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Abstract—Millimeter-wave (mmWave) networks support a

large variety of applications, particularly delay-sensitive applica-

tions by providing high-speed communication. A well-recognized

challenge in mmWave communications is that mmWave links

are susceptible to blockage and thus, communication may get

disrupted. In this paper, we design and evaluate low-complexity
proactive transmission mechanisms for mmWave networks that

are resilient to such disruptions. Our mechanisms build on the

multipath environment and on the existence of accurate models

for link blockage probabilities in mmWave networks. We propose

the deployment of symmetric multilevel codes across paths to

achieve an attractive trade-off between the average information

rate and a graceful performance degradation. Our numerical

evaluations show that our proposed coding schemes indeed pro-

vide a graceful performance degradation compared to alternative

schemes (such as erasure correcting codes), while significantly

reducing the code complexity compared to traditional multilevel

code designs.

I. INTRODUCTION

Millimeter-wave (mmWave) communication networks have
currently been deployed to support a large variety of ap-
plications. Since they can offer high-speed communications,
they are particularly important for delay-sensitive applications
such as cyberphysical and control systems [1]–[3]. However, a
well-recognized challenge is that mmWave links are suscepti-
ble to blockage and hence, communication may get disrupted.

In this paper, we design and evaluate low-complexity proac-

tive transmission mechanisms for mmWave networks that are
resilient to link blockages. Broadly speaking, there are two
mechanisms for reliability: (i) proactive mechanisms, which
allocate sufficient resources in advance so that we can still
offer communication guarantees at no additional delay even
if the network resources get diminished due to blockage; and
(ii) reactive mechanisms, which identify network disruptions
using feedback mechanisms and adapt to them. Reactive
mechanisms are more resource efficient but they incur delay
while collecting feedback and implementing network recon-
figurations. Differently, proactive mechanisms are better suited
to offer reliability guarantees for delay-sensitive applications.
Given that mmWave networks can provide high throughput, in
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this paper we focus on proactive mechanisms which sacrifice
throughput but achieve operation with no additional latency.

Our mechanisms build on the following opportunities:
(i) over mmWave networks, we may have multiple paths
connecting a source and a destination; this would create a
multipath environment; and (ii) in mmWave networks, we can
accurately estimate the link blockage probabilities1 in advance
through existing models [4]–[7]. However, leveraging these
opportunities is not straightforward.

The first challenge is that link blockage leads to the
“permanent” unavailability of paths in the timescale of a
delay-sensitive communication, and thus we cannot simply
“average out” these events. For instance, consider a set of 6
paths that all have blockage probability 0.3. This implies that
when we use this network, with probability 0.32 only 4 of the
paths (and we do not know which ones) will be operational; or
with probability 0.19, only 3 of the paths will be operational.
Thus, when we use this network, we may be able to use only
a subset of the paths, and we do not know in advance which
ones to use. If we simply send uncoded data, we cannot control
the information received2. Instead, we want to control what
information will be received if some paths are operational.

This problem can be addressed using symmetric multilevel
codes that we propose to deploy over space (across paths).
Multilevel codes (see our review in Section II) allow a graceful
performance degradation: if less than the expected amount of
blockages occur, we can take advantage of this to improve
the information rate; and if more than the expected amount of
blockages occur, although the information rate will decrease,
it will not decrease to zero. A remaining challenge is the
operational complexity of such codes, which increases with
the number of paths utilized (see Section II).

A second challenge of this work is that, there is no clear no-
tion of “optimality”: multiple rate-outage probability trade-off
curves can be attractive, and a different one can be “dominant”
depending on the optimization criterion. For example, if we
use a single erasure code, we can achieve the highest average
rate (averaged over all network realizations), yet at the cost of
high outage (many of our networks may be non-operational).
Even if smoother trade-offs can be achieved, none of them
clearly “dominates”. Thus, instead of adopting a single opti-

1The blockage probabilities are proportional to the density and the velocity
of blockers, as well as the physical distances between nodes.

2If we send 6 independent information streams, one through each path, we
would have no control on which information stream would be received.



mization criterion and claiming optimality for it, we provide
coding schemes and argue why they are suitable proactive
mechanisms for link blockages in mmWave networks.
Contributions and Paper Organization. In Section II, we
provide an overview on the 1-2-1 model for mmWave net-
works, erasure codes, and symmetric multilevel codes.

