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ABSTRACT: This paper develops a mathematical model and statistical methods to quantify trends in presence/absence
observations of snow cover (not depths) and applies these in an analysis of Northern Hemispheric observations extracted
from satellite flyovers during 1967–2021. A two-state Markov chain model with periodic dynamics is introduced to analyze
changes in the data in a cell by cell fashion. Trends, converted to the number of weeks of snow cover lost/gained per cen-
tury, are estimated for each study cell. Uncertainty margins for these trends are developed from the model and used to
assess the significance of the trend estimates. Cells with questionable data quality are explicitly identified. Among trustwor-
thy cells, snow presence is seen to be declining in almost twice as many cells as it is advancing. While Arctic and southern
latitude snow presence is found to be rapidly receding, other locations, such as eastern Canada, are experiencing advancing
snow cover.

SIGNIFICANCE STATEMENT: This project quantifies how the Northern Hemisphere’s snow cover has recently
changed. Snow cover plays a critical role in the global energy balance due to its high albedo and insulating characteris-
tics and is therefore a prominent indicator of climate change. On a regional scale, the spatial consistency of snow cover
influences surface temperatures via variations in absorbed solar radiation, while continental-scale snow cover acts to
maintain thermal stability in the Arctic and subarctic regions, leading to spatial and temporal impacts on global circula-
tion patterns. Changing snow presence in Arctic regions could influence large-scale releases of carbon and methane
gas. Given the importance of snow cover, understanding its trends enhances our understanding of climate change.
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1. Introduction

Snow cover plays a critical role in Earth’s hydrological pro-
cesses and its impact on the broader global climate is of great
interest (Barnett et al. 2005; Karl et al. 2009; Goudie 2018;
van Mantgem et al. 2009). Snow greatly influences the global
energy balance due to its high albedo and insulating charac-
teristics and is therefore a prominent indicator of climate
change (Liston and Hiemstra 2011; Mote 2003; Lawrence
and Slater 2010; Callaghan et al. 2011). On a regional scale,
the spatial consistency (patchiness) of snow cover can influ-
ence surface temperatures via horizontal variations in ab-
sorbed solar radiation. Continental-scale snow cover acts to
maintain thermal stability in the Arctic and subarctic regions,
possibly inducing changes in global circulation patterns attrib-
utable to large-scale releases of carbon and methane gas
(Zona et al. 2015). While the amount of water available in the
snowpack is quantified in snow depths and/or snow water
equivalents (SWE), areal snow presence/coverage defined by
snow cover extent (SCE) is often used to estimate the location

and availability of regional water resources (Mote et al. 2018;
Serreze et al. 2000; Robinson et al. 1993).

Remotely sensed satellite images are common sources of SCE
data; these images provide spatial and temporal observations that
can be used in regional and continental-scale analyses. Satellite
data are used here to estimate SCE trends, allowing us to assess
SCE changes over time and space. The satellite-derived SCE data
product investigated here is binary, with snow presence being re-
corded as unity and snow free ground being assigned zero.

Some midlatitude locations have sporadic snow coverage,
with snow cover typically lasting only a few weeks at a time,
even during the height of winter. The majority of our work
lies with introducing a mathematical model and developing
the statistical methods needed to analyze trends in autocorre-
lated and binary-valued sequences. The model is flexible
enough to adapt to the data from many of our study cells.

Statistical analysis of snow data has been debated in the cli-
mate literature, especially in regard to trend and uncertainty as-
sessment (see Yue et al. 2002, and the references therein). Here,
a flexible mathematical model and rigorous accompanying statis-
tical methods are used to estimate trends and accurately assess
their uncertainty margins. Some nuances arise in this pursuit.
First, as our SCE data are recorded weekly, annual periodicity
needs to be taken into account. Second, since SCE data are cor-
related, with snow presence in a week making snow presence in
adjacent weeks more likely, serial autocorrelation needs to be
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accounted for in trend uncertainty quantifications. Finally, previ-
ous authors have noted data quality issues (Bormann et al. 2018;
Estilow et al. 2015) in some cells that need to be addressed, with-
out pinpointing the specific problematic cells. We carefully ad-
dress this issue below. The general pattern of results found here
agrees with trends found in other studies using more rudimen-
tary statistical approaches (Brown and Robinson 2011; Lemke
et al. 2007; Notarnicola 2022).

