checkpoint, and the polynomial averaged one (see below). We did not use any weight decay. For language models,
we left dropout at its default value in the transformers library. We used batch sizes as is common practice for each task, as
detailed in Table 2.

Data augmentation in vision experiments. The VTAB suite (Zhai et al., 2019) divides its datasets into three categories:
natural, specialized and structured, and we uses a suitable data augmentation strategy for each of the categories. In partic-
ular, for structured datasets we simply resizes the images to a (224, 224) resolution, while for the natural and specialized
datasets we uses the standard “inception crop” (Szegedy et al., 2015) at training time and a 0.875 center crop at test time.
For natural datasets we additionally applied a color jitter operation with parameter 0.4 (as implemented in timm). Fi-
nally, we applied a random horizontal flip for all datasets except SVHN and dSprites-Ori, where such augmentation clearly
interferes with the task.

23

DOG is SGD’s Best Friend

Model selection in vision experiments. For computer vision experiments, we used the VTAB evaluation splits to select
the best checkpoint, and then reported performance on the training split. Unlike the experiments accompanying the VTAB
suite (Zhai et al., 2019), we did not retrain selected models on the combination of training and validation data.

Repeated runs. To account for randomness, we repeated our fine-tuning experiments using multiple seeds. In most
cases (with exceptions listed below) we repeated each DOG and L-DOG training 5 times. For SGD and Adam repeating
the learning with all learning rates was computationally prohibitive, so instead for each task / model pair we repeated 5
times only the best-performing LR (i.e., instance-tuned LR) and the best-performing LR across all tasks for that model
(i.e., model-tuned LR) according the validation split. A few experiments were too computationally expensive to repeat:
for QQP and MNLI (which require a large step budget) we have only 1–3 repetitions per training configuration, and for
ConvNeXt-T (which takes a long time per step) we did repeat the training runs.

Each relative error difference (RED) score combines the error of two optimization methods (one being DOG) on a particular
model task combination. Given multiple seeds for each optimization method, we computed the RED scores for each
possible seed combination. In Figures 2, 3, 9 and 10 (which aggregate multiple tasks) we average over those multiple RED
values and compute the statistics of the average RED. In per-task breakdowns such as Figure 5 and tables 4 and 5 we report
the statistics over the multiple RED values.

Baseline optimizers. For both SGD and Adam, we used cosine learning rate decay, and searched over appropriate values
for peak learning rate The base learning rate search space used when performing fine-tuning for each model/task combina-
tion can be found in Tables 4 and 5. We did not use momentum for SGD. For Adam we used �1 = 0.9 for all experiments,
and �2 = 0.999 for language experiments and �2 = 0.99 for vision experiments. For language models only, we used
warmup of 10% of the maximum steps count, and gradient clipping at global norm 1. We did not perform learning warmup
or gradient clipping for the vision experiment since we did not encounter any training stability issues there.

Setting r✏. As explained in Section 4.1, setting r✏ := ↵(1+kx0k) generally works well for ↵ = 10�4. However, in some
cases such as with T5, kx0k can be very large, causing destructively large first updates, with ⌘t increasing exponentially
and the model diverging. This is easily detectable early during training, as usually ⌘t exceeds 1000 within the first 100
steps. Since the theory requires r✏ to be small, we simply decreased ↵ by a factor of 100. While preliminary experimetns
with RoBERTa indicated that DOG also performed well with ↵ = 10�4, for the sake of consistency we use the same values
in all models of the same domain. Thus, models fine-tuned on vision tasks used ↵ = 10�4, while language models used
10�6 for DOG and 10�8 for L-DOG.

Model averaging. As mentioned in Section 4.1, we used the polynomial decay averaging as proposed by Shamir &
Zhang (2013). Namely, we kept an additional copy of the model weights, and in every update step we updated our running
average of the model parameters as follows:

x̄
�
t =

✓
1� 1 + �

t+ �

◆
x̄
�
t�1 +

1 + �

t+ �
xt (12)

The vector x̄�
t roughly corresponds to an average of the last t/� iterates preceding iteration t. For all models, we set � = 8.

We did not perform any tuning of the parameter �; we chose the value 8 because 1/8 seemed like a good fraction of iterates
to average, and because it worked well in the experiments of (Levy et al., 2020).

To ensure that iterate averaging is never harmful, for each optimization method we selected the best-performing checkpoint
across both xt and x̄

�
t (i.e., with or without averaging).

E.6. Figure 1 details

We generated Figure 1 as part of our fine-tuning testbed. In particular, SGD used a cosine learning rate annealing (without
warmup), both algorithms use polynomial decay averaging, and we report test performance on the best checkpoint selected
on a validation set.

E.7. Fine-tuning ImageNet

Our training setup mostly followed the default configuration in Wortsman et al. (2022). In particular, we used batch size
512 and the default timm augmentation (as in our main computer vision experiments) which Wortsman et al. (2022) refer
to as ‘medium aug.’ We trained for 25K steps, corresponding to roughly 10 passes over the data. However (keeping with

24

DOG is SGD’s Best Friend

Table 3. CIFAR-10 test accuracies after training a Wide ResNet 28-10 model from scratch for 200 epochs, with and without polynomial
decay averaging (see Section 4.6). † denotes the standard training configuration (cf. Cubuk et al., 2019, Table 2).

Algorithm LR Acc. w/o avg. Acc. w/ avg.

SGD

0.1 94.9% 94.9%
0.3 95.8% 95.6%
1 96.4% 84.4%
3 95.9% 21.7%

10 10.0% 10.0%

SGD w/
mom. 0.9

0.01 95.0% 95.1%
0.03 95.8% 95.7%
0.1 † 96.3% 88.5%
0.3 95.8% 27.5%
1 42.0% 63.4%

DOG - 85.2% 96.4%

Adam

3e-05 91.1% 91.1%
1e-04 94.0% 94.0%
3e-04 93.5% 93.8%
1e-03 91.4% 91.6%

L-DOG - 83.2% 93.5%

our computer vision testbed setting) we did not perform learning rate warmup or gradient clipping, and we initialized the
classification head to be random.

