
Good Practices and Common Pitfalls in Climate Time Series Changepoint

Techniques: A Review

ROBERT B. LUND,a CLAUDIE BEAULIEU,b REBECCA KILLICK,c QIQI LU,d AND XUEHENG SHI e,f

a Department of Statistics, University of California, Santa Cruz, California
b Department of Ocean Sciences, University of California, Santa Cruz, California

c Department of Mathematics and Statistics, Lancaster University, Lancaster, United Kingdom
d Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia

e Department of Statistics, University of California, Davis, California
f Department of Statistics and Department of Biological Systems Engineering, University of Nebraska–Lincoln, Lincoln, Nebraska

(Manuscript received 13 January 2023, in final form 7 June 2023, accepted 14 July 2023)

ABSTRACT: Climate changepoint (homogenization) methods abound today, with a myriad of techniques existing in both the
climate and statistics literature. Unfortunately, the appropriate changepoint technique to use remains unclear to many. Further
complicating issues, changepoint conclusions are not robust to perturbations in assumptions; for example, allowing for a trend
or correlation in the series can drastically change changepoint conclusions. This paper is a review of the topic, with an emphasis
on illuminating the models and techniques that allow the scientist to make reliable conclusions. Pitfalls to avoid are demon-
strated via actual applications. The discourse begins by narrating the salient statistical features of most climate time series.
Thereafter, single- and multiple-changepoint problems are considered. Several pitfalls are discussed en route and good practices
are recommended. While most of our applications involve temperatures, a sea ice series is also considered.

SIGNIFICANCE STATEMENT: This paper reviews the methods used to identify and analyze the changepoints in cli-
mate data, with a focus on helping scientists make reliable conclusions. The paper discusses common mistakes and pitfalls
to avoid in changepoint analysis and provides recommendations for best practices. The paper also provides examples of
how these methods have been applied to temperature and sea ice data. The main goal of the paper is to provide guidance
on how to effectively identify the changepoints in climate time series and homogenize the series.
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1. Introduction

Climate time series often contain sudden structural changes
(shifts or changepoints) in their behavior. These shifts may re-
flect linear or nonlinear dynamics in the climate system and
need to be identified for an accurate depiction of long-term
changes in any associated climate time series (Beaulieu et al.
2012; Beaulieu and Killick 2018; Cahill et al. 2015; Mudelsee
2019). Some structural changes may be artificial discontinuities
induced by changes in measurement practices (e.g., station relo-
cations, gauge changes, observer changes) (Menne and Williams
2009; Ribeiro et al. 2016; Peterson et al. 1998; Venema et al.
2012). Some (but not necessarily all) artificial changes induce
shift discontinuities into the series. If these shifts are not
detected and removed from the series, conclusions about long-
term trends can be biased or erroneous. Regardless of the shift
cause, changepoint techniques are used to estimate the true

number of structural changes and their timings. If the change is
artificial, the number of changepoints and their locations are
needed to adjust (homogenize) climate records a priori for real-
ism. If the structural change is caused by natural forcings in the
climate system, the number of changepoints and their timings
are needed to accurately quantify long-term changes.

Changepoint detection is a rapidly growing field in the data
science literature (Chen and Gupta 2012; Truong et al. 2020)
and applications to climate time series are numerous. This
paper contains a modern statistical review of the changepoint
topic in climate settings. The overarching goal is to accurately
estimate the number of changepoints and their locations, and
to accessibly present the methods for the climate scientists
and experts with a minimum of jargon and technicalities
(some technical methods, of course, are needed). The paper
intends to serve as a technical guide to changepoint detection,
informing the researcher of the appropriate methods to use
based on the statistical properties of the time series. Unfortu-
nately, changepoints are a thorny modeling issue: seemingly
small changes in model assumptions can yield very different
conclusions (Lund and Reeves 2002; Beaulieu et al. 2012;
Beaulieu and Killick 2018). Because of this, it is important that
researchers be aware of common pitfalls with changepoint/
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homogenization analyses. This paper illuminates some com-
mon mistakes in the field and makes recommendations on best
general practices.

Even in a review paper such as this, concessions must be
made for length. In particular, this paper will not compare or
classify the many software packages used today to homogenize
climate time series; see Ribeiro et al. (2016) and Domonkos et al.
(2021) for such lists. Indeed, our focus is on the techniques them-
selves, the intent being to illuminate the concepts that underlie
sound changepoint analyses. Also, the paper will not delve into
attribution of any discovered changepoints in our examples}
what caused the changepoints is immaterial in this discussion.
Toward this, most homogenizations aim to remove artificial
changepoint features from the record (e.g., station moves);
changepoints reflecting “true fluctuations” (e.g., natural variabil-
ity) should be retained in the series. This can be done by
subtracting a reference series from a nearby location from the
target series to be homogenized before analysis. The target mi-
nus reference subtraction eliminates naturally occurring fluctua-
tions in the series being analyzed and can reduce the correlation
present. These so-called absolute versus relative homogenization
procedures, and the “target” and “reference” series involved in
them, are discussed in Menne et al. (2009). More is said about
these in the next section. Finally, our analysis of some series
may employ suboptimal assumptions at times. This is primarily

done to show that different assumptions can produce very differ-
ent changepoint conclusions. We rehash this issue in the discus-
sion, indicating which features seem important for each series
that is scrutinized for changepoints in this paper.

The rest of this paper proceeds as follows. The next section
discusses the statistical properties of typical climate time series,
delving into correlation, trends, seasonality, and changepoints.
Here, target and reference series are introduced and absolute
versus relative homogenization procedures are distinguished.
Section 3 introduces a time series regression model that
describes a wide suite of climate series. This model provides the
mathematical backdrop for our discourse. Section 4 considers
the case of a single changepoint, presenting what is generally
viewed as the best (most powerful) single-changepoint detector.
Section 5 moves to multiple-changepoint cases, which arise
when the number of changepoints is a priori unknown, the typi-
cal setting in practice. Section 6 closes with conclusions and com-
ments, including some remarks about future research.

2. Statistical properties of climate time series

Figure 1 presents 71 years of monthly averaged tempera-
tures from two nearby stations in west-central North Dakota:
Mott and Richardton-Abby. These stations are in the U.S.
Historical Climatology Network (USHCN) database and can
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FIG. 1. Monthly averaged temperatures at the (top) Mott and (middle) Richardton-Abbey
stations in west-central North Dakota. (bottom) The Mott minus Richardton-Abby series in a
target minus reference subtraction.
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be downloaded at https://www.ncei.noaa.gov/cdo-web/search.
We consider the January 1931–December 2001 subspan of
their records. These series will be used to illustrate our list of
salient statistical features in climate series, which is needed to
construct an accurate estimated changepoint configuration.

a. Seasonality

A prominent seasonal mean cycle exists in the plotted data
in Fig. 1. In fact, the yearly range of the monthly sample
means exceeds 308C: from a January minimum of less than
2108C to a July maximum of more than 208C. This seasonal
cycle can visually mask some small shifts, say on the order of
a degree or two (the typical discontinuity magnitude induced
by a changepoint), in the record. These small shifts become
critical when assessing long-term changes in temperatures.
Figure 2 shows the sample means and standard deviations
for each month of the data in Fig. 1}they are close to one
another.