The rest of this paper proceeds as follows. Section 2 describes
the SCE data used in this study and their nuances. Section 3 in-
troduces the mathematical model and statistical methods needed
to quantify the problem, including the all-important uncertainty
calculations for our trend estimates. Section 4 presents a simula-
tion study, showing that model parameters can be accurately es-
timated from a half-century of weekly observations. Section 5
presents two case studies, analyzing observations from a cell in
North Dakota that is actually experiencing increasing snow cov-
erage. We also give an example of data from a cell having poor
data quality. Section 6 presents results for the entire Northern
Hemisphere (NH) and discusses our general findings and their
implications. Section 7 concludes with comments and remarks.

2. Data

The data studied here were aggregated from daily satellite
flyovers, with SCE values being estimated manually weekly

by meteorologists for each study cell. Specifically, this study uses
the Northern Hemisphere Weekly Visible Satellite Charts data
from the Climate Data Record as developed by the National
Oceanic and Atmospheric Administration (NOAA) (Robinson
et al. 2012). The data are available at https://www.ncei.noaa.
gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:
C00756.

The Rutgers University Snow Laboratory at http://climate.
rutgers.edu/snowcover/ was an integral part of the construc-
tion of the data product studied here and is a useful repository
for literature and links to this and other SCE datasets. This
study examines the time period August 1967–July 2021. For
cell structure, the data use NOAA’s 89 3 89 Cartesian grid
that overlies a polar stereographic projection of the NH. The
product contains 88 3 88 5 7744 cells with a resolution of
190.4 km at 608N. The SCE data during the first week in
December 2020 are plotted in Fig. 1.

Thorough descriptions of the data are provided in Dye
(2002) and Estilow et al. (2015). Early discussion of the data’s
production is found in Wiesnet et al. (1987) and Robinson
et al. (1993). Before June of 1999, NOAA used the first clear-
sky day during each week to estimate the SCE. If the cell con-
tains at least 50% snow coverage, its SCE was assigned as
unity; otherwise, it is assigned zero.

With the introduction of the Interactive Multisensor Snow
and Ice Mapping System (IMS), the methods used to estimate

FIG. 1. NH snow coverage reported by the NH Weekly Visible Satellite Charts (Robinson et al.
2012) for the week of 1–7 Dec 2020.
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SCE changed in June 1999. These methods use different data
and a refined grid partition of 24 km covering the NH to esti-
mate snow presence/absence on the 190.4-km resolution grid;
these changes are detailed in Estilow et al. (2015). Brown et al.
(2007) did not find evidence of inhomogeneities over northern
Canada before and after the 1999 change; however, Déry and
Brown (2007) claim that pre-1999 methods overestimate snow
presence in mountainous regions during spring ablation. An
analysis of the 1999 changes is provided later.

There are other changes in the data construction procedure
Estilow et al. (2015) for the data product studied here. In June of
1977, the Defense Meteorological Satellite Program data supple-
mented the data record. Next, Geostationary Meteorological Sat-
ellite imagery was introduced to the data construction in February
of 1988 and January 1989. In May of 1999, the IMS system was

introduced into the data construction process. Finally, NOAA
took over responsibility of data construction in June of 2008.

Ten years of observations for a cell located near Napoleon,
North Dakota (46.43098N, 99.88528W), from August 1967 to
July 1976 are displayed in Fig. 2. This cell will be analyzed in de-
tail in section 5. The graph reveals the ephemeral nature of
snow processes here, starting each year circa November and typ-
ically lasting through early April. Once snow cover is present, it
usually stays through spring ablation; however, years exist when
snow is absent midwinter (1967/68 and 1973/74, for examples).

The data in this study contain 7744 NH cells, 3011 of which are
deemed to be over land. See the metadata for the key to this par-
tition, or to obtain cell areas. Winter-centered years are used here
so that the first week of any year corresponds to the first week of
August. This scaling prevents a single winter’s snow record from
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Snow coverage in a cell near Napoleon, ND

FIG. 2. (top) Ten years of snow presences/absences (August 1967–July 1976) for a cell near
Napoleon, ND (46.43098N, 99.88528W). (bottom) Ten years (August 1967–July 1976) of simu-
lated data. This simulation is discussed in section 5. In both graphics, the yearly tick marks refer
to 1 Aug of each calendar year, employing a winter-centered year paradigm.
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lying within two distinct years. Shifting in this manner is done for
convenience only}the scaling does not influence any trends.