In Section III, we propose a proactive transmission mecha-
nism for arbitrary mmWave networks by deploying symmetric
multilevel codes over space, i.e., we encode the source se-
quences in packets and send these packets over multiple net-
work paths. We propose an optimization formulation that seeks
to suitably balance the average information rate with a graceful
performance degradation. We also present a low-complexity
design that approximates well the aforementioned trade-off.

In Section IV, we numerically assess the performance of
the proposed coding schemes and compare them with some
baseline methods. Our evaluations show that: (i) the proposed
schemes provide a more graceful performance degradation
compared to fixed-resilience coding schemes, such as erasure
correcting codes; and (ii) our complexity reduction technique
gives a comparable performance in terms of information rate,
while significantly reducing the code complexity. Finally, in
Section V we conclude the paper.

II. CODING FRAMEWORK

Notation. [a : b] is the set of integers from a to b > a, and
| · | denotes the cardinality for sets; for a vector v, we denote
with kvk the `2-norm of v.

We consider the so-called 1-2-1 network model, which was
introduced in [8] to capture the fact that mmWave communica-
tions require beamforming with narrow beams to compensate
for the high path loss. The 1-2-1 model ‘strips’ the physical
layer component and focuses on capturing the directivity key
characteristic of mmWave communication. In this sense, the
1-2-1 network model is simple, yet informative.

We focus on an N -relay 1-2-1 network where N relays
(operating either in full-duplex or half-duplex mode) assist
the communication between the source node (node 0) and
the destination node (node N + 1). At any particular time, a
node can transmit to at most one node and it can receive from
at most one node. Two nodes communicate by steering their
beams towards each other. This activates a link that connects
them (termed as a 1-2-1 link in [8]). Even though in this paper
we assume that every relay has a single transmit and receive
beam, our results naturally extend to scenarios in which the
relays have multiple transmit and receive beams.

In [8], the unicast capacity of an N -relay Gaussian 1-2-1
network was approximated to within an additive gap that only
depends on N . A linear program was proposed in [8] to com-
pute the approximate capacity and the optimal beam schedule
in polynomial time, both for full-duplex and half-duplex
modes of operation. Recently, in [9] we showed that these
results hold even if the network links experience blockage.
These results show that we can efficiently find an optimal
set of paths (i.e., a set of paths that achieve the approximate

Fig. 1: An example network with N = 3 relay nodes.

capacity when they are operated) and their schedule. Thus, in
this paper we assume that such paths and schedules are given.

In mmWave networks, links are susceptible to blockage
(failure) and the blockage probabilities can be estimated
through existing models [4]–[7]. Particularly, the blocker
arrival process can be modeled as a Poisson point process
to derive the blockage rate of the line-of-sight links. The
blockage rate ↵j,i of the link from node i 2 [0 :N ] to node
j 2 [1 :N+1] can be written as ↵j,i = �j,idj,i. Here, dj,i is
the distance between nodes i and j; and the parameter �j,i is
proportional to the blocker density and velocity as well as to
the heights of the blockers, the receiver, and the transmitter [4].

Since we are interested in low-delay communication, we
consider a permanent (as compared to the timescale of commu-
nication) blockage model, where the link from node i 2 [0 :N ]
to node j 2 [1 :N+1] is blocked with probability qj,i and it
is not blocked with probability (1 � qj,i). That means that,
if a link of capacity `j,i is blocked, its capacity is assumed
to be zero and any packet transmitted through this link is
blocked. If the link is unblocked, it successfully transmits
packets at rate `j,i. This model is different from the erasure
channel model where a packet is blocked with probability qj,i

at every channel use. In an erasure channel, even if a packet is
blocked at one channel use, it can be successfully transmitted
through the same link in another channel use. On the contrary,
in the permanent blockage model, if a link is blocked it is
assumed to be blocked during the timescale of communication.
Thus, any transmitted packet through that link is blocked. In
the following example, we show that an optimal schedule for
erasure channels is not necessarily optimal for the permanent
blockage model.

