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This study develops methods to detect anomalous transactions linked
with fraud in food stamp purchases through order statistics methods. The
methods detect clusters in the order statistics of the transaction amounts that
merit further scrutiny. Our techniques use scan statistics to determine when an
excessive number of transactions occur (cluster), which is historically linked
to fraud. A scoring paradigm is constructed that ranks the degree in which
detected clusters and individual transactions are anomalous among approxi-
mately 250 million total transactions.

1. Introduction. This study examines Mississippi’s food stamp records for anomalous
transactions indicative of fraud. A Markovian relationship between successive order statistics
is developed for independent and identically distributed (IID) data and used to statistically
quantify clustering properties in store transaction records via scan statistic methods. The
results illuminate some interesting features found around multiples of 65 dollars. This is the
value of food coupon books of yesteryears and is often linked with fraud.

1.1. SNAP program background. The United States (US) government supports the Sup-
plemental Nutritional Assistance Program (SNAP), frequently referred to as the food stamp
program. The SNAP enables low-income families to purchase food, helping them meet basic
nutritional needs. In the fiscal year (FY) 2018, approximately 40 million SNAP participants
received an average benefit of about $245 per person per period or about $450 per household
per period, with a total program cost of $65.3 billion dollars (Canning and Stacy, 2019).

The SNAP program history is narrated in Council et al. (2013). Early versions of the
program distributed benefits via paper coupon books, with individual coupons called "food
stamps". Coupons were intended to be used as a tax-free substitute for cash to purchase
approved food and beverages. Figure 1 depicts a typical coupon book worth $65.00.

Beginning in the early 2000s, paper "food stamps" were replaced with Electronic Benefit
Transfer (EBT) cards. SNAP benefits were thereafter deposited monthly to an account that
can be accessed via EBT cards. EBT cards, which function similarly to debit cards, shift
recipient benefits from a federal account to the SNAP retailer upon purchase of approved
foods and beverages. The benefit recipient can purchase any amount (including less than
the full retail price), tax free, of approved items. For example, a benefit recipient making a
purchase of $100 worth of approved items could allocate $50 of SNAP benefits (tax free) and
purchase the remaining $50 (plus tax) with their own cash or bank card. From the EBT card
transactions, various state and federal agencies amassed large data sets.

SNAP fraud is relatively rare and can include fraud by households applying for bene-
fits, application fraud by ineligible retailers, and fraud by state agencies (Cline, D.R. and
Aussenberg R.A., 2018). The act of exchanging SNAP benefits for cash is also called SNAP
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Fig 1: A food stamp book containing $65 of coupons.

trafficking—this will be the only type of fraud considered this study. The United States De-
partment of Agriculture (USDA) provided $7.5 million in the 2014 Farm Bill for states to
create or improve technology systems to prevent or detect SNAP trafficking (Dean, 2016);
thus, this is a potential new area of academic funding and interest beyond the state of Missis-
sippi.

This study is the first detailed statistical analysis of an EBT transaction record. The data
here contain all EBT transactions in Mississippi up to October of 2017 and is described
further in the next section.

SNAP trafficking occurs in several manners. In one form, recipients exchange cash for
their benefits at a discount from the vendor. For example, a vendor may debit an EBT card
for $65 and give $50 in cash (Faulk, 2016). Another SNAP fraud scheme has beneficiaries
selling or trading their benefits to other individuals rather than a vendor. For example, a
recipient could exchange their benefits to a neighbor for cash, goods, or other services.

A summary of government estimated SNAP fraud rates is given in Appendix E of Wil-
son (2017); these figures are based on the Food and Nutrition Service’s covert investiga-
tions. These investigations focus on retailers exhibiting suspicious behavior (Wilson, 2017).
A summary of findings include: 1) trafficking diverted an estimated $1.1 billion annually
from SNAP benefits; 2) approximately 1.5 percent of overall SNAP benefits were trafficked;
and 3) approximately 11.8 percent of all authorized SNAP stores engaged in some form of
trafficking.

1.2. Statistical fraud detection techniques. Many previous fraud detection methods ap-
pealed to Benford’s Law, whereby the distribution of the leading digit of the transaction
is scrutinized (Durtschi, Hillison and Pacini, 2004). However, Benford’s Law requires the
transaction amounts to span several orders of magnitude to realistically apply (Miller, 2015),
which is not the case with food stamps — SNAP benefits are generally too meager for Ben-
ford’s Law. A review of statistical fraud detection methods may be found in Bolton and Hand
(2002).

Anomaly detection methods for fraud are surveyed in Chandola, Banerjee and Kumar
(2009), and are well-developed in financial and cyber-security applications (Kou et al., 2004;
Ahmed, Mahmood and Islam, 2016; Thiprungsri and Vasarhelyi, 2011; Liao et al., 2013).
Anomaly detection is often viewed as a classification problem, with each transaction classi-
fied as either anomalous or normal (Aggarwal, 2014). Both supervised (Maes et al., 2002; Raj
and Portia, 2011) and unsupervised learning methods (Abdallah, Maarof and Zainal, 2016;
Hilas and Mastorocostas, 2008) have been applied to fraud classification problems in finance.
Outlier methods (Aggarwal, 2015; Torgo, 2011; He et al., 2005; Ngai et al., 2011) have also
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Fiscal Year Transaction Count FNS Count
2002 1,850 251
2003 24,054 974
2004 39,461 1064
2005 78,969 1624
2006 171,360 2019
2007 458,461 2355
2008 2,028,258 2563
2009 16,444,289 2796

Fiscal Year Transaction Count FNS Count
2010 27,833,749 2936
2011 30,553,070 3204
2012 32,574,197 3392
2013 34,032,660 3520
2014 31,804,535 3696
2015 32,229,687 3700
2016 29,067,111 3741
2017 13,038,192 3588

Total 250,379,903 7291

TABLE 1
EBT transaction and vendor counts by fiscal year.

been used on fraud problems. Ekin et al. (2018) provide a comprehensive fraud assessment
and a detailed review of outlier methods for medical data. Other related data mining-based
methods to detect financial fraud can be found in Phua et al. (2010) and Al-Hashedi and Ma-
galingam (2021). Unfortunately, anomaly and outlier methods are not applicable here as our
clusters often contain many transactions that are neither anomalies or outliers.

In what ensues, we seek to identify clusters of transactions that are close to some fixed
“price point". While the issue is tantamount to finding a mode in a probability density func-
tion, kernel density estimation techniques are not particularly useful (see Silverman (1986)
and Good and Gaskins (1980) for mode identification techniques in kernel density estimates).
Indeed, a typically identified modal region in a density estimate contains far too many prices
to suggest anything about fraud. Phrased another way, typical fraud clusters are quite lo-
calized and will be smoothed away by any reasonably chosen density estimate bandwidth
or histogram binwidth. Scan statistics are well-recognized as a powerful method to detect
localized clusters in many applications (Konijn et al., 2013; Wu and Glaz, 2019). Liu and
Zhang (2010) proposed a scan statistic-based method that can efficiently detect money laun-
dering. Shao et al. (2021) develop a framework using non-parametric scan statistics to detect
anomalous connected subgraphs, which can be indicative of fraud. This study develops a scan
statistic approach that is capable of illuminating more localized features in the transactions.

The scan statistic will be applied to gaps in successive order statistics whose evolution is
quantified via a Markovian relationship. This approach quantifies when observations cluster
more than expected. We know of no other literature that uses order statistics methods for
fraud detection.