For AdamW (Loshchilov & Hutter, 2019) we used weight decay 0.1 and cosine learning rate annealing as in Wortsman
et al. (2022). We obtained accuracies within 0.5% of the numbers reported in Appendix L of Wortsman et al. (2022).

DOG and L-DOG we used weight decay 0 since the value 0.1 is meant for decoupled weight decay and we did not wish to
re-tune a weight decay parameter. We set r✏ to be 10�6 · (1 + kx0k) without trying different values of this parameter.

For SGD we used cosine learning rate annealing and set weight decay to 0 for a more direct comparison to DOG.

E.8. Training from scratch

Our training setup followed the basic training configuration of Cubuk et al. (2019), which is typical for training ResNets on
CIFAR-10: data augmentations comprising a random crop after 4 pixel padding and random horizontal flip, batch size of
128, weight decay of 0.0005 and 200 epochs of training. SGD used cosine learning weight annealing and (when applicable)
Nesterov momentum. We did not use dropout or any other additional form of regularization. For DOG and L-DOG, we
set r✏ = 10�4 · (1 + kx0k) without trying different values of this parameter. The accuracies we obtained using SGD and
DOG are consistent (and slightly better) than the baseline number reported in Table 2 of Cubuk et al. (2019) and within
0.1% of the one reported in Table 1 of Carmon et al. (2019).

F. Additional experiment results
F.1. Full breakdown of main experiment results

Figure 5 as well as Tables 4 and 5 provide the full breakdown of our main fine-tuning results, comparing DOG and L-DOG
to SGD and Adam with different learning rates for each model/task combination.

F.2. Comparison with equalized compute budget

Throughout the paper, our experiments focus on comparing different methods by the final test performance they are able
to reach given sufficient compute budget to essentially fully converge. As a consequence, SGD and Adam—which require
learning rate tuning—use up significantly more computation than DOG and L-DOG. More specifically, for each model/task

25

DOG is SGD’s Best Friend

Table 4. Average (std) performance of RoBERTa-b and T5-b on language tasks, when fine-tuned with different optimization algorithms
and their respective base learning rate (when applicable). DOG uses r✏ = 10�6(1 + kx0k) and L-DOG uses r✏ = 10�8(1 + kx0k).
Scores are reported as mean across seeds, measured in the corresponding performance metric as detailed in Table 2.
Model Optimizer LR CoLA MNLI MRPC QNLI QQP RTE SQuAD SST-2 STS-B Avg.

RoBERTa-b

Adam

5e-06 60.8 87.8 89.8 93.0 88.7 77.6 90.3 95.1 (0.34) 90.4 85.46
1e-05 63.4 87.9 (0.05) 90.5 93.1 (0.22) 89.0 (0.11) 77.6 91.5 95.1 90.8 86.22
3e-05 63.5 (1.33) 87.3 92.3 (0.44) 92.9 (0.15) 88.8 80.6 (1.19) 92.3 (0.05) 94.8 (0.16) 91.1 (0.19) 86.94
5e-05 61.8 86.8 92.0 92.3 88.0 78.7 92.4 (0.07) 94.3 90.9 85.93
0.0001 57.5 86.2 91.8 91.3 0.0 79.4 91.9 94.7 89.8 75.33

SGD

0.003 56.3 86.4 81.9 91.5 85.1 75.5 79.4 93.6 87.0 81.44
0.01 59.1 87.4 89.7 92.5 87.0 79.0 (0.69) 86.2 94.8 90.3 (0.25) 84.81
0.03 62.3 (1.38) 87.8 (0.04) 91.8 (0.21) 92.7 (0.18) 88.3 78.9 (0.79) 89.5 (0.12) 95.0 (0.15) 90.7 (0.12) 86.30
0.1 58.7 87.4 91.0 92.2 88.7 (0.06) 78.3 91.0 94.0 90.4 85.52
0.3 0.0 86.0 81.2 85.3 87.7 64.6 91.3 (0.11) 92.8 27.0 68.14
1.0 0.0 81.5 81.2 83.8 79.4 52.7 82.8 89.7 13.0 62.22

DOG - 62.8 (1.17) 87.7 (0.12) 91.6 (0.29) 92.6 (0.15) 88.2 (0.02) 78.5 (2.91) 91.3 (0.17) 94.9 (0.26) 90.5 (0.33) 86.46
L-DOG - 63.3 (0.32) 87.7 (0.12) 91.5 (0.19) 92.8 (0.28) 88.7 (0.14) 80.1 (1.00) 91.8 (0.18) 94.8 (0.54) 90.6 (0.34) 86.81

T5-b

Adam

5e-06 53.4 (0.93) 86.8 91.4 93.4 88.0 79.8 90.3 93.9 90.4 84.82
1e-05 56.0 (0.63) 86.9 91.2 93.5 88.2 80.5 90.4 94.2 90.6 85.33
3e-05 58.9 (1.10) 87.1 91.6 93.4 (0.16) 88.8 82.3 90.8 94.8 (0.24) 90.7 86.12
5e-05 58.9 (0.80) 87.3 91.8 93.3 89.0 80.9 90.7 94.8 90.8 (0.10) 85.97
0.0001 58.3 (0.80) 86.9 92.9 (0.35) 93.5 (0.10) 89.2 82.5 (0.48) 90.9 (0.15) 94.9 (0.26) 90.8 (0.18) 86.53
0.0005 55.4 (0.45) 86.1 92.3 92.7 88.8 81.2 (1.48) 90.0 94.6 89.7 85.29

