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This paper reviews and compares popular methods, some
old and some very recent, that produce time series having
Poisson marginal distributions. The paper begins by nar-
rating ways where time series with Poisson marginal distri-
butions can be produced. Modeling nonstationary series
with covariates motivates consideration of methods where
the Poisson parameter depends on time. Here, estimation
methods are developed for some of the more flexible meth-
ods. The results are used in the analysis of 1) a count se-
quence of tropical cyclones occurring in the North Atlantic
Basin since 1970, and 2) the number of no-hitter games
pitched inmajor league baseball since 1893. Tests forwhether
the Poissonmarginal distribution is appropriate are included.
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1 | INTRODUCTION

Gaussian time series have a long and storied development in time series modeling (Box et al., 2015, Brockwell and
Davis, 1991, Shumway et al., 2000). Indeed, most time series connoisseurs regard Gaussian theory as essentially
complete now. Less developed, but now currently heavily researched, are methods that describe autocorrelated
series for counts; that is, the series Xt at time t is supported on some subset of the non-negative integers {0, 1, . . .}.
This paper reviews, compares, and contrasts several popular methods that produce Poisson distributed series, which
is arguably the quintessential count distribution. Discrete and integer autoregressions, superpositioning methods, and
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copula methods are considered.
Some caveats are worth mentioning at the onset. First, techniques exist that produce count models having a

conditional Poisson distribution. One such technique, which is essentially theGLARMAparadigm ofDavis et al. (2005),
Dunsmuir and Scott (2015), starts with a nonnegative {λt } process that is stationary and posits that the conditional
distribution of Xt |λt is Poisson with mean λt . While this can often lead to a convenient autoregressive representation
of the counts (Fokianos et al., 2009), Xt will not be left with a Poisson marginal distribution. Indeed, should X |Λ = λ

be Poisson distributed with mean λ, then the marginal distribution of this structure must be overdispersed:
Var(X ) = E [Var(X |Λ) ] + Var(E [X |Λ] ) = E [Λ] + Var(Λ) > E [Λ] = E [X ] .

We refer the reader to the review in Davis et al. (2021) and the references within for more on this issue. In particular,
this paper focuses on models having a true Poisson count marginal distribution.

As a second caveat, some results for stationary Gaussian time series do not hold in the Poisson setting. For one
example, if {γ (h ) }∞

h=−∞ is a symmetric (γ (h ) = γ (−h ) for all integers h ≥ 0) and non-negative definite sequence
on the integers, then there exists a Gaussian distributed sequence {Xt } with Cov(Xt ,Xt+h ) = γ (h ) . No such result
carries over to the Poisson case. Indeed, (−1)h is symmetric and non-negative definite. While a Gaussian sequence
with this autocovariance exists (take Xt = (−1) t Z , where Z is standard normal), it is not possible to achieve this in
the Poisson setting. To see this, it is enough to show that one cannot have two Poisson variables X1 and X2 having
the same mean λ and correlation −1 (the reader is challenged to prove this).

The rest of this paper proceeds as follows. The next section reviews methods that generate count series having
a Poisson marginal distribution. There, discrete and integer autoregressions, superpositioning methods, and copula
techniques are considered. The pros and cons of each model classes are illuminated; much of this material constitutes
a review. Section 3 moves to estimation issues. There, likelihood estimation techniques are developed if possible.
Unfortunately, the joint distribution needed in the likelihood is intractable for many model classes. Particle filtering
and quasi-likelihood techniques such as linear prediction will be used here. Simulations show that the methods work
quite well. Section 4 analyzes series of annual North Atlantic Basin hurricanes and no-hitter games pitched in major
league baseball with covariates. Section 5 shows how to test whether the Poisson marginal distribution assumption
is adequate with residual diagnostics. Section 6 concludes the paper with comments.

2 | METHODS

This section reviews methods producing a stationary series having Poisson marginal distributions. Some of this mate-
rial has appeared elsewhere; however, some new insights are offered in our discourse.

As some of the models classes below cannot have negative autocorrelations, flexibility and completeness of the
autocovariances becomes an issue. Before proceeding, we first investigate the most negatively correlated Poisson
variables existing, providing some intuition en route.

Let Fλ ( ·) be the Poisson cumulative distribution function (CDF) with mean λ:

Fλ (n ) =
n∑

k=0

e−λλk

k ! , n = 0, 1, . . .

The most negatively correlated pair of random variables X and Y , both having the marginal cumulative distribution
function (CDF) Fλ , are known to have form X = F −1

λ
(U ) andY = F −1

λ
(1 − U ) , where U is uniformly distributed over
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[0,1] and F −1
λ

is the inverse CDF:
F −1
λ (u ) = inf{t : Fλ (t ) ≥ u }

(Whitt, 1976) (this version of the inverse is the quantile function). Such an (X ,Y ) pair can be produced from aGaussian
copula via

X = F −1
λ (Φ (Z ) ), Y = F −1

λ (Φ (−Z ) ) .

Here, Φ ( ·) is the standard normal CDF and Z is a standard normal random variable. This is because U := Φ(Z ) is
uniformly distributed over [0,1] by the probability transformation theorem and Φ (−Z ) = 1 − Φ (Z ) = 1 − U .

To obtain an expression for the most negative correlation possible, let cn = Fλ (n ) denote the Poisson λ CDF at
index n and note that the inverse has form

F −1
λ (u ) =

∞∑
n=1

n1[cn−1,cn ) (u ),

where 1A (x ) denotes an indicator function over the set A. Converting this to a tail sum gives

F −1
λ (u ) =

∞∑
n=1

n∑
k=1

1[cn−1,cn ) (u ) =
∞∑
k=1

∞∑
n=k

1[cn−1,cn ) (u ) =
∞∑
k=1

1[ck −1,1) (u ) . (1)

Simple algebraic manipulations now give

E [F −1
λ (U )F −1

λ (1 − U ) ] =
∞∑
k=1

∞∑
ℓ=1

E [1[ck −1,1) (U )1[cℓ−1,1) (1 − U ) ] =
∞∑
k=0

∞∑
ℓ=0

(1 − cℓ − ck )1[cℓ+ck <1] .