Seasonality is also present in the variability of many climate
series. The sample standard deviations (or equivalently, the
square root of the variabilities) in Fig. 2 show that winter tem-
peratures are much more variable than summer temperatures;
examples exist of stations in the temperate zone where
January standard deviations are roughly 5 times larger than

July standard deviations (Lund et al. 1995). This same paper
shows that a stationary time series model modified to allow
for periodicities in mean and variance adequately describes
many periodic climate series {Xt}:

XnT1n 5 mn 1 sn enT1n : (1)

Here, our notation has XnT1n as the series observation during
the n th phase (season) of the nth data cycle, T is the known
period (T 5 12 for monthly data; n 2{1, … , 12} refers to a
specific month), {et} is a zero-mean unit variance stationary
time series in time t (t 5 nT 1 n), and sn is the standard devi-
ation of the data at phase n within the cycle. Trends and
changepoint features are neglected (for the moment) in the
above model.

Seasonal features complicate changepoint detection when
not taken into account. Elaborating, it can be difficult to visu-
ally discern the impact of a changepoint in a plotted tempera-
ture series, which typically shifts a series only by a degree or
two, when the series has a seasonal cycle magnitude of say
308. Figure 3 demonstrates this by adding a 28C mean shift to
the Mott series at time index 600. It is harder to see this shift
in the series containing the seasonal cycle, becoming easier to
see after the seasonal cycle has been removed. In a multiple-
changepoint analysis of a daily series, methods may flag many
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FIG. 2. (top) Monthly sample means and (bottom) standard deviations for the Mott and Richardton-Abbey stations.
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spurious changepoints within a year in an attempt to track the
seasonal mean cycle should it be ignored in the modeling
procedure.

b. Autocorrelation

Temporal autocorrelation, which measures the tendency for
adjacent observations in time to be similar/dissimilar, is often
present in climate data. Autocorrelation is typically positive in
temperature and other climate series; for example, hot and cold
periods often cluster in runs of days or months. Like seasonality,
autocorrelation hinders detection of mean shifts. This is because
long runs of above/below normal temperatures, often attribut-
able to correlation, can be mistaken as a mean shift.

The correlation between Xt and Xt1h is defined as

Corr(Xt, Xt1h) 5
Cov(Xt, Xt1h)�����������

Var(Xt)
√ ��������������

Var(Xt1h)
√ ,

where Cov(Xt, Xt1h) 5 E[XtXt1h] 2 E[Xt]E[Xt1h] and E[Z]
denotes the statistical mean of Z. Due to the constancy of the
other model parameters in (1), Corr(Xt, Xt1h) 5 Corr(et, et1h).
A clarification here: data should be deseasonalized (i.e., subtract-
ing the seasonal mean cycle) before correlations are calculated, a

practice followed here. This is because seasonal mean cycles
are deemed fixed and not a contributor to variability; this
said, some authors view the seasonal cycle as a part of a more
robust annual variability. For concreteness, our estimates of
the seasonal mean and variance at season n in the cycle are,
respectively,

m̂n 5 d21∑
d21

n50
XnT1n 5 Ê[XnT1n ],

ŝn
2 5

∑
d21

n50
(XnT1n 2 m̂n )2

d
,

and our estimate of the lag h $ 0 autocovariance/autocorrela-
tion in {et} is

Ĉorr(et, et1h) 5 Ĉov(et, et1h) 5
1
dT

∑
dT2h

t51
ê t̂et1h,

ênT1n 5
XnT1n 2 m̂n

ŝn

: (2)

Here, d denotes the number of complete cycles of data (we
assume that no partial years of data are observed simply to
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FIG. 3. TheMott series with an artificial mean change of 28C added after time 600, showing (a) raw
data and (b) the series in (a) after the seasonal cycle has been estimated and removed.
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avoid trite work) and hats signify estimators of quantities.
Note that the first cycle of data is indexed with n 5 0 and the
last with n 5 d 2 1. Some authors use d 2 1 in place of d in
the denominator of ŝn , which yields an unbiased estimator);
others use dT 2 h in place of dT in the denominator of
Ĉorr(et, et1h) (which yields an unbiased estimator). Regard-
less of the denominator used, all estimators are asymptotically
unbiased.

Figure 4 shows sample correlations from the monthly Mott
and Richardton-Abby stations along with 95% pointwise
confidence bounds for zero correlation (white noise). Notice
that significant nonzero correlation exists at both stations.

Statistical methods for changepoint detection often lose detec-
tion power when autocorrelation is present. Examples below are
shown where a changepoint declaration is repealed once auto-
correlation is taken into account. Similarly, when mean shifts are
taken into account, estimates of autocorrelation can be drasti-
cally reduced (Norwood and Killick 2018). A key aspect of this
paper deals with cases where both autocorrelation and mean
shifts are present.

c. Target minus reference comparisons

Climate homogenization is a procedure for adjusting time
series for artificial features only, such as station relocations
and instrumentation changes. Natural/anthropogenic-attributed
changepoints occasionally exist in series and are generally viewed

as part of the record that should be retained. To facilitate
this, climatologists often make target–reference comparisons.
A reference series is a record of like data collected geograph-
ically near the target series (that hopefully experiences simi-
lar weather). Subtracting a reference series from a target
series serves to remove natural fluctuations, especially if the
target and reference series experience similar weather. This
subtraction reduces or altogether eliminates seasonal cycles
and long-term trends (more on trends below), helping to
highlight changepoints in the record. Of course, any change-
point in either the target or reference series becomes a change-
point in the target minus reference series. The additional
changepoints inherited from the reference series create chal-
lenges, especially if changepoints shift both series in the same
direction or the changes occur close in time (which reduces de-
tection power).

