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ABSTRACT
This paper studies statistical inference for a Lindley random walk model when the in-
crement process driving the walk is strictly stationary. Lindley random walks govern
customer waiting times in many queueing models and several natural and business
processes, including snow depths, frozen soil depths, inventory quantities, etc. The
probabilistic properties of a Lindley walk with time-correlated stationary changes
are first reviewed. We provide a streamlined argument that the process has a proper
limiting distribution when the mean of the incremental changes is negative, and
that the Lindley process is strictly stationary when starting from this stationary
distribution. Next, the Markov characteristics of the process are explored when the
change process has a Markov structure of first or higher order. A derivation of the
model’s likelihood is given when the change process is a Gaussian autoregressive
time series. An efficient particle filtering method of evaluating and optimizing the
likelihood is then devised and studied via simulation.
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1. Introduction

A Lindley random walk, also known as a Lindley recursion or a storage model, is
a mass balance equation that has classically arisen in inventory and single server
queueing setups [1,2]. A Lindley random walk can also be used to describe some
environmental process having a “hard boundary at zero” (described further below),
including snow depths, streamflows, frozen soil depths, and ice thicknesses. See [3–5],
and [6] for Lindley random walk applications to snow depths and other cryospheric
quantities.

A Lindley random walk {Xn}∞n=0 obeys the recursion

Xn = max(Xn−1 + Cn, 0), n ≥ 1, (1)

starting from some initial level X0. The sequence {Cn}∞n=1 is called the change process
here.
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For examples of where a Lindley random walk arises, consider inventory in a ware-
house. Let Xn denote the number of items in the warehouse of a particular type on
the opening of day n, Nn the number of new items that are delivered to restock the
warehouse during day n, and On the number of customer orders that are shipped at
the end of day n. Then

Xn+1 = max{Xn +Nn −On, 0}

is the number of items in the warehouse on the morning of day n + 1, which is (1)
with Cn+1 = Nn −On. The maximum at zero enters because one cannot deliver more
items than what is currently in stock (we have not specified what to do with “lost”
orders that cannot be filled due to lack of content). Another mass balance with Lindley
structure arises in single server queueing applications. Here, the virtual waiting time,
for example, of the nth customer (the time the customer waits until their service
begins), denoted by Wn, obeys

Wn = max(Wn−1 + Sn−1 − In, 0), (2)

where In is the interarrival time between the (n−1)st and nth arriving customers and
Sn is the time taken to serve the nth customer. The classical assumptions in queueing
theory are that {In}∞n=1 and {Sn}∞n=0 are each independent and identically distributed
(IID) non-negative random sequences (and also independent of each other). In this
case, Cn = Sn−1 − In is also IID.

The Lindley model in (1) can also be viewed as a censored time series. Censored
time series inference has seen significant recent development in the literature [7–12].
Indeed, given a sample {Xn}Nn=1 of the process in 1, one can recover Cn exactly unless
Cn < −Xn−1 (the censoring mechanism is somewhat complex as it depends on past
process values).

In environmental Lindley random walk applications, [3] models daily snow depths
at day n as the snow depth on the ground yesterday, plus any new snowfall, minus any
meltoff or compaction since yesterday. To prevent non-identifiability, one amalgamates
any new snow, meltoff, and compaction into a single change variable Cn and the
model in (1) arises. Since daily weather is highly correlated, one needs a temporally
correlated {Cn} for realism. In queueing applications, the server may be inclined to
work faster when there are more customers in the queue, inducing correlation in {Cn}.
In the context of the warehouse storage model above, the typical assumption in the
literature is that {Nn−On} is IID. In practice, correlation might arise in various ways.
For example, one is more likely to order more stock if the warehouse is empty and less
stock if the warehouse is full, thus introducing dependence between {On} and {Xn}.

As storage levels cannot be negative, a Lindley random walk has a so-called hard
boundary at zero. One could transform Lindley random walk data prior to modeling,
analyzing say ln(Xn + ϵ) for some small ϵ > 0 as a quantity taking on any real value.
While this is not necessarily a bad idea, such a scheme would estimate the probability
of an empty store, a key quantity for administrators, as zero under this scheme. As
such, it is preferable to model the storage level directly (without transformation).

The majority of research on Lindley random walks has been done in queueing con-
texts that assume IID {Cn}. A classic reference here is [2]. In the correlated case,
stability of waiting times for stationary {Sn−1, In} were examined in [13,14]. Queues
built from a first-order autoregressive processes were studied in [15] and [16]. Depen-
dence can arise in a variety of queueing contexts, including batching and multiple
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customer classes; see [17–22].
The purpose of this paper is to examine estimation issues in the Lindley walk when

{Cn} is strictly stationary, and more specifically, a pth order autoregression. We pro-
vide a streamlined proof of stochastic stability that uses stochastic monotonicity and
coupling techniques for technical efficiency. When {Cn} is a pth order autoregres-
sion, the Markov properties (and lack thereof) of the Lindley walk are established.
The model’s statistical likelihood is then derived and novel particle filtering inference
techniques are used to estimate model parameters via maximum likelihood methods.

The rest of this paper proceeds as follows. The next section establishes/reviews er-
godicity and stationarity properties of {Xn} when {Cn} is strictly stationary. Section
3 then establishes several Markov structures for the process, even though {Xn} is not
a Markov chain itself. The final two sections move to statistical inference issues for
the walk. In particular, Section 4 uses the Markov structure established in Section 3
to derive the model’s likelihood function when {Cn} is a pth order Gaussian autore-
gression. As the resulting likelihood involves some unwieldy multivariate integrals, a
particle filtering approach is devised to evaluate and optimize it in Section 5. A simu-
lation study is given there that demonstrates the accuracy of the approach. The paper
concludes with discussion and comments in Section 6.

2. Stability and Stationarity

This section assumes that {Cn}∞n=1 is strictly stationary. We want to show that the
Lindley random walk is stable whenever E[C1] < 0. We will demonstrate that under
this assumption, {Xn}∞n=0 will reach a proper limiting distribution, and is thus suitable
for performing parameter inference. While some old and recent literature also establish
these properties [13,14], we present a simple elementary argument for completeness.
A process {Ct} is said to be strictly stationary if

(Ct1 , . . . , Ctn)
D
= (Ct1+τ , . . . , Ctn+τ )

for all τ, t1, . . . , tn ∈ Z and all n ∈ N+.
We first assume that X0 = 0 and define Fn(x) = P (Xn ≤ x). To see that Xn is

stochastically increasing in n, manipulations with (1) provide

Xn = Sn − min
0≤j≤n

Sj

= max
0≤j≤n

(Sn − Sj)

= max(0, Cn, Cn + Cn−1, . . . , Cn + · · ·+ C1),

where Sn = C1 + · · ·+ Cn.
Using this gives, for x ≥ 0,

Fn+1(x) = P (C1 + C2 + · · ·+ Cn+1 ≤ x;C2 + · · ·+ Cn+1 ≤ x; . . . ;Cn+1 ≤ x)

≤ P (C2 + · · ·+ Cn+1 ≤ x;C3 + · · ·+ Cn+1 ≤ x; . . . ;Cn+1 ≤ x)

= P (C1 + · · ·+ Cn ≤ x;C2 + · · ·+ Cn ≤ x; . . . ;Cn ≤ x)

= Fn(x).

Here, the inequalities follow by dropping terms in the joint probability and the strict
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stationary of {Cn}. This shows that Fn(x) is monotone non-increasing in n for each
fixed x ≥ 0.