An expression for the most negative autocorrelation, which we denote by NB(λ ) , now follows simply as

NB(λ ) =
∑∞

k=0

∑∞
ℓ=0 (1 − cℓ − ck )1[cℓ+ck <1] − λ2

λ
. (2)

A plot of NB(λ ) as a function of λ is provided in Figure 1. As λ → ∞, this correlation tends to -1; however, for small
λ, there are significant restrictions on the negative correlations that can be made. An interesting feature of Figure 1
lies with the slight non-monotonicity of NB(λ ) in λ for some λ ≤ 3. This is not computational roundoff; indeed, the
Hermite coefficients gk below, discussed in Subsection 2.4, are not monotonic in λ. This fact can also be inferred from
the plots in the supplementary material in Jia et al. (2023).

2.1 | Discrete Autoregressions

Discrete autoregressions (DARs), the original attempt to devise stationary series having a particular marginal distribu-
tion (Jacobs and Lewis, 1978a,b,c), work by mixing past series values. In the Poisson case, the construction begins
with a sequence {At }∞t=1 of IID Poisson variables with mean λ > 0. A sequence {Bt }∞t=1 of IID Bernoulli trials is needed
that is independent of {At } and has success probability P (Bt = 1) ≡ p .



4 Kong

F IGURE 1 Lower Curve: A plot of the most negative achievable autocorrelation, NB(λ ) , for various λ. Bottom
Curve: A plot of the most negative achievable autocorrelation in the superpositioned model class of Section 2.3.

In the first-order case, the DAR construction starts by taking X1 = A1. For t ≥ 2, series values are mixed via
Xt = BtXt−1 + (1 − Bt )At .

Here, if Bt = 1, Xt is taken as Xt−1; should Bt = 0, Xt = At is a “new independent Poisson draw". Schemes extending
the paradigm to higher autoregressive (AR) orders are achievable with additional Bernoulli sequences, but the DAR
class has some drawbacks. Foremost, DAR models cannot have any negative autocorrelations. In the first order case,
one can show that Corr(Xt ,Xt+h ) = ph for h ≥ 0, which cannot be negative since p ∈ (0, 1) must be a probability.
Perhaps worse, series values are often repeated: P [Xt+1 = Xt ] ≥ p . In the heavily correlated case where p is close to
unity, the series becomes almost constant. Because of these properties, DAR series were essentially abandoned. See
Möller and Weiß (2020) for recent attempts to remedy these issues. We will not consider the DAR class further.

2.2 | Integer Autoregressions

Steutel and van Harn (1979) introduced binomial thinning in an attempt tomimic AR recursions for count series. If X is
a count-valued variable, define α ◦X =

∑X
i=1 Bi , where {Bi } are IID Bernoulli trials with success probability α ∈ (0, 1)

that are independent of X ; ◦ is called a binomial thinning operator.
Integer autoregressions (INARs) are based on thinning operators. In the first-order case, a strictly stationary series

with Poisson marginal distributions with mean λ is governed by the difference equation
Xt = α ◦ Xt−1 + ϵt , (3)

where {ϵt } is IID with a Poisson marginal distribution with mean λ (1 − α ) (McKenzie, 1985, Alzaid and Al-Osh, 1990,
Weiß, 2018).

A well-known property of solutions to (3) is that any discrete self-decomposable marginal distribution (these
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include Poisson, negative binomial, and generalized Poisson) can be produced by this recursion; this said, our focus
remains on Poisson marginals. The autocorrelation function of an INAR(1) series can be shown to have the form

Corr (Xt ,Xt+h ) = αh ; (4)
in particular, negative autocorrelations cannot be produced since α ∈ (0, 1) .

Higher order schemes, dubbed INAR(r ) for order r , have been investigated; however, producing series with Pois-
son marginals in these schemes has been problematic. Be wary of issues with the literature here; specifically, the
methods in Alzaid and Al-Osh (1990) and Du and Li (1991) will not achieve Poisson marginals; see the discussion
in Scotto et al. (2015). To circumvent this problem, Zhu and Joe (2006) propose combined integer autoregressive
(CINAR) models. A CINAR series of order r follows the recursion

Xt = Dt ,1 (α ◦ Xt−1 ) + · · · + Dt ,r (α ◦ Xt−r ) + ϵt . (5)
The IID time t “decision vector" isDt = (Dt ,1, . . . ,Dt ,r ) ∼ Mult(1;φ1, . . . ,φr ) and is independent of {ϵt } and {Xs }s<t .
The decision vectorDt chooses which of the past r series values is used in the thinning, enabling the scheme to keep
a Poisson marginal distribution. Here, the innovation ϵt and the thinning of Xt−j for the chosen j ∈ {1, . . . , r } are
conducted independently.

Zhu and Joe (2003) show that the marginal distribution of any CINAR(r ) series must also be self-decomposable.
As with the Poisson INAR(1) model in (3), the CINAR(r ) model has a marginal Poisson distribution with mean λ when
{ϵt } is IID Poisson with mean λ (1 − α ) , regardless of the order of r . Weiß (2008) derives the autocovariance of a
CINAR(r ) series from (5); from this, one can show that the resulting autocovariance must be non-negative. As such,
CINAR(r ) models cannot have any negative autocorrelations and this model class also fails to span the range of all
possible autocovariances.

2.3 | Superposition Techniques

Poisson distributions can be built by adding IID copies of Bernoulli trials. Indeed, if {Bi }∞i=1 are IID Bernoulli variables
with success probability p = P [Bt = 1] and N is Poisson, independent of {Bi }∞i=1 and with mean λ, then ∑N

i=1 Bi has a
Poisson distribution with mean pλ. Blight (1989) and Cui and Lund (2009) use this construction to produce correlated
count series having Poisson marginal distributions.

Elaborating, suppose that {Bt ,i }∞t=1 are IID copies of the autocorrelated Bernoulli trial sequence {Bt } for i ≥ 1.
Clarifying, for each fixed i , {Bt ,i }∞t=1 is autocorrelated in time t — say Cov(Bt ,i ,Bt+h,i ) := γB (h ) — but {Bt ,i }∞t=1 and
{Bt ,j }∞t=1 are independent when i , j . A series with Poisson marginals can be built via superpositioning:

Xt =

Nt∑
i=1

Bt ,i .

Then Xt has a Poisson distribution with mean λp . The autocovariances of {Xt } are
γX (h ) := Cov(Xt ,Xt+h ) = E [min(Nt ,Nt+h ) ]γB (h ) (6)

for h > 0, where Nt and Nt+h are independent Poisson variables with mean λ (E [min(Nt ,Nt+h ) ] does not depend



6 Kong

on h). Note that γX (h ) will be negative whenever γB (h ) is negative; hence, this model class can produce negatively
correlated series. One can show that

κ (λ ) := E [min(Nt ,Nt+h ) ] = 2λ
[
1 − e−4λ {I0 (4λ ) + I1 (4λ ) }

]
, (7)

where the I j s are modified Bessel functions of the first kind:

I j (x ) =
∞∑
n=0

(x/2)2n+j
n!(n + j )! , j = 0, 1

(Jia et al., 2021). The above construct essentially builds the correlated Poisson series {Xt } from the independent
Poisson series {Nt }.