The rest of this paper proceeds as follows. The next section discusses the EBT transaction
data that drive this paper. Section 3 presents an exploratory data analysis of this data with
rudimentary methods. Section 4 develops the order and scan statistic methods needed in
our analysis. Section 5 presents a simulation study showing the efficacy of the methods on
synthetic data. Results for our Mississippi transactions are presented in Section 6. Comments
and conclusions conclude the article in Section 7.

2. The Data. Our data contain all historical EBT transactions in Mississippi from 2002
through October of 2017. The number of transactions by year are listed in Table (1). The
large increase in transactions from FY 2008 to FY 2009 was driven by two events. First, the
Farm Bill of 2008 moved all benefits to EBT cards and ended paper food stamps. Second, a
severe recession occurred in 2008, causing a rise in SNAP benefit applications.

Seven fields of information come with each SNAP transaction; these are listed in Table (2).
Field 1 is the case number. Each household receives a unique case number every time they
enroll for SNAP benefits. There is only one case number per household; hence, one cannot
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differentiate between multiple purchasers within a household. Field 2 is the date of purchase
in the format month/day/year. Field 3 demarcates the time of day of the transaction and
Field 4 the transaction amount. Field 5 contains the merchant’s name. Chain stores can have
multiple locations with the same name. This field is often subject to mistyped entries. Field 6
is the town where the transaction took place; this field also has frequent typographical errors.
Field 7 shows the FNS number: each merchant location has a unique FNS number identifying
their store.

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6 Field 7
Case

Number
Date Time Amount Merchant

Name
Town FNS

Number

TABLE 2
The seven fields of data associated with each EBT transaction.

Some aspects of the SNAP program in Mississippi are now clarified. A fiscal year (FY) is
defined to start on October 1 of the previous calendar year and ends on September 30. Our
focus is limited to Mississippi residents making transactions at SNAP accepting Mississippi
vendors during FY2008 - FY2016. We also include partial FY 2017 transactions, with the
data stopping on 3/29/2017. Retailers accepting EBT transactions will be called vendors.
Each household receiving benefits is given a unique case number. Should a household cease
receiving SNAP benefits and return to the program at a later date, they receive a new case
number.

The number of EBT accepting vendors changes with time since stores may begin or stop
accepting EBT transactions. This happens when new EBT accepting vendors are created or
go out of business. In this study, each physical store is considered a distinct EBT accepting
vendor. Therefore, a chain having several stores with the same name are considered sepa-
rately. Table 1 provides further information during each FY in our study.

3. Exploratory Data Analysis. This section illuminates some transactions that have
been previously associated with fraud (SNAP trafficking). While irregularities have been
reported around price points that are integer multiples of $65, price point irregularities may
appear at other unsuspected transaction amounts. For example, transactions at integer mul-
tiples of $10 (exactly) are observed at vendors that serve gasoline; this coincides with non-
fraudulent credit card purchases of £10 petroleum observed in England (Hand et al., 2000).

To explore the data, histograms of all EBT transactions during each fiscal year were pro-
duced for each vendor. If a vendor only accepted EBT transactions during part of a FY, then
only transactions during that portion of the year are considered; there is no effort to rescale
any transaction frequencies to a full FY.

Figure 2 depicts transaction histograms from two vendors during FY 2015, whom we dub
Vendors A and B. These two vendors will be used for case studies throughout this paper and
are selected solely to demonstrate some commonly occurring transaction patterns. Vendors
A and Vendor B were selected as archetypal examples of no clustering (Vendor A), and
“variance-free" clustering at integer multiples of a $65 price point (Vendor B). In Section
6, an example of price point clustering with variance is presented (this merchant is dubbed
Vendor C).

Vendor A experienced roughly 10 times as many transactions as Vendor B. While the two
histograms exhibit a similar structure, the businesses are dissimilar: Vendor A is a large chain
grocery store, while Vendor B is a niche vendor operating only one store. The histogram
binwidth used was $10, smaller than the default selected by R.
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(b) Vendor B EBT transactions with $10 bins.

Fig 2

Differences emerge when one decreases the binwidths. Figure 3 shows histograms of the
above transactions when the binwidth is decreased to $1.00. Note that clusters now appear
in Vendor B’s histogram at integer multiples of $65.00, while Vendor A’s histogram remains
"spikeless". These spikes are not due to expenditure of full coupon book amounts — paper
food stamps were replaced by the EBT system in 2008.

The binwidths for the histograms are selected to demonstrate that hidden patterns may ex-
ist in the transactions — some sleuthing may be warranted. While optimal binwidth selection
criteria exist (Scott, 1979; Wand, 1997), histograms with differing binwidths are presented
here for feel only. An empirical cumulative distribution function (ECDF) could also be used
to visually identify density spikes; however, many of the spikes encountered are so localized
that they will not be visually evident in an ECDF.
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Vendor A EBT transactions with $1 bins.
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Vendor B EBT transactions with $1 bins.

Fig 3

The vast majority of vendors in our data do not exhibit anomalous clusters above prices
for a few popular individual items (such as a sandwich or drink). Vendor A is an example of
such a vendor. Of those showing anomalous clusters, patterns vary among vendors. Vendor
B has a transaction distribution with clusters at integer multiples of $65 with little or no
variance (that is, the transactions are at exact multiples of $65). State investigators believe
that some vendors try to hide fraud by adding a small amount (more or less) to the $65
benchmark (see the discussion of Vendor C in Section 6). Additionally, the price point where
the clusters occur vary by vendor and time. Overall, the statistical challenge remains the
same: identify clustering of price points in the data. This will be tackled with order and scan
statistics methods in the next section.

Before continuing, we comment that identified clusters need not be associated with fraud.
Indeed, the following are potential explanations of clusters not linked to fraud.
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1. Individual SNAP recipients have learned to spend monthly benefits by the denominations
in the old coupon books.

2. Merchants have targeted SNAP users with products priced at the old coupon book denom-
inations (although we see no evidence of this).

3. Other reasons not identified here.

Likewise, the following cluster explanations are linked to fraud.

1. SNAP recipients exchange SNAP benefits for other individuals in exchange for cash or
goods in denominations of the old coupon books.

2. SNAP recipients exchange SNAP benefits directly with vendors in exchange for cash or
non-SNAP eligible goods in denominations of the old coupon books.

3. Other reasons not identified here.

4. Methods. We now develop the methods used to identify local transaction clusters
embedded in a background distribution. We do not know the background distribution a priori,
nor the price points where the clusters appear. Our task is to construct a fully automated
cluster detection system that works for all 7,291 vendors, which collectively have a variety
of different transaction price distributions. Our end goal is to flag any suspicious transactions
and to rank order these in terms of their suspiciousness.

Our methods will examine the order statistics of the price transactions, focusing on the
gaps between these transactions. Order statistics are studied in David and Nagaraja (2004);
Arnold, Balakrishnan and Nagaraja (2008); Ahsanullah, Nevzorov and Shakil (2013) and
connected to Poisson processes via conditional uniformity of arrivals in Karlin and Taylor
(1981); Feller (1966); Liberman (1985); Feigin (1979), for example. From the order statistics,
we construct a sequence of Bernoulli trials that is used to assess clustering properties of
the transactions. Our main cluster identification tool is the scan statistic, which can capably
identify small intense clusters (local departures). Flexibility of the methods is important as
the seven thousand plus vendors have a plethora of different distributions.

4.1. Data preparation. Let {X∗i }ni=1 denote the assumed IID transaction amounts for
1 ≤ i ≤ n at a specified vendor in a given FY. Here, n is the total number of transactions
and X∗i is the ith transaction amount. The data is discrete, measured in dollars and cents. A
“jitter" Ui in the form of a uniform random variable on (-1,0)¢ is added to X∗i to convert the
transaction to a continuous random variable, analogous to Nagler (2018), with minimal effect
on any results: Xi =X∗i + Ui. Of course, {Xi}ni=1 is also IID and no two Xis are the same
with probability one.