SGD

0.003 22.9 (1.64) 85.8 90.1 92.7 87.5 66.8 90.3 92.1 90.3 79.43
0.01 49.4 (0.27) 86.4 92.2 93.1 87.4 80.9 90.3 93.0 90.5 84.49
0.03 56.4 (0.52) 86.5 92.0 93.2 (0.03) 88.1 80.9 90.5 93.6 90.6 85.40
0.1 58.9 (0.82) 86.8 91.8 93.1 88.7 84.1 90.7 (0.04) 93.7 90.6 (0.09) 86.13
0.3 56.7 (0.83) 86.1 92.8 (0.47) 93.0 (0.13) 88.7 82.8 (1.24) 90.7 (0.05) 93.9 (0.15) 90.7 (0.21) 86.07
1.0 0.0 (0.00) 32.8 81.2 91.7 56.9 78.7 90.1 92.1 88.7 67.56

DOG - 7.3 (6.78) 86.9 (0.21) 92.8 (0.35) 93.1 (0.09) 88.5 81.7 (3.06) 90.6 (0.05) 94.1 (0.19) 90.7 (0.09) 80.58
L-DOG - 59.9 (1.43) 87.3 (0.10) 91.9 (0.32) 93.6 (0.02) 87.8 83.1 (0.78) 90.3 (0.02) 95.0 (0.19) 90.5 (0.05) 86.51

combination we tune the SGD and Adam learning rates over a grid of at least 5 values (and often 6 or more), resulting in
computational cost increased by the same factor.

In this subsection only, we compare different optimizers using roughly the same computational budget, by measuring
the performance of Adam and SGD after roughly 20% of their overall step budget.11 Figure 7 shows the result of this
comparison, contrasting it to our main experiment. The figure shows that DOG often exceeds the performance of instance-
tuned SGD with equalized step budget.

We note a number caveats regarding the equalized compute budget comparison:

1. Since our experiments are focused on getting the best possible generalization, we substantially over-provisioned the
iteration budget, and hence the performance of instance-tuned SGD and Adam declines only mildly when we cut the
budget by roughly 5. Our tightest budget was for RoBERTa (150% the iterations in Liu et al. (2019)), and there we can
see that performance degraded more substantially. If we were to instead take the number of iterations DOG actually
needs to reach its peak performance, its advantage over equalized-compute SGD would likely be far larger.

2. Since the results reported here are obtained by re-analysis of our original experiments, the cosine learning rate sched-
ule for SGD and Adam is not properly set for using 20% of the iteration budget; in particular, the learning rate does
not decay to zero at the end of the training. Running these methods with a properly set cosine schedule would likely
improve their performance. However, we noted that the addition of iterate averaging appears to partially compensate
for the lack of sharp learning rate decay.

3. Given sufficient resources, it is possible to run all the different learning rates of SGD and Adam in parallel. Therefore,
the comparison equalizes overall computational cost, but not necessarily wall time.

4. The comparison also does not take into account more sophisticated learning rate tuning schemes that early-stop un-
promising learning rate candidates. However, that such schemes run risk choosing a suboptimal learning rate.

11Since these results are just a re-analysis of our original experiments, for language experiments we take all the warmup iterates plus
the first 20% of the remaining iterates, overall using 28% of the budget.

26

DOG is SGD’s Best Friend

F.3. Fine-tuning CoLA

As discussed in Section 4.2, DOG with r✏ = 10�6(1+kx0k) failed in fine-tuning T5-b on CoLA. To investigate this issue,
we ran DOG and L-DOG with different choices of r✏. Figure 11 depicts the results of this test as well as the performance
of SGD and Adam with different learning rates. The figure shows that using lower values of r✏ allows DOG to reach
reasonable results, but with some seeds still failing. In contrast, L-DOG shows consistent and superior performance across
a large range of r✏ values. We leave further investigations on the cause of failure in CoLA to future work.

F.4. Sensitivity of DOG to r✏ and the effect of batch normalization

In Section 4.3, we discuss DOG’s insensitivity to the choice of r✏ as long as it is small enough. Here, we expand on this
analysis by testing how the DOG step size at iteration t, denoted ⌘t, depends on its initial step size ⌘0 = r✏/kg0k. For for
each task and in our testbed and 4 models, we perform short training runs with a large numbers of ⌘0 values. In Figure 6 we
plot ⌘t vs. ⌘0 for t 2 {2, 10, 100, 1000}. We also show a horizontal line for the best peak step size of SGD, and the y = x

diagonal. The figure shows that for most model/task combinations, ⌘t converges quickly (within the first 1000 steps) to a
value near the optimal one for SGD, and mostly independent of ⌘0 as long as it is small enough.

However, we also observe some failure cases where ⌘t strongly depends on ⌘0, such as fine-tuning ResNet50 on CIFAR-
100. This provides a complementary perspective on the fact DOG is sensitive to r✏ in this setting, as already shown in
Figure 3: when ⌘0 is to low, DOG fails to reach a suitable value of ⌘t in a reasonable time. We hypothesize that this
is due to the batch normalization (BN) layers in the model causing many different step size to “look” like solutions to
the implicit equation motivating DOG. To test this hypothesis, we repeat the CIFAR-100 training experiment but without
BN (we disable BN by fine-tuning the model in evaluation mode). Figure 8(a) shows that removing BN allows DOG to
recover its stabilizing behavior. Moreover, Figure 8(b) further shows that without batch normalization, the performance
of DOG again becomes insensitive to the choice of r✏ provided it is sufficiently small. Unsurprisingly, we also observe
that removing BN slightly hurts generalization performance in this task. As mentioned in Section 6, improving DOG to
be more robust in the presence of normalization layers in general and batch normalization in particular is an important
direction for future research.

F.5. Additional convex optimization results

Figures 9 and 10 show results for learning lines probes on out computer vision fine-tuning testbed (see Section 4.4). The
figures show that DOG attains results on par with instance-tuned SGD and Adam.

F.6. The growth rate of r̄t

Figure 12 plots r̄t for DOG as a function of the iteration index t. As the figure shows, r̄t grows very rapidly and then
approximately platueas. Therefore, the quantity

P
it

r̄i
r̄t

grows roughly linearly in t, implying a near-optimal rate of
convergence for DOG, as discussed in Section 3.2.