Several ways to construct correlated sequences of Bernoulli trials exist. One way uses a stationary renewal se-
quence built from the IID lifetimes {Li }∞i=1 supported on {1, 2, . . .} and an initial delay L0 supported on {0, 1, 2, . . .} as
follows. Define the random walk Sn = L0 + L1 + · · · + Ln for n ≥ 0 and set Bt = 1 when a renewal occurs at time t (i.e.,
when Sn = t for some n ≥ 0) and zero otherwise. When the initial delay L0 is chosen as the first derived distribution
of one of the Li s for i ≥ 1 (a generic copy of these is denoted by L), viz.

P [L0 = k ] = P [L > k ]
µL

, k = 0, 1, 2, . . . ,

the Bernoulli sequence is stationary in that E [Bt ] ≡ 1
µL

and

γB (h ) =
1

µL

(
uh − 1

µL

)
. (8)

Here, the notation has µL = E [L ] and uh as the probability of a time h renewal in a non-delayed renewal process
(L0 = 0). When L is aperiodic and E [L ] < ∞ (which we henceforth assume), uh −→ µ−1L as t −→ ∞ by the elementary
renewal theorem (Smith, 1958). One can show that {Xt } has longmemory (absolutely non-summable autocovariances
over all lags) when E [L2 ] = ∞ (Lund et al., 2016); Jia et al. (2021) derive further properties of superpositioned series
and investigate non-Poisson count marginal distributions.

Another way to produce a stationary but correlated Bernoulli sequence {Bt } clips a Gaussian sequence in the
manner of Kedem (1980). Elaborating, let {Zt } be a standard stationaryGaussian sequencewith E [Zt ] ≡ 0, Var(Zt ) ≡
1, and Corr(Zt , Zt+h ) = ρZ (h ) . Define Bernoulli trials via

Bt = 1A (Zt ),

where A is some fixed set. In this case, autocovariances are, for h ≥ 0,
γB (h ) = P (Zt ∈ A ∩ Zt+h ∈ A) − P (Zt ∈ A)2 . (9)

As an example, when A = (0,∞) , P (Zt ∈ A) = 1/2 and classic bivariate normal orthant probability calculations give
γB (h ) =

arcsin(ρZ (h ) )
2π

.
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Notice that the autocovariances in (8) and (9) can be negative. Specifically, for a renewal {Bt }, γB (h ) < 0 whenever
uh < µ−1L ; for a Gaussian clipped {Bt } with A = (0,∞) , γB (h ) < 0 whenever ρZ (h ) < 0.

While the autocovariance function in (6) can be decisively negative, it does not achieve the minimum possible in
(2). To see this, note from (6) and (7) that

ρX (h ) := Corr(Xt ,Xt+h ) =
κ (λ/p )

λ
γB (h ) .

The smallest γB (h ) that can be made from a binary distibuted pair of random variables each having success probability
p can be shown to be -p2 for any lag h. Thus, the most negative lag h correlation that can be built from this model for
any h is −p2κ (λ/p )/λ.

Figure 1 displays this most negative correlation. Again, the correlation approaches −1 as λ increases and there
are significant restrictions for λ close to zero. To numerically calculate these minimums, a grid search was used to find
the p ∈ (0, 1) that minimizes −p2κ (λ/p )/λ for each fixed λ. These most negative correlations are uniformly bigger
than the optimal ones identified earlier. This brings us to our best Poisson model, which will achieve the full spectrum
of achievable autocorrelations.

2.4 | Gaussian Copulas

A recent class of very parsimonious and general count models developed in Jia et al. (2023) has been demonstrated to
have remarkable flexibility. This model starts with a stationary standard Gaussian sequence {Zt } and transforms it to
the desired count structure. Standardized means that E [Zt ] ≡ 0, Var(Zt ) ≡ 1, and γZ (h ) = ρZ (h ) = Corr(Zt , Zt+h ) .
The construction transforms Zt at time t via

Xt = F −1
λ (Φ (Zt ) ) . (10)

Here, Φ ( ·) is the standard normal CDF. By the probability integral transformation theorem, Φ (Z ) has a uniform
distribution over [0,1] and Xt has a Poisson marginal distribution with mean λ.

The autocovariance function of {Xt } is unwieldy in form, but can be quantified through several expansions. With
G (x ) = F −1

λ
(Φ (x ) ) , arguing as in (1) gives

G (z ) =
∞∑
n=1

n1[Fλ (n−1) ≤Φ (z )<Fλ (n ) ] =
∞∑
ℓ=0

1[Fλ (ℓ−1) ,1) (Φ (z ) ) =
∞∑
ℓ=0

1[Φ−1 (Fλ (ℓ ) ) ,∞) (z ) .

One expression for the autocovariances now follows as

γX (h ) =
∞∑
j=0

∞∑
k=0

P
(
Zt > Φ−1 (Fλ (j ) ) ∩ Zt+h > Φ−1 (Fλ (k ) )

)
,

which is computationally intensive to evaluate.
A more tractable expansion works through the Hermite polynomials {Hk (x ) }∞k=0 defined by

Hk (x ) = (−1)k ez2/2 d k

dz k

(
e−z

2/x
)
.



8 Kong

The first three Hermite polynomials are H0 (x ) ≡ 1, H1 (x ) = x , and H2 (x ) = x2 − 1. Higher order polynomials obey
the recursion

Hk (x ) = xHk −1 (x ) − H ′
k −1 (x ), k ≥ 1.

Expanding G in a Hermite basis, viz.

G (x ) =
∞∑
ℓ=0

gℓHk (x ),

where gℓ is the ℓth Hermite coefficient
gℓ =

E [G (Z )Hℓ (Z ) ]
ℓ ! ,

and Z is standard normal produces the key functional relationship between autocovariances in {Zt } and {Xt }:
γX (h ) = L (ρZ (h ) ) .

The function L ( ·) is called a link function in Jia et al. (2023) and has the power series representation

L (u ) =
∞∑
k=1

k !g 2
k

γX (0) u
k =

∞∑
k=1

ηk u
k , |u | ≤ 1,

where ηk = k !g 2
k
/γX (0) . It is known that L (u ) is differentiable in u , that L (0) = 0, and that L (1) = 1 (Jia et al., 2023).