Data preprocessing

Before beginning any analysis, each land cell was categorized
into four subgroups, depending on its data. Group 1 includes all
cells that reported 10 or fewer weeks of snow cover during the
1967–2020 period of record (2808 weeks). This group also contains
any cell that reported 10 or fewer weeks of bare ground over the
record period. Group 1 cells primarily lie in the southerly latitudes
of the NH, which rarely experience snow, or the interior Greenland
icecap, which is almost always under snow cover. All 1131 Group 1
cells were excluded as any trends computed from these records
lack sufficient information/variability to fit our model (there are
more model parameters than changes in snow presence/absence).

Group 2 contains 72 cells that were insufficiently fitted by our
model (our model is the subject of the next section). While these
cells all had more than 10 snow/bare ground weeks during the
2808 week study period, they typically did not have many more.
While one can theoretically obtain trend estimates for cells in
Group 2, error margins obtained are so large that any trend esti-
mates would essentially be meaningless. These cells were primar-
ily located in southern China, the southern United States, and
coastal Greenland. While one could combine Group 1 and
Group 2 together into a single “insufficient information” group,
we keep the groups separate on this technical distinction: trend
error margins do not exist in Group 1, and while they exist for
Group 2, they are too large to make any conclusions.

Several studies (Bormann et al. 2018; Estilow et al. 2015)
discuss the unreliable snow presence/absence estimates in
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Snow coverage in a cell from the Himalayas (1996−2006)

FIG. 3. A cell from the Himalayas (27.96828N, 97.70948E) with untrustable data. (top) Ten years
of snow presence/absence from August 1996 to July 2006. Tick marks are placed at 1 Aug of each
calendar year. (bottom) The number of snow-covered weeks during the 1967–2020 period. Tick
marks are placed at 1 Aug of each calendar year.
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mountainous regions in the pre-1999 data. Figure 3 plots the
data from an example Group 3 cell located in the Chinese Hi-
malayan mountain range near 27.96828N, 97.70948E. Several
issues are apparent. The top plot shows that some of the ear-
lier years in the record have no snow cover in winter weeks,
but some snow cover during summer weeks. The bottom plot
reveals that the pre-1999 years report very little snow cover
compared to the post-1999 years. While the methodological
revisions in 1999 may render the post-1999 data believable,
this cell is best excluded in a trend analysis. As such, our im-
mediate objective is to construct a quality control method to
be applied to all cells before trend analysis.

Let {Xt} denote the two-state snow presence/absence series
in time. Here, Xt 5 1 means that snow cover is present at time
t and Xt 5 0 means that snow is absent at time t. Let Sn be the
number of weeks of snow on the ground during year n:

Sn 5 ∑
T

n51
1[X(n21)T1n51],

where 1A denotes the indicator of the event A and T 5 52 is
the period of the data.

As a quality control measure, a traditional cumulative sum
(CUSUM) test statistic is applied to {Sn} from each land cell

not in Groups 1 or 2. The CUSUM statistic has been widely
used for statistical quality control for more than 50 years
(Bissell 1969). The CUSUM method checks for structural
breaks in the {Sn} data series. The significance level for the
test was set to 1 3 1025. If the CUSUM statistic for the cell
has a p value less than this significance level, the cell is
deemed corrupted and is classified as belonging to Group 3.

Group 3 contains 190 cells. These cells overwhelmingly re-
side in the mountainous regions of the NH (Rockies, Alps,
Caucasus, Scandinavia, and Himalayas) and are omitted from
further analysis. The discarded cells largely align with the re-
gions discussed in Bormann et al. (2018). Our CUSUM analy-
sis addresses a point raised in Estilow et al. (2015): “More
research is needed to determine whether SCE analysis in
mountainous regions (e.g., the Tibetan Plateau) shows sys-
tematic change during this time period.” We concur with
Bormann et al. (2018): the analysis in the Tibetan and other
high mountain regions changed with the implementation of
the IMS based product in May of 1999. The data before 1999
are unreliable in many high mountain regions.