Visual inspection of the Section 3 histograms indicate that the transaction amounts are
reasonably approximated by the Gamma density

fX(x) =
xα−1e−βxβα

Γ(α)
, x > 0,

where α,β > 0. However, this choice of distribution will only be used to map the transac-
tions to (0,1); other continuous distributions can be used. In particular, we will work with
the cumulative distribution function (CDF) transformed data Vi = F̂X(Xi) for i = 1, . . . , n,
where F̂X is the Gamma CDF evaluated at Xi, parameterized by the MLE estimates of α̂ and
β̂. By construction, {Vi}ni=1 are IID continuous random variables with support set [0,1]. Let
FV and fV denote the CDF and probability density function of the data. If the data is indeed
Gamma distributed, the Vis are IID Uniform[0,1] (up to error induced by estimation of the
Gamma parameters). However, in truth, the data may be non-Gamma and the Vi need not
be precisely uniformly distributed on [0,1]; nonetheless, this is a convenient way to proceed
since order statistics of uniform[0,1] variables are well understood. Later, we will impose
regularity assumptions on fV .
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4.2. Analyzing the gaps. Let 0 := V(0) < V(1) < · · · < V(n) < V(n+1) := 1 be the order
statistics of {Vi}ni=1, the inequalities being strict since each Vi is unique with probability one.
Let

(1) Gi := V(i) − V(i−1)
be the size of the ith gap. While the gaps G1, . . . ,Gn+1 are known to be exchangeable,
Gi and Gj are not necessarily independent or identical in distribution when i 6= j (Arnold,
Balakrishnan and Nagaraja (2008)); in fact, the dependence G1 + . . .+Gn+1 = 1 holds. If
V(i−1) = v(i−1), then we know that i− 2 values in the sample are less than v(i−1), n− i+ 1
sample values exceed v(i−1), and one observation exactly equals v(i−1). For the n − i + 1
sample values that exceed v(i−1), we do not have any additional information about them —
just that they exceed v(i−1). Hence, conditional on V(i−1), these exceeding values can be
regarded as being drawn from the probability density function

(2)
fV (v)

1− FV (V(i−1))
, V(i−1) < v < 1.

The upshot is that the Markov-type relationship

(3) V(i)
D
= V(i−1) + min

1≤i≤n−i+1
(R1, . . . ,Rn−i+1) ,

governs successive order statistics, where the Rjs are IID and have the distributional form
Rj = Mj − V(i−1) and the Mjs are IID, have the distribution in (2), and most importantly,
are independent of {V(k)}i−1k=1. This relationship essentially drives our work.

An implication of the above is that the distribution of Gi given V(1), . . . , V(i−1) only de-
pends on V(i−1) and not on any previous order statistic (or gaps). Hence, for ti ∈ [0,1],

(4) P
(
Gi ≤ ti

∣∣V(1), . . . , V(i−1))= P
(
Gi ≤ ti

∣∣V(i−1)) .
Now apply the chaining relationship

P (A1 ∩ . . .∩An) = P (A1)P (A2|A1) · · ·P (An|An−1, . . . ,A1)

for any events A1, . . . ,An and (3) and invoke the conditional independence in (4) to get

(5) P (G1 ≤ t1 ∩ · · · ∩Gn ≤ tn) =

n∏
i=1

PV(i−1)
(Gi ≤ ti) .

Here, the Markov style notation for probabilities Pv(i−1)
(Gi ≤ ti) := P (Gi ≤ ti|V(i−1) =

v(i−1)) has been adopted. We also use this notation for expectations; for example,EV(i−1)
[Gi] :=

E[Gi|V(i−1)].
To quantify where the V(i)s cluster (and hence the Xis), we will be interested in when

many small gaps occur in close proximity. To develop a scan statistic approach to quantify
this, set

(6) Yi(θ) = 1{Gi≤θEV(i−1)
[Gi]},

for a tuning parameter θ > 0 that is utilized in our ranking paradigm and discussed further
below. The above arguments imply that conditional on V(i−1), these indicator variables are
independent for every n, viz.,

(7) P (Y1 = j1, Y2 = j2, . . . , Yn = jn) =

n∏
k=1

PV(k−1)
(Yk = jk)
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for j1, . . . , jn taking values in {0,1}. Note that Yi(θ) = 1 indicates that V(i−1) and V(i) are
closer together than expected.

While the indicators are conditionally independent, they do not necessarily have a common
success probability (the distribution of the gap sizes depends on n in general). Indeed, our
next objective is to show that as n→∞, the success probability of these indicators essentially
converges to 1− e−θ when they are suitably far away from the support set edge at unity.

Returning to the method, since fv(v)> 0 for all v ∈ (0,1), as n→∞, v(i−1) ↓ 0 for any
fixed i. Define a pth quantile as

(8) q(p) = inf{v ∈ (0,1) : FV (v)≥ p}

and the index where data becomes larger than a fixed x as

(9) în(x) = min{i : v(i) > x},

which depends on the sample size n. Since fV (v)> 0 for all v ∈ (0,1), v(̂in(q(p)) ↓ q(p) and
v(̂in(q(p))−1) ↑ q(p) as n→∞ for any p ∈ (0,1). When the index n and q(p) are unimportant,
future notations will suppress these quantities for ease of exposition.

To show that the indicators in (6) converge to trials with the common success probability
1− e−θ , note that since f(v)> 0 for all v ∈ (0,1), n− în→∞ for any quantile q(p)< 1.

To prove our main result, we first present a useful Lemma. Let h(v) = fV (v)/[1−FV (v)]
be the hazard rate function (HRF) of the Vis and set H(v) =

∫ v
0 h(t)dt as the cumulative

HRF. The following results hold for any fixed i. The CDF and PDFs of the Vis are well
known to be

(10) FV (v) = 1− exp{−H(v)}, fV (v) = h(v) exp{−H(v)}.

Conditional on V(i−1) for a fixed i, (3) shows that the support set for the Rjs is (0,1−V(i−1)]
for j = 1, . . . , n− i+ 1. For this i, let FRj |V(i−1)

denote the conditional CDF of one such Rj .
We now have

FRj |V(i−1)
(t) =

FV (V(i−1) + t)− FV (V(i−1))

1− FV (V(i−1))
= 1− exp{−(H(V(i−1) + t)−H(V(i−1)))}.

The corresponding probability density function is hence

(11) fRj |V(i−1)
(t) := h(V(i−1) + t) exp{−(H(V(i−1) + t)−H(V(i−1)))}.

Watson and Leadbetter (1964) state that

(12) E

[
1

h(V(i))

]
= (n− i+ 1)E[Gi]

for i= 0, . . . , n−1. A conditional version of (12) will prove useful in our ensuing arguments.

LEMMA 4.1. Let {Vi} be IID continuous random variables on (0,1). Then

(13) EV(i−1)

[
1

h(V(i))

]
= (n− i+ 1)EV(i−1)

[Gi].

The proof of Lemma (4.1) is given in the Appendix. With Lemma 4.1, our main result can
now be stated.



SNAP TRANSACTION CLUSTERING 9

THEOREM 4.2. Let {Vi}ni=1 be IID continuous random variables on (0,1) with a Lip-
schitz continuous density function fV satisfying fV (v) > c for some constant c > 0 for all
v ∈ (0,1). If {̂in} is any sequence of indices such that în →∞, and n − în →∞, then
PV(în−1)

(Yîn(θ) = 1)→ 1− e−θ .