The quantity ηk is called a link coefficient. Figure 2 plots ηk for a few values of k as a function of λ. While these
coefficients “behave erratically", they decrease quickly as k and/or λ increase. The value limu↓−1 L (u ) is the most
negative pairwise correlation that can be made. The inequality |γZ (h ) | ≤ |γX (h ) | , established in (Jia et al., 2023) (see
also Tong (2014)), shows that correlation will always be lost in the transformation from Zt to Xt ; however, many times,
this loss is not substantial.

With the conventions Φ−1 (0) = −∞ and Φ−1 (1) = ∞, the Hermite coefficients can be computed as

gk =
1

k !
[
1 − e−λ +

∞∑
ℓ=1

Hℓ−1 (Φ−1 (Fλ (ℓ ) ) )φ (Fλ (ℓ ) )
]
.

Other forms for gk are derived in Jia et al. (2023). Figure 3 plots L (u ) against u for various values of λ. Notice that
when λ = 10, L (u ) ≈ u and very little autocorrelation is lost in the transformation of Zt to Xt .

3 | INFERENCE

In the stationary case where Xt ∼ Poisson(λ ) , the traditional estimate of λ is the sample mean
λ̂ =

X1 + · · · + Xn

n
.
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F IGURE 2 Plot of log(�k ) versus λ for k ∈ {1, 2, 3, 4, 5}.

•
•
•

F IGURE 3 The link function L (u ) for λ ∈ {0.1, 1, 10}.

The variance of this estimate is

Var(λ̂ ) = λ

n

⎡⎢⎢⎢⎢⎣1 + 2
n−1∑
j=1

(1 − j /n )γX (j )
⎤⎥⎥⎥⎥⎦ ,

which is consistent whenever {Xt } has short memory autocorrelations (
∑∞

j=1 |ρX (j ) | < ∞) . One can get estimators
of λ with smaller variances than the sample mean via generalized least squares methods, but any improvements are
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negligible as n → ∞ (see the discussion in Chipman (1979), Lee and Lund (2004)).
In practical modeling scenarios, {Xt } is usually non-stationary, possibly due to trends, periodicities, covariates,

etc.. To study estimation for Poisson count series with such structures, time-varying versions of our techniques are
needed. Hence, our immediate goal is to develop time-varyingmodels whereXt ∼ Poisson(λt ) and there is correlation
between observations.

To develop such models, we first revisit INAR(1) models. Here, complications immediately arise. To see this, if
X1 ∼ Poisson(λ1 ) and the process obeys (3), then we must have ϵ2 ∼ Poisson(λ2 − pλ1 ) . Unfortunately, there is no
guarantee that λ2 − pλ1 is non-negative, suggesting that the INAR(1) paradigm is a suboptimal way to handle time-
varying dynamics. Should it be known that λt is nondecreasing in t , then one could explore this model class further;
see Bentarzi and Souakri (2023) for additional comments on process existence. Because of this issue, we move to
other methods.

3.1 | Time-varying Superpositioned Series

In the superpositioned model class, time-varying models having the desired marginal properties are easy to construct.
For this, let {Nt } be a sequence of independent Poisson variables with Nt ∼ Poisson(λt /p ) . Here, p = P [Bt ,i = 1]
is the success probability of the Bernoulli trials in the construction. Then it is easy to see that Xt ∼ Poisson(λt ) as
required. In this case, the derivation associated with 6 gives, for h > 0,

Cov(Xt ,Xt+h ) = Å(min(Nt ,Nt+h ) )γB (h ),

where Nt and Nt+h are independent Poisson variables with parameters λt and λt+h , respectively. Note that

Å(min(Nt ,Nt+h ) ) =
∞∑
n=1

P (min(Nt ,Nt+h ) ≥ n )

=
∞∑
n=1

P (Nt ≥ n ∩ Nt+h ≥ n )

=
∞∑
n=1

P (Nt ≥ n ) P (Nt+h ≥ n )

=
∞∑
n=1

[1 − Fλt /p (n − 1) ] [1 − Fλt+h/p (n − 1) ],

where Fλt (n − 1) and Fλt+h (n − 1) are the respective Poisson CDFs at the times t and t + h. There does not seem to
be a simplification of this formula as in (7) unless λt = λt+h .

To estimate parameters in superpositioned schemes, we will use linear prediction methods. Unfortunately, the
model’s likelihood function and conditional expectations E [Xt |X1, . . . ,Xt−1 ] appear to be intractable. Also, how to
simulate the likelihood accurately, as we will do for the Gaussian copula case below with particle filtering methods, is
also unclear. A bivariate composite likelihood is tractable as an alternative to linear prediction; however, we will see
that linear prediction works reasonably well.

Linear prediction works by first calculating Cov(Xt ,Xs ) := ΓX (t , s ) for each 1 ≤ t , s, ≤ n . Estimators are found
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by minimizing the simple sum of squares
n∑
t=1

(Xt − X̂t )2, (11)

where

X̂t = λt +
t−1∑
j=1

wj ,t (Xj − λj )

is the best one-step-ahead predictor of Xt made from linear combinations of a constant and X1, . . . ,Xt−1. The pre-
diction coefficients {wj ,t } satisfy the prediction equations



ΓX (1, 1) ΓX (1, 2) · · · ΓX (1, t − 2) ΓX (1, t − 1)
ΓX (2, 1) ΓX (2, 2) · · · ΓX (2, t − 2) ΓX (2, t − 1)
.
.
.

.

.

.
. . .

.

.

.
.
.
.

ΓX (t − 2, 1) ΓX (t − 2, 2) · · · ΓX (t − 2, t − 2) ΓX (t − 2, t − 1)
ΓX (t − 1, 1) ΓX (t − 1, 2) · · · ΓX (t − 1, t − 2) ΓX (t − 1, t − 1)





w1,t

w2,t

.

.

.

wt−2,t

wt−1,t


=



ΓX (1, t )
ΓX (2, t )
.
.
.

ΓX (n − 2, t )
ΓX (n − 1, t )


. (12)

To obtain parameter estimators, the sum of squares is numerically minimized in the parameters appearing in {λt }.
In this scheme, we onlyminimize the sumof squares in (11) about themean parameters appearing in λt ; the parameters
appearing in the covariance structure of {Bt } are held to their true values during this optimization. Future work
might consider how to estimate these parameters in tandem; here, a Cochrane-Orcutt recursion seems developable
(Cochrane and Orcutt, 1949) (the Gaussian copula structure analyzed next makes the issue somewhat moot). One
complication is that some parameters in {Bt } (namely p) arise in both the mean and autocovariance structure of the
linear predictors. One may wish to consider weighted least squares to accommodate the changing variances of the
series.