Figure 4 depicts the group category of all cells; there are
1618 violet-shaded cells where our model fit was deemed reli-
able. These cells cover most areas of the NH where snow is

FIG. 4. A graphical partition of this studies’ cell groups. The violet colored cells (Group 4)
were deemed analyzable. Group 1 cells are excluded because there are not enough changes from
presence to absence (or vice versa) to fit our model. Group 3 cells were excluded as their data
were deemed unreliable by our quality control methods, which agrees with the findings of other
authors. Group 2 contains a small number of cells whereby the standard errors of the trend esti-
mates are so large as to make any trend estimates untrustable.
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seasonally persistent. A spreadsheet containing the group num-
bers of our cells, and all code used for this project, is available at
https://github.com/JiajieKong/Snow-Presence-Trends.

Several previous studies of these data exist. Déry and Brown
(2007) studies the data from January 1972 to December 2006.
Déry and Brown (2007) report significant temporal autocorre-
lation in the data, at both weekly and annual scales. Autocorre-
lation makes some statistical methods such as Sen’s slope
troublesome for trend analysis as uncertainties are extremely
difficult to estimate with such a nonparametric method (Yue
et al. 2002). Negative trends in SCE area are reported in Déry
and Brown (2007) from March through June. Figure 4.3 in
Lemke et al. (2007) shows March–April snow cover departures
by subtracting the percentage coverage (by cell) of weeks with
snow cover from 1988 to 2004 minus the same percentage cov-
erage during 1967–87. While it is not clear how to interpret
such a statistic as any type of smooth trend, the largest reduc-
tions in that study occurred roughly between the 08 and 58C
isotherms.

3. Model and estimation

a. The model

Our methods use a two-state Markov chain model on the
states {0, 1} to describe the series for a fixed cell. This model
can accurately quantify trend uncertainty as shown below.
State zero indicates lack of snow and state one signifies snow
cover. The transition probability matrix of this chain from
week t2 1 to week t is parameterized as

P(t) 5
p0,0(t) p0,1(t)
p1,0(t) p1,1(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

Here, p0,1(t) is the probability that snow cover is present at
time t given that it is absent at time t 2 1. The other three ele-
ments in the matrix are similarly interpreted. There are only
two free quantities in P(t) at any t since p0,0(t) 5 1 2 p0,1(t)
and p1,0(t)5 12 p1,1(t).

The marginal probability distribution of Xt at time t will be
denoted by p(t) 5 [p0(t), p1(t)]5 [P(Xt 5 0), P(Xt 5 1)]. Be-
cause the chain commences with an observation in August,
the startup condition p(1)5 (1, 0) is taken, signifying that the
chain starts with bare ground. With this initial distribution,
p(t) is computed via

p(t) 5 p(1)*
t

k52
P(k): (1)

For each pair of times t1 , t2 in {1, … , N}, the transition
matrix

P*(t1, t2) 5 *
t2

t5t111
P(t)

contains the four transition probabilities of snow cover/
absence from time t1 to time t2.

Since p0,1(t) and p1,0(t) are probabilities, they take values in
[0, 1]. Hence, these quantities are modeled with the logistic-
type link

p0,1(t) 5
1

1 1 exp(2mt)
, p1,0(t) 5

1
1 1 exp(2m*

t )
,

where mt and m*
t contain seasonal effects and trend parame-

ters. These quantities are posited to have the additive form

mt 5 mt 1 at, m*
t 5 m*

t 1 a*t,

where the parameters are clarified as follows. For the weekly
observations analyzed here, the period T5 52 weeks is forced
to the data by omitting any observations that occur at the end
of July (one day during nonleap years and two days during
leap years). This tactic results in little loss of precision; see
Lund et al. (2006) for similar tactics. The parameters mt and
m*
t contain seasonal effects that are sinusoidaly parameterized

as

mt 5 A0 1 A1 cos
2p(t 2 t)

T

[ ]{ }
,

m*
t 5 A*

0 1 A*
1 cos

2p(t 2 t*)
T

[ ]{ }
:

Observe that mt and m*
t are periodic with period T 5 52 weeks

and obey mt1T 5 mt and m*
t1T 5m*

t . The quantities A0 and A*
0

govern the length of the snow season. For example, when
A0 . 0, the season where snow is present tends to last longer
than the snow free season (and vice versa). The parameters
A1 and A*