G. Comparison to Other Tuning-Free Methods
Section 4.7 discusses a comparison between DOG and other parameter-free optimizers. In this section, we provide further
details on the experiments.

G.1. Parameter-free SGD

Carmon & Hinder (2022) propose a bisection procedure for tuning the SGD learning rate. A direct implementation of
this method would need to perform at least 4 or 5 bisection steps and therefore, in the best case, perform similarly to
our instance-tuned SGD baseline. Since our learning rate tuning employs a tight grid of values selected using some prior
knowledge of the problem, and since we select learning rates based on validation set performance and not a step size
certificate, instance-tuned SGD is likely a conservative upper bound on the performance of bisection approach.

Similar to instance tuned SGD, the bisection procedure has increased computational cost relative to DOG that is due to the
need for multiple SGD runs. That is, performing 5 steps of bisection where each SGD call has the same step budget as
DOG consumes 5 times more compute than DOG. We may also consider a situation where each bisection step uses only
20% of the DOG compute budget, leading to equal overall cost. In this setting, the “equalized compute budget” comparison

27

DOG is SGD’s Best Friend

we perform in Appendix F.2 and Figure 7 provides a conservative upper bound on the bisection performance, indicating it
is likely to under-perform DOG.

G.2. Stochastic Polyak step-size

We apply the Stochastic Polyak Step (SPS) proposed by Loizou et al. (2021) using their open-source implementation12

to a subset of our fine-tuning testbed, and present the results in Tables 6 and 7. For the vision experiments, the SPS
with the hyper-parameters proposed in the paper (c = 0.2, ⌧ = 2) and initial step size of 1.0 (the default in the code)
worked reasonably well, but not as well as DoG. For the language experiments the same algorithm diverges; we find initial
learning rate of 0.01 worked reasonably well, but again not as well as DoG (we also attempted an initial learning rate of
0.0001, which produced worse results). For vision tasks, similarly tuning the initial step size did not significantly improve
performance. We run 5 random seeds per experiment, and average the results across seeds. DOG outperforms SPS in
22 out of 34 task/model combinations, and by 2.3 percentage points on average. L-DOG further increases this gap by
outperforming SPS in 24 out of 34 pairs, with an average of 5.3 percentage points.

G.3. D-adaptation

Empirical comparison to D-adapt SGD and Adam. We perform a preliminary empirical evaluation of the practical
algorithms proposed in Defazio & Mishchenko (2023) using the code they release13 and a subset of our fine-tuning testbed.
As Tables 6 and 7 show, D-adapt SGD and and D-adapt Adam perform reasonably well but slightly worse than DOG, and
noticeably worse than L-DOG and Adam. DOG outperforms D-adapt SGD in 24 out of 34 task/model combinations, and
by 1.9 percentage points on average. L-DOG further increases this gap by outperforming D-adapt SGD in 30 out of 34
pairs, with an average of 4.9 percentage points. D-adapt Adam is less stable on many of the tasks in our testbed, being
outperformed by DOG in 26 out of 34 task/model combinations, and by L-DOG in 27, with an average of 10.8 and 13.8
percentage points respectively.

Theoretical comparison to Algorithm 1 of Defazio & Mishchenko (2023). Defazio & Mishchenko (2023) carry out
their main theoretical analysis on a “Parameter Free Dual Averaging” (PFDA) method. We now provide some additional
remarks comparing PFDA and DOG. The iterate xt in PFDA is

xt = x0 �
1p
Gt

X

it

qigi

where Gt =
P

it kgik2 and qi is a lower bound on the distance to optimality (denoted di in (Defazio & Mishchenko,
2023)). In contrast, the DOG iterates are

xt = x0 �
X

it

r̄ip
Gi

gi

where r̄t = maxit kxi � x0k. While both dt in PFDA and r̄t are lower bounds for (a constant factor times) the distance
to optimality, only DoG aims to approximate ⌘? = kx0�x?kp

Gt
; PFDA instead approximates the optimal step size for dual

averaging.

The dual averaging prescription of putting the factor 1/
p
Gt outside the summation defining xt likely hurts performance

in practice. The practical practical D-adapt SGD and D-adapt Adam methods that Defazio & Mishchenko (2023) propose
do not follow this prescription. Consequently, these algorithms are very different from PFDA and have no theoretical
guarantees.

12https://github.com/IssamLaradji/sps
13https://github.com/facebookresearch/dadaptation

28

https://github.com/IssamLaradji/sps
https://github.com/facebookresearch/dadaptation

DOG is SGD’s Best Friend

Figure 5. Relative error difference (RED) statistics across seeds (median, mean and IQR shown as shaded region) for all model/task
combinations. The red horizontal line shows the median RED of L-DOG.

29

DOG is SGD’s Best Friend

Table 5. Average (std) test accuracy across seeds for vision tasks, when fine-tuned with different optimization algorithms and their
respective base learning rate when applicable. DOG and L-DOG use r✏ = 10�4(1 + kx0k).
Model Optimizer LR Caltech101 CIFAR-100 Clevr-Dist DMLab dSprites-Ori DTD Flowers102 Pets Resisc45 Retinopathy Sun397 SVHN Avg.