Example 1. Let `j,i denote the capacity of the link from
node i 2 [0 : N ] to node j 2 [1 : N+1]. Consider the
network in Fig. 1 for `2,0 = 4, `3,2 = 12, `1,0 = `3,1 =
3, `4,3 = 6 and the link blockage probabilities are zero except
for q3,2 = 2/3. There are two paths connecting the source
(node 0) to the destination (node 4): p1 : 0 ! 1 ! 3 ! 4
and p2 : 0 ! 2 ! 3 ! 4. In Fig. 1, in the erasure channel
model, we can simply replace the link capacities `j,i’s with
the average link capacities (1� qj,i)`j,i. An optimal schedule
transmits through p2 because it has a higher rate than p1.
However, in the permanent blockage model that we consider,
two scenarios can happen: (1) the link with capacity `3,2 is
blocked and hence, p2 is blocked with probability 2/3; or (2)
none of the links is blocked with probability 1/3. The rates
of p1 and p2 are similar but there is a high probability that p2
is blocked. Thus, an optimal schedule transmits through p1.



A. Erasure Correcting Codes

A classical approach for resilience against link blockages is
to use an erasure correcting code [10]–[17], which is a forward
error correction code under the assumption of bit (or packet)
erasures. An erasure code (n, k) transforms k information
packets into n packets in a way that the original message
can be recovered from any k packets (out of n packets).
Thus, the information rate is equal to k/n. An erasure code
supports a given number of blockages, i.e., it has a single
threshold of blockage: we enter “outage” if the number of
blockages is larger than the design (i.e., less than k packets
are received resulting in a zero information rate), and we
succeed (at least k packets are received resulting in a k/n

information rate) if it is lower. Thus, erasure codes do not
exhibit a graceful performance degradation. Moreover, even if
we succeed, having fewer blockages than anticipated does not
increase the information rate. We next define the average rate
and the outage probability of an erasure code.

Definition 1: The average information rate of an erasure
code (n, k) is defined as,

RE,k =
k

n
(1� Pout) , (1)

where Pout is the outage probability defined as,

Pout = P (X < k), (2)

where the random variable X denotes the total number of
packets received by the destination.

B. Multilevel Diversity Coding

We here explore opportunistic resilience code designs that
exhibit a graceful performance degradation. Particularly, we
discuss multilevel diversity coding (MDC), which is a classical
coding scheme where i.i.d. source sequences are encoded such
that different reliability requirements can be guaranteed to
different source sequences. Multilevel codes can be designed
in two different ways: symmetric and asymmetric multilevel
codes. In this paper, we focus on symmetric multilevel codes.

In the symmetric MDC [18], [19], there are H i.i.d. source
sequences that are encoded into H descriptions using H

encoders. These H descriptions are sent to H decoders, each
through a different channel. The source sequences have certain
levels of importance, ordered from 1 (the most important) to
H (the least important). Each decoder has access to a subset of
the descriptions. The encoders aim to produce the descriptions
such that each decoder with h available descriptions can recon-
struct the h most important source sequences. For the symmet-
ric problem, superposition coding is information-theoretic op-
timal [18], [19]. That is, each source sequence is compressed
separately, and descriptions are created by concatenating the
compressed source sequences appropriately. The next example
illustrates this point and showcases how multilevel codes can
be helpful in mmWave networks.
Example 2. Consider the network with N = 6 relays in Fig. 2.
There exist H = 6 edge-disjoint paths connecting the source
(node 0) to the destination (node 7). We let Ui, i 2 [1 : 6], be

Fig. 2: An example network with N = 6 relays.

Fig. 3: 6-level symmetric multilevel code setting.

the i.i.d. source sequences which are ordered with decreasing
importance. The source sequences are encoded by H = 6
encoders and the descriptions are denoted by Ei, i 2 [1 : 6].
Each description is sent through a different path. In Fig. 3, we
show the setting for a 6-level symmetric multilevel code for
the network in Fig. 2. The goal of the symmetric multilevel
code design in this network is to reconstruct Ui, i 2 [1 :h], if
any h paths succeed (or equivalently, if any H�h paths fail).

Remark 1: Multilevel codes can be deployed over space or
time (or a combination of both). While deploying over space,
we encode the source sequences and send the packets over
multiple paths. While deploying over time, we encode the
source sequences and send the packets over a single path but at
different time intervals. As an example, for 6 source sequences
Ui, i 2 [1 : 6], we can encode them by creating 6 encoded
packets, and send them over 6 paths as in Fig. 2. While
deploying over time, we can encode these source sequences by
creating 6 packets in the same way as in deploying over space,
and then send the packets over a single path at 6 different
time intervals. In the rest of the paper, we deploy multilevel
codes over space by leveraging the multipath environment of
mmWave networks. If a mmWave network does not support
a multipath environment or if we would like to design the
code according to time correlations of blockages, our proposed
design can be deployed over time or over a combination of
space and time. Our results naturally extend to these scenarios.