Solving the linear system in (12) requires a O(t 3 ) computational cost; as such, the computational burden can be
expensive for large n . We recommend doing a Cholesky decomposition of the covariance matrix on the left hand side
of (12) and then using backwards/forward substitution to obtain {wt ,k }. The classic Durbin-Levinson recursion is not
suitable here since {Xt } is not stationary. In our future computations, the “Nelder–Mead" optimization method was
used to minimize the sum of squares in (11).

3.2 | Time-varying Gaussian Copula Series

In the Gaussian copula case, process construction carries through as before; specifically, we set
Xt = F −1

λt
(Φ (Zt ) ) . (13)

The Hermite expansion of the time homogeneous case is simply allowed to vary with time now.
For notation, let θ contain all parameters appearing in {λt }nt=1 and η denote all parameters governing {Zt }. We

do not suggest trying to incorporate time dependence into the dynamics of {Zt } as process existence issues then
arise. The covariance matrix of (Z1, . . . , Zn ) ′ depends only on η (and not on θ).

The model’s likelihood function, denoted by L(θ,η) , is simply a high dimensional multivariate normal probability.
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To see this, use (13) with the data X1, . . . ,Xn to get
L (θ,η) = Ð(X1 = x1, · · · ,Xn = xn ) = Ð (Z1 ∈ (a1, b1 ], · · · , Zn ∈ (an , bn ] ) , (14)

where {at }nt=1 and {bt }nt=1 are
at = Φ−1 (Fλt (xt − 1) ), bt = Φ−1 (Fλt (xt ) ) .

This probability is infeasible to accurately evaluate for large n . A likelihood can, however, be quite accurately
simulated by particle filtering methods (Douc et al., 2014). Indeed, particle filtering simulation methods can be used
to reliably approximate the model’s likelihood and even compute standard errors. The current preferred methods of
multivariate normal probability evaluation are arguably the Geweke–Hajivassiliou–Keane (GHK) simulators of Geweke
(1991) and Hajivassiliou et al. (1996). Here, we develop an adaptive version of this simulator.

Particle filtering methods, which are classic importance sampling techniques, aim to evaluate integrals by drawing
samples from an alternative distribution and averaging their corresponding weights. Should we need to estimate the
integral ∫

D
f (x)dx over some domain D , then we use∫

D
f (x)dx =

∫
D

f (x)
q (x) q (x)dx,

where f (x)/q (x) is the weight and q is called the importance distribution. The importance sampling estimate of the
integral is

�∫
D

f (x)
q (x) q (x)dx =

1

m

m∑
k=1

f (x(k ) )
q (x(k ) )

,

where x(1) , . . . ,x(m) are m IID samples drawn from q . We require that q satisfies q (z1:n ) > 0 for zt ∈ (at , bt ] and
q (z1:n ) = 0 otherwise; our notation uses z1:k = (z1, . . . , zk ) and x1:k = (x1, . . . , xk ) .

We take advantage of theMarkov chain properties of the latent AR {Zt }. The GHK algorithm samples Zt , depend-
ing on the its previous history Zt−1, . . . , Z1 andXt , from a truncated normal density. Specifically, let pη (t ) (zt |z1:t−1; xt )
denote the truncated normal density of Zt given the history Z1 = z1, . . . , Zt−1 = zt−1 and Xt = xt . Then

pη (t ) (zt |zt−1, . . . , z1, xt ) =
1

rt


φ ( zt −ẑtrt

)

Φ ( bt −ẑtrt
) − Φ ( at −ẑtrt

)

 , at < zt < bt , (15)

where ẑt and rt are the one-step-ahead mean and standard deviation of Zt conditioned on Z1:t−1. Note that at and
bt only depend on xt . We choose the importance sampling distribution as

qη (z1:n |x1:n ) = pη (1) (z1 |x1 )
n∏
t=2

pη (t ) (zt |z1:t−1; xt ) . (16)

After some cancellation, we arrive at
ϕη (z1:n )
q (z1:n ) = [Φ (b1 ) − Φ (a1 ) ]

n∏
t=2

[
Φ

(
bt − ẑt

rt

)
− Φ

(
at − ẑt

rt

)]
.
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Here, φθ (z1:n ) denotes the multivariate normal distribution with a zero mean and covariance matrix that of Z1:n . See
Kong and Lund (2023) for derivation details.

Define the initial weight w1 = Φ(b1 ) − Φ (a1 ) . The weights are recursively updated via

wt = wt−1

[
Φ

(
bt − ẑt

rt

)
− Φ

(
at − ẑt

rt

)]
at time t during the sequential sampling procedure. At the end of the sampling, we obtain

wn =
ϕη (z1:n )

qη (z1:n |x1:n ) .

In the classic GHK simulator, Ẑt and rt are obtained from the covariance matrix of {Zt }. When {Zt } is a causal
autoregression of order r , viz.,

Zt = φ1Zt−1 + · · · + φpZt−r + ϵt

where {ϵt } is Gaussian white noise with a variance σ2
ϵ that induces Var(Zt ) = 1, the one-step-ahead predictors and

their mean squared errors obey
Ẑt = φ1Zt−1 + · · · + φr Zt−r , t > r ,

and rt = σϵ for t > r . See Brockwell and Davis (1991) for computing these quantities when t ≤ r .
The above procedure generates a fair draw of a single “particle path" {Zt } with the property that {Xt }nt=1 gener-ated from {Zt }nt=1 yields the observations x1, . . . , xn . Repeating this process m independent times gives m simulated

process trajectories. Let {Z(1) , . . . ,Z(m) } denote these trajectories and denote their corresponding time n weights by
{w (k )

n }m
k=1.The importance sampling estimate of the likelihood is given by

L̂ (θ,η) = 1

m

m∑
k=1

w
(k )
n .

A large m of course provides more accurate estimation. The popular “BGSF" gradient step and search method is used
to optimize the estimated likelihood L̂ (θ,η) ; other optimizers may also work.

Common random numbers (CRNs), techniques that use the same random quantities across differing parameter
values in particle filtering, are used to produce a “smooth" estimated likelihood function. With CRNs, Hessian-based
standard errors derived from the likelihood function’s derivatives at the likelihood estimate are much more reliable;
see Kleinman et al. (1999) and Glasserman and Yao (1992) for more on CRNs.