ConvNeXt-T

Adam

3e-06 - 70.0 89.2 70.5 86.5 72.1 92.5 93.1 91.2 - 36.7 - -
1e-05 89.0 84.7 91.7 72.7 95.7 70.9 93.5 93.3 94.7 83.2 64.2 96.6 85.33
3e-05 89.4 87.8 91.4 73.2 96.3 71.3 93.3 92.9 95.6 83.2 74.3 97.3 86.75
0.0001 87.5 88.5 91.9 76.0 96.4 73.3 93.9 92.6 95.9 83.7 76.0 97.4 87.25
0.0003 91.1 88.2 93.2 77.5 7.6 72.5 94.3 93.8 96.3 83.9 76.3 97.8 80.58
0.001 87.5 85.9 93.2 78.5 7.6 69.1 93.4 92.3 95.9 83.5 74.7 97.5 79.42
0.003 87.6 73.7 90.2 22.2 7.6 63.4 87.9 88.3 94.7 73.6 71.7 19.6 64.50

SGD

0.01 90.2 85.0 90.8 70.3 7.6 72.0 92.0 94.3 93.4 82.9 68.4 96.2 78.25
0.03 89.5 87.2 91.1 72.2 7.6 72.6 91.8 94.1 94.8 83.4 74.2 97.0 79.25
0.1 89.1 87.5 90.9 74.3 7.6 72.3 92.9 94.7 95.4 83.6 75.4 97.2 79.58
0.3 89.7 87.4 24.5 75.2 7.6 71.4 92.4 93.8 95.9 83.4 75.1 97.3 74.00
1.0 88.1 86.1 24.5 22.2 7.6 64.0 0.4 13.4 2.1 73.6 74.5 19.6 39.33
3.0 0.4 1.0 20.0 22.2 7.4 2.1 0.3 2.7 2.2 73.6 0.5 6.7 11.25

10.0 - 1.0 20.0 22.2 7.4 2.1 0.3 2.7 2.2 - 0.5 - -
DOG - 89.9 87.7 90.7 75.3 7.6 71.6 92.4 93.8 95.5 83.5 75.0 97.3 79.50

L-DOG - 87.7 88.2 88.5 76.3 96.4 73.8 92.7 93.7 95.9 83.7 75.9 97.7 86.92

Densenet121

Adam

3e-06 - 62.3 84.3 65.0 84.8 65.9 88.1 88.4 90.6 - 37.9 - -
1e-05 86.5 (1.24) 76.9 86.9 66.3 95.4 66.4 88.6 89.7 93.9 81.1 59.6 95.6 81.71
3e-05 85.2 82.0 89.0 69.0 95.9 66.4 (0.76) 90.0 89.0 94.4 81.0 68.7 96.8 83.70
0.0001 86.7 (1.40) 82.8 (0.26) 91.4 (0.16) 72.7 (0.69) 96.3 (0.07) 65.8 (0.39) 89.4 (1.08) 89.4 (0.57) 94.8 (0.16) 81.7 (0.10) 70.8 (0.45) 97.3 (0.05) 84.92
0.0003 84.5 83.3 92.7 76.3 96.4 (0.03) 65.1 88.9 89.2 95.1 (0.20) 82.7 71.6 97.7 (0.08) 84.93
0.001 81.8 80.8 93.9 76.6 (0.39) 96.4 62.8 87.2 84.7 94.9 83.0 (0.08) 69.7 97.7 83.55
0.003 76.0 76.7 93.7 (0.17) 74.6 96.0 56.1 81.5 82.7 93.9 82.8 66.2 97.4 81.06

SGD

0.01 87.7 (0.74) 83.6 89.5 68.5 96.1 65.7 87.4 90.9 94.2 81.6 68.9 96.7 83.73
0.03 87.0 84.0 (0.08) 91.1 71.4 96.3 (0.07) 66.6 (1.59) 88.6 90.5 (0.47) 94.7 82.0 71.1 97.1 84.87
0.1 87.9 (0.57) 83.7 (0.31) 92.8 (0.26) 74.5 (0.53) 96.4 (0.05) 65.9 (0.49) 88.3 (0.82) 90.6 (0.28) 94.9 (0.36) 82.5 (0.08) 71.5 (0.21) 97.4 (0.09) 85.53
0.3 85.5 82.5 92.4 (0.56) 69.1 (3.67) 95.9 62.9 87.6 87.9 95.0 (0.25) 82.6 (0.28) 70.9 97.2 83.67
1.0 61.6 65.1 91.4 61.9 7.6 35.4 55.4 64.6 82.6 80.0 62.0 95.6 63.17
3.0 50.1 61.6 88.5 59.2 7.6 23.4 44.1 39.8 85.8 76.5 45.6 94.7 55.92

DOG - 87.4 (0.65) 84.0 (0.18) 91.4 (0.19) 71.9 (0.43) 96.2 (0.04) 66.1 (0.90) 88.5 (0.92) 90.3 (0.40) 94.8 (0.12) 82.0 (0.08) 71.6 (0.22) 97.2 (0.13) 85.12
L-DOG - 86.9 (0.27) 83.5 (0.18) 89.8 (0.31) 71.5 (0.24) 96.1 (0.03) 66.4 (0.61) 88.7 (0.70) 90.6 (0.13) 95.3 (0.17) 81.9 (0.10) 71.4 (0.25) 97.5 (0.09) 84.97

ResNet50

Adam

0.0003 87.8 (1.52) 84.8 91.0 73.3 96.2 68.5 (0.97) 92.7 93.1 (0.27) 95.5 82.2 73.9 97.0 86.03
0.001 88.3 (1.18) 83.9 (0.31) 92.4 (0.21) 76.5 (0.53) 96.3 (0.04) 67.2 (0.94) 89.2 (1.83) 92.0 (0.37) 95.5 (0.25) 83.0 (0.18) 73.7 (0.33) 97.6 (0.07) 86.30
0.003 86.9 83.1 93.3 (0.37) 78.3 (0.30) 96.1 64.4 90.1 90.2 95.4 83.4 (0.15) 72.2 97.7 85.67
0.01 79.9 75.9 93.5 75.0 95.9 58.0 85.1 85.0 94.4 83.0 66.5 97.4 82.08
0.03 62.8 64.9 92.4 71.3 95.3 46.9 63.1 67.0 89.3 82.0 50.8 96.4 73.08