The proof of Theorem (4.2) is given in our Appendix.
Note that the success probabilities of the Bernoulli Yi(θ) in (6) depend on the conditional

expected gap size EV(în−1)
[Gîn ] =EV(în−1)

[
1

h(V(în))

]
/(n− în + 1); that is, the expected gap

sizes depend on v(̂in−1)’s since h is a function of v(̂in−1).

We now introduce a useful and appealing approximation. For each în,

(14) EV(în−1)
[Gîn ]≈ 1

(n+ 1)fV (V(̂in−1))
.

The approximation is justified in the Appendix. The interpretation of (14) is intuitive: as
the sample size increases, expected gap sizes decrease. Likewise, gaps are smaller at places
where the density is larger since more observations are likely to occur nearby.

4.3. Estimation of the background density. This subsection estimates fV (·), which is
needed to compute our scan statistics. The density fV (·) for the CDF transformed transac-
tions should be free of spikes if there is no fraud. In practice, this density is usually close
to the uniform [0,1] density since the transactions were transformed with a parametric-fitted
Gamma CDF. The method will prove robust to poorly fitting Gamma CDFs however, as will
be demonstrated in the case studies below (see Vendor C).

To quantify departures from uniformity, let 0< p1 < p2 < . . . < pm < 1 be ordered points
in (0,1) with the boundary settings p0 = 0 and pm+1 = 1. Let Π = {p0, p1, . . . , pm, pm+1}
be a partition of [0,1]. We assume that fV belongs to the class of density functions formed
by linear interpolation of points in Π, viz.,

(15) fV (v) = aiv+ bi, pi−1 < v ≤ pi.
There are restrictions to this class. First, we require that ai and bi are such that fV (v) is
continuous in v. Second, to have a non-negative (legitimate) density, we assume that aiv +
bi > 0 over v ∈ (pi−1, pi]. There are no nice forms for the likelihood estimators of ai and bi
for such a density. Because of this, we employ an ad-hoc but simple approach to estimate
fV (·) using kernel density estimation. Other approaches were examined, but overall results
did not seem to greatly change.

In our numerical work, the partition

(16) Π = {0.00,0.05,0.10, . . . ,0.95,1.00}
was deemed appropriate after exploratory analysis. Density estimates of fV (v) are estimated
for each point v = pi via a kernel approach. To handle v near the boundaries of 0 and 1,
we reflect the sampled values {V1, . . . , Vn} about zero and unity as in Silverman (1986). A
Gaussian kernel is then employed without undue edge effects. While bandwidth selection
rules in Silverman (1986) recommended a bandwidth proportional to n−1/5, we prefer an
oversmoothed version of the density to an undersmoothed one. Indeed, this is why we prefer
the class of density functions depicted in Equation (15). After much exploratory analysis, we
found h= n−1/2 ideal for our needs. Admittedly, one could argue for adjustments to this on
a case-by-case basis.

Next, the density estimated values f̂V (pi) are rescaled into a proper density function by
numerically imposing that

(17) 1 =

∫ 1

0
f̂V (v)dv =

m∑
i=0

(1/2)
[
f̂V (pi+1)− f̂V (pi)

]
(pi+1 − pi).
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4.4. The scan statistic. This subsection develops a scan statistic capable of detecting
clusters. To develop the statistic, assume that {Yi(θ)}ni=1 are IID Bernoulli trials with success
probability 1− e−θ . For a window length r ≥ 1 and i ∈ {1, . . . , n− r}, define

(18) Sn(r, i, θ) =

i+r−1∑
k=i

Yk(θ).

An unconditional discrete scan statistic with window size r is the maximum

(19) Sn(r, θ) = max
1≤i≤n−r

Sn(r, i, θ).

The scan statistic in (19) is statistically complex to quantify as it involves the maximum
of highly dependent rolling windows. A ubiquitous challenge with scan statistics involves
computations of its distributions. The exact distribution of Sn(r, θ) is given in Fu (2001) and
is obtained from a finite Markov chain embedding technique. Unfortunately, exact probabili-
ties have only been numerically computed for r ≤ 35 as the problem is NP-hard. Developing
algorithms to efficiently compute the exact distributions of scan statistics is an open problem.

Naus (1982) proposed an approximation of the scan statistic’s distribution based on its
Markov-type structure. In many applications, researchers simply resort to Monte Carlo sim-
ulations to estimate the distribution of the scan statistic. For large window sizes r, Haiman
(2007) proposed an accurate approximation that treats discrete scan statistics as extremes of
one-dependent stationary sequences. Haiman’s approximation for scan statistic probabilities
is used here.

Atypical sequences of successes will produce abnormally high Sn(r, i, θ) in (18). For a
given significance level α, a cluster is signaled for any i ∈ {1,2, . . . , n − r + 1} whenever
Sn(r, i, θ) exceeds an α-level threshold Tα. The α-level threshold is defined as

(20) Tα = min
T=0,1,...,r

{T : P (Sn(r, θ)> T )≤ α }.

There is a slight nuance regarding the α-level of the test since the scan stat in (19) is discrete:
the true α-level of the test with threshold Tα is

(21) α∗ = P (Sn(r, θ)> Tα),

where 0≤ α∗ ≤ α.
Our exploratory analysis revealed potential fraudulent transactions at price points that are

integral multiples of $65 (among other dollar amounts). To detect this type of fraud, we
examine the number of transactions between each dollar amount and take the maximum over
all dollars. Specifically, our window length used is

(22) r = max
d=0,1,2,...

(Cd −E[Cd]),

where Cd is the number of transactions between d and d+ 1 dollars (the added jitter to each
transaction will not change the [d, d+ 1) interval that it lies in) and E[Cd] is computed from
a total of n transactions and a f̂X estimated from the MLE fit of the Gamma distribution.
Window size selection in scan statistics is usually arbitrary as true cluster sizes are typically
unknown. Minimizing the expected time until first detection or maximizing test power are
alternative ways of selecting r. One can certainly try any of these, but the above procedure
works well on this data set.
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4.5. Effects of CDF Estimation. In practice, the estimated version of FX may induce
dependencies into {Yi(θ)}. The estimated versions of the Vis are

V̂i = F̂X(Xi),

where F̂X is the MLE estimated CDF of the transaction distribution. Let (α̂, β̂)′ be estimators
of the Gamma parameters from a sample of size n. Suppose that these estimators are nice and
regular so that

sup
x
|F̂X(x)− FX(x)| −→ 0

almost surely as n→∞, where F̂X(x) is the estimated FX from {Xi}ni=1. One can always
use the empirical CDF and quote the convergence in the classical Glivenko-Cantelli Theorem
if desired.

From this convergence, it can be shown that as n→∞, our methods still hold for {V̂i}.
The same is true for {Ĝi},{Êi}, and {Ŷi(θ)}, which are constructed by replacing Vi by V̂i in
Equations (1) and (6) respectively. We do not prove this here, but mention that our argument
requires showing that

lim
n−→∞

nE[|Ĝi −Gi|] = 0,

which can be done through dominated convergence without additional assumptions on the
density.

On a more practical level, simulations in Section 5 demonstrates that Êi→Ei as n→∞
for most i where V(i) is sufficiently far from zero and unity. This implies that {Ŷi(θ)} behaves
asymptotically as needed.

To consider the practical implications of the asymptotic results on finite sample sizes, a
simulation study is performed in Section 5 for sample sizes of magnitude encountered with
our data. The results show that {Ŷi(θ)} is approximately distributed according to Theorem
4.2. For this reason, we eschew "adding hats in the notation" going forward.