3.2.1 | A Simulation Study

This section studies parameter estimators of the superpositioned and Gaussian copula Poisson count series through
simulation. To illustrate the techniques in a simple setting, our simulations consider a single trend and covariate:

λt = exp{µ + β1t + β2Ct } .
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More complicated scenarios are dealt with similarly. Here, Ct is the value of the covariate at time t , generated here
as zero-one IID Bernoulli(0.3) draws under the R seed “1234". The covariate sequence {Ct }nt=1 is fixed through all
simulations below. A log link has been used to keep the Poisson parameter non-negative, with eµ being the baseline
value of λ. The quantity β1 is the “trend" parameter and β2 measures the contribution of the covariate to the mean. In
general, we do not look to conduct inferences about the location parameter µ. In practice, λt can be any non-negative
function, making the model flexible.

In our simulations below, we set the parameters to µ = 1, β1 = 0.01, and β2 = 1 and consider series lengths of 50,
100, and 300. Five hundred independent simulation replicates are studied in every simulation scenario.

For the superposition scheme, the {Bt } process used to generate our series is obtained from a clipped AR(1) {Zt }
series. The AR(1) parameters are set to φ = 1/2 and σ2 = 3/4 so that a unit variance Gaussian {Zt } series is clipped.
Here p is forced to 1/2 by setting Bt = 1(0,∞) (Zt ) . During estimation, the autocovariance parameters are fixed to
their true values in the linear prediction scheme and we examine estimates of the three parameters (µ, β1, and β2)
appearing in the mean λt .

Figure 4 displays parameter estimator boxplots for each mean parameter. The dotted red line demarcates the
true parameter value. All boxplots are centered around their true parameter values and the distributional shape seems
approximately normal. For standard errors of these estimators, Table 1 reports the sample standard deviations of the
parameter estimators over the five hundred runs. As expected, estimation accuracy increases as the series length
increases. Overall, the estimators seem accurate.
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F IGURE 4 Boxplots of parameter estimators for a superpositioned Poisson count series with {Bt } constructedby clipping an AR(1) {Zt }. Both φ and p are set to 1/2, their true values, during estimation. The three mean
parameter estimators appear approximately unbiased; dashed lines demarcate true parameter values.

Moving to the Gaussian copula scheme, we use an AR(1) series with φ = 1/2 and σ2 = 3/4 as the latent process
{Zt }. The settings for µ, β1, and β2 used above are repeated. In this scheme, all parameters are estimated via particle
filtering methods, even the AR(1) parameter φ.

Figure 5 shows boxplots of all estimators and series lengths. The dotted red line again indicates true parameter
values. All boxplots are centered around the true parameter values and look approximately normal, with perhaps an
exception being φ̂ under the shortest series length n = 50. For standard errors, Table 2 reports two values: 1) the
sample standard deviation of the parameter estimators over the five hundred independent runs (denominator of 499),
and 2) the average (over all runs) of standard errors obtained by inverting theHessianmatrix at themaximum likelihood
estimate for each run (denominator of 500). The difference between these two values are quite small, implying that
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Superposition Poisson AR(1) Model
n µ̂ β̂1 β̂2

50 mean 1.00805 0.00914 1.00887
SD 0.24117 0.00733 0.14888

100 mean 0.99380 0.01003 1.00240
SD 0.14921 0.00210 0.08668

300 mean 1.00271 0.00999 1.00012
SD 0.08064 0.00031 0.03107

TABLE 1 Mean and standard deviation (SD) of estimators over 500 independent runs for the superpositioned
Poisson count series with {Bt } constructed via a clipped AR(1). True values of the parameters are µ = 1, β1 = 0.01,
and β2 = 1. The results report the sample mean and standard deviation (denominator of 499) of the parameter
estimates.

Hessian-based standard errors obtained from one sample path are indeed accurate. Standard errors again decrease
with increasing n . Again, the performance appears good.
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F IGURE 5 Boxplots of parameter estimators for Gaussian copula estimates of a Poisson count series with an
AR(1) {Zt } with φ = 0.5. All estimators appear approximately unbiased; dashed lines demarcate true parameter
values.

In comparing superpositioned and Gaussian copula results, the standard errors for the Gaussian likelihood estima-
tors are slightly smaller than their superpositioned counterparts. This is expected: likelihood estimators are generally
the asymptotically most efficient estimators. This said, the calculations needed to produce the likelihood estimators
are more intensive than those for linear prediction. Finally, we did study higher order autoregressions; results are
again impressive and similar to the above. For brevity’s sake, figures and tables of these simulations are omitted.

4 | APPLICATIONS

This section considers two count series that we fit with Poisson marginal distributions: Atlantic Basin tropical storm
counts and the number of no-hitter games pitched annually in Major League Baseball. Both series are comprised of
small counts, where the marginal distribution becomes important. Because superpositioned linear prediction estima-
tion performs slightly worse than Gaussian copula likelihood estimation, the latter technique is concentrated upon in
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Gaussian Copula Poisson AR(1) Model
n µ̂ β̂1 β̂2 φ̂

mean 0.98419 0.01012 0.99880 0.48945
50 SD 0.22609 0.00610 0.11068 0.13010

Ê (I ′ (θ )2 ) 0.22640 0.00644 0.10701 0.11412
mean 0.99550 0.01004 0.99716 0.49222

100 SD 0.13941 0.00200 0.06520 0.07693
Ê (I ′ (θ )2 ) 0.14720 0.00206 0.06642 0.07498
mean 1.02786 0.00988 1.00020 0.50182

300 SD 0.05987 0.00025 0.01896 0.03320
Ê (I ′ (θ )2 ) 0.06410 0.00027 0.02219 0.04144

TABLE 2 Standard errors for the parameter estimators for the Poisson marginal distribution with an AR(1) {Zt }.The results show the sample standard deviation (SD) of the parameter estimators from five hundred independent
series (denominator of 499), and the average of the five hundred standard errors obtained by inverting the Hessian
matrix (Ê [I ′ (θ )2 )] at the maximum likelihood estimate over these same runs.

this section.

4.1 | Atlantic Tropical Cyclones

Our first series contains the annual number of tropical cyclones observed in the North Atlantic Basin since 1970. This
series is plotted in the top plot of Figure 6. Poisson marginal distributions have been previously advocated for these
and other tropical cyclone counts (Robbins et al., 2011, Solow and Beet, 2008, Mooley, 1980).