SGD

0.01 86.7 62.9 83.7 52.5 68.3 66.2 80.9 91.9 84.0 75.9 48.0 80.2 72.92
0.03 86.7 77.0 88.0 63.0 88.5 67.2 82.1 92.8 90.5 78.8 64.7 91.4 80.50
0.1 87.6 (0.66) 82.8 90.2 67.0 95.5 67.5 (1.71) 89.2 93.5 93.8 81.7 71.6 95.0 84.26
0.3 87.4 84.8 91.1 70.7 95.9 70.5 85.8 (2.54) 92.9 94.7 82.3 73.9 96.1 84.98
1.0 86.6 (0.50) 84.5 (0.46) 90.1 (0.51) 72.6 (1.56) 96.0 (0.08) 66.4 (1.16) 85.5 (2.39) 93.0 (0.30) 94.6 (0.28) 82.6 (0.09) 73.6 (0.44) 96.8 (0.06) 85.19
3.0 87.4 84.7 91.8 70.1 96.0 66.9 90.3 92.1 94.8 (0.49) 82.1 73.7 97.0 (0.10) 85.23

10.0 86.2 81.2 91.4 (0.71) 67.2 7.6 59.4 86.6 82.2 94.6 78.2 70.0 96.9 74.78
30.0 0.4 12.1 20.0 22.2 7.4 24.1 43.6 16.5 83.6 73.6 3.1 6.7 25.75

DOG - 86.8 (0.62) 84.8 (0.37) 89.3 (0.58) 71.4 (0.77) 95.7 (0.09) 66.4 (1.48) 85.8 (2.64) 92.9 (0.38) 94.6 (0.33) 82.6 (0.16) 73.5 (0.41) 96.5 (0.10) 85.02
L-DOG - 87.6 (1.15) 84.6 (0.38) 90.8 (0.38) 75.0 (0.44) 96.0 (0.05) 69.1 (1.30) 90.2 (2.02) 92.4 (0.36) 95.6 (0.46) 82.2 (0.15) 74.6 (0.32) 97.4 (0.08) 86.29

VGG11

Adam

3e-06 80.2 (0.71) - - - - - - - - 79.8 (0.07) - 93.8 (0.15) -
1e-05 80.5 73.7 89.3 63.5 94.3 61.5 82.1 87.3 91.4 80.0 65.4 95.3 80.00
3e-05 82.2 (0.48) 74.9 90.5 67.7 96.1 (0.06) 61.4 (0.84) 84.0 88.1 (0.17) 92.9 81.1 66.6 96.4 81.48
0.0001 82.6 75.6 (0.23) 92.4 71.9 7.6 61.6 83.5 (1.06) 87.2 93.5 (0.23) 82.3 66.9 (0.12) 96.8 74.79
0.0003 82.3 74.1 93.2 (0.25) 74.4 (0.47) 7.5 59.6 83.0 86.0 93.4 82.9 (0.08) 66.3 96.8 (0.14) 74.77
0.001 61.7 61.1 24.5 64.6 7.5 48.0 53.7 65.0 89.1 73.6 50.5 96.5 57.58
0.003 - 1.0 89.4 68.4 7.6 2.1 0.5 2.7 76.2 - 30.5 - -
0.01 - 1.0 24.5 22.2 7.6 2.1 1.2 2.7 2.2 - 2.0 - -

SGD

0.001 81.0 68.5 85.0 62.3 14.8 (3.59) 61.3 80.3 88.0 89.3 78.9 61.9 92.0 71.65
0.003 81.8 72.4 90.3 64.2 12.3 62.2 80.9 88.0 90.9 80.3 64.9 94.4 73.08
0.01 82.4 73.5 91.9 (0.19) 67.0 9.8 61.2 82.0 (0.99) 89.0 (0.37) 91.7 81.7 65.8 95.7 73.91
0.03 83.0 (0.50) 74.7 (0.21) 92.1 (0.19) 69.1 (0.36) 7.6 (0.04) 61.9 (0.41) 82.3 (1.09) 89.4 (0.32) 92.5 (0.28) 82.2 (0.06) 66.1 (0.10) 96.4 (0.08) 74.77
0.1 49.6 (44.91) 74.6 (0.08) 20.0 22.2 7.6 60.5 0.3 87.5 2.2 73.6 53.2 (29.49) 6.7 37.87
0.3 - 1.0 20.0 22.2 7.4 2.1 0.3 2.7 2.2 - 0.5 - -
1.0 - 1.0 20.0 22.2 7.4 2.1 0.3 2.7 2.2 - 0.5 - -

DOG - 82.9 (0.45) 74.7 (0.22) 91.5 (0.17) 68.4 (0.53) 10.4 (0.82) 62.5 (1.19) 82.8 (0.95) 89.5 (0.23) 92.4 (0.22) 81.6 (0.07) 66.3 (0.33) 96.3 (0.09) 74.94
L-DOG - 82.4 (0.60) 74.8 (0.16) 92.0 (0.11) 69.9 (0.44) 92.1 (8.59) 62.6 (0.95) 82.7 (1.15) 88.9 (0.62) 92.4 (0.15) 81.9 (0.18) 65.8 (0.09) 96.5 (0.12) 81.83

ViT-B/32

Adam

3e-06 90.7 (0.76) 92.3 (0.22) 89.5 (0.35) 66.0 (0.69) 94.0 (0.24) 74.9 (0.24) 98.5 (0.53) 91.6 (0.11) 95.5 (0.07) 79.7 (0.08) 75.5 (0.23) 96.8 (0.06) 87.08
1e-05 90.2 (0.47) 92.8 (0.21) 89.9 (0.52) 67.5 51.5 (48.10) 76.9 98.7 (0.29) 90.7 96.3 79.8 78.0 (0.12) 97.6 83.84
3e-05 88.6 92.5 89.7 70.1 7.6 75.3 (0.24) 98.7 91.6 (0.21) 96.5 (0.13) 80.1 (0.09) 78.3 97.7 80.21
0.0001 89.5 91.2 89.1 70.8 (0.32) 7.6 72.9 98.1 90.0 96.1 80.1 77.0 97.8 (0.07) 79.80
0.0003 87.9 87.3 87.9 68.5 7.6 69.0 94.9 87.9 94.9 79.3 72.5 97.9 77.33
0.001 80.3 62.1 88.1 51.2 7.6 50.4 71.0 58.3 88.6 73.6 53.6 96.3 64.75
0.003 - 13.5 64.6 29.3 7.6 14.1 26.7 12.1 71.9 - 19.5 - -