III. SYMMETRIC MULTILEVEL CODE DESIGNS

In this section, we discuss how symmetric multilevel codes
can be deployed over mmWave networks with arbitrary topol-



Fig. 4: Symmetric multilevel code for the network in Fig. 2.

ogy. We let H denote the number of edge-disjoint paths in
the network (connecing the source to the destination) and
p[1:H] denote the corresponding set of edge-disjoint paths. We
denote the i.i.d. source sequences by Ui, i 2 [1:H], which
are ordered with decreasing importance. Since superposition
coding is optimal for the symmetric problem [18], [19], we
encode each Ui with a different rate erasure code. In particular,
we create combined packets xi, i 2 [1 : H], where each
packet xi is sent through path pi 2 p[1:H]. Each packet xi

consists of H components, and each component is generated
based on a different erasure code; we use erasure codes
(H, 1), (H, 2), . . . , (H,H) to create the combined packets.
Thus, if the components of a combined packet xi are denoted
by xi,j for j 2 [1 : H], each component xi,j is generated
based on an erasure code (H, j). We allocate a packet fraction
to each erasure code, such that fj denotes the fraction of a
combined packet that is allocated to the erasure code (H, j) for
j 2 [1 :H]. Under this design, if i number of path blockages
occur for 0  i < H , the total rate achieved by a symmetric
multilevel code is equal to

P
H�i

j=1 (j/H)fj . This leads to the
following average rate3.

Definition 2: The average information rate of a symmetric
multilevel code with H i.i.d. source sequences is

RM =
X

j2�

✓
j

H
P (X � j)fj

◆
, (3)

where the random variable X denotes the total number of
packets received by the destination, and � = [1:H].

Remark 2: The average information rate RM in (3) is a
weighted summation of average rates of erasure codes as
defined in Definition 1. The weights are the fractions fj , j 2 �.
Fig. 4 provides an illustration of the proposed symmetric
multilevel code design for the network in Fig. 2. For instance,
we encode U1 with a (6, 1) erasure code which can be decoded
if at least 1 path succeeds (or equivalently, at most 5 paths fail).

Our proposed multilevel code design (and its average infor-
mation rate RM) depends on the fraction fj’s where j 2 �. In
the rest of this section, we propose an algorithm to select them.
Our objective is to allocate the packet fractions such that: (i)

3We assume that each packet is transmitted during one transmission time
interval denoted by td (e.g., td = 250 µs [20]). Thus, the transmission
duration of H packets is equal to td.

the average rate of a symmetric multilevel code is maximized;
and (ii) there is a graceful performance degradation. Thus, we
propose to solve the following optimization problem,

max
f

P
j2�

�
j

H
P (X � j)fj

�
� µkfk2

subject to C1 :
P

j2�
fj = 1,

and C2 : f � 0,

(4)

where f denotes the vector of fractions fj , j 2 �, and µ

is a nonnegative trade-off parameter given as input to the
optimization problem. In particular, µ determines the relative
importance of the `2-norm of the packet fractions versus
the average rate. As the value of µ decreases, the solution
of (4) focuses more on maximizing the average rate of the
multilevel code rather than minimizing the `2-norm penalty.
In the extreme case µ = 0, the objective function in (4)
reduces to (3); due to the constraint C1 in (4), the optimal
solution will then select the packet fraction fj? = 1 where
j
? = argmax

j2�
(j/H)P (X � j), and all of the remaining

packet fractions will be zero. This is equivalent to using a
single erasure code (H, j

?). Even though this approach max-
imizes the average rate, as we discussed in Section II, it does
not provide a graceful performance degradation. As the value
of µ increases, the optimal solution starts to emphasize more
on the penalty term, and allocates nonzero values to a higher
number of packet fractions to decrease the `2-norm. When
µ is sufficiently large, an optimal solution allocates an equal
packet fraction to erasure codes. This leads to a more graceful
performance degradation while achieving a lower average rate.
Thus, there is no unique optimal selection for the fractions as
there is an inherent trade-off between maximizing the average
rate and achieving a graceful performance degradation. The
parameter µ is tuned to have an attractive trade-off. In the rest
of the paper, we refer to this heuristic as MC-Optimized.