The bottom plot in Fig. 1 shows the Mott series subtracted
from the Richardton-Abby series. Observe that the seasonal
cycles have lessened, if not altogether disappeared. If the tar-
get minus reference comparison is good, any long-term trend
experienced by the target series should also be experienced
by the reference series and removed (or greatly reduced) in
the subtraction. The lower plot in Fig. 4 shows sample auto-
correlations from the Mott minus Richardton-Abby stations
along with 95% pointwise confidence bounds for zero correla-
tion (white noise). These correlations are computed after the
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FIG. 4. Sample autocorrelations over the first 40 months at the (top) Mott, (middle) Richardton-
Abbey, and (bottom) Mott minus Richardton-Abby series after the seasonal standardization in (2).
While the autocorrelations in the two individual series are similar, correlation does not completely
vanish in the target minus reference series in the bottom plot.
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standardization in (2) mean, which puts all variation measures
on the same mean zero unit variance scale. Notice that signifi-
cant nonzero autocorrelation exists at both stations. Unfortu-
nately, a target minus reference subtraction will not generally
eliminate autocorrelations. Mathematically, let {Tt} and {Rt}
be the target and reference series, respectively. Suppose that
they are jointly stationary with the same marginal covariance
function: Cov(Tt, Tt1h) 5 Cov(Rt, Rt1h) 5 g(h). This assump-
tion holds approximately for good reference series. The vari-
ance of the target/reference series is then g(0) and the variance
of the target minus reference series is 2g(0) 2 2Cov(Tt, Rt).
This latter quantity will be less than g(0) precisely when
Corr(Tt, Rt) . 1/2. In short, if the correlation between the tar-
get and reference series is not at least 1/2, using a reference
series will introduce additional variability into the series being
analyzed. Of course, no one would subtract an uncorrelated
reference series! Arguments for the other lags are similar but
more cumbersome as one has to contend with the asymmetry
of the cross-covariance function [the fact that Cov(Tt, Rt1h) is
in general not equal to Cov(Tt1h, Rt)].

Since the statistical methods to conduct a changepoint anal-
ysis on the target series alone or the target minus reference
series are the same, this point is essentially moot in the rest of
this paper; nonetheless, its practical implications are profound.
We refer the reader to Menne and Williams (2005, 2009) for
more on target minus reference comparisons. Some modern
methods use multiple reference series, sometimes as many as
40 (Menne and Williams 2005, 2009).

d. Trends

Many climate series have long-term trends (Gulev et al.
2021). For example, in the Mott series in Fig. 1, a long-term
linear trend of 0.868C century21 is estimated (computed ne-
glecting any changepoints). Of course, many temperature
series exhibit recent warming, and many other climatic series
also have trends. Trend features will be important to account
for in changepoint analyses: a multiple-changepoint proce-
dure applied to a series with a trend that is ignored in the
modeling procedure will typically flag multiple mean shifts
that attempt to track the trend.

e. Normality

Climate time series may or may not be Gaussian (normally
distributed). A series is Gaussian if its marginal distributions
come from the multivariate normal distributional family.
Series that are averaged}like monthly or annual series that
are obtained by averaging daily data}are often very close to
normally distributed by the central limit effect (Kwak and
Kim 2017). Normality can be visually checked by plotting a
histogram of the series; normal data should have a unimodal
symmetric histogram. A Q-Q (quantile–quantile) plot pro-
vides a graphical check for normality; points scattered closely
about the main diagonal indicate that the data are well de-
scribed by a Gaussian model. A commonly used and powerful
nonparametric statistical test for normality is the Shapiro–
Wilks test. The p value for the Shapiro–Wilks test for the
Mott series is 0.73 (computed neglecting any changepoints),

reinforcing that normality is very reasonable for the Mott
series [see Yazici and Yolacan (2007) for more on normality
tests]. Most normality tests assume zero-mean series; thus,
trends, seasonal cycles, and/or changepoint features should be
removed before testing.

Some climate series are decisively non-Gaussian. Examples
include discrete categorical series of cloud cover, ordered
from zero (say clear sky) to ten (say complete overcast), zero
to one series describing an on/off phenomena like snow
cover/absence, series whose marginal distributions are skewed
(such as annual precipitation), and series of minima or max-
ima. Averaging tends to induce normality. For example, while
the monthly averaging of daily data above rendered the Mott
series essentially Gaussian, daily data are often skewed and/
or nonnormal. In fact, daily temperatures at temperate zone
stations often have a distribution with a heavy left tail
(skewed), especially in winter; see Lund et al. (2006) for an
example.

3. Time series models

Having introduced the typical elements of climate time se-
ries, we now address their representation. The classical de-
composition of a time series {Xt} has the form

Xt 5 mt 1 st 1 et, (3)

where {Xt} is the observed series, {mt} is a long-term trend
(not necessarily linear), {st} is a deterministic seasonal cycle
having known period T, and {et} is zero-mean random error
that is possibly correlated in time. Most changepoint scenarios
for univariate series can be worked into the form in (3). The
seasonal cycle {st} is periodic in that st1T 5 st for all times t.
When the parameterization for {mt} contains a location
parameter, one typically assumes that ∑

T
t51st 5 0 so that all

regression parameters are statistically identifiable. This is the
so-called classical decomposition model in Brockwell and
Davis (1991).

For a simple example, suppose that one is examining an annual
series for multiple mean shifts, permitting a possible background
linear time trend. Then T 5 1, st ; 0, and mt 5 b0 1 b1t for a
location parameter b0 and trend parameter b1. The regression
model can be written as

Xt 5 b0 1 b1t 1 dt 1 et, (4)

where the mean shift changepoint component {dt} has the form

dt 5

D1 5 0, 0 , t # t1,

D2, t1 , t # t2,

..

.

Dm11, tm , t # N:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The above setup takes data at the times 1, 2, … , N and allows
for m mean shift changepoints occurring at the ordered times
t1, t2, … , tm; the changepoint count m and the changepoint
occurrence times t1, … , tm are all unknown. If the location
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parameter b0 is omitted from the long-term trend expression,
one need not require D1 5 0.

A prominent seasonal mean cycle {st} exists in most temperate
zone series; in general, variation induced by the seasonal cycle
makes changepoints harder to “visually see and detect.” The ran-
dom errors {et} in climate data are generally correlated. Positive
autocorrelation reduces the effective number of independent ob-
servations, also making it harder to detect changepoints.

Our primary focus lies with the detection of mean changes
in a series}the so-called mean shift problem. This problem
keeps the autocovariance structure of {et} constant across the
entire series. Changepoint methods exist for autocovariance
changes (Davis et al. 2006) or even changes in the marginal
distributions of the series (Gallagher et al. 2012), but the ma-
jor focus within the climate literature to date has been on
mean shifts. Our model shifts all subsequent series values by
the same amount; shifts have no seasonal character. While the
methods here could be modified to allow shifts to have sea-
sonal magnitude, this extension is not considered here.

When T . 1, such as for a monthly series, it is convenient
to rewrite the regression model in a periodic form:

XnT1n 5 mnT1n 1 sn 1 dnT1n 1 enT1n , (5)

where n 2{1, 2, … , T} denotes the season in a cycle and n in-
dicates the cycle number corresponding to time nT 1 n . For
example, a regression model allowing for a different linear
trend between all consecutive changepoint times has the form

mt 5

b1 1 a1t, 0 , t # t1,

b2 1 a2t, t1 , t # t2,

..