From this monotonicity, define F∞(x) = limn→∞ Fn(x). It is clear that F∞(x) is
non-decreasing in x and takes values in [0,1]. To see that F∞(x) is also right continuous
in x, and hence a distribution function, note that

lim
h↓0

F∞(x+ h) = lim
h↓0

lim
n→∞

Fn(x+ h) = lim
n→∞

lim
h↓0

Fn(x+ h) = lim
n→∞

Fn(x) = F∞(x).

The interchange of limit orders is justified by the fact that Fn(x+h) is non-increasing
with increasing n and decreasing in h.

To show that F∞(·) is a proper cumulative distribution function (not vague), we
make the law of large numbers (ergodic) assumption that

C1 + · · ·+ Cn

n
−→ µC (3)

with probability one as n→ ∞ and that µC < 0. A negative µC is necessary to induce
a stable random walk even when {Cn} is IID.

Now on any point in the probability space where (3) holds, C1 + · · · + Cn → −∞
as n→ ∞. On this path of {Cn}∞n=1, it is relatively easy to argue that

Xn = max(0, Cn, Cn + Cn−1, . . . , Cn + Cn−1 + · · ·+ C1) (4)

is bounded away from positive infinity in n. Hence, lim supn→∞Xn < ∞, implying
that X∞, a random variable having the CDF F∞(·), is finite with probability one.

When µC = 0, a proper limiting distribution may or may not arise. The case where
Cn ≡ 0 provides an example where a trivial degenerate limiting distribution exits;
when {Cn} is IID and double exponentially distributed, {Xn}∞n=0 is a null recurrent
Markov chain. When µC > 0, Xn will converge to infinity almost surely as n → ∞
(assuming that {Cn} obeys a law of large numbers) and no proper limiting distribution
exists. See [13] for more on these cases, or queueing texts when {Cn} is IID.

We now move to cases where the initial condition does not take X0 as zero, showing
that {Xn} will still reach the same limiting distribution, regardless of starting point.
For a fixed sample path of {Cn}∞n=1, let {Xn}∞n=0 denote the process when X0 = 0 and
let {X∗

n}∞n=0 denote the process when the initial condition is X∗
0 ; that is, the initial level

of the process {X∗
n}∞n=0 at time n = 0 is X∗

0 . Here, X∗
0 may or may not be random and

both {Xn}∞n=0 and {X∗
n}∞n=0 are driven by the same sample path of {Cn}∞n=1. Define

the coupling time T = inf{n ≥ 0 : Xn = X∗
n}. Since the walk is pathwise ordered,

Xn ≤ X∗
n for all n ≥ 0. Thus, once {X∗

n} first hits state zero, Xn = X∗
n for all n

thereafter; that is,

T ≤ inf{n ≥ 0 : X∗
n = 0}.

Applying the classic coupling inequality [23] gives

sup
A

| P (Xn ∈ A)− P (X∗
n ∈ A) |≤ P (T0 > n),

where the supremum is taken over all Borel measurable subsets of [0,∞) and T0 =
inf{n ≥ 0 : X∗

n = 0}.
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An implication of the above is that if T0 is a proper random variable, the limiting
distribution will not depend on the initial state X∗

0 . We comment that our results
follow from stochastic monotonicity; a Markov structure is not needed.

To see that T0 is proper, note that

P (T0 > n) = P (X∗
t > 0 for all t in {0, 1, . . . , n})

= P (X∗
0 + C1 + · · ·+ Ct > 0 for all t in {0, 1, . . . , n})

≤ P (X∗
0 + C1 + · · ·+ Cn > 0).

However, by (3), C1 + · · · + Cn → −∞ as n → ∞ with probability one. Thus, T0 is
finite with probability one, limn→∞ P (T0 > n) = 0, and the limit distribution does
not depend on the initial condition X∗

0 .
Next, in order to facilitate parameter inference, we investigate stationarity prop-

erties of {Xn}∞n=0 when X0 has its limiting distribution. For this, we need a doubly
infinite version of the change process, which we denote by {Cn}∞n=−∞. For stationarity
to hold, [13] and (4) show that X0 must be formed from all past Cns via

X0 = sup(0, C0, C0 + C−1, . . . , C0 + C−1 + · · ·+ C−n, . . .). (5)

Since X0 is a function of the past and present Cts, namely C0, C−1, . . ., we
write the “causal” measurable function in (5) as X0 = H0(C0, C−1, . . .). Like-
wise, X1 = max(X0 + C1, 0) is a causal measurable function of C1, C0, . . .; viz.,
X1 = H1(C1, C0, . . .). Generalizing this gives Xk = Hk(Ck, Ck−1, . . .) for a measur-
able function Hk.

For a general k ≥ 1 and integer h > 0, we have

(X0, X1, . . . , Xk) = (H0(C0, C−1, . . .), H1(C1, C0, . . .), . . . ,Hk(Ck, Ck−1, . . .))
D
= (H0(Ch, Ch−1, . . .), H1(Ch+1, Ch, . . .),

. . . , Hk(Ck+h, Ck+h−1, . . .))

= (Xh, Xh+1, . . . , Xh+k),

where
D
= indicates equality in distribution, which follows by shifting the strictly sta-

tionary path of {Cn} used by h units.
This shows that when X0 is in its stationary state as generated by the infinite

history of the change process, {Xn}∞n=0 is a strictly stationary process. A caveat here:
one cannot take X0 to be independent of {Cn}0n=−∞ and obtain a strictly stationary
{Xn}∞n=0.

3. Markov Properties

This section studies the Markov structure of the Lindley random walk process {Xn}
with correlated changes. Clarifying, a process {Un}∞n=0 is called Markov of order p if

P (Un ≤ x | Un−1, . . . , Un−p, . . . , U0) = P (Un ≤ x | Un−1, . . . , Un−p)

for all real x, n ≥ 1, and U0, . . . , Un−1.
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Before continuing, we introduce a class of strictly stationary time series models for
{Cn}. The most widely used stationary time series model class is the autoregressive
moving-average (ARMA) models. ARMA models with autoregressive order p ≥ 0 and
moving-average order q ≥ 0 are the unique (in mean square) solutions to the difference
equation

Cn − µ = ϕ1(Cn−1 − µ) + . . .+ ϕp(Cn−p − µ) + ϵn + θ1ϵn−1 + . . .+ θqϵn−q. (6)

Here, {ϵn} is a sequence of IID random variables with zero mean and variance σ2 > 0,
ϕ1, . . . , ϕp are the p autoregressive coefficients, and θ1, . . . , θq are the q moving-average
coefficients. It is important that {ϵn} be IID — more than uncorrelated noise is needed
in our Markov structure arguments below. We also assume a causal ARMA model.
This stipulation requires all roots of the autoregressive polynomial 1−ϕ1z−· · ·−ϕpzp
to lie outside the complex unit circle. For causal models, Cn can be expressed in terms
of the current and past ϵns only, namely ϵn, ϵn−1, . . ..

For the ARMA(p, q) model in (6), E[Cn] ≡ µ for all n and {Cn} is strictly stationary.
For a stable model, we need µ < 0 as shown in the last section (this is henceforth
assumed). Computation of the autocovariances γ(h) := Cov(Cn, Cn+h) proceeds from
many classic algorithms. For more on this and other properties of ARMA series, see
[24].

Many practitioners nowadays focus on autoregressions (AR) only due to their parsi-
monious and flexible structure and forecasting ease; that is, θ1 = · · · = θq = 0. Indeed,
autoregressions are dense in all short memory stationary series. It is easy to see that
an AR(p) series is a Markov chain of order p when {ϵn} is IID; indeed, (6) explicitly
writes Xn as a function of the p past series values and an independent noise that does
not depend on past process values.