4.6. Ranking flagged clusters. This subsection presents a method to rank the degree to
which flagged clusters are anomalous. Our task here is to construct a depth/metric that will
assign a score to each flagged cluster.

We begin by aggregating all transactions for each vendor and each FY. Transactions are
segmented by FY since the SNAP funds dispersed may change with the FY. Clusters at the
maximum benefit amount are occasionally detected — and this maximum benefit changes
from year to year. Hence, each FY is analyzed separately.

Consider a vendor FY where one or more clusters are flagged. Frequently, multiple clusters
are flagged for a given vendor FY. Let m denote the number of clusters detected for this
vendor FY. In the ensuing cluster rankings, we back transform to the original data in dollars,
working with the transaction amounts X(i) = F̂−1X (V(i)).

For a given θ and decision threshold η, the starting point of the first cluster is

(23) τ1 := min
1≤i≤n−r+2

{i : Sn(r, i, θ)> η},

and the ending point of the first cluster is

(24) κ1 := min
τ1<i≤n−r+2

{i : Sn(r, j, θ)≤ η, for all j = i, i+ 1, . . . , i+ r− 2}.

Note that Sn(r, i, θ) > η for all i ∈ {τ1, τ1 + 1, . . . , κ1 − 1}. Additionally, Sn(r, i, θ) ≤ η
for i = τ1 − 1 and i = κ1, κ1 + 1, . . . , κ1 + r − 2. Therefore, the first cluster contains the
transactions {X(τ1),X(τ1+1), . . . ,X(κ1+r−2)}.
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Continuing in this fashion, additional clusters are defined as subsequent order-index i so-
journs, where Sn(r, i, θ) > η. Specifically, the jth cluster has the beginning and ending in-
dices

(25) τj+1 := min
κj≤i≤n

{i : Sn(r, i, θ)> η},

and

(26) κj+1 := min
τj+1<i≤n

{i : Sn(r, i, θ)≤ η}.

The jth cluster contains the transactions {X(τj),X(τj+1), . . . ,X(κj+r−2)} for j = 2, . . . ,m.
We now discuss the parameter θ. As θ ↓ 0, the success probability of Yi(θ), which is

1− e−θ asymptotically, tends monotonically down to zero. More clusters are signaled with a
higher θ for a fixed threshold η.

Let Tα be the critical value of Sn(r, i, θ) when θ = 1. For any transaction i, we define a
minimum θ where the transaction is flagged as potentially anomalous, denoted by θmin, to be
the smallest θ having Sn(r, i, θ)> Tα. Here, Tα is held constant, set according to θ = 1.

Conversations with Mississippi SNAP program officials indicate that some vendors try
to mask illicit transactions by adding some small random amounts to the transactions. This
avoids identical transaction amounts, which would be easier to identify. Because this sort of
tactic involves clerks and is hence more nefarious, a cluster that exhibits a range/variance in
its transactions is deemed more anomalous than a cluster with tightly packed transactions.
Clusters with higher transaction amounts are also deemed more anomalous.

We define the depth of transactionX(i) asD(i) = θmax−θmin(i) should this transaction be
in a significant cluster as measured, where θmax = 1/2 (presumption of no cluster mandates
a conservative value here). A zero depth is assigned to the transaction otherwise. Our rank
for cluster j incorporates the range of the transactions in the cluster and the depths via

(27) Rj :=

κj−1∑
i=τj

X(i)

×
1/2

κj−1∑
i=τj

[X(i+1) −X(i)][D(i) +D(i+ 1)]

 .

Intuition for this ranking method is included in the discussion below Figure (12), but note
that the rank Rj has the following properties:

1. higher Rjs are more anomalous,
2. clusters with larger sum totals are more anomalous,
3. clusters that are more intense (as measured by D(i)) are more anomalous,
4. clusters with a larger range (as measured by X(κj−1) −X(τj)) are more anomalous.

Assume that the procedure flagsm clusters for a given vendor FY. LetR(1) <R(2) < · · ·<
R(m) denote the ordered rankings, from least to most anomalous, of all flagged clusters (the
inequalities are strict with probability one). When clusters are detected at a given vendor,
the vendor is assigned the score R(m); otherwise, the vendor receives a zero score. Let C(j)

denote the set of transactions having rank R(j) for j ∈ {1,2, . . . ,m}. The most anomalous
cluster is R(m) and has the transactions C(m).

Let τ(j) and κ(j) +r−2 denote the starting and ending index of C(j) for j ∈ {1,2, . . . ,m}.
To rank individual transactions, first each transaction in C(m) is ranked from largest to small-
est: {X(κ(m)+r−2), . . . ,X(τ(m))}. Next, the set of transactionsC(m−1) are ordered analogously
and appended to the right of C(m). This rank ordering continues for all clustered transactions
until all flagged transactions for a given vendor are ranked as

{X(κ(m)+r−2), . . . ,X(τ(m)),X(κ(m−1)+r−2), . . . ,X(τ(m−1)), . . . ,X(κ(1)+r−2), . . . ,X(τ(1))}.
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Non-flagged transactions are then discarded.
The methods were applied to all 7,291 vendors in this study, giving a rank to all

250,379,903 transactions; results are discussed in Sections 6 and 7. Note that the ranking
system ranks vendors (via R(m)) and transactions occurring at a given vendor, but does not
directly compare transactions between two distinct vendors.

5. A Simulation Study. This section presents a simulation study of our cluster detection
procedure. First, the procedure is tested when no clusters are present and fV is known. Next,
an assessment of the independence of {Ŷi(θ)} is considered when the transaction distribution
is estimated, augmenting the discussion in Section 4.5. Next, the entire cluster detection
procedure is studied under several scenarios to quantify Type I and II errors. Here, the true
density fV is assumed unknown and f̂V is computed as described in Subsection 4.3. Power
and error rates are assessed for a variety of window widths r. Throughout, random variables
supported on [0,1] were generated via CDF-transformed observations.

5.1. Simulation A. First, the method is applied to the case where the density of {Xi} is
assumed known; this is equivalent to letting {Vi}ni=1 be IID Uniform[0,1] random variables.
For this simulation, we use n= 4,000 and set r = 30. For α= 0.05, the selection criteria in
(20) yields Tα = 28, which by (21), corresponds to an α∗ = 0.024 level test. One hundred
independent replications of {Vi}ni=1 were generated. In each replication, the procedure of
Section 4 is applied with r = 30 and θmax = 1. The scan statistic Sn(r, i, θ) is computed for
each i and compared to the threshold Tα to make decisions.

Table 3 depicts the number of flagged clusters over 100 independent runs. In this case,
three erroneous clusters are detected (Type I errors); this is almost as expected for a level
0.024 test. Overall, the procedure appears to work quite well.

5.2. Simulation B. To investigate the asymptotic independence of {Ŷi(θ)}when the CDF
is estimated, transactions from a Gamma(α,β) distribution, where α= 10 and β = 10, were
sampled. Three samples sizes — n= 1,000, n= 10,000, and n= 100,000 — were consid-
ered and {V̂i}ni=1 was calculated for each simulation run and sample size n. The estimates α̂
and β̂ are obtained via the egamma function of the R EnvStats package. Note that if Ei = Êi,
then Yi(θ) = Ŷi(θ). Therefore, we study the ratio Ei/Êi to nullify the size effects of the Eis.
The three panel graphic in Figure 4 displays results. One hundred independent samples were
drawn for each n considered, the Eis and Êis were constructed, and the sample path Ei/Êi
for each i was plotted for all 100 runs. When n= 1,000, over the index range of 25 to 975,
this ratio is approximately unity — uniformly in the 100 runs. Hence, even for this small-
est sample size, the independence of Êi in i seems reasonable. The cases n = 10,000 and
n = 100,000 show an even better alignment. Thus, the assumption of independent {Ŷi(θ)}
at the quantiles analyzed seems roughly valid for the vendors considered in this study.