. ..
.

bm11 1 am11t, tm , t # N:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
The time series component {et} is typically assumed to be sta-
tionary when T 5 1, or periodically stationary when T . 1. A
flexible and parsimonious model class for stationary series are
the autoregressive (AR) series (Brockwell and Davis 1991).
A pth-order zero-mean autoregression is uniquely character-
ized by the pth-order linear difference equation

et 5 f1et21 1 … 1 fpet2p 1 Zt,

where f1, … , fp are the autoregressive coefficients and {Zt}
is a zero-mean white noise sequence with variance s2. When
T . 1, AR models are replaced with periodic AR models
(PAR):

enT1n 5 f1(n)enT1n21 1 … 1 fp(n)enT1n2p 1 ZnT1n ,

where f1(n), … , fp(n) are the autoregressive parameters
during season n and {ZnT1n} is periodic white noise having
the periodic variance Var(ZnT1n )5 s2

n . PAR models can
have a large number of parameters and are generally nonpar-
simonious. For example, a PAR(3) model for a monthly series
has 36 AR parameters and 12 more white noise parameters;
Lund et al. (2006) shows how to parsimonize PAR model fits.

4. Single-changepoint detection

a. A single mean shift

The simplest changepoint test discerns whether a series has
no mean shifts (the null hypothesis) against the alternative hy-
pothesis that there exists precisely one mean shift occurring at
an unknown time. These are the so-called at most one change-
point (AMOC) methods. For the moment, assume that no
long-term trends exist in the series. Almost all AMOC mean
shift changepoint methods essentially compare sample means
of the series before and after all candidate changepoint times.
That is, after some scaling, they compare differences between

(1/k)∑k
t51Xt and 1/(N2 k)[ ]

∑
N
t5k11Xt for each admissible

changepoint time k, selecting the k where this difference is
statistically maximal as the changepoint time estimate. If the
maximal statistic is larger than some preset threshold, then a
changepoint is declared; otherwise, the series is deemed
changepoint free.

Formalizing this, suppose first that {et} is independent and
identically distributed (IID) with zero mean and variance s2.
One scaled version of sample mean differences that takes into
account the differing number of observations in the two seg-
ments is the cumulative sum (CUSUM) statistic having a
changepoint at time k:

CUSUMX(k) 5
1
ŝ

���
N

√
∑
k

t51
Xt 2

k
N
∑
N

t51
Xt

[ ]
,

where

ŝ2 5

∑
N

t51
(Xt 2 X )2

N 2 1

is the no changepoint null hypothesis estimate of the series’
variance and X 5 (1/N)∑N

t51Xt is the overall sample mean.
One takes the argument k that maximizes |CUSUMX(k)| as
the estimated changepoint time.

1) PITFALL 1

Some authors examine a “maximum statistic” akin to
Dmax 5 max2#k#N|CUSUMX(k)| to check for a single change-
point. The location where the maximum occurs is estimated
as the time of the changepoint. While this is fine, incorrect
null hypothesis distribution percentiles for Dmax abound in
the climate literature, often producing unjustifiable conclu-
sions; see Lund and Reeves (2002) and Robbins et al. (2011)
for discussion. When a changepoint is known to occur at
time k, CUSUMX(k) can be used as the test statistic. One
could even scale CUSUM(k) to a z, t, or even F distribution
to make valid conclusions. However, when the time of the
changepoint is unknown, the maximum statistic Dmax must be
used. The correct null hypothesis percentiles for Dmax must
account for the many times k where the maximum could
happen}these percentiles are much larger than those for a
fixed k. Easterling and Peterson (1995) is one example where
the randomness of the changepoint time is not taken into
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account. Other examples of incorrect percentiles include
Wang et al. (2007) and Rodionov (2004); this list is not ex-
haustive. The correct asymptotic quantification of AMOC
changepoint statistics is often unwieldy as the scenario is not
readily scalable to an extreme value distribution, even though
the statistic is a maximum. Indeed, {CUSUMX(k)} is highly
autocorrelated in k (they are not IID). The limit distribution
of AMOC tests often converges to the supremum of some
Gaussian process. The reader is referred to Csörgo and
Horváth (1997) and MacNeill (1974) for historical technical
development.

2) BEST PRACTICE 1

Several legitimate statistics can be used to test for a single
mean shift. One test with superior detection power uses a sum
of squared CUSUM statistics to assess whether a changepoint
is present:

SCUSUM 5 ∑
N

k51
CUSUM2

X(k):

Note that CUSUM and SCUSUM are distinct acronyms. The
time of the changepoint is still estimated as the location k $ 2
that maximizes |CUSUMX(k)|. This test won the single-
changepoint comparison competition in Shi et al. (2022b), is
developed further in Kirch (2006), and has good false detec-
tion properties and superior detection power.

Under the null hypothesis of no changepoints, the asymptotic
distribution of the SCUSUM test converges to that of

�1
0 B

2(t)dt,
the integrated square of a standard Brownian bridge stochastic
process (Shi et al. 2022b). Null hypothesis percentiles of this dis-
tribution are presented in Table 1 for convenience and are simu-
lated. While the SCUSUM test does not appear to be frequently
used in today’s climate literature, summing CUSUM statistics
over all times increases detection power. As such, we recom-
mend this test in single-changepoint analyses. Additional discus-
sion is contained in Shi et al. (2022b).

b. Autocorrelation

We now move to AMOC tests for correlated data (the er-
rors are not IID). A significant body of statistical research
modifies the limit theory for IID data to account for autocor-
relation (Robbins et al. 2011; Shi et al. 2022b). Much of this
literature has the following flavor. With the SCUSUM test
above (and other AMOC tests), simply replace ŝ with an esti-
mate of the long-run variance parameter t2 defined by

t2 5 lim
N"‘

NVar
1
N
∑
N

t51
Xt

( )
:

Most asymptotic statistical laws still hold with this simple modifi-
cation. For example, should {Xt} be a short-memory covariance
stationary series with lag-h covariance g(h) 5 Cov(Xt, Xt1h)
(such as an ARMAmodel), then

t2 5 g(0) 1 2∑
‘

h51
g(h):

These tests should not be applied to long-memory series
where t2 can be infinite. In practice, it is not clear how to best

estimate t2, which is the notorious spectral density at frequency
zero.

In some asymptotic tests, convergence to the limit law can
be slow, making application to even a century of annual data
questionable [how slow depends on many things; Shi et al.
(2022b) give further details]. An alternative way to handle
correlation involves prewhitening techniques. Statistical refer-
ences for prewhitening are Robbins et al. (2011) and Gal-
lagher et al. (2022). To account for correlation in an AMOC
changepoint analysis, prewhitening first fits a pth-order autor-
egressive [AR(p)] model to the series (this assumes nonperi-
odic data). This fit is conducted under the null hypothesis of
no changepoints and is easily accomplished with many stan-
dard time series analysis packages. This procedure yields esti-
mates of the autoregressive parameters f1, … , fp and the
white noise variance s2; hats over these symbols demarcate
estimators of these parameters. Next, the estimated one-step-
ahead predictions

X̂ t11 5 X 1 f̂1(Xt 2 X ) 1 · · · 1 f̂p(Xt2p11 2 X ), t $ p,

(6)

X 5 (1/N)∑N
t51Xt, are calculated with f̂j replacing fj and the

one-step-ahead prediction errors Yt 5Xt 2 X̂ t are formed.
The {Yt} are often called innovations. When the AR(p) pa-
rameters are known, the one-step-ahead prediction errors {Yt}
are independent. Using estimated AR parameters leaves the
{Yt} slightly dependent, but this dependence is usually negligi-
ble. The series {Yt} is also called the prewhitened series.
To compute the startup values X̂ 1, …, X̂p, one uses the time
series prediction equations; see chapter 3 of Brockwell and
Davis (1991) for details.