There is concern that the number of North Atlantic Basin cyclones has been increasing in recent years, with
researchers pointing to 1995 as a year where the North Atlantic warmed and tropical storm activity increased; see the
changepoint analyses in Robbins et al. (2011) and Fisher et al. (2020). Because of this, wewill allow for a linear trend as
one covariate (a changepoint mean shift structure is also worthy of consideration). A strong El-Nino index, which is a
measure of equitorial warming in the Pacific Ocean, is thought to impede Atlantic tropical cyclone development (Gray,
1984, Goldenberg and Shapiro, 1996) through its influence on the southern jet stream: a strong El-Nino produces a
strong southern jet stream, which produces wind shear at stratospheric levels, shearing tops of thunderstorm clouds
off and hindering tropical cyclone development. As a second covariate, annual values of El-Nino 3, which are shown
in the bottom plot of Figure 6, are used.

While the North Atlantic Basin tropical cyclone record goes back to 1851, some of the earliest data is thought
to be incomplete. Specifically, there is concern that some weak storms formed over the central Atlantic waters in
the record’s earliest years, lived their entire lives over open water, and were never detected. As such, we start our
analysis at 1970. This is approximately when the GOES satellites were launched; no storms should have evaded
detection thereafter. While one could use indicator variables as additional covariates to quantify undetected storms,
we will simply start the record at 1970; see Robbins et al. (2011) and Fisher et al. (2020) for an analysis of the Atlantic
Basin’s full record.

The level of correlation in this count series is not extreme. In fact, many authors view the annual counts as
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F IGURE 6 Top: the yearly number of North Atlantic Basin tropical storms recorded from 1970-2022. Bottom:
the annual El-Nino covariate (ElNino3) over the same period.

approximately independent (Robbins et al., 2011). Certainly, if significant year-to-year autocorrelation existed, storm
counts would be easier to forecast a year in advance. (Annual forecasting competitions are conducted in May for this
series, where Poisson regression methods are typically used with various meteorological covariates to predict counts
for the upcoming June-November season. Forecasts even a year in advance have generally shown little predictive
power). Our model fits below will confirm that there is minimal year-to-year autocorrelation in these counts.

The results are as expected. First, there is little autocorrelation in these counts. Here, we fitted white noise, AR(1),
and AR(2) autocorrelation structures in the latent Gaussian process, but both AIC and BIC model selection criteria in
Table 3 prefer the white noise model. With this white noise structure, the estimated trend parameter in the model is
β̂1 = 0.0154 (0.0025) , which translates to a hurricane season that will be some four and a half times more active in
2070 than it was in 1970. The standard error of this estimator produces a z -score of about 6.2, indicating a significant
increasing trend in the counts and trouble for coastal residents. The estimated coefficient of the El-Nino covariate is
β̂2 = −0.2830 with a standard error of 0.0658. This parameter is significantly negative, with a z -score of about -4.3.
Indeed, an active El-Nino appears to impede Atlantic tropical cyclone development.
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Model: λt = eµ+β1t+β2Ct

µ̂ β̂1 β̂2 φ̂1 φ̂2 AIC BIC
WN Est. 2.0699 0.0154 -0.2830 NA NA 283.4695 289.3803√

E (I ′ (θ̂ )2 ) 0.0872 0.0025 0.0658 NA NA
AR1 Est. 2.0699 0.0154 -0.2831 -0.0018 NA 285.4694 293.3506√

E (I ′ (θ̂ )2 ) 0.0874 0.0025 0.0660 0.1623 NA
AR2 Est. 2.0598 0.0158 -0.2839 -0.0456 -0.2326 286.6195 296.471√

E (I ′ (θ̂ )2 ) 0.0760 0.0022 0.0673 0.1628 0.1553
TABLE 3

4.2 | Baseball No-hitters

Our second series contains the number of annual no-hitter games pitched in major league baseball from 1893 - 2022.
A no-hitter occurs when a pitcher (or multiple pitchers) do not allow the opposing team to get any hits over the course
of a game. It is indicative of a dominant pitching performance.

There has never been more than nine no-hitters pitched in a season; some years do not see any non-hitters.
Figure 7 shows the no-hitter counts along with two explanatory covariates: the total number of games played in the
major league baseball season and the height of the pitching mound. The total number of games played in has changed
by season as more teams have been added to the league; also the number of games that teams play in a season has
varied. Strikes and the Covid-19 pandemic have forced cancellation of some games in a few sporadic years. Of course,
the more games played, the more likely it is to have a no-hitter pitched. Our second covariate is the height of the
mound. A higher pitching mound is thought to give pitchers an advantage. The height of the pitching mound was
reduced from 15 inches to 10 inches in 1969; hence, this covariate could be viewed as a breakpoint or intervention
(known changepoint).

Our model here takes
λt = exp{µ + β1C1,t + β2C2,t },

where C1,t is the number of games played in year t and C2,t is the height of the pitching mound in year t . As we will
see, there is some autocorrelation in these counts.

Table 4 shows the results of the Gaussian copula model fit with white noise, AR(1), and AR(2) errors for {Zt }. First,
both AIC and BIC model selection statistics prefer an AR(1) {Zt }. The estimated AR(1) coefficient here is φ̂ = 0.3199,
which is more autocorrelation than we perhaps expected (no-hitters are extreme performances and rare, which are
often modeled as independent; see the peaks over threshold theory in Pickands III (1975)). While we do not consider
eliminating the mean µ in the model, the estimates and standard errors for β2 suggest that pitching mound height
does not significantly influence no-hitter counts, but that more no-hitters occur when more games are played.

Table 5 refits the model with the no-hitter covariate eliminated and AR(1) errors. The estimators, standard errors,
and conclusions do not change appreciably from the last table.
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F IGURE 7 Top: Major League baseball annual no hitter counts from 1893-2022. Middle: The number of games
played during each year by all teams. Bottom: The height of the pitching mound in inches during each year.

5 | DIAGNOSTICS

One issue has been left hanging in our development. This section shows how to test whether or not the Poisson
marginal distribution is adequate. The data fits of the last two sections will be revisited. We will concentrate on the
Gaussian copula model since that is the most flexible.