Remark 3: In (4), we consider average rates of erasure codes
which equally emphasize the rate and reliability (having a
small outage probability). However, certain applications can
focus on achieving high rates rather than providing high
reliability, and vice versa. In this case, the objective function
in (4) can be modified to maximize the weighted average rate
which multiplies the rate and the probability terms by certain
coefficients that can be chosen by a specific application.

So far, we selected the packet fractions for |�| = H erasure
codes. However, H can be exponential in the number of
relays N , which increases the code complexity. Thus, we
propose to reduce the complexity by selecting only m (e.g.,
m = dlog(H)e so that the complexity is polynomial in N )
erasure codes with the highest average rates, and only combine
these selected codes in the symmetric multilevel code. The
optimization problem in (4) allocates the packet fractions
of these m erasure codes, and � in (4) denotes the set of
indices of the m erasure codes that are selected. This reduces
the complexity of solving the optimization problem which
depends on |�| = m. In what follows, we will refer to this
heuristic as MC-RC. The average information rate of MC-RC,
denoted by RRC, is defined as in (3).



As discussed, (H, j
?) (the erasure code with the highest

average rate) is selected by the solution of the problem in (4)
when µ = 0. As defined in (1), RE,j? is the average rate of
(H, j

?). The parameter µ in (4) allows a graceful performance
degradation for MC-RC at the cost of achieving a lower
average rate than RE,j? . Proposition 1 evaluates at most how
much we lose in terms of average rate by deploying MC-RC.

Proposition 1: Consider an N -relay 1-2-1 network with
an arbitrary topology, and let H denote the number of
edge-disjoint paths in the network. Let (H, j

?) represent the
erasure code that has the highest average rate RE,j? , and RRC

be the average information rate of MC-RC. Then,

RE,j? �RRC  1

H
min {", j?} , (5)

where " =
P

H

i=1 "i with "i being the probability that the ith
packet is received by the destination, i.e., the probability that
the ith path is not blocked.

Proof: The proof follows from: (1) RE,j? in Definition 1;
(2) the fact that RRC � 0; (3) the Markov’s inequality
P (X � j

?)  min
n
1, E[X]

j?

o
; and (4) noting that X is a

Poisson binomial random variable for which E[X] = ".

IV. NUMERICAL EVALUATIONS

In this section, we numerically assess the performance of
our proposed coding schemes MC-Optimized and MC-RC.
We consider the network in Fig. 2. Our coding scheme can
be applied to networks with arbitrary topologies by selecting
edge-disjoint paths among all paths, thus the network in Fig. 2
can be considered as a snapshot of a larger network with an
arbitrary topology and 6 edge-disjoint paths. We assume that
all paths have the same blockage probability4 equal to 1/3.
In Fig. 5a, we show the probability of any k paths to fail for
k 2 [0 :6], e.g., the probability of any 2 paths to fail is 0.33.

We compare the performance of our proposed coding
schemes with the following baseline methods5.
1) Erasure Code (EC). This method uses a single erasure
code, namely the one with the highest average rate. As
discussed in Section III, this is the solution of the optimization
problem in (4) with µ = 0.
2) Erasure Code-Reduced Outage (EC-RO). The baseline
method EC described above aims to maximize the average
rate by using a single erasure code; however, this can lead to
a high outage probability. The method EC-RO uses a single
erasure code as well, but it selects the code such that the outage
probability in (2) is smaller than a given threshold �.
3) Uniform allocation (MC-Uniform). This method uses a
symmetric multilevel code while allocating an equal packet
fraction to the erasure codes, i.e., fj = 1/H for j 2 [1 :H]. As
discussed in Section III, a uniform allocation is the solution of
the optimization problem in (4) for a sufficiently large µ. Thus,
this method focuses more on ensuring a graceful performance
degradation rather than on maximizing the average rate.

4We refer the reader to Remark 4 that motivates these assumptions.
5For all discussed methods, the transmission duration of 6 packets is equal

to td = 250 µs [20].

4) Proportional allocation (MC-Proportional). This method
uses a symmetric multilevel code by assigning packet fractions
proportional to the average rates of the erasure codes. That is,
it allocates the packet fraction fj for an erasure code (H, j)
proportional to (j/H)P (X � j) for j 2 [1 : H] while
satisfying the constraints of the optimization problem in (4),

fj =
(j/H)P (X � j)

P
H

i=1 (i/H)P (X � i)
. (6)

Compared to MC-Uniform, this method assigns higher packet
fractions to codes that have higher average rates. It is different
from our proposed schemes in Section III because it assigns
fixed packet fractions as in (6) instead of optimizing over them.
However, allocating the packet fractions as in (6) is still a
feasible solution for our proposed optimization problem in (4).