Next, one simply applies the SCUSUM (or some other
AMOC) test to the prewhitened {Yt} using the percentiles for
IID errors to make conclusions. Robbins et al. (2011) proves
that this procedure is statistically valid asymptotically and
shows that the limit laws typically “kick in more quickly” than
asymptotic laws that replace ŝ with t̂.

While prewhitening adds to the analysis burden, our next
pitfall notes the importance of taking correlation into account.

1) PITFALL 2

Ignoring positive autocorrelation in a series will often pro-
duce spurious changepoint conclusions. In fact, series that are
heavily positively correlated tend to make long sojourns
above and below the long-term mean of the series, inducing
the appearance of a changepoint. Ignoring correlation may in-
duce the spurious conclusion that a changepoint exists when
in truth it does not.

TABLE 1. Critical values for the SCUSUM statistic.

Percentile Critical value

90.0th 0.347 304 6
95.0th 0.461 374 4
97.5th 0.580 616 8
99.0th 0.743 434 8
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2) BEST PRACTICE 2

Prewhiten autocorrelated series before applying any
AMOC IID changepoint tests. As shown below, dubious
conclusions can arise when autocorrelation is ignored. A
general theme for AMOC tests with positively autocorre-
lated data, which entail the majority of climate cases, is
clear: one risks concluding that a changepoint exists when in
truth it does not when positive correlation is ignored. The
situation reverses itself should negatively autocorrelated
data be encountered.

c. An example

We now examine the annual central England temperature
(CET) series from 1900 to 2020 with a single-changepoint
test. The CET record was obtained from the Met Office at
https://www.metoffice.gov.uk/hadobs/hadcet/. For a multiple-
changepoint analysis of the entire CET series dating back to
the 1600s, see Shi et al. (2022a). Figure 5 and Table 2 display
this series against several single-changepoint configurations ex-
plored below. Conclusions will be heavily dependent on the
assumptions made.

FIG. 5. Annual central England temperatures (1900–2020). Single-changepoint tests give different
conclusions depending on the mean structure and autocorrelation properties assumed.
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As a first step, we examine the series for a single mean shift
assuming IID errors. The CUSUM(k) statistic is maximized
at k 5 1988 and the SCUSUM statistic is 3.577. Comparing to
the 95th percentile of SCUSUM statistic, which is 0.461, one
concludes that a mean shift exists with confidence at least
95% (in fact, the p value of erroneously rejecting a no
changepoint null hypothesis is zero to about six decimal
places). The estimated series mean is plotted against the series
in the top panel of Fig. 5.

If one plots the residuals from this fit, autocorrelation is
clearly present. Indeed, the estimated correlation between
consecutive raw series values is 0.425, which entails moderate
autocorrelation [this would be the estimated f1 coefficient in
an AR(1) fit should there be no changepoints]. This correla-
tion estimate drops to f̂1 5 0:252 when the 1988 changepoint
is taken into account, which is still significantly positive. Thus,
we rerun the single mean shift test allowing for autocorrelated
errors, this time using a simple AR(1) structure for the model
errors. A SCUSUM test was applied to the prewhitened AR(1)
one-step-ahead prediction errors and gives SCUSUMZ 5 0.180,
which is well below the 0.461 threshold needed to declare statis-
tical significance with 95% confidence (the p value for this test
is 0.31). This essentially repeals the 1988 mean shift. The con-
flicting conclusions illustrate why one needs to allow for correla-
tion in changepoint tests when correlation is present. Neglecting
to account for positive correlation can lead to an overestimation
of the number of changepoints.

d. Trends

As previously mentioned, trends can also influence change-
point conclusions. In particular, one should not apply a
changepoint test to data with a trend without accounting for
the trend. For example, should the linear trend mt 5 b1t exist
in (3) but not be modeled, then an AMOC test tends to signal
a single changepoint in the center of the record with a positive
mean shift when b1 . 0, and flag a negative mean shift in the
center of the record when b1 , 0. The methods are simply re-
jecting that the mean is constant (which is why some authors
use changepoint tests as a check for a homogeneous mean).
When a seasonal cycle exists in the data, the situation becomes
even more nebulous, with multiple-changepoint techniques
flagging multiple changes in an attempt to “track the seasonal
mean and long-term trend.” In short, changepoint techniques
are not robust to assumption changes in mt 5 E[Xt]. Unfortu-
nately, in changepoint analyses, each different form of mt

requires a different set of null hypothesis percentiles. For ex-
ample, for a simple mean shift where mt 5 b0, the 95th percen-
tile of the CUSUM test is 1.358 [this percentile comes from
Robbins et al. (2011)]; when the linear trend mt 5 b0 1 b1t is

considered, the 95th CUSUM percentile becomes 0.902
(Gallagher et al. 2013).

1) PITFALL 3

Applying an AMOC changepoint test to series with trends
or seasonality that does not account for the trend or seasonal-
ity can result in spurious changepoint declarations. Here,
the methods are simply declaring that the series’ mean is
time-varying.

2) BEST PRACTICE 3

Account for all potential features in the mean of a series. If
in doubt, allow for a trend and/or seasonality and use the sta-
tistical methods to distinguish which features are present in
the series.

We now take a deeper look at the CET series with an anal-
ysis that allows for trends. Global warming posits a slow tem-
perature increase; as such, an AMOC analysis with the linear
trend mt 5 b0 1 b1t is explored. Based on our previous analy-
sis, AR(1) errors are again used to account for autocorrela-
tion. An AMOC CUSUM-type mean shift test for IID errors
in linear trend models is developed in Gallagher et al. (2012)
(we are unaware of anyone studying SCUSUM tests in the
linear trend setting). This test statistic will be denoted by
CUSUMD. Estimating the linear trend and AR(1) parameters
under the null hypothesis of no changepoints provides
b̂0 5 9:18C, b̂1 5 0:0098Cyr21 (we will not address the statisti-
cal significance of this estimate), and f̂1 5 0:194.

One needs to be careful to account for the trend when pre-
whitening this series. Specifically, our estimated one-step-ahead
predictions with AR(1) errors become [cf. to (6)].