Perhaps the most commonly used time series model, and one studied below, is the
causal first order autoregression (AR(1)). This model obeys

Cn − µ = ϕ(Cn−1 − µ) + ϵn, (7)

where | ϕ |< 1 is needed for causality.
A more general class of strictly stationary change processes assumes the causal

linear structure

Cn = µ+

∞∑
k=0

ψkϵn−k,

where the deterministic weight sequence {ψk}∞k=0 satisfies
∑∞

k=0 | ψk |<∞. Reference
[24] shows that any causal ARMA sequence with IID innovations has this representa-
tion and discusses the related Wold decomposition for stationary time series.

Recursing (1) yields

Xn = max (Xn−L + Cn−L+1 + · · ·+ Cn;Cn−L+2 + · · ·+ Cn; . . . ;Cn; 0) , (8)

which shows how Xn depends on Xn−L for any L ≥ 1. Hence, in general, Xn and Xn+h

will be dependent for all lags h, even when {Cn} ism-dependent (say a moving-average
of orderm). Indeed, (8) implies that Xn and Xn−L will be dependent in general for any
L ≥ 1. Note however that this dependence does not necessarily imply the absence of
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a Markov structure. For an example of this, consider the causal AR(1) process above.
Recursing (7) gives

Cn − µ = ϕL(Cn−L − µ) + ϕL−1ϵn−L+1 + · · ·+ ϕϵn−1 + ϵn.

for any L ≥ 1. Thus, Cn and Cn−L are dependent; however, this process is known to
be first order Markov [24].

Our first result shows that {Xn} is not Markov of any order unless {Cn} has ad-
ditional structure. This corrects a mistaken claim in [12]. In deriving the likelihood
for a Lindley process, the authors have assumed that the process is first-order Markov
when the change process is AR(1). The proof is given in Appendix A.

Lemma 3.1. The general Lindley walk {Xn}∞n=0 is not Markov of any order.

Our next result, also proven in Appendix A, establishes the Markov structure of the
bivariate process {(Xn, Cn)} when {Cn} is a pth order Markov chain.

Proposition 3.2. The process {(Xn, Cn)} is a pth order Markov chain when {Cn} is
a pth order Markov chain (such as the above AR(p) series).

The proofs for the above two results also establish the following result.

Proposition 3.3. The p+1 dimensional process {(Xn, Cn, Cn−1, . . . , Cn+1−p)}∞n=p is
a first order Markov chain whenever {Cn} is a causal AR(p) series.

This property will be useful for deriving the likelihood of a Lindley process when
{Cn} is a pth order Gaussian autoregression.

4. Likelihood Structure

The likelihood of a Lindley walk with IID {Cn} was studied in [2], see [25] for additional
work. Our goal in this section is two-fold. This section clarifies the support set of the
distribution of X = (X0, . . . , XN )′ and develops the likelihood function in terms of the
distribution of the change process (C1, . . . , CN )′ and the initial value X0. In general,
Xn has a point mass at zero and a possible density over (0,∞) for each fixed n. The
complexity of the likelihood obtained motivates a particle filtering approach presented
in the next section.

We first study the support set of X. To avoid trite work with discrete cases, as-
sume that C = (C1, . . . , CN )′ has the joint probability density (PDF) fC(c), where
c = (c1, . . . , cN )′ ∈ RN . The initial starting level X0 is non-negative with cumulative
distribution FX0

(x); this distribution has a point mass at zero (FX0
(0) > 0) and a den-

sity on (0,∞). For a strictly stationary {Xn},X0 must be a function of the past changes
C0, C−1, . . ., as is quantified in (5). The random vector X has a distribution that is a
mixture of densities and mass functions on different domain regions. To quantify these
regions, consider a partition of RN+1

+ defined as follows: let I ⊂ I ≡ {0, 1, 2, . . . , N},
and define a set associated with I via

BI = {y ∈ RN+1
+ : yn > 0 ∀n ∈ I, and yn = 0 ∀n /∈ I}.

Here, I contains all indices with positive components. In particular, BI is the interior
of RN+1

+ and B∅ = {0}. Note that the BI , I ⊂ I, are disjoint and that ∪I⊂IBI = RN+1
+ ;
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thus, {BI ; I ⊂ I} partitions RN+1
+ .

The joint distribution constructed below is the likelihood of X as derived in Equa-
tion (3) of [26]. Now, consider an I ⊂ I that contains a non-empty sequence of indices
i1, . . . , ik satisfying 0 ≤ i1 < i2 < · · · < ik ≤ N . For x ∈ BI , the cumulative distribu-
tion function FX(x) = P [∩N

i=0Xi ≤ xi] is differentiable in the variables xi, i ∈ I, and
we write

LX(x) =
∂k

∂xi1 · · · ∂xik
FX(x) (9)

for this density.
For cases where zeroes arise, define LX(0) = FX(0) = P [X0 = 0, . . . , XN = 0]. For

each B ⊂ BI , the positive components in B can be obtained from the map M(B) =
{(xi1 , . . . , xik) : x ∈ B}. We view LX(x) as a function of the positive components in x
and write LX(x) = LX(xi1 , . . . , xik).

Now consider a probability measure µI , defined on RN+1
+ , such that for A ∈

B(RN+1
+ ),

µI(A) =

∫
M(A∩BI)

LX(x)λ(dx),

where λ is the Lebesgue measure on M(BI). If I = ∅, λ reduces to a discrete Dirac
measure. We observe that µI , I ⊂ I, are mutually singular. The distribution of X can
thus be characterized by

L(x) =
∑
I⊂I

1{x∈BI}LX(x);

this is our likelihood. Because the data X are fixed when optimizing over the param-
eters Θ in a likelihood, we also write L(Θ) or L(Θ | X) for our likelihood. Other
variants of notation are used in obvious manners.

We now turn to computing the likelihood of X from fX0,C(x, c), x ≥ 0, c ∈ RN

— the joint distribution of X0 and C. When x > 0, fX0,C(x, c) is a joint density
function, and when x = 0, fX0,C(0, c) = ∂NFX0,C(0, c)/∂c1 · · · ∂cN ). We are given
the observations X = (X0, X1, . . . , XN )′ ∈ BI . Recall that I = {i1, . . . , ik} such that
Xm > 0 for m ∈ I and Xn = 0 for n /∈ I. Write Ic ≡ I\I = {j1, . . . , jN−k}. The CDF
of X is

FX(x) = P (X0 ≤ x0, Xm ≤ xm,m ∈ I,Xn = 0, n ∈ Ic).

Without loss of generality, assume that x0 > 0. From (9), the likelihood is

L(Θ | X = x) = lim
h↓0

m∈I∪{0}

h−αP (Xm ∈ (xm − h/2, xm + h/2),m ∈ I ∪ {0},

Xn = 0, n ∈ Ic),

where α = |I ∪ {0}|, and h is assumed to be smaller than 2xm for all m so that each
interval (xm − h/2, xm + h/2) is nonempty. From (1), for m ∈ I, xm > 0, implying
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that Cm = Xm −Xm−1; for n ∈ Ic, xn = 0, implying that Cn ≤ −Xn−1. Hence,

L(Θ | X = x) =

lim
h↓0

m∈I∪{0}

h−αP

(
Xm ∈ (xm − h/2, xm + h/2), Cm = Xm −Xm−1,m ∈ I,

Xn = 0, Cn ≤ −Xn−1, n ∈ Ic, X0 ∈ (x0 − h/2, x0 + h/2)

)
=

lim
h↓0

m∈I∪{0}

h−αP

(
Xm ∈ (xm − h/2, xm + h/2), Cm = Xm −Xm−1,m ∈ I,

Cn ≤ −xn−1, n ∈ Ic, X0 ∈ (x0 − h/2, x0 + h/2)

)
.