5.3. Simulation C. Our next simulation, which studies what happens when the sample
comes from a non-gamma family of distributions, considers non-uniformly distributed data
with no clusters. In this case (and those that follow), we first simulate an IID sequence {Wi}
of non-uniform data on [0,1] when n= 4,000. In particular, the Wis are generated from the
sinusoidal density

(28) fW (w) = 1− 0.30 sin(2πw), 0<w < 1.

An inverse gamma CDF transform is then applied to each Wi using the parameters α = 2
and β = 50: Xi = F−1X (Wi), which leaves {Xi} non-gamma distributed over (0,∞). Next,
we estimate α and β from the sample {Xi}ni=1 and work with the CDF transformed data

V̂i = F̂X(Xi),
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Fig 4: Effects of estimating the CDF. Here, 100 samples of size 1,000 (top panel), 10,000
(middle panel) and 100,000 (bottom panel) were simulated. Each panel depicts all 100 curves
of the ratios of Ei/Êi for all i. Vertical lines depict the 0.025th and 0.975th quantiles in each
panel. The ratios are nearly identically unity in this range, implying negligible effects of CDF
estimation.

where F̂X denotes the estimated Gamma CDF. Density estimates for fV are then obtained via
the methods in Section 4.3). Our procedure is then applied with r = 30 and an α= 0.05 level
test (so that Tα = 28 with associated Type I error α∗ = 0.024). The results are summarized
in Table 3. False positives are sparse and the procedure again appears to work well.

5.4. Simulation D. With Type I error issues seemingly settled, we move to detection
power. Our next simulation embeds two distinct clusters in IID uniform[0,1] random vari-
ables. Here, {Vi}ni=1 are IID Uniform[0,1] and n= 4,000. Next, we simulate two clusters —
IID normal {Cj}30j=1 and {Dk}30k=1 — obeying

Cj ∼N(µ= 0.25, σ2 = 10−12), Dk ∼N(µ= 0.75, σ2 = 10−12)

The window length is set to r = 30 with α = 0.05 one obtains Tα = 28 and α∗ = 0.024.
With the small variance chosen in the “alien" but normally distributed clusters, this scheme
essentially injects spikes into the observation density at 0.25 and 0.75. Figure 5 shows a
histogram of the 4,060 simulated data points with a bin width set to 0.05 (which is smaller
than R’s default). Importantly, the two clusters are not visually obvious in this histogram.
Table 3 reports additional specifications. Injecting clusters with larger variance will obviously



SNAP TRANSACTION CLUSTERING 15

decrease the cluster detection rates; our point here is merely that we can detect clusters that
are not visually apparent.
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Fig 5: A histogram of the uniform density corrupted with alien clusters at 0.25 and 0.75.
Density spikes are not visually evident.

Figure 6 shows our detected cluster locations and their frequencies over the 100 runs.
Observe that both clusters are usually detected and that other “false positives" are sparse.
Here, the methods have worked well.
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Fig 6: Detected clusters and locations when alien clusters at 0.25 and 0.75 are embedded into
uniform[0,1] draws. The two clusters are detected at the correct location in all 100 runs.

5.5. Simulation E. Next, n = 4,000 independent draws of the density in (28) in Sim-
ulation C were generated. The sample is then corrupted with the above independent alien
draws {Cj}30j=1 and {Dk}30k=1. Again, the window length is r = 30; for an α = 0.05 level
test, one obtains Tα = 28 and α∗ = 0.024. Figure 7 shows the locations and numbers of the
flagged clusters over 100 independent runs; again, performance is admirable. Note that while
all clusters are detected, they are not precisely at the 0.25 and 0.75 quantiles since 0.25 and
0.75 are not the 25th and 75th quantiles of V with density given in Equation (28). This is not
overly important; however, as the goal is to flag individual transactions within clusters, the
procedure is successful in this regard. Table 3 provides additional specifications.

5.6. Simulation F. The next simulation demonstrates behavior when no adjustments for
non-uniformity of fV are made, describing a scenario where data is sampled from a density
outside of the gamma family of distributions, but the method does not account for this depar-
ture. Our data here are simulated as in Simulation C; however, the density estimation methods
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Fig 7: Detected clusters and their quantiles when alien clusters at 0.25 and 0.75 are embedded
in draws from the density in (28).

Simulation Studies
Simulation False Positives Detected Clus-

ter 0.25
Detected Clus-
ter 0.75

A 2 NA NA
C 1 NA NA
D 2 100 100
E 0 100 100
F 20 100 100

TABLE 3
Summary of false positives and detected clusters. Simulation B assessed independence, and clusters detection

was not considered.

in Section 4.3 are eschewed. When the expected gap size in (14) does not account for non-
uniform[0,1] data, many spurious clusters may arise from distributional mis-specification.
Indeed, when fV (v) > 1 for some v ∈ (0,1), there are likely to be more observations near
v and the expected gap size should decrease near such v. Failing to reduce the expected gap
size will frequently induce Yi(θ) = 1 near such v and spurious clusters will be signaled. This
dynamic is illustrated in Figure 8. Here, n= 4,000 IID samples from the density in (28) are
sampled. Alien clusters {Cj}30j=1 and {Dk}30k=1 are then added to the sample. The window
length is r = 30 for α = 0.05 (again, Tα = 28 and α∗0.024). Note that many spurious clus-
ters are detected at v with fV (v) > 1. For this reason, one should not assume that fV (v) is
uniform[0,1], or equivalently, that the Gamma fit is truth. This also demonstrates the veracity
of our density estimation methods.
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Fig 8: When the data is not uniform[0,1], the procedure detects many spurious clusters.
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5.7. Window length effects. We now study window length effects. Here, 4,000 IID draws
from the density in (28) were generated and corrupted with IID draws from {Cj}30j=1 and
{Dk}30k=1, which essentially injects spikes into the density at 0.25 and 0.75. For each of
the 100 independent data sets, we compute the number of times the scan statistic flags a
cluster at 0.25 for various values of r (we omit study of the cluster at 0.75 as it is analogous).
Figure 9 plots these counts over the 100 independent runs for various values of r. While good
performance is seen from r values around 30, which is the true cluster size and is optimal in
this sense, the methods also work well for a variety of distinct rs — from 15 to 50. In this
case, one need not have to worry too deeply about selection of r.
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Fig 9: The number of times the cluster at 0.25 is detected.

6. Results. This section returns to our case studies of individual vendors and summa-
rizes state-wide results for Mississippi.

6.1. Case Studies. Case studies of three vendors during a single FY are now supplied.
The procedure constructed in Section 4 is applied to each vendor. Results on detected clusters
and their rankings are reported. After applying the procedures in Section 4, close inspection
of the transactions show that shoppers have a preference for a small number of popular items,
examples could include pairing a sandwich and drink. These behaviors induce many clusters
at small price points. Detected price point clusters depicting such preferences are hence dis-
regarded when reporting results. We therefore ignore any detected cluster below $50.00. Any
such cluster is not flagged or used in the ranking methods. This paradigm was maintained for
all vendors.