X̂ t 5 m̂t 1 f̂1(Xt21 2 m̂t21 )
5 b̂0 1 b̂1t 1 f̂1[Xt21 2 b̂0 2 b̂1(t 2 1)], (7)

for t $ 2, with the start-up condition X̂ 1 5 b̂0 1 b̂1. The pre-
whitened series is always Yt 5Xt 2 X̂ t.

The CUSUMD test applied to {Yt} gives a statistic of 0.929,
occurring in 1988, which is slightly above the 95th percentile
null hypothesis threshold of 0.903. The p value for this test is
0.038. With 95% confidence, the 1988 changepoint is detected
again. The bottom line in Table 2 shows this result. The bot-
tom panel in Fig. 5 displays the fit to this data. This configura-
tion is the best fitting of our three models since it takes into
account both trends and autocorrelation. As an aside, we
comment that model fitting is not about maximizing or mini-
mizing p values, but rather making sure that all relevant statis-
tical features are accounted for in a parsimonious model. See
Shi et al. (2022a) for a detailed analysis of the CET series.
The thresholds used in the CUSUMD test were calculated via
simulation under the null hypothesis with 10 000 repetitions.
See Shi et al. (2022b) for additional details.

Obviously, the assumptions made in changepoint analyses
are extremely important and influence conclusions. While is-
sues become more complex with multiple changepoints, the
topic of our next section, much of the AMOC intuition carries
over to that setting.

TABLE 2. Single-changepoint tests for the central England
temperature series.

Model assumptions Test p value

Mean shift 1 IID errors SCUSUM #1026

Mean shift 1 AR(1) errors SCUSUMZ 0.31
Fixed trend 1 AR(1) errors CUSUMD 0.039
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5. Multiple-changepoint detection

Many climate series have more than one changepoint.
United States climate series average a station move or gauge
change once every 17 years (Mitchell 1953); see also the find-
ings in Menne and Williams (2005, 2009), and O’Neill et al.
(2022). As in the AMOC case, multiple-changepoint (MCPT)
detection is fraught with challenges and pitfalls, perhaps more
than the single-changepoint case. While MCPT analyses are
less developed than AMOC tests, the problem is being ac-
tively researched in statistical settings.

Initially, AMOC techniques were extended to MCPT prob-
lems via binary segmentation methods (Scott and Knott
1974). Binary segmentation examines the entire series first for
a single changepoint with some AMOC test. If a changepoint
is found, the series is then split into two subsegments about
the identified changepoint time and the two subsegments are
further scrutinized for a single changepoint with the AMOC
test. The procedure continues iteratively until all subsegments
are declared changepoint free. We now know that binary seg-
mentation is one of the poorer ways to handle multiple-
changepoint problems (Shi et al. 2022b). This point is further
reinforced in section 5a.

Other approaches to the MCPT problem can be classified
into distinct camps. One camp examines recursive segmenta-
tion procedures that improve upon binary segmentation meth-
ods; these include wild binary segmentation (Fryzlewicz 2014)
and wild contrast maximization (Cho and Fryzlewicz 2020).
Wild binary segmentation draws random subintervals of varying
lengths of the data, conducts an AMOC test on each subinter-
val, and reconciles across all subintervals analyzed to produce
an estimated changepoint configuration. Wild contrast maxi-
mization is built upon wild binary segmentation and uses an
AMOC test that accounts for autocorrelation. These meth-
ods are computationally quick and often yield reasonable re-
sults. Unfortunately, many of these techniques declare an
excessive number of changepoints when the true number of
changepoints is small (Shi et al. 2022b), essentially rendering
them unusable in climate cases where say two changepoints
exist in a 100-yr climate series.

Another camp applies dynamic programming techniques to
MCPT problems. Here, an objective function associated with
the problem is optimized. The segment neighborhood algo-
rithm of Auger and Lawrence (1989) and the pruned exact
linear time of Killick et al. (2012) are two examples. Dynamic
programming techniques provide optimal (relative to the cho-
sen objective function) changepoint configurations and runs
quickly. Unfortunately, these techniques often make unrealis-
tic assumptions (uncorrelated series or all model parameters
must shift at every changepoint time) that make them unfeasi-
ble in some climate applications. Advances to these methods
are currently being pursued. Model selection approaches such
as Harchaoui and Lévy-Leduc (2010) and Shen et al. (2014)
and scan statistics procedures based on moving sum statistics
(Eichinger and Kirch 2018) exist among other techniques

(Cho and Kirch 2021)}changepoint research is a huge field
and this list is not exhaustive.

Like the AMOC case, assumptions are crucial in MCPT
analyses. Many MCPT techniques assume IID {et}, which is
often unrealistic in climate applications. As with the AMOC
case, MCPT techniques assuming independent {et} can give
suboptimal answers for autocorrelated series (Davis et al.
2006; Li and Lund 2012; Chakar et al. 2017). While one can
prewhiten the series, estimation of the correlation structure
and the multiple mean shift sizes and locations confound each
other. No simple null and alternative hypotheses suggest
themselves in the MCPT setting, as opposed to the AMOC
setting where the null and alternative hypotheses have zero
and one changepoint, respectively. In the MCPT case, the null
hypothesis could be zero, exactly one, at most one, two, etc.,
changepoint counts. In the AMOC case, estimates of the
series’ correlation structure are computed under the null
hypothesis of no changepoints and models containing no and
one changepoints are statistically compared.

Penalized likelihood methods, another MCPT camp, tackle
the problem by minimizing a likelihood objective function
that is penalized when the model contains too many change-
points. Elaborating, statisticians often estimate model param-
eters via likelihood techniques. Let L(m; t1, … , tm) denote
the likelihood of the best time series model having m change-
points at the times 1 , t1 , t2 , … , tm # N. Likelihoods
for {Xt}Nt51 take the classical time series form

L(m; t1, …, tm) 5 (2p)2N/2 *
N

t51
Vt

( )21/2

exp 2
1
2
∑
N

t51

(Xt 2 X̂ t)2
Vt

[ ]
,

where X̂ t is the best linear prediction of Xt from past observa-
tions in (7) and Vt 5 E[(Xt 2 X̂ t)2] is its unconditional mean
squared error. While CUSUM tests do not assume a Gaussian
distribution for their errors, penalized likelihood methods are
parametric and often assume a Gaussian structure.

As the number of changepoints m increases, the model fit
improves: L(m; t1, … , tm) increases in m. However, after a
while, additional changepoints do not appreciably improve
the likelihood. This is where the penalty term comes in. The
penalty for having m changepoints at the times t1, … , tm is
denoted by P(m; t1, … , tm) and increases as m increases. Pe-
nalized likelihood methods look to minimize the penalized
objective function

O(m; t1, …, tm) 522ln[L(m; t1, …, tm)] 1 P(m; t1, …, tm)

over all feasible values of m and t1, … , tm. When there are
no changepoints (m5 0), the penalty term is taken as zero.