SGD

3e-05 - 6.1 52.7 40.8 32.7 45.9 61.4 80.3 59.7 - 5.2 - -
0.0001 85.0 73.7 71.3 50.4 57.0 69.0 98.1 90.1 83.0 75.3 24.7 79.1 71.17
0.0003 88.7 88.7 83.1 60.3 69.6 74.7 98.8 91.9 90.2 76.6 59.6 90.7 80.50
0.001 90.8 91.7 88.1 65.6 87.5 74.8 98.7 (0.51) 93.0 (0.21) 93.5 78.2 73.4 95.2 85.48
0.003 90.9 (0.89) 92.8 (0.10) 87.3 (1.28) 66.3 (0.40) 85.6 (15.77) 75.3 (0.29) 98.9 (0.31) 92.5 (0.27) 95.3 (0.10) 79.4 (0.02) 77.3 (0.16) 96.6 (0.17) 86.52
0.01 90.7 (0.63) 92.9 (0.14) 85.9 68.8 56.1 75.2 99.3 92.5 95.8 79.7 78.9 (0.08) 97.4 84.04
0.03 89.8 92.5 83.1 69.7 (0.29) 65.8 75.8 (0.59) 99.3 92.2 96.2 (0.06) 78.9 (2.51) 78.3 97.7 (0.05) 84.69
0.1 88.0 91.2 25.2 22.2 7.6 74.9 98.7 91.0 95.9 73.6 76.8 97.8 69.75
0.3 0.4 1.0 24.5 22.2 7.6 70.5 1.8 2.7 2.3 73.6 0.5 19.6 18.42

DOG - 89.5 (1.26) 92.5 (0.22) 85.0 (0.27) 69.5 (0.11) 67.7 (36.66) 75.5 (0.71) 98.9 (0.25) 92.4 (0.16) 96.4 (0.10) 79.7 (0.01) 77.8 (0.13) 97.7 (0.08) 85.22
L-DOG - 89.6 (0.81) 92.8 (0.15) 86.0 (0.40) 70.7 (0.29) 95.3 (0.08) 75.8 (0.71) 99.0 (0.26) 92.3 (0.45) 96.5 (0.17) 79.8 (0.07) 78.3 (0.26) 97.8 (0.04) 87.82

30

DOG is SGD’s Best Friend

Figure 6. Stabilizing behavior of DOG on ⌘t as a function of ⌘0 (x-axis) and t (color). In most cases ⌘t quickly stabilizes around a
value close to the optimal SGD base learning rate (dashed horizontal line) for all sufficiently small ⌘0 = r✏/kg0k. The main exceptions
(where ⌘t depends strongly on ⌘0) are dSprites-Ori, CIFAR-100 and SVHN when trained with ResNet50; see F.4 for further discussion.

31

DOG is SGD’s Best Friend

(a) SGD/Adam have > 5x the DOG/L-DOG budget. (b) SGD/Adam have roughly the same budget as DOG/L-DOG

Figure 7. RED median (bar chart) and IQR (error bars) of each model on the set of applicable tasks, where we either (a) give the same
iteration budget for each optimizer run, resulting in SGD and Adam using more than 5x total compute than DOG and L-DOG due to
learning rate tuning (this is a reproduction of Figure 3), or (b) give each algorithm roughly equal compute budget by running SGD and
Adam (with 5 or more learning rates) for roughly 20% of the steps that DOG and L-DOG use. With equalized compute budget, DOG
outperforms model-tuned SGD almost always and often outperforms the instance-tuned SGD as well, while L-DOG closes most of the
gap to Adam.

(a) (b)

Figure 8. ResNet50 fine-tuned on CIFAR-100 with and without batch normalization. The dashed horizontal line indicates the best SGD
learning rate. (a) Stabilizing behavior of DOG on ⌘t as a function of ⌘0 (x-axis) and t (color). Turning off batch normalization (left)
mitigates the sensitivity of ⌘t to ⌘0 observed in batch normalized model (right). (b) Accuracies of models trained with DOG (for 20K
steps) as a function of r✏. Without batch normalization, DOG is robust to smaller values of r✏.

32

DOG is SGD’s Best Friend

Figure 9. RED median and IQR (as in Figure 3) in tn the convex optimization setting (Section 4.4).

Figure 10. Per-learning rate RED statistics (as in Figure 2) in the convex optimization setting (Section 4.4).

Figure 11. Matthews correlation of T5-base fine-tuned on CoLA with SGD and Adam with different base learning rates (bottom axis),
as well as with DOG and L-DOG with different r✏ (top axis). Only L-DOG and Adam perform consistently well across different
parameters. The lines and shaded regions show the average Matthews correlation and the min-max range, respectively, computed over 3
seeds.

33

DOG is SGD’s Best Friend

Figure 12. The quantity r̄t = maxit kxi � x0k as a function of the number of steps t in our computer vision testbed. The value of r̄t
grows rapidly at first and then almost plateaus.

Table 6. Average (std) performance of RoBERTa-b and T5-b on language tasks, when fine-tuned with different optimization algorithms.
DOG uses r✏ = 10�6(1 + kx0k) and L-DOG uses r✏ = 10�8(1 + kx0k). SPS uses c = 0.2, ⌧ = 2 as recommended by Loizou et al.
(2021), but initial step size of 0.01 as the recommended value 1.0 diverged for some tasks. Still, When tunning RoBERTa-b on RTE, 3
out of 5 diverged; for this case we report the mean of the two successful and omit the standard deviation. We measure performance as
detailed in Table 2.
Model Optimizer CoLA MRPC QNLI RTE SQuAD SST-2 Avg.