A simple definition of a model residual tries to recover the latent {Zt } process andmimic autoregressive residuals.
The conditional expectation
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Model: λt = eµ+β1C1,t +β2C2,t

µ̂ β̂1 β̂2 φ̂1 φ̂2 AIC BIC
WN Est. -1.5367 0.0008374 0.0697988 NA NA 491.6805 500.2831√

E (I ′ (θ̂ )2 ) 1.1982 0.0002743 0.0590602 NA NA
AR1 Est. -1.7639 0.0008968 0.0803000 0.3199 NA 486.4131 497.8832√

E (I ′ (θ̂ )2 ) 1.3005 0.0002958 0.0646546 0.0710 NA
AR2 Est. -1.6198 0.0008709 0.0726532 0.2792 0.1531 486.7636 501.1013√

E (I ′ (θ̂ )2 ) 1.3288 0.0003008 0.0664830 0.0719 0.0750
TABLE 4 Summary of the No-hitter Poisson count fit. The AIC and BIC model selection criteria prefer AR(1)
errors; the pitching mound height covariate appears insignificant.

Model: λt = eµ+β1C1,t

µ̂ β̂1 φ̂1 AIC BIC
AR1 Est. -0.1851 0.0005687 0.3152 485.9015 494.5041√

E (I ′ (θ̂ )2 ) 0.2419 0.0001284 0.0706
TABLE 5 A refit of the model in the last table with the pitching mound height covariate eliminated.

Å[Zt |Xt ] = Ẑt =
exp [

−Φ−1 (
Fλt (Xt − 1)

)2 /2] − exp [
−Φ−1 (

Fλt (Xt )
)2 /2]

√
2π

[
Fλt (Xt ) − Fλt (Xt − 1)

] (17)

is an estimate of Zt fromXt only. While a better residual would use E [Zt |X1, . . . ,Xt ], this quantity appears intractable
and this definition will prove sufficient for our purposes. The fitted autoregressive model and { Ẑt } can be used to
define the residuals. These are simply

R̂ t := Ẑt −
r∑

k=1

φ̂k Ẑt−k , t > r .

Figure 8 plots these residuals for our best fitting models for the baseball and tropical cyclone series, along with sample
correlations and partial autocorrelations. Point-wise ninety five percent confidence bands for white noise are included
in the plot. No autocorrelation is appreciably evident in these residuals.

To assess adequacy of the Poisson marginal distribution, probability integral transforms (PIT) techniques can be
be used. PIT methods were proposed in Dawid (1984) and assess the consistency between probabilistic forecasts of
the individual observations from the fitted model and the observations themselves. When the predictive distribution
is continuous, PIT residuals are uniformly distributed over (0, 1) . We will use the nonrandomized PIT residuals in
Czado et al. (2009), where uniformity still holds in the discrete case.
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F IGURE 8 Top: Residuals for the Atlantic Basin tropical cyclone (left) and no-hitter (right) counts. Middle:
Residual autocorrelations. Bottom: Residual partial autocorrelations.

PIT residuals begin with the conditional cumulative distribution function of Xt :
Pt (y ) := Ð (Xt ≤ y |X1 = x1, . . . ,Xt−1 = xt−1 ) , y ∈ {0, 1, . . .} . (18)

Then the nonrandomized mean PIT residual is the sample average

F̄ (u ) = n−1
n∑
t=1

Ft (u |xt ),

where

Ft (u |y ) =


0, if u ≤ Pt (y − 1)

u − Pt (y − 1)
Pt (y ) − Pt (y − 1) , if Pt (y − 1) < u < Pt (y )

1, if u ≥ Pt (y )

.
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The quantity Pt (y ) can be approximated during the particle filtering likelihood evaluation algorithms; specifically,

P̂t (y ) =
y∑
i=0

wi ,t (Ẑt ),

where

wi ,t (z ) = Φ

(
Φ−1 (Fλt (i ) ) − z

rt

)
− Φ

(
Φ−1 (Fλt (i − 1) ) − z

rt

)
.

The weight wi ,t (z ) can be obtained at time t from the particle filtering algorithm.
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F IGURE 9 PIT plot for the best fitted models. Left: PIT histogram for the Atlantic Basin tropical cyclones series
with λt = exp{µ + β1C1,t + β2C2,t } and white noise errors; Right: PIT histogram for the baseball no-hitter series with
λt = exp{µ + β1C1,t } and AR(1) errors.

To assess this fit, we report a p-value based on of a deviation from a uniform histogram over [0,1] containing 10
equally spaced bins. Our statistic is

Q := 1

10

∑
|f̂i − 1/10 |,

where f̂i is the proportion of residuals falling in the the category ( (i − 1)/10, i /10] for i = 1, . . . , 10. The statistics are
Q = 0.0270 for the Atlantic cyclone data and Q = 0.0216 for the no-hitter data. A Poisson marginal distribution is
rejected when Q is too large. Our p-values, which were computed via simulation, are 0.76 for the Atlantic cyclone
data and 0.37 for the no-hitter data. One sees little reason to doubt a Poisson marginal distribution with either series.
When a PIT residual analysis rejects a Poisson marginal, it is not clear to us how to modify the marginal distribution
from the PIT plot; however, the Gaussian copula techniques here apply to non-Poisson count distributions.

6 | CONCLUDING COMMENTS

This paper studied some methods that produce time series of Poisson distributed counts. Both stationary and non-
stationary settings were considered and inference methods for some of the well-performing model classes were de-
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veloped, including testing the Poisson marginal assumption. Many of the classical methods have deficiencies in what
they can handle. An implication of the paper is that the Gaussian copula transformation technique is the most flex-
ible paradigm considered as it produces the most general autocovariance structures possible, easily accommodates
covariates, and likelihood methods of inference can be conducted via particle filtering methods. The popular INAR
model class was deemed deficient in several manners.

Additional research is needed on several fronts. First, ways to generate Poisson counts beyond those discussed
here exist. Worthy of mention are stationary Markov chain techniques (Zheng et al., 2022) and shot noise methods
(Jang and Oh, 2021), the latter being related to our superpositioning techniques here. Given the flexibility of the
Gaussian copula paradigm, it may be pedantic to investigate these classes further unless they can be shown to be flex-
ible, parsimonious, accommodate covariates, and have analyzable likelihood functions. Second, asymptotic normality
of the parameter estimators was not proven here, but needs to investigated. We are unsure how to do this when
the likelihood function is intractable as in the Gaussian copula setting. Third, multivariate versions of the methods
are worthy of development. Here, one needs to settle on a definition of multivariate Poisson — many are possible
(Teicher, 1954, Kocherlakota and Kocherlakota, 2017, Inouye et al., 2017). Finally, extensions of the methods to the
zero inflated case, which frequently arises with Poisson analyses (Lambert, 1992, Fernando et al., 2022), are worth
considering.
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