Development of penalty functions is a well-studied statisti-
cal problem. Commonly used penalties in the literature for
the mean shift problem include the AIC, BIC, mBIC, and
MDL penalties. Their formulas are

R E V I EW 80511 DECEMBER 2023

Unauthenticated | Downloaded 02/14/24 11:28 PM UTC



AIC : P(m; t1, …, tm) 5 2(2m 1 p 1 2),
BIC : P(m; t1, …, tm) 5 (2m 1 p 1 2)ln(N),

mBIC : P(m; t1, …, tm) 5 (3m 1 p 1 2)ln(N) 1 ∑
m11

i51
ln

ti 2 ti21

N

( )
,

MDL : P(m; t1, …, tm) 5 (p 1 1)ln(N) 1 ∑
m11

i51
ln(ti 2 ti21) 1 2ln(m) 1 2∑

m

i52
ln(ti),

(8)

Here t0 5 1 and tm11 5 N are defined for convenience. The
above penalties are for mean shift models and AR(p) errors
(if the errors are IID, p 5 0); should the regression structure
change at each changepoint time, the above formulas require
modifications. While other penalties exist, these are the most
popular penalties used in today’s literature. Note that the
mBIC and MDL penalties depend on where the change-
points lie, but that the AIC and BIC penalties are simple
multiples of the number of changepoints. A detailed discus-
sion of penalty performance is found in Shi et al. (2022b).
For specifics, AIC is well known to overestimate the true
number of changepoints and should not be used. For a pen-
alty that does not depend on the changepoint location times,
BIC performs surprisingly well in a variety of settings (Shi
et al. 2022b).

Optimizing O(m; t1, … , tm) requires significant computa-
tions. To compute O(m; t1, … , tm), an optimal time series
model with m changepoints at the times t1, … , tm needs to
be fitted. While this is a straightforward task for most time se-
ries packages, there are 2N21 distinct changepoint configura-
tions that need to be evaluated as candidates in an exhaustive
search for the best MCPT configuration. This total is immense
for even N as large as 100, making exhaustive searches a
strenuous task. Authors have used genetic algorithms (Davis
et al. 2006; Li and Lund 2012) to overcome these difficulties.
Today, despite computational issues, penalized likelihoods
are considered the gold standard for MCPT problems.

Estimates of the mean and seasonal parameters in a penal-
ized likelihood procedure are not corrupted/degraded by the
presence of changepoints. This is because a genetic algorithm
search first fixes the changepoint configuration and then esti-
mates all other model parameters in a manner that takes the
changepoint structure into account. In the AMOC case, where
hypothesis testing logic applies, all parameters are estimated
under the null hypothesis of no changepoints. In AMOC tests,
if a changepoint is found, the estimates of the mean and sea-
sonal parameters should be revised to take into account the
identified shift.

a. Binary segmentation

As the earliest invented and still widely used MCPT tech-
nique, binary segmentation’s popularity rests on two ingredients:
simplicity and rapid computation. Binary segmentation is a
“greedy algorithm” that optimizes an objective function stage-
wise. Such a procedure often does not find the globally optimal
solution. An attempted remedy to binary segmentation, wild

binary segmentation (Fryzlewicz 2014), injects randomization
into the changepoint search to avoid local optimums. However,
simulation studies in Lund and Shi (2020) suggest that wild bi-
nary segmentation overestimates changepoint counts for IID
model errors, and becomes dysfunctional in settings with corre-
lated errors. Wild contrast maximization (Cho and Fryzlewicz
2020), another improvement of wild binary segmentation de-
signed for autocorrelated processes, is capable of handling serial
dependence. While we will not discourage this technique, we
also comment that it has not been fully vetted as of 2023.

1) PITFALL 4: USING ORDINARY BINARY

SEGMENTATION IN MCPT PROBLEMS

Binary segmentation is generally an inferior MCPT problem
approach, regardless of assumptions. Unfortunately, binary seg-
mentation is used in many engineering, computer science, and
climate applications. To illustrate binary segmentation pitfalls, a
simulation is constructed. Here, Gaussian series of length 500
were simulated with white noise errors with a unit variance.
Three equally spaced mean shifts were added, shifting the series
by a unit length in alternating directions. This partitions the series
into four equal length segments of 125 points each; Fig. 6 displays
a sample generated series.

We randomly generated 1000 such series and applied sev-
eral different changepoint methods. The estimated change-
point configurations were compared to the true changepoint
configuration with the distance metric in Shi et al. (2022b).
This distance incorporates both m and the changepoint loca-
tions t1, … , tm. Smaller distances indicate better perfor-
mance; a perfectly estimated configuration has zero distance
to the truth. Boxplots of distances between the estimated
changepoint configuration and the true configuration over the
1000 simulations are summarized in Fig. 7. The boxplots show
that binary segmentation underperforms all penalized likeli-
hood methods. The number of detected changepoints for
each method are listed in Table 3.

2) BEST PRACTICE 4: USE PENALIZED LIKELIHOOD

MCPT METHODS IN LIEU OF BINARY SEGMENTATION

In fitting a penalized likelihood MCPT model, the autocorre-
lation structure of the series is estimated in the fit. Binary seg-
mentation does not give such estimates, but they are not difficult
to obtain after the piecewise regime means are subtracted from
the series. SomeMCPT techniques only allow special time series
structures. For example, Chakar et al. (2017) requires AR(1) er-
rors. While the AR order is not believed to be as important as
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other issues in most climate applications, it is also infeasible
that an AR(1) correlation structure adequately describes all
climate series. Hewaarachchi et al. (2017) push genetic algo-
rithms to their limit by homogenizing daily temperatures via
penalized likelihoods. While Cho and Fryzlewicz (2020) allow
general AR(p) errors, simulations indicate that wild contrast
maximization tends to estimate too many changepoints, inher-
iting this flaw from wild binary segmentation. While it is
widely understood in the statistical literature that binary seg-
mentation is inherently flawed [see Shi et al. (2022b) for com-
parisons], the technique is still widely used. In what follows,
we focus on penalized likelihood techniques estimated by a ge-
netic algorithm.

b. Atlanta airport temperatures

To see differences between the approaches in practice, an-
nual mean surface temperatures from 1879 to 2013 at Atlanta,
Georgia’s Hartsfield International Airport station will be

analyzed. This dataset was provided by Berkeley Earth at
http://berkeleyearth.lbl.gov/station-list/, and contains “raw”
temperatures, unadjusted for potential artifacts. Mean shift
models with AR(1) errors were fitted via penalized likelihood
techniques and binary segmentation approaches. The results
are depicted in Fig. 8. Binary segmentation flags a single change-
point in the early 1980s, while a BIC penalized likelihood ap-
proach estimates three changepoints, occurring in the 1920s,
1960s, and 1980s. Our binary segmentation algorithm uses the
SCUSUMAMOC test with a 95% confidence threshold and ac-
counts for autocorrelation via an AR(1) model. While detailed
simulations illustrating the inferiority of binary segmentation are
supplied in Shi et al. (2022b), binary segmentation often has
trouble identifying multiple mean shifts that move the series in
opposite directions, which seems to be the case here: the succes-
sive changepoints estimated by penalized likelihood move the
series up, down, and then up. This leads us to conclude that two
changepoints are missed by binary segmentation here.
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FIG. 7. A comparison of binary segmentation and penalized likelihood methods. The biggest
errors occur with binary segmentation. A 95% threshold is used for binary segmentation; the
BIC, MDL, and mBIC penalized likelihoods were optimized by a genetic algorithm (GA).