In Fig. 5b, as the number of path blockages increases from
0 to 6, we show the information rate achieved by each coding
scheme. For each method, the markers in Fig. 5b are placed at
the corner points of erasure codes that are combined by that
method6. As expected, the information rate achieved by each
method decreases as the number of path blockages increases.
The method EC uses a single erasure code with the highest
average rate, an erasure code (6, 4) in this example. It can
achieve rate 4/6 whenever the number of path blockages
is less than or equal to 2. However, its outage probability
Pout = 0.32 is considerably large. For the method EC-RO, we
set � = 0.01. Thus, EC-RO selects a single erasure code for
which Pout < 0.01. In this example, an erasure code (6, 1) is
selected with Pout = 0.001, and it achieves rate 1/6 whenever
the number of path blockages is less than or equal to 5. From
Fig. 5b, we note that the erasure code methods EC and EC-RO
do not exhibit a graceful performance degradation.

Different from EC and EC-RO, all multilevel codes offer a
graceful performance degradation. As shown in Fig. 5b, the
performance of MC-Uniform is underwhelming compared to
other methods because it allocates the same packet fraction
to all erasure codes, while the other methods are allocating
higher fractions to erasure codes that have higher average
rates. Overall, MC-Optimized has the best performance be-
cause it maximizes the average rate while allowing a graceful
performance degradation. The parameter µ is tuned to balance
this trade-off and selected as 0.6. MC-Optimized outperforms
MC-Proportional because MC-Proportional chooses fix packet
fractions as shown in (6), and it even uses erasure codes that
have a low average rate. Differently, MC-Optimized optimizes
the packet fractions through µ to allocate higher fractions to
codes that have higher average rates, while allocating zero
fraction to codes that have low average rates. Moreover, our
complexity reduction method MC-RC only uses m = 3 erasure
codes while still giving a comparable performance with respect
to MC-Optimized that uses 5 erasure codes, and it outperforms
the baseline methods that use 6 erasure codes. We note that
MC-RC sometimes outperforms MC-Optimized because µ is

6The corner point of an erasure code indicates the maximum number of
path blockages for which the code can provide a nonzero information rate.



(a) (b) (c)

Fig. 5: Performance of the proposed coding schemes and alternative schemes.

tuned separately for the two schemes to achieve an attractive
trade-off (µ = 0.6 for MC-Optimized and µ = 0.3 for
MC-RC). Although MC-RC achieves zero information rate
when more than 4 paths fail, the probability of this event is
significantly small as shown in Fig. 5a.

We also present information rate-outage probability curves
for the multilevel codes7 in Fig. 5c. For example, the outage
probability corresponding to rate 0.58 of MC-Uniform is 0.91;
that is, the probability that MC-Uniform does not achieve
rate 0.58 is 0.91. From Fig. 5c, we observe similar behaviors
to those in Fig. 5b. For instance, as shown in Fig. 5c, our
proposed schemes can achieve similar rates to those achieved
by the baseline methods but with smaller outage probabilities,
e.g., MC-RC achieves rate 0.53 with outage probability 0.32.

Remark 4: We ran extensive numerical evaluations also for
a larger number of edge-disjoint paths (e.g., 12 and 20), and
when the link blockage probabilities are not necessarily the
same (e.g., drawn from a Gaussian distribution). We observed
similar results to those observed for 6 edge-disjoint paths with
equal blockage probabilities (described above). Thus, we have
not provided them because of space considerations.

V. CONCLUSIONS

In this paper, we provided first steps towards develop-
ing low-complexity proactive transmission mechanisms for
mmWave networks that are resilient to blockages. We built on
the multipath environment and on the accurate models for link
blockage probabilities in mmWave networks. Particularly, we
deployed symmetric multilevel codes to achieve an attractive
trade-off between the average rate and a graceful performance
degradation. Our evaluations show that our coding schemes
provide a graceful performance degradation compared to alter-
native schemes while significantly reducing the code complex-
ity. Thus, our work shows that multilevel codes are promising
and worth further exploration in mmWave networks.
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