Using the change of variables formula for Cm = Xm − Xm−1,m ∈ I, we have the
likelihood

L(Θ | X) =

∫ −Xj1−1

−∞
· · ·
∫ −XjN−k−1

−∞
fX0,C(X0, Xm −Xm−1,m ∈ I, c)dc, (10)

where the integral is over the set {c ∈ RN−k : Cn ≤ −Xn−1, n ∈ Ic}. If X0 is
independent of C, the integrand in (10) becomes fX0

(X0)fC(X0, Xm − Xm−1,m ∈
I, c). The formula in (10) involves high dimensional multiple integrals when X has
many zeros, even after employing the Markov relations in Section 3. If one assumes
a Gaussian {Cn}, the high dimensional integrals induce considerable computational
difficulty [27].

Appendix B derives the likelihood when {Cn} is a pth order causal autoregression.
The expression there, as well as the form in (10), are not computationally convenient
because of the high dimensional integrals involved. Because of this, our next section
moves to a technique that efficiently simulates this likelihood to a degree where sta-
tistical inferences can be accurately made.

5. Particle Filtering Likelihood Evaluation

This section introduces particle filtering methods to approximate and optimize the
storage model’s likelihood. Since he exact likelihood in (8) is problematic to evaluate,
we construct an approximation to it, viewing the problem as a censored time series
issue.

5.1. Particle Filtering Methods

As noted in the last section, Cn can be recovered exactly as Xn−Xn−1 when Xn > 0.
When Xn = 0, we know that Cn ≤ −Xn−1, but we do not know Cn exactly. For such
times n, define a censoring indicator δn = 1; set δn = 0 if Cn can be recovered exactly
at time n. For convenience, our initial condition sets C1 = X1 and we work with the
data X1, . . . , XN .

For notation, let π1, . . . , πr denote the ordered times at which Cn is censored and
d1, . . . , ds be the ordered times at which Cn can be exactly recovered. Obviously,
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r + s = N . Define the censored series as

C∗
n =

{
Xn −Xn−1, if Cn is recoverable
−Xn−1, if Cn is not recoverable

.

The likelihood of (C1, . . . , CN )′ can be written in terms of the uncensored Cns as

L(Θ) =

∫
{cπi

∈(−∞,c∗πi
),i∈{1,...,r}}

NΘ (c1:N ) dcπ1
. . . dcπr

, (11)

where we have taken {Cn} to be a Gaussian process; this agrees with (10). Here, a
joint Gaussian probability density for (C1, . . . , CN )′, denoted by NΘ(c1:N ), is assumed.
This Gaussian density arises as a consequence of the usual assumption of a Gaussian
innovations process in time series. In the method developed below for evaluating (11),
the Gaussian setup is crucial, as well as computationally convenient. Other marginal
distributions for {Cn} are possible. For example, if the quantities being modeled are
integers, it would be necessary to develop some form of count time series model like-
lihood, and the particle filtering methods would need to be altered accordingly.

Literature to evaluate (11) includes [12]. Below, a novel particle filtering method
that exploits the autoregressive structure of the series will be devised. We begin with
importance sampling, observing that

L(Θ) =

∫
{cπi

∈(−∞,c∗πi
),i∈{1,...,r}}

NΘ (c1:N ) dcπ1
. . . dcπr

=

∫
{cπi

∈(−∞,c∗πi
),i∈{1,...,r}}

NΘ (c1:N )

q(cπ1
, . . . , cπr

)
q(cπ1

, . . . , cπr
)dcπ1

. . . dcπr
,

where q(·) is any probability density function that we call a proposal density function
and c1:N = (c1, . . . , cN )′. We want q(·) to be easy to sample from and to be supported
on the set {cπi

∈ (−∞, c∗πi
], i ∈ {1, . . . , r}}.

Assume that M independent samples are drawn from q(·). Then a law of large
numbers approximation of the likelihood in (11) is

L(Θ) = Eq[W ] ≈ 1

M

M∑
m=1

NΘ

(
c
(m)
1:N

)
q(c

(m)
π1 , . . . , c

(m)
πr )

,

where W = NΘ (C1:N ) /q(Cπ1:πr
) is viewed as a “weight”. The subscript of q on E

implies that the expectation is taken relative to the distribution q. In our notation,
superscripts of (m) refer to the mth generated sample (particle) of M total.

A “nice” q(·) is sought to facilitate our sampling procedure. For this, we consider
an AR(1) scheme to illustrate the ideas; this is easily extendable to AR(p) settings. In
the AR(1) case, Θ contains the three parameters µ, ϕ, and σ2. The proposal density
we use is the conditional probability density of the uncensored data Cπ1

, . . . , Cπr
given

the censored values C∗
π1
, . . . , C∗

πr
:

q(cπ1
, . . . , cπr

) = p(cπ1
, . . . , cπr

| c∗π1
, . . . , c∗πr

),

where p(· | ·) is used as notation for a generic conditional probability density function.
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Assuming π1 ̸= 1, the first order Markov property for AR(1) series provides

p(cπ1
, . . . , cπr

| c∗π1
, . . . , c∗πr

) =

r∏
i=1

p(cπi
| cπi−1, c

∗
πi
). (12)

To see (12), note that cπi−1 and the parameters in Θ determine the normal distribu-
tion’s mean and standard deviation of cπi

, and c∗πi
indicates the upper bound of the

truncation. Hence, p(cπi
| cπi−1, c

∗
πi
) is simply the truncated normal density with sup-

port on (−∞, c∗πi
), having a mean and variance that are the one-step-ahead prediction

of Cπi
from Cπi−1. To further see this, note that

p(cπi
| cπi−1, c

∗
πi
) =

φ (cπi
| m̂πi

, r̂πi
)

Φ
(
c∗πi

| m̂πi
, r̂πi

)
− Φ(−∞)

=
φ (cπi

| m̂πi
, r̂πi

)

Φ
(
c∗πi

| m̂πi
, r̂πi

) .
where m̂πi

= ϕCπi−1 and r̂πi
= σ2 are the one-step-ahead predictions and variances

of Cπi
from Cπi−1

. Here, we have used φ and Φ as notation for the standard normal
density and cumulative distribution functions.

A complication here is that Cπi−1
may or may not be censored. If Cπi−1

is not
censored, we use the observation Cπi−1

; otherwise, we use the generated value of Cπi−1
,

which is always available from the sampling generation procedure adopted.
Hence, the proposal distribution in (12) is relatively easy to sample from, with

weight

W (m) =
NΘ

(
c
(m)
1:N

)
q
(
c
(m)
π1:πr

) =

∏N
j=1 p

(
c
(m)
j | c(m)

j−1

)
∏r

i=1 p
(
c
(m)
πi | c(m)

πi−1, cπ∗
i

)
=

∏s
j=1 p(cdj

| cdj−1)
∏r

i=1 p
(
c
(m)
πi | c(m)

πi−1

)
∏r

i=1 p
(
c
(m)
πi | c(m)

πi−1, cπ∗
i

) .

Equation (12) and p
(
c
(m)
πi | c(m)

πi−1

)
= φ

(
c
(m)
πi | m̂(m)

πi , r̂
(m)
πi

)
give

p
(
c
(m)
πi | c(m)

πi−1

)
p
(
c
(m)
πi | c(m)

πi−1, cπ∗
i

) = Φ
(
c∗πi

| m̂(m)
πi

, r̂(m)
πi

)
.