−2

0

2

4

0 100 200 300 400 500
t

X
t

FIG. 6. A series with three equally spaced mean shifts of unit size that shift the series in alter-
nating directions. The true series mean is plotted for reference. Regression errors are uncorre-
lated white noise with a unit variance.
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c. Ignoring trends

As in the AMOC case, ignoring trends in the MCPT setting
may produce spurious changepoint declarations. For if the
long-term trend is decisively increasing or decreasing, but ig-
nored in the analysis, then MCPT procedures typically flag
one or more changepoints in an attempt to track the series
mean. In the AMOC case, each different mean functional
form changes the asymptotic percentiles of the statistical test

(Tang and MacNeill 1993). In the MCPT case, as long as the
same trend parameters apply to all series subsegments, the
penalties in (8) can be used without adjustment (adjustments
to the penalties will not alter the estimated changepoint con-
figuration). Should one desire models where all parameters
shift at the changepoint times}one example would allow the
trend slope to depend on the regime}then the penalties in
(8) must be modified. The reader is referred to Shi et al.
(2022a) for the technicalities.

1) PITFALL 5: APPLYING MEAN SHIFT MCPT
TECHNIQUES TO SERIES WITH TRENDS OR

SEASONALITY WITHOUT ACCOUNTING FOR

THESE FEATURES.

Similar to AMOC techniques in pitfall 2, applying a MCPT
technique that neglects trends and seasonality can result in
spurious changepoint declarations. For example, an increasing
long-term trend will likely be estimated as a series of change-
points acting as an increasing stairway.

FIG. 8. A changepoint analysis of the Atlanta airport temperature series. When AR(1) errors
are assumed, changepoints flagged by (a) a BIC penalized likelihood and (b) binary segmenta-
tion. Binary segmentation flags one changepoint, while a BIC penalized likelihood flags three.

TABLE 3. Distribution of detected number (m̂) of changepoints
in 1000 simulations (all values in %). Binary segmentation is the
worst-performing method. The true configuration (boldface) has
three changepoints (m 5 3)

Methods m̂ , 2 m̂ 5 2 m̂53 m̂ 5 4 m̂ , 4

BIC 0 0 92.3 5.7 2
mBIC 0 0 96.5 2.5 1
MDL 0 0 87.6 3.8 8.6
BS 25.9 0.3 72.4 1.5 0
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2) BEST PRACTICE 5: ALLOW FOR TRENDS AND/OR

SEASONALITY IN SERIES HAVING THESE FEATURES.

d. Arctic sea ice

To illustrate the importance of accounting for trends, we
analyze a series of September sea ice extent in the Northern
Hemisphere from 1979 to 2021. The data were provided by
the National Snow and Ice Data Center and downloaded
from: https://nsidc.org/data. The sea ice extent represents the
total area of all grid cells with at least 15% sea ice concentra-
tion. Since 1979, the Northern Hemisphere sea ice has shown
declines (Meredith et al. 2019). In Reid et al. (2016), this se-
ries was used to illustrate a rapid, large-scale change in
Earth’s biophysical systems in the 1980s, and a mean shift was
suggested to have occurred in 1989. Here, this analysis is re-
visited to assess whether one or multiple mean shifts are still
detected when a long-term trend is taken into account.
Figure 9 shows the series and some MCPT fits. The top plot, a
BIC penalized likelihood estimated MCPT configuration with
AR(1) errors, identifies four changepoints, when no trend is
put in the model. When a linear trend is added to the model

(the bottom plot), all four changepoints are repealed. The esti-
mated trend slope of sea ice retreat was20.05 million km2 yr21.
The linear trend fit here is preferred as this model is more parsi-
monious; see Shi et al. (2022a) for more on comparing different
model types.

6. Discussion and comments

This paper highlighted some common pitfalls in change-
point analysis/homogenization methods and suggests best
practices to avoid them. In general, changepoint methods are
not robust to assumptions on the structure of a series, espe-
cially its mean, and care is needed in their proper application.
Issues considered in the paper include correlation, trends, dis-
tributions of maximum statistics, and the type of multiple-
changepoint analysis employed. The general mantra is that if
a series feature is not obvious (say existence of trends or cor-
relation), it is best to put that feature in a model and let statis-
tical methods discern whether or not it is present. While the
paper attempts to put forth a best practice, any user of
changepoint methods in the climate sciences should be aware
of the litany of mistaken and/or dubious analyses in this field.

FIG. 9. A changepoint analysis of the Arctic sea ice series.
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Indeed, the number of changepoint declarations that would
be repealed due to failure to consider positive autocorrelation
would be extensive.

Revisiting the individual series scrutinized for changepoints in
this paper for end conclusions, the CET series seems to have
nonignorable trends, but little autocorrelation (f̂1 5 0:055). The
Atlanta series has slightly more autocorrelation (f̂1 5 0:11),
multiple changepoints, and little long-term trend. One may wish
to explore models with trends for the more recent years of this
series further. In comparing changepoint versus trend models
for the Arctic sea ice series, trends seem more physically plausi-
ble than changepoints. There is also little autocorrelation
(f̂1 5 0:05) in the trend model. Shi et al. (2022a) shows how to
compare these two distinctly different models in a statistical
fashion (this is more involved and is not done here).

It is worth rehashing target minus reference series analyses
versus target series analyses only (absolute versus relative ho-
mogenization). While the statistical procedures to analyze both
settings are the same, subtraction of a reference series often re-
duces trends and/or seasonal cycles, making some issues clearer.
Nonetheless, as was shown here, formation of a target minus ref-
erence series may not eliminate or even reduce autocorrelation,
nor need it totally eliminate long-term trends and/or seasonal
cycles. Existence of metadata is another issue. While most au-
thors tend to eschew metadata in their changepoint analyses,
Beaulieu et al. (2010) and Li and Lund (2015) show how an in-
formative Bayesian prior can be constructed from it and used
this information to increase changepoint detection power.

Multiple-changepoint techniques are actively being re-
searched in statistics. Computational advances are expected
in the near future, especially in regard to penalized likelihood
methods for more complex models. Other aspects of the prob-
lem are also being studied. A clear point from the literature
lies with the inferiority of ordinary binary segmentation tech-
niques in multiple-changepoint problems. Here, we simply
urge researchers to use better methods.
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