First, we return to Vendor A, whose transactions were depicted in Panels (a) of Figures
2 and 3. This vendor conducted n =131,175 EBT transactions totaling $5,434,398.30. The
Gamma fit produced parameter estimates of α̂ = 0.8239 and β̂ = 0.0199. The interpolated
density estimate of the Vis is plotted against a histogram in Figure 10. The partition in (16)
is used for all vendors. The density estimate appears to match the histogram, except near the
tail at unity. This is not an issue given the discussion in Section 4.5 (Simulation B) since the
study is limited to transactions less than the 97.5th quantile. This also allows n− i to be large
enough for the convergence in Theorem 4.2 to apply.

The window length rd = 592 was selected. The convention α = 0.05 is adopted for all
vendors. For Vendor A, the threshold Tα = 284 with associated α∗ = 0.043 was used. The
maximum value of the scan statistic never exceeded this threshold; hence, no clusters above
$50.00 were detected. This vendor scores zero and the procedure is concluded.

The procedure was next applied to Vendor B, whose transactions were depicted in Panels
(b) of Figures 2 and 3. Vendor B experienced n= 12,987 transactions totaling $519,523.67.
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Fig 10: Histogram of the Gamma converted Vendor A transactions and its corresponding
density estimate.

The initial Gamma fit produced parameter estimates of α̂= 0.8640 and β̂ = 0.0216. The CDF
transformed density and histogram are plotted in Figure 11. The procedure selects a window
length of rd = 58 according to (22). For an α= 0.05 level test, the threshold is Tα = 39 with
associated α∗ = 0.040.
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Fig 11: Histogram of the Gamma converted Vendor B transactions and its corresponding
density estimate.

To aid intuition, the detected clusters are presented on the jittered transaction amounts
{Xi}, not the CDF transformed data {Vi}. These are depicted in Figure 12, which shows
a histogram with $1 dollar bin widths. The transaction amounts appear on the x-axis and
transactions counts are placed on the y-axis. Detected clusters appear in purple streaks based
on the smallest θ where the scan statistic exceeds Tα = 39. For a transaction amount Xi,
lower values of θ having Sn(r, i, θ) > Tα are shaded deeper red. The color-code key for
θ is indicated in the vertical bar on the right. The largest θ depicted is θmax = 1/2. One
can visually see the width of the cluster as θ tends towards zero. Intuitively, the ranking
method is the amount within the cluster multiplied by the area outlined by each colored
spike. As previously discussed, our ranking method is based on the area in the spike to weight
clusters with variance as more anomalous than those densely packed at a single dollar and
cent amount.

Figure 12 shows clusters in integer multiples of $65.00. Indeed, clusters are detected at the
price points $65, $130, and $195, as well as $80 and $100. The cluster locations, averages,
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Fig 12: Several clusters are detected for Vendor B. The shaded regions are proportional to the

cluster scores and are computed from (27).

and scores are summarized in Table 4. The procedure identified m = 6 clusters, and the

vendor rank is R(6) = 55.81× 103.

Vendor B

Cluster

i
τi κi Average

Amount

Score:

Thousands

1 $189.00 $201.45 $195.43 55.81

2 $127.68 $132.27 $130.03 26.54

3 $77.64 $81.07 $79.37 10.70

4 $64.51 $65.47 $65.00 4.95

5 $99.92 $102.00 $100.50 0.30

TABLE 4

Summary of detected clusters and cluster ranks for Vendor B. Cluster scores are computed from (27).

Fig 13: Histogram of the Gamma converted Vendor C transactions and its corresponding

density estimate.

Next, we present results from a flagged vendor, called Vendor C, under the same format.

Vendor C experienced 3,943 transactions totaling $112,698.69, with the Gamma estimates
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Fig 14: Vendor C clustering and ranking blocks. The shaded regions are proportional to the

cluster scores.

Vendor C

Cluster

i
τi κi Average

Amount

Score:

Thousands

1 $128.00 $146.13 $138.88 73.32

2 $56.87 $76.67 $71.08 20.87

TABLE 5

Detected clusters for Vendor C. Scores are computed via (27).

α̂ = 0.43 and β̂ = 0.01. A histogram of the Gamma CDF transformed transactions is dis-

played in 13. Vendor C is an outlier in terms of the Gamma fit; specifically, much of the

density fV between 0.60 and 0.80 is near zero. However, the procedure appears robust to the

departure from the Gamma model and appears to work well. The class of linear densities in

(15) seem particularly well suited for such extreme cases. The procedure chose rd = 44. For

an α = 0.05 level test with n = 3,943 transactions, the threshold is Tα = 31, which yields

α∗ = 0.026. The cluster locations, averages, and scores are summarized in Table 5. The pro-

cedure identified m= 2 clusters, and the vendor score is R(2) = 73.32× 103. Note that the

ranking method weights these wider clusters more heavily than the tighter-packed clusters of

Vendor B, as intended.

6.2. Statewide Results. The methods developed above were applied to all EBT accept-

ing vendors from FY 2008-2017, where n > 1,000 transactions where experienced. This

n facilitates the asymptotic independence of {Ŷi(θ)} in Subsection 5.2 (almost all vendors

experienced more than 1,000 EBT transactions). The reported amounts are the total excess

amounts due to clustering. To compute these, suppose that the procedure detects m clusters

at a specified vendor. Let Aj denote the total excess amount due to cluster j:

(29) Aj =

⎛
⎝κj+r−2∑

i=τj

X(i)

⎞
⎠− n

∫ X(κj+r−2)

X(τj)

tf̂X(t)dt,

where f̂X is the Gamma MLE fitted density. Then the total excess amount due to clustering

for a vendor is S =
∑m

j=1Aj (or zero if no clusters are detected). The quantity S is computed

for each vendor in the state and FY and summed statewide. Results are reported in Table 6,

where "anomalous amount" is the excess due to clustering. To be cautious, the maximum θ
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considered was 1/2. Blackstone’s ratio — “better that ten guilty persons escape, than that one
innocent suffer" — guided this stance.

Using the above parameterization, 10.47% of vendors were flagged. Table 6 depicts the
total amount in dollars and as a percentage associated with clusters on a yearly basis.

Year Anomalous Amount Total Transaction Amount Percentage
2009 $2,974,011 $645,011,310 0.46%
2010 $4,777,470 $839,013,298 0.57%
2011 $5,169,269 $908,550,428 0.57%
2012 $6,838,981 $959,879,314 0.71%
2013 $6,794,914 $949,182,221 0.72%
2014 $6,039,293 $885,047,604 0.68%
2015 $5,844,478 $874,198,495 0.67%
2016 $4,519,124 $759,449,273 0.60%
Total $42,957,541 $6,820,331,943 0.63%

TABLE 6
Statewide aggregates of anomalous cluster amounts and statewide total transaction amounts are shown in the

first two columns. Cluster amounts, as a percentage of total transaction amounts, populate the rightmost column.

From this information, anomalous clusters are detected, but only contain a small portion
of the transactions. We are in agreement with the USDA that the program is an efficient
mechanism to distribute benefits and likely has a misuse rate of less than 2%. Furthermore,
systematic misuse is likely easy to identify. The top 100 cluster ranks were plotted in the
histogram in Figure 15, which appears to approximate an exponential distribution.
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Fig 15: Histogram of ranking scores in units of thousands.

7. Conclusions and Comments. This study presented a forensic analysis of the state
of Mississippi’s SNAP program. Exploratory data analysis, news reports, and conversations
with state investigators suggest fraudulent transactions that cluster near various pre-identified
price points are of interest. Order statistic methods were developed and used to detect narrow
clusters in the probability densities of the transactions. Our key asymptotic approximation to
the gap sizes in the order statistics is given in (14). The methods used scan statistics to find
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“local deviations" in a sequence of indicator variables calculated from the gaps of the order
statistics. A method that ranks the severity of found clusters, based on their data depths, was
also created.