Therefore, our form for the weight is

W (m) =

s∏
j=1

φ
(
cdj

| m̂(m)
dj

, r̂
(m)
dj

)
×

r∏
i=1

Φ
(
c∗πi

| m̂(m)
πi

, r̂(m)
πi

)
.

Summarizing, our algorithm for the AR(1) case is as follows:

1. if δ1 = 1, C1 is uncensored and W1 = φ(C1 | −µ, σ2/(1 − ϕ2)); if δi = 0, C1

is censored and W1 = Φ(C1 | −µ, σ2/(1 − ϕ2)), and C1 is sampled from the
truncated normal density N (m̂πi

, r̂πi
;−∞, 0).
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After step 1, repeat steps 2 and 3 until i = N :

2. if δi = 1, Xi is uncensored and update via

Wi =Wi−1 × φ(ci | m̂πi
, r̂πi

);

if δi = 0, Xi is censored and update via

Wi =Wi−1 × Φ(c∗i | m̂πi
, r̂πi

),

3. if δi = 1, do nothing; if δi = 1, sample Ci from the truncated normal distribution

N (m̂πi
, r̂πi

;−∞, c∗i )

4. Record WN .

The above process is repeated M times, where M is large enough that law of large
number approximations are good. Generally, the larger M is, the better the approxi-
mation will be. The final approximated likelihood is

L(Θ) ≈ 1

M

M∑
m=1

W
(m)
N .

Before closing, we comment on a naive way to simulate the likelihood with a Gaus-
sian {Cn}. Another way to evaluate (11) decomposes the likelihood as

L(Θ) =

∫
{cπi

∈(−∞,c∗πi
)}
NΘ

(
cπ1
, · · · , cπp

| cd1
, · · · , cdp

)
×NΘ

(
cd1
, · · · , cdp

)
dcπ1

· · · dcπp

= NΘ

(
cd1
, · · · , cdp

) ∫
{cπi

∈(−∞,c∗πi
)}
NΘ

(
cπ1
, · · · , cπp

|

cd1
, · · · , cdp

)
dcπ1

· · · dcπp

and uses the explicit form of the conditional multivariate normal density in [28] to
sample the censored values conditional on the uncensored values. This is more com-
putationally expensive than the proposed particle filtering method because drawing
from the conditional normal distribution requires inverting a covariance matrix of di-
mension equal to the number of censored values. When µ is highly negative and N is
large, many data points will be censored and this dimension may be large.

5.2. A Simulation Study

This subsection presents a simulation study that evaluates the performance of our
particle filtering estimation methods in the last subsection. The R code and seeds
used to generate the data used in our analysis are available from the corresponding
author upon request.

We first consider the case of a Gaussian AR(1) {Cn}Nn=1. The parameters in this
setup are µ, ϕ, and σ2. The mean µ is taken as negative to ensure that {Xn} is stable.
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The more negative µ is, the more frequently Xn will be zero and censoring occurs. The
AR(1) correlation parameter ϕ satisfies | ϕ |< 1, which is needed for a causal {Cn}.
We will examine ϕ ∈ {−0.5,−0.25, 0, 0.25, 0.5, 0.75}, although negative ϕ do not arise
in practice as much as positive ϕ. In all simulations, σ2 is taken as unity.

Each simulated series uses M = 10, 000 independent particles. The series lengths
N = 100, 250, and 500 were studied. Usually, L(θ) obtained via particle filtering is
“noisy” due to sampling. This “noisy” likelihood leads to irregular numerical second or-
der derivatives, which complicate getting standard errors of the estimators. A popular
fix is called common random number (CRNs). CRN techniques smooth the estimated
likelihood by generating a set of random quantities in the particle filtering routines
through transformation, keeping them constant across the computations for different
sets of parameters. CRN techniques were used to the ensure that the likelihood is rel-
atively smooth with respect to its parameters. This is an essential step with particle
filtering methods — see [29] and [30] for discussion and more on CRNs. Finally, the
popular quasi-Newton method L-BFGS-B is implemented to optimize the likelihoods.
The true model parameters were used as initial guesses in our optimizations. It took,
on average, 15s, 45s, and 90s in the coding language R on a Macbook Pro computer
to complete an analysis for one simulated series of length N = 100, 250, and 500,
respectively.

Figure 1 and 2 show boxplots of parameter estimators aggregated from 200 inde-
pendent series. The sample means of the particle filtering estimators are all close to
their true values, with some minor bias present in some cases. This bias decays with
increasing sample size n. We remind the reader that likelihood estimation of AR(1)
parameters in uncensored settings is also slightly biased (see [31] for a bias quantifi-
cation). The estimators are compared in the figure with boxplots of a naive estimator
that simply fits an AR(1) model to {Xn}Nn=1 without accounting for the hard bound-
ary at zero. These estimators, shaded in light blue in the figure, are uniformly worse,
especially when µ is far below zero and more censoring occurs.

For standard errors of the estimators, Table 1 reports two values: 1) the sample
standard deviations of the parameter estimators over the 200 runs (denominator of
199), and 2) the average (over the 200 runs) of standard errors obtained by inverting
the Hessian matrix at the maximum likelihood estimate for each run (denominator
of 200). These two standard errors are close to one another, providing comfortable
agreement. We do not consider standard errors for the poorer naive estimators.

Overall, the performance of the particle filtering estimation for AR(1) series is stel-
lar. One can even get an accurate standard error from one realization of the series
by inverting the Hessian matrix at the likelihood estimators. In some particle filter-
ing applications, “particle degeneration” occurs for larger N and results can degrade
for these sample sizes. Methods to correct for particle degeneration are discussed in
[32–34]; these do not appear needed here.

Some AR(2) cases were also examined. Figures 3 and 4 report results for some
selected values of µ, ϕ1, and ϕ2 with σ2 = 1. Performance is analogous to the AR(1)
case, with the naive estimator again performing worse. Table 2 show standard errors
for the AR(2) case in an analogous format to those in Table 1. The results are again
impressive.

Overall, likelihood inference, the gold standard for statistical estimation, can be
conducted for storage models with AR errors.
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Figure 1. Boxplots of parameter estimators for the Lindley walk with an AR(1) {Cn} with μ = −0.5 (Model

1). The dashed lines demarcate true parameter values. All particle filtering estimators appear roughly unbiased,
with any bias decaying with increasing sample size. The naive estimators, shaded in light blue, are uniformly

poorer.

6. Discussion

This paper investigated Lindley random walks (storage models) in the case where the
change process driving the walk is strictly stationary. This essentially extends Lindley
process inference to time series settings.

First, the paper established the asymptotic mathematical properties of Lindley pro-
cesses with correlated changes, providing a streamlined analysis. We then investigated
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Figure 2. Boxplots of parameter estimators for the Lindley walk with an AR(1) {Cn} with μ = −0.25 (Model

2). The dashed lines demarcate true parameter values. All particle filtering estimators appear roughly unbiased,
with any bias decaying with increasing sample size. The naive estimators, shaded in light blue, are uniformly

poorer.

the Markov (or lack thereof) structure of the Lindley process. The paper then turned
to statistical estimation issues, deriving the model’s likelihood function in the case
of a Gaussian AR(p) change process. Because of the complexity of the resulting ex-
pression, a particle filtering method of likelihood approximation was investigated that
partitioned the series into segments where the change process was either recoverable
or censored. A simulation study showed that the estimation procedure works well;
accurate standard errors for the parameters were even achieved.
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Figure 3. Boxplots of parameter estimators for the Lindley walk with an AR(2) {Cn} with μ = −0.5 (Model
3). The dashed lines demarcate true parameter values. All particle filtering estimators appear roughly unbiased,

with any bias decaying with increasing sample size. The naive estimators, shaded in light blue, are uniformly

poorer.