RoBERTa-b

D-Adapt (Adam) 0.0 (0.00) 83.4 (4.93) 66.7 (22.13) 68.4 (14.40) 7.0 (0.16) 58.2 (17.88) 47.28
D-Adapt (SGD) 49.4 (27.59) 91.6 (0.43) 91.9 (0.67) 81.4 (1.04) 91.5 (0.13) 94.1 (0.38) 83.32

SPS 49.8 (6.79) 88.4 (3.21) 91.8 (0.21) 52.7 90.1 (0.10) 94.1 (0.28) 77.70
DOG 62.8 (1.17) 91.6 (0.29) 92.6 (0.15) 78.5 (2.91) 91.3 (0.17) 94.9 (0.26) 85.28

L-DOG 63.3 (0.32) 91.5 (0.19) 92.8 (0.28) 80.1 (1.00) 91.8 (0.18) 94.8 (0.54) 85.72

T5-b

D-Adapt (Adam) 11.1 (2.51) 81.8 (0.65) 85.0 (1.91) 58.1 (1.35) 90.4 (0.06) 87.1 (3.00) 68.92
D-Adapt (SGD) 0.0 (0.00) 92.5 (0.59) 92.9 (0.04) 81.2 (0.78) 90.4 (0.06) 80.3 (2.67) 72.88

SPS 39.1 (2.35) 92.9 (1.21) 93.2 (0.10) 80.9 (1.82) 90.5 (0.04) 94.3 (0.31) 81.82
DOG 7.3 (6.78) 92.8 (0.35) 93.1 (0.09) 81.7 (3.06) 90.6 (0.05) 94.1 (0.19) 76.60

L-DOG 59.9 (1.43) 91.9 (0.32) 93.6 (0.02) 83.1 (0.78) 90.3 (0.02) 95.0 (0.19) 85.63

34

DOG is SGD’s Best Friend

Table 7. Average (std) test accuracy across seeds for vision tasks, when fine-tuned with different optimization algorithms. DOG and
L-DOG use r✏ = 10�4(1 + kx0k). SPS uses c = 0.2, ⌧ = 2 and initial step size of 1 as recommended by Loizou et al. (2021).
Model Optimizer Caltech101 CIFAR-100 Clevr-Dist DMLab dSprites-Ori DTD Flowers102 Pets Resisc45 Retinopathy Sun397 SVHN Avg.

ResNet50

D-Adapt (Adam) 79.0 (1.60) 82.9 (0.23) 92.3 (0.50) 75.2 (0.97) 96.3 (0.01) 60.1 (0.51) 84.6 (1.73) 85.1 (0.95) 94.1 (0.28) 83.4 (0.07) 72.9 (0.11) 97.0 (0.21) 83.58
D-Adapt (SGD) 86.2 (0.93) 84.3 (0.15) 89.6 (0.60) 74.8 (0.73) 95.9 (0.04) 64.4 (1.31) 84.9 (1.12) 92.0 (0.25) 94.7 (0.17) 82.7 (0.12) 73.0 (0.09) 97.1 (0.06) 84.97

SPS 86.4 (1.14) 80.2 (1.20) 92.9 (0.25) 76.2 (0.60) 96.0 (0.05) 63.7 (0.83) 84.3 (1.45) 92.4 (0.19) 94.9 (0.22) 83.3 (0.17) 70.9 (0.82) 97.5 (0.03) 84.89
DOG 86.8 (0.62) 84.8 (0.37) 89.3 (0.58) 71.4 (0.77) 95.7 (0.09) 66.4 (1.48) 85.8 (2.64) 92.9 (0.38) 94.6 (0.33) 82.6 (0.16) 73.5 (0.41) 96.5 (0.10) 85.02

L-DOG 87.6 (1.15) 84.6 (0.38) 90.8 (0.38) 75.0 (0.44) 96.0 (0.05) 69.1 (1.30) 90.2 (2.02) 92.4 (0.36) 95.6 (0.46) 82.2 (0.15) 74.6 (0.32) 97.4 (0.08) 86.29

ViT-B/32

D-Adapt (Adam) 87.6 (0.48) 91.8 (0.31) 89.0 (0.42) 70.7 (0.48) 7.6 (0.00) 69.4 (1.55) 94.7 (0.92) 86.6 (1.42) 95.5 (0.32) 80.1 (0.09) 76.2 (0.38) 97.9 (0.05) 78.92
D-Adapt (SGD) 88.7 (0.58) 91.8 (0.20) 84.2 (2.39) 70.5 (0.17) 44.0 (31.87) 74.9 (0.38) 98.2 (0.43) 91.5 (0.72) 96.3 (0.06) 79.8 (0.05) 76.3 (0.13) 97.7 (0.03) 82.82

SPS 89.7 (0.51) 91.4 (0.18) 84.6 (1.18) 71.3 (0.27) 7.6 (0.00) 74.4 (0.96) 98.4 (0.33) 91.1 (0.49) 96.2 (0.17) 79.9 (0.09) 77.5 (0.46) 98.0 (0.04) 80.01
DOG 89.5 (1.26) 92.5 (0.22) 85.0 (0.27) 69.5 (0.11) 67.7 (36.66) 75.5 (0.71) 98.9 (0.25) 92.4 (0.16) 96.4 (0.10) 79.7 (0.01) 77.8 (0.13) 97.7 (0.08) 85.22

L-DOG 89.6 (0.81) 92.8 (0.15) 86.0 (0.40) 70.7 (0.29) 95.3 (0.08) 75.8 (0.71) 99.0 (0.26) 92.3 (0.45) 96.5 (0.17) 79.8 (0.07) 78.3 (0.26) 97.8 (0.04) 87.82

35