1, which are assumed positive for mathematical iden-
tifiability of the cosine waves, control how fast snow to bare
ground transitions take place (and vice versa). The parame-
ters t and t∗ are phase shifts. Since p0,1(t) and/or p1,0(t) are
maximized when mt and/or m*

t is maximized, and the cosine
function is maximized when its argument is zero, p0,1(t) is
maximized at week t, which is typically in the late fall or early
winter, and p1,0(t) is maximized at week t∗, which typically oc-
curs in the late winter or early spring. The parameters a and
a∗ are linear trend parameters and govern how fast snow
cover changes are happening. While the above model has a
linear time trend and a simple cosine seasonal cycle, other
forms of trends and seasonality could be used if needed.

Our periodic Markov chain model allows Xt to be autocor-
related in time t. Indeed, week-to-week SCE data exhibit cor-
relation: if snow is present/absent at week t, it is more likely
to be present/absent at week t 1 1. Good models for snow
depth processes are also correlated in time. Indeed, Woody
et al. (2009) argues for a Markov structured storage model for
daily snow depths: the snow depth today is the snow depth
yesterday, plus any new snowfall, minus any meltoff or com-
paction between yesterday and today. Our model is not a clas-
sical Probit count time series model as these are typically used
for uncorrelated data; see Chib and Greenberg (1998) for
more on probit modeling. A Markov model for binary data is
parsimonious in that there are only two free parameters in
P(t) for each fixed t. While seasonal and trend features need
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to be incorporated into P(t) to handle the periodic nature of
snow, the overall model is very parsimonious. Comparing fur-
ther, a time homogeneous Markov model for categorical se-
quences taking on S distinct categories has S(S 2 1) free
parameters, which is quite large for a large S. Additional pa-
rameters would be needed to make this model periodic.

Figure 5 shows a simulation of ten years of a binary snow
presence process. The parameters chosen for p0,1(t) are
A0 5 3, A1 5 10, t 5 25, a 5 0, and those for p1,0(t) are
A*

0 5 0, A*
1 5 10, t* 5 5, a* 5 0; specifically, there is no

trend in the simulated data. One sees that each and every
year, snow presence begins in the fall and stays on the ground
until spring. oscillations between seasonal snow presence and
bare ground occur in the fall, and snow vanishes completely
during the summer. Additional simulations show that this sim-
ple Markov chain model produces a flexible suite of snow
presence/absence series.

b. Parameter estimation

Suppose that the data sample X 5 (X1, … , XN)′ is avail-
able for a cell. We assume that N is a multiple of T to avoid
trite work with fractional portion of years; this said, the meth-
ods are easily modified to accommodate fractional parts of
years if needed. Let d5 N/T denote the total number of years
of observations; we work with observations indexed as the
years 1, 2, … , d.

LetQ denote all model parameters contained in mt andm*
t .

These include A0, A1, t, a and their starred counterparts. The
statistical likelihood of Q, denoted by L(Q|X), can be derived
from the Markov property and is

ln[L(H|X)] 5 ∑
N

t52
ln[pXt21 ,Xt

(t)]: (2)

The quantities pi,j(t) depend on Q. Numerically maximizing
this likelihood is the classical statistical way of estimated the
components in Q; that is, likelihood estimates model parame-
ters as those that make the observed data most likely. These
estimates will be used later in assessing variability (uncer-
tainty) margins of the trends. The data X1, … , XN are held
fixed in this maximization. While explicit forms for the estima-
tors of the components in Q do not exist, likelihood estimates
can be obtained numerically. The R programming language
version 4.1.2 was used for all statistical coding in this study,
the numerical routine “optim” was employed for optimization
in this study.

c. Trend estimation and their uncertainties

Trends will be phrased in the number of snow days lost/
gained per decade. For example, future trends will be phrased
as a loss of one day of annual snow cover over a decade.
Trends are estimated directly from the data product for all

FIG. 5. A simulated 10-yr snow absence/presence series with plots of the transition probabilities p0,1(t) and p1,0(t). The
parameters areA0 5 3,A1 5 10, t 5 25, a 5 0, andA*

0 5 0, A*
1 5 10, t* 5 5, a* 5 0 (no trend).
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Group 4 cells. The linear rate of SCE change is quantified by
b̂ defined by

b̂ 5

∑
d

k51
Sk(k 2 k)

∑
d

k51
(k 2 k)2

5

∑
d

k51
Sk(k 2 k)
Q

, (3)

where k 5 (d1 1)/2 is the average time index and the denom-
inator can be verified as Q 5 d(d 1 1)(d 2 1)/12. While the
units of b are weeks of snow cover gained/lost per year, we
will scale b̂ to days of snow cover gained/lost per decade for
interpretability; this simply multiplies raw trends and their
standard errors by 70.