• • • •

• • • •

Figure 4. Boxplots of parameter estimators for the Lindley walk with an AR(2) {Cn} with μ = −0.25 (Model
4). The dashed lines demarcate true parameter values. All particle filtering estimators appear roughly unbiased,

with any bias decaying with increasing sample size. The naive estimators, shaded in light blue, are uniformly

poorer.

Several directions for future research are apparent. Queueing applications involving
(2) would need to move away from a Gaussian {Cn}. Here, one wants the {In} and {Sn}
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processes to be stationary but with exponentially distributed marginal distributions.
A copula way to construct correlated exponential service times {Sn} takes a sta-

tionary Gaussian process {Zn}, standardized so that E[Zn] ≡ 0 and Var(Zn) ≡ 1, and
sets

Sn = F−1(Φ(Zn)),

where F−1(x) = − ln(x)/η is the inverse of the exponential cumulative distribution
function with mean η > 0 (non-exponential distributions can also be made). Another
extension involves inventory counts. Here, the process would be count valued, with {In}
and {Sn} having a count marginal distribution such as Poisson. Different likelihoods
would need to be developed for these non-Gaussian cases.

A detailed application of the methods is being constructed in [35]. This application
involves daily frozen soil and lake ice depths and requires periodic versions of the
Lindley walk. Here, {Cn} is stationary in a periodic sense with a negative overall
mean (this said, some day-to-day changes in the height of winter might see mean
increases). This structure also arises in [4], where trend components are incorporated
in the modeling procedure, but estimation methods are somewhat ad-hoc. In periodic
settings, stability of the walk needs to be investigated.
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Appendix A. Markov Property Proofs

Lemma .1. The general Lindley walk {Xn}∞n=0 is not Markov of any order.

Proof. To construct a counterexample, let {Cn} be a general stationary Gaussian
process. We consider the stable case where µC < 0 and let x0, . . . , xt−p−1 be arbitrary
strictly positive feasible values for the process. Consider the conditional probability

P [Xt ≤ y | Xt−1 = 0, . . . , Xt−p = 0;Xt−p−1 = xt−p−1, . . . , X0 = x0] (1)

(this takes xt−p = · · · = xt−1 = 0).
We now write this probability strictly in terms of the {Cn} process. By the Lindley

recursion and the fact that Xt−1 = 0, {Xt ≤ y} = {Ct ≤ y} for all y ≥ 0. Also, the
event [Xt−1 = 0, . . . , Xt−p = 0;Xt−p−1 = xt−p−1, . . . , X0 = x0] can be written in terms
of the Cts via[

∩t−p−1
i=1 Ci = xi − xi−1 ∩ Ct−p ≤ −xt−p−1 ∩p−1

i=1 Ct−p+i ≤ 0
]

(2)

(more is said about this in the future sections). It follows that the probability in (1)
equals

P
[
Ct ≤ y | ∩t−p−1

i=1 Ci = xi − xi−1 ∩ Ct−p ≤ −xt−p−1 ∩p−1
i=1 Ct−p+i ≤ 0

]
. (3)

For a general Gaussian stationary process, the conditional probability in (3) depends
on xt−p−1 (and the previous xts too). This follows directly from the property that con-
ditional distributions of multivariate normal quantities are again multivariate normal
(see Proposition 1.6.6 in [24] for the explicit form). Therefore, {Xt} cannot be pth
order Markov.

Even in cases where {Ct} is first order Markov — say an AR(1) series — the
conditional probability in (3) can be shown to depend on xt−p−1 when ϕ ̸= 0 due
to the fact that we are conditioning on some non-singleton sets in (2) (this takes
additional work to see, which we do not provide here).
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Proposition .2. The process {(Xn, Cn)} is a pth order Markov chain when {Cn} is
a pth order Markov chain (such as the above AR(p) series).

Proof. For clarity, we first provide the argument for the case where p = 1. For this
p, the Lindley recursion gives

Xn+1 = max(Xn + Cn+1, 0) := h(Xn, Cn+1)

for the measurable function h defined by h(x, y) = max(x + y, 0). From this and the
first order Markov property of {Cn}, the joint dynamics of (Xn+1, Cn+1), given the
entire history C1, . . . , Cn and X0, . . . , Xn, are described solely by Xn and Cn — we do
not need C1, . . . , Cn−1 or X0, X1, . . . , Xn−1. The conclusion now follows.

When p > 1, merely extend the above logic by applying the Lindley recursion p
times to get

Xn+1 = h(Xn−p+1, Cn−p+2, . . . , Cn, Cn+1)

for a measurable function h : Rp+1 → R (the form of h is not important, but one may
wish to compare to (8) and argue as above). While here, we note that given that past
p Xns and Cns, Xn+1 can be written in a form that does not involve Xn−p+2, . . . , Xn,
but rather only Xn−p+1 and Cn−p+2, . . . , Cn+1.

Appendix B. The Likelihood for AR(p) Changes

We now derive the likelihood when {Cn} is an autoregressive process of order p
satisfying the AR(p) recursion in (6) — the process need not be Gaussian. The Markov
structure identified in Section 3 effectively reduces the integral dimension in (10). Our
goal is to explicitly derive the likelihood in terms of its free parameters, which are
Θ = (µ, σ2, ϕ1, . . . , ϕp)

′.
Recall that if Xn > 0, the value of Cn can be recovered; namely, Cn = Xn −Xn−1;

when Xn = 0, we only know that Cn is less than or equal to −Xn−1, but we do
not know its exact value. Previous authors [12,36,37] have viewed this problem as a
censored time series issue. The censoring here is not simple; indeed, when Xn = 0, the
values of Cn are censored depending on −Xn−1, which is not constant in time and also
depends on the past history of the process.

Our derivation partitions the series into segments where Cn is “recoverable” or not.
We take Xn as observed for all n ∈ {0, . . . , N}. While the derivation is somewhat
tedious, this is expected given the difficulties encountered in likelihood evaluation in
[12,36] and [37]. Define the first ariser time as

κ1 := min
n>p

{n : Xn > 0, . . . , Xn−p+1 > 0},

which is the first time that p consecutive changes are recoverable. The first plunger
time is set to

τ1 := min
n>κ1

{n : Xn = 0}.

For i ≥ 1, define successive ariser and plunger times as

κi+1 := min{n > τi : Xn > 0, . . . , Xn−p+1 > 0}, τi+1 := min{n > κi+1 : Xn = 0}.
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Cases where κi or τi do not occur in {1, 2, . . . , N} are addressed below.
Let K(N) := max{i : κi ≤ N} denote the observed number of plunger times

in {1, 2, . . . , N}. The ith complete regime of the process contains all times in Ri :=
{κi + 1, . . . , τi, . . . , κi+1} for i = 1, . . . ,K(N)− 1. For boundary conditions, set R0 =
{1, . . . , κ1} and RK(N) = {κK(N) + 1, . . . , N} if k(N) < N ; otherwise, set RK(N) = ∅.
Note that R0 does not contain X0. It is not possible to recover C0 since X−1 is
unobserved. Likewise, if κi does not exist (occur), set R0 = {1, . . . , N}. This blocks
the observations into distinct regimes via its ariser times.