Future directions for this work are numerous. Some relate to improving the ad-hoc choices
used within. For example, changepoint methods may help set the partition in (16), subject to
an increased computing expense. Other density estimates may also prove useful; however, the
methods adopted here are robust and are adequate enough to work statewide. Also, methods
that optimally select θmax seem worthy of investigation. Such methods would undoubtedly
need regularity assumptions on fV and are perhaps best handled on a case-by-case basis.
Additionally, one may wish to develop peaks over threshold based methods to analyze ex-
treme transactions. The methods could also be extended to accommodate multiple scanning
windows, which is now common in scan statistic applications.

Deeper improvements include developing multivariate versions of our methods. Investi-
gation of how to use the gap sizes, beyond say the simple zero-one indicators used here, are
also important. Fraud structures other than density spikes may also arise. While the study
here only looked for density spikes, modifying the methods to locate other types of fraud
structures may prove useful. Also, locating density spikes may arise in non-fraud applica-
tions.

Some implications of this work are as follows. First, inexpensive and fast forensic sta-
tistical analysis can strengthen SNAP integrity, thereby increasing confidence that program
funding is used as intended. Statisticians have the skills necessary to build robust and effective
infrastructure for this purpose. Second, private vendors interested in selling SNAP integrity
solutions are often overly critical of the integrity of the program (Dean, 2016); academic
statisticians have the technical skills necessary to effectively evaluate proposed integrity so-
lutions. Next, the vestige of the paper-based coupon books seems likely to be of economic
and sociological interest. It is certainly interesting that clustering in the coupon book de-
nominations continued a decade after the use of coupon books was discontinued. Finally,
this analysis could be extended to the entire US, although differences in benefit disburse-
ments among the states exist that could create differing price-point clusters or new patterns
of interest.

The USDA estimates that approximately 1.5% of SNAP benefits are trafficked each year.
From our work here, this quote seems like a reasonable estimate. In short, SNAP benefits
appear to be overwhelmingly used as intended, contrary to some commonly held beliefs.

APPENDIX A: PROOF OF LEMMA 4.1

PROOF. First, we derive an expression for the CDF of Gi given V(i−1) in terms of the
hazard functions. For each fixed i, observe that

PV(i−1)
(Gi ≤ t) = 1− PV(i−1)

(min(R1, . . . ,Rn−i+1)> t) = 1− [1− PV(i−1)
(R1 ≤ t)]n−i+1.

Applying (11) renders

PV(i−1)
[Gi ≤ t] = 1− exp{−(n− i+ 1)[H(V(i−1) + t)−H(V(i−1))]}.

Letting fGi|V(i−1)
(t) denote the corresponding probability density, differentiation yields

(30) fGi|V(i−1)
(t) = exp{−(n−i+1)[H(V(i−1)+t)−H(V(i−1))]}h(V(i−1)+t)(n−i+1),

for 0≤ t≤ 1− v.
Now combine

EV(i−1)

[
1

h(V(i))

]
=

∫ 1−V(i−1)

0

1

h(V(i−1) + t)
fGi|V(i−1)

(t)dt
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with (30) to finish our work:

EV(i−1)

[
1

h(V(i))

]
= (n− i+ 1)

∫ 1−V(i−1)

0
exp{−(n− i+ 1)[H(V(i−1) + t)−H(V(i−1))]}dt

= (n− i+ 1)

∫ 1−V(i−1)

0
PV(i−1)

[Gi > t]dt

= (n− i+ 1)EV(i−1)
[Gi].

APPENDIX B: PROOF OF THEOREM 4.2

PROOF. We need to show that limn→∞PV(în−1)
(Yîn(θ) = 1) = 1− e−θ when n→∞ and

n− în→∞.
For any constant θ > 0, Lemma (4.1) provides

PV(în−1)
(Gîn ≤ θEV(în−1)

[Gîn ]) = 1− PV(în−1)

(
Gîn >

θEV(în−1)
[h(V(̂in))

−1]

n− în + 1

)
.

But since PV(în−1)
(Gîn > c) = (1− FR1|V(în−1)

(c))n−în+1 and

PV(în−1)
[R1 ≤ x] = [FV (x)− FV (V(̂in−1))]/[1− FV (V(̂in−1))],

we obtain

(31) PV(în−1)
(Gîn ≤ θEV(în−1)

[Gîn ]) = 1−

1−

∫
c

V(în−1)

fV (t)dt

1− FV (V(̂in−1))


n−în+1

,

where the upper integration limit is

c= V(̂in−1) + θ

(
EV(în−1)

[h(V(̂in))
−1]

(n− în + 1)

)
.

Since f is Lipschitz continuous and f(v)> c > 0 for all v, 1/h is also Lipschitz continuous
over (0,1). Using this and that V(̂in) − V(̂in−1) ↓ 0 almost surely as n→∞ for în, we obtain

(32) EV(în−1)
[h(V(̂in))

−1] = h(v(̂in−1))
−1 + op(1)

as n→∞. By Lipschitz continuity and f(v)> c, The same conclusion holds at each quantile
q(p) with în varying in n as long as n− în→∞ as n→∞.

It now follows that

PV(în−1)
(Gîn ≤ θEV(în−1)

[Gîn ])

= 1−

[
1− θ

EV(în−1)
[h(V(̂in))

−1]

(n− în + 1)

fV (V(̂in−1))

1− FV (V(̂in−1))
+ op((n− în + 1)−1)

]n−în+1

.(33)

Hence, (33) becomes

PV(în−1)
(Gîn ≤ θEV(în−1)

[Gîn ]) = 1−
[
1− θ

n− în + 1
+ op((n− în + 1)−1)

]n−în+1

→ 1− e−θ,



24

where the convergence as n− în + 1→∞ may be found in Stirzaker (2003) among other
texts. Since this result holds for all qp ∈ (0,1), all indicator functions in Equation (6) converge
when n− în→∞.

APPENDIX C: DERIVATION OF GAP APPROXIMATION IN (14)

Combining (32) with Lemma (4.1) gives

(n− în + 1)EV(în−1)
[Gîn ] =EV(în−1)

[
1

h(V(̂in))

]

=

[
1

h(V(̂in−1))

]
+ op(1)(34)

since V(̂in−1) and V(̂in) both converge to q(p) almost surely as n→∞.

Next define the empirical CDF of {Vi}ni=1 as F̂ empV (v) =
(
1
n

)∑n
i=1 1[Vi≤v], where

F̂ empV (V(̂in−1)) = (̂in−1)/n for each în. Since fV (v)> 0 for all v ∈ (0,1), the Law of Large

Numbers implies that F̂ empV (V(̂in−1))→ p almost surely as n→∞. Since 1/h is Lipshitz
continuous, we have

(n− în + 1)EV(în−1)
[Gîn ] =

[
1− FV (V(̂in−1))

fV (V(̂in−1))

]
+ op(1)

=

[
1− F̂ empV (V(̂in−1))

fV (V(̂in−1))

]
+ op(1)

=

(
n−în+1

n

)
fV (V(̂in−1))

+ op(1)

=
(n− în + 1)

(n+ 1)fV (V(̂in−1))
+ op(1).

Thus the approximation in Equation (14) holds since

EV(în(q(p))−1)
[Gi] =

1

(n+ 1)fV (V(̂in(q(p))−1))
+ op

(
1

n− în(q(p))

)
.
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