For notation, let A = {n1, n2, . . . , nk} for n1 < n2 < · · · < nk denote k ordered index
times in {1, . . . , N}. Let XA = (Xn1

, . . . , Xnk
)′ denote a k × 1 vector of the ordered

process values occurring over ni ∈ A. The notation XA−1 = (Xn1−1, . . . , Xnk−1)
′ is

used. For convenience, let Xn = (X0, X1, . . . , Xn)
′. We use the same notation for the

{Cn} process: CA = (Cn1
, . . . , Cnk

)′ for A = {n1, n2, . . . , nk} and Cn = (C1, . . . , Cn)
′.

For realized values, lowercase notation is used, e.g., xn = (x0, x1, . . . , xn)
′ and cn =

(c1, . . . , cn)
′. For each n ∈ N, let n(p) = {n−p+1, . . . , n} denote the p consecutive time

points ending at time n. For two random variables/vectors Y and Z, the conditional
“density” of Y given Z = z is denoted by fY |Z=z(· | Z = z).

At time n = κi, Cκi
, . . . , Cκi−p+1 are recoverable with

Cκi(p) = Xκi(p) −Xκi(p)−1 = (Xκi−p+1 −Xκi−p, . . . , Xκi
−Xκi−1)

′,

where κi(p) = {ki− p+1, . . . , κi}. Define the ith set of good times (recoverable times)
Gi, which is a subset of Ri, as

Gi = {n : κi < n < τi} = {ki + 1, . . . , τi − 1},

where for each n ∈ Gi, Xn, . . . , Xn−p > 0, implying that Cn, . . . , Cn−p are all recover-
able. We use the convention Gc

i = {n : n ∈ Ri ∩ n /∈ Gi} = {τi, . . . , κi+1} for ease of
exposition. That is, the complement of the good times of the ith regime only contains
times in the ith regime.

Let LGi|κi
(· | Xκi

) denote the conditional distribution of XGi
given the past Xκi

.
When Gi ̸= ∅, the change of variables formula and the pth order Markov property of
{Cn} yield

LGi|κi
(XGi

| Xκi
) (4)

= fXGi
|Xκi

(XGi
| Xκi

)

= fXGi
|Cκi(p)

,Xκi−p
(XGi

| Xκi(p) −Xκi(p)−1,Xκi−p)

= fCGi
|Cκi(p)

,Xκi−p
(XGi

−XGi−1 | Xκi(p) −Xκi(p)−1,Xκi−p)

= fCGi
|Cκi(p)

(XGi
−XGi−1 | Xκi(p) −Xκi(p)−1), (5)

where fCGi
|Cκi(p)

(· | ·) is the conditional “density” of the changes during the good
times Gi in Ri conditional on the p consecutive changes Cκi(p) ending at the ariser

time κi prior to the start of Ri. The p
th order Markov property of {Cn} yields

fCGi
|Cκi(p)

(XGi
−XGi−1 | Xκi(p) −Xκi(p)−1) =∏

n∈Gi

fCn|C(n−1)(p)
(Xn −Xn−1 | X(n−1)(p) −X(n−1)(p)−1),
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where the notation has (n − 1)(p) := {n − p, . . . , n − 1}. If Gi = ∅, the convention
fXGi

|Xκi
(·) = 1 is assumed.

We will further decompose the times in Gc
i into two sets. The first set collects times

where the observations are positive, the other set containing the times where the
observations are zero. More precisely, define ηi ⊂ Gc

i as ηi = {n ∈ Gc
i : xn > 0}. Then

ηi contains the times in Ri where the Cn are recoverable, but the previous p changes
are not all recoverable. Likewise, define ηci = {n ∈ Gc

i : Xn = 0} as those times in Ri

where Cn is not recoverable and not all of the previous p changes are recoverable. Our
definitions partition each Ri into Ri = Gi ∪ ηi ∪ ηci .

To study the conditional distribution of XGc
i
, we need to identify the zeros in the

observations (Xτi , . . . , Xκi+1
)′. Let zi1 < . . . < ziLi

denote the indices where those

zeros occur. Clearly, zi1 = τi and ziLi
= κi+1 − p. Then ηi = Gc

i/{zi1, . . . , ziLi
} and

ηci = {zi1, . . . , ziLi
}. Let LGc

i |(τi−1)(· | Xτi−1) denote the distribution of XGc
i
given

Xτi−1. Similar to the analysis that produced (10), and using the Markov property of
{Cn},

LGc
i |(τi−1)(XGc

i
| Xτi−1)

=

∫ −Xzi
1
−1

−∞
· · ·
∫ −Xzi

Li
−1

−∞
fCGc

i
|C(τi−1)(p)

(Xηi
−Xηi−1, c |

X(τi−1)(p) −X(τi−1)(p)−1)dc, (6)

where the integration domain is {c ∈ RLi : Cn ≤ −Xn−1, n ∈ ηci } and the notation
(τi − 1)(p) = {τi − p, . . . , τi − 1} is used. The conditional density in (6) can also be
written as a product of the conditional densities fCn|C(n−1)(p)

(·) for n ∈ Gc
i (we omit

details). If Gc
i = ∅, then set LGc

i |(τi−1)(XGc
i
| Xτi−1) to unity (this can only happen in

R0 or RK(N)).

It remains to consider the 0th “startup regime”. The distribution of X0, which is
the stationary distribution of the process, is absolutely continuous away from zero
and has a point mass at zero. While the distribution of X0 does not have an ex-
plicit form, its moment properties are studied in [38] and [39]. Until the first time
n such that p consecutive Cns are observed (which happens at the time n = κ1),
the joint distribution of (X0, X1, X2, . . . , Xκ1

)′ depends on the joint distribution of
(X0, C1, . . . , Cκ1

)′ according to (10). More precisely, let η0 = {n ∈ R0 : Xn > 0} and
ηc0 := {n ∈ R0 : Xn = 0} = {z1, . . . , zL}. Then from (10), the likelihood of XR0

is

LR0
(xR0

) =

∫ −Xz1−1

−∞
· · ·
∫ −XzL−1

−∞
fX0,Cκ1

(X0, Xm −Xm−1,m ∈ η0, c)dc, (7)

where Cκ1
= (C1, . . . , Cκ1

)′ and the integration domain is {c ∈ RL : cn ≤ −Xn−1, n ∈
ηc0}.

As a summary of the above, combining (5), (6), and (7) produces our AR(p) likeli-
hood as

L(Θ | X) = LR0
(XR0

)×

(
K(N)∏
i=1

LGi|κi
(XGi

| Xκi
)× LGc

i |τi−1(XGc
i
| Xτi−1)

)
. (8)
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Model 1 (µ = −0.5) Model 2 (µ = −0.25)

ϕ n ϕ̂ µ̂ σ̂2 ϕ̂ µ̂ σ̂2

-0.5

mean -0.4799 -0.5153 0.9894 -0.4936 -0.2644 0.9886
100 SD 0.0999 0.1223 0.1154 0.0944 0.0782 0.0912

Ê(I′(θ)2) 0.1028 0.1111 0.1166 0.0935 0.0812 0.0912
mean -0.4852 -0.5043 1.0041 -0.5000 -0.2563 0.9977

250 SD 0.0606 0.0774 0.0750 0.0578 0.0526 0.0564

Ê(I′(θ)2) 0.0629 0.0685 0.0726 0.0585 0.0505 0.0571
mean -0.4786 -0.4982 1.0120 -0.4996 -0.2523 1.0023

500 SD 0.0411 0.0498 0.0534 0.0419 0.0372 0.0387

Ê(I′(θ)2) 0.0433 0.0482 0.0512 0.0410 0.0355 0.0402

-0.25

mean -0.2672 -0.5191 0.9868 -0.2474 -0.2480 0.9926

100 SD 0.1243 0.1319 0.1237 0.1080 0.0915 0.0886

Ê(I′(θ)2) 0.1203 0.1207 0.1172 0.1071 0.0925 0.0897
mean -0.2536 -0.4934 0.9801 -0.2455 -0.2621 0.9964

250 SD 0.0708 0.0721 0.0666 0.0702 0.0529 0.0584

Ê(I′(θ)2) 0.0755 0.0728 0.0715 0.0681 0.0585 0.0571
mean -0.2559 -0.5078 1.0025 -0.2487 -0.2502 0.9981

500 SD 0.0489 0.0523 0.0532 0.0468 0.0372 0.0424

Ê(I′(θ)2) 0.0530 0.0525 0.0517 0.0478 0.0408 0.0399

0

mean 0.0022 -0.5182 0.9905 -0.0041 -0.2493 0.9706

100 SD 0.1374 0.1456 0.1108 0.1072 0.1140 0.0868

Ê(I′(θ)2) 0.1282 0.1374 0.1126 0.1133 0.1092 0.0870
mean -0.0140 -0.5043 0.9944 -0.0004 -0.2543 0.9959

250 SD 0.0890 0.0920 0.0762 0.0737 0.0721 0.0566

Ê(I′(θ)2) 0.0809 0.0833 0.0703 0.0713 0.0698 0.0557
mean -0.0012 -0.5090 1.0019 0.0000 -0.2502 1.0017

500 SD 0.0532 0.0520 0.0491 0.0494 0.0543 0.0384

Ê(I′(θ)2) 0.0574 0.0594 0.0499 0.0503 0.0493 0.0393

0.25

mean 0.2405 -0.4988 0.9892 0.2220 -0.2609 0.9860
100 SD 0.1194 0.1639 0.1026 0.1113 0.1426 0.0927

Ê(I′(θ)2) 0.1239 0.1626 0.1047 0.1113 0.1405 0.0869
mean 0.2416 -0.5071 0.9921 0.2483 -0.2450 0.9875

250 SD 0.0774 0.1032 0.0712 0.0637 0.0881 0.0520

Ê(I′(θ)2) 0.0787 0.1011 0.0660 0.0691 0.0891 0.0534

mean 0.2454 -0.4962 0.9944 0.2464 -0.2566 1.0010
500 SD 0.0512 0.0717 0.0461 0.0512 0.0672 0.0377

Ê(I′(θ)2) 0.0549 0.0707 0.0462 0.0489 0.0636 0.0383

0.5

mean 0.4702 -0.5056 0.9867 0.4689 -0.2466 0.9793

100 SD 0.1064 0.2134 0.1019 0.1020 0.1932 0.0937

Ê(I′(θ)2) 0.1099 0.2194 0.0980 0.1001 0.2010 0.0837

mean 0.4941 -0.5148 0.9955 0.4947 -0.2683 0.9942
250 SD 0.0639 0.1289 0.0606 0.0631 0.1250 0.0537

Ê(I′(θ)2) 0.0679 0.1403 0.0614 0.0616 0.1317 0.0527
mean 0.4863 -0.4908 1.0009 0.4948 -0.2444 0.9968

500 SD 0.0468 0.0977 0.0443 0.0440 0.0906 0.0380

Ê(I′(θ)2) 0.0461 0.0962 0.0428 0.0429 0.0920 0.0366

0.75

mean 0.7119 -0.5585 0.9867 0.7053 -0.2611 0.9992

100 SD 0.0885 0.3957 0.0992 0.0897 0.4161 0.0940

Ê(I′(θ)2) 0.0840 0.3987 0.0935 0.0786 0.3804 0.0857
mean 0.7319 -0.5093 0.9966 0.7292 -0.2988 0.9981

250 SD 0.0535 0.2795 0.0592 0.0462 0.2706 0.0540

Ê(I′(θ)2) 0.0497 0.2564 0.0567 0.0474 0.2445 0.0519
mean 0.7332 -0.4629 0.9951 0.7384 -0.2398 0.9997

500 SD 0.0371 0.1673 0.0404 0.0337 0.1548 0.0373

Ê(I′(θ)2) 0.0333 0.1728 0.0386 0.0319 0.1751 0.0354

Table 1. Standard errors for the Lindley walk with an AR(1) {Cn}. The results re-
port the sample standard deviation (SD) of the particle filtering parameter estimators
from the 200 independently generated series, and the average of the 200 standard er-
rors obtained by inverting the Hessian matrix (Ê(I ′(θ)2)) at the maximum likelihood
estimate over these same runs. Both standard errors roughly agree.
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Model 3 (µ = −0.5) Model 4 (µ = −0.25)

ϕ1 n ϕ̂1 ϕ̂2 µ̂ σ̂2 ϕ̂1 ϕ̂2 µ̂ σ̂2

0.1

mean 0.0887 0.1436 -0.5035 0.9854 0.0704 0.1551 -0.2722 0.9827

100 SD 0.1436 0.1247 0.1704 0.1084 0.1242 0.1168 0.1647 0.0900

Ê(I′(θ)2) 0.1252 0.1295 0.1686 0.1077 0.1133 0.1150 0.1489 0.0895

mean 0.0807 0.1825 -0.4988 0.9848 0.0955 0.1756 -0.2450 0.9876

250 SD 0.0767 0.0727 0.1025 0.0698 0.0784 0.0712 0.0880 0.0528

Ê(I′(θ)2) 0.0769 0.0793 0.1037 0.0664 0.0691 0.0701 0.0932 0.0540
mean 0.0915 0.1900 -0.4886 0.9913 0.0992 0.1930 -0.2520 0.9953

500 SD 0.0563 0.0553 0.0710 0.0454 0.0498 0.0489 0.0696 0.0404

Ê(I′(θ)2) 0.0534 0.0548 0.0732 0.0464 0.0485 0.0492 0.0672 0.0382

0.3

mean 0.2867 0.1428 -0.5187 0.9873 0.2871 0.1613 -0.2611 0.9789
100 SD 0.1348 0.1334 0.2383 0.1115 0.1196 0.1107 0.1950 0.0882

Ê(I′(θ)2) 0.1281 0.1272 0.2249 0.1036 0.1138 0.1144 0.2017 0.0863
mean 0.2912 0.1806 -0.4832 0.9804 0.2917 0.1968 -0.2453 0.9899

250 SD 0.0829 0.0850 0.1350 0.0651 0.0700 0.0771 0.1262 0.0521

Ê(I′(θ)2) 0.0763 0.0773 0.1345 0.0613 0.0690 0.0696 0.1307 0.0527
mean 0.2970 0.1897 -0.5006 0.9964 0.2997 0.1900 -0.2562 0.9967

500 SD 0.0536 0.0499 0.1064 0.0442 0.0469 0.0509 0.0933 0.0349

Ê(I′(θ)2) 0.0529 0.0534 0.0968 0.0439 0.0485 0.0488 0.0917 0.0373

Table 2. Standard errors for the Lindley walk with an AR(2) {Cn}. The results re-
port the sample standard deviation (SD) of the particle filtering parameter estimators
from the 200 independently generated series, and the average of the 200 standard er-
rors obtained by inverting the Hessian matrix (Ê(I ′(θ)2)) at the maximum likelihood
estimate over these same runs. Both standard errors roughly agree. Both Model 3 and
Model 4 fix ϕ2 = 0.2.
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