Our next objective is to obtain a standard error for b̂. Taking
a variance in (3) gives

Var(b̂) 5
∑
d

k51
∑
d

‘51
(k 2 k)(‘ 2 k)Var(Sk, S‘)

Q2 :

This computation requires Cov(Sn, Sn1h) for every h . 0 and
n in {1, … , d 2 h}. Details for this computation are provided
in the appendix. The standard error of b̂ accounts for any cor-
relation in the SCE data.

To statistically test whether or not SCE is changing, we
want to test the null hypothesis that b 5 0 against the alterna-
tive that b Þ 0. Invoking asymptotic normality of the estima-
tor b̂, this is assessed through the Z-score statistic

Z 5
b̂

Var(b̂)1/2 ,

which is compared to the standard normal distribution to
make conclusions. One typically reports a p value for the test
to assess significance of the trends; this is illustrated further in
section 6.

4. A simulation study

This section studies our model and estimation procedure
via simulation, illustrating the model’s capabilities and how
parameters are estimated.

To demonstrate the model’s flexibility, Fig. 6 provides 10-yr
sample plots of snow presence/absence series generated by
models for five sets of parameter values. Only 10 years of data
are shown as it becomes visually difficult to see data features
with longer series (the plot becomes “compressed”). Table 1
lists all parameters considered. The unstarred parameters
govern p0,1(t), which controls transitions from bare ground to
snow cover; the starred parameters govern p1,0(t), which con-
trols transitions from snow cover to bare ground.

Models I–V have no trend. Models with trends will be con-
sidered below. The parameters for Model I were chosen to
represent a scenario that is seasonally regular, with snow
cover becoming present in the late fall and staying until spring
ablation. The parameters A0 and A*

0 are set to zero, making
the winter “snow season” last roughly half the year. Model II

has the same parameters as Model I, except that t∗ was
changed from 0 to 42, shifting the cosine wave governing
p1,0(t) from its Model I settings. This change makes both
p0,1(t) and p1,0(t) relatively large during the spring months,
which induces a spring SCE season that oscillates more fre-
quently between bare ground and snow cover. Model III has
the same parameters as Model I, except that t was changed
from 25 to 20, making both p0,1(t) and p1,0(t) large during the
fall. This makes bare ground to snow cover oscillations more
common in the fall. While we do not illustrate it here, increas-
ing A1 or A*

1 makes “transitions” from winter to summer (and
vice versa) shorter (sharper). The parameters in Model IV are
set to a lower-latitude setting where snow only occurs sporadi-
cally during the middle of winter. This was done by decreasing
the A0 parameter from 0 to 230 for p0,1(t) and increasing A*

1
from 0 to 30 (compared to Model I). Model V’s parameters
correspond to a high-latitude case where snow cover is pre-
sent most of the year. This was done by increasing A1 from 0
to 30 and decreasing A*

1 from 0 to 230 (compared to Model I).
These and other simulations show that the model can generate
a wide range of SCE patterns.

To illustrate trend features, we choose parameters that
bring Model IV above to a very snowy setting, and Model V
above to a nonsnowy scenario. These are done over a 1000-yr
time period. These scenarios are not climatologically realistic
but were chosen to demonstrate the overall flexibility of the
approach. Figure 7 plots

1
T
∑
T

n51
X(k21)T1n

against the annual index k. This quantity is the proportion of
days of year k where snow cover is present. The top graphic
in Fig. 7 corresponds to Model IV, except that a was changed
from zero to 0.001 and a∗ is changed from zero to 20.001.
Here, the proportion of snow covered days rises from almost
zero to approximately 80%. The antipodal scenario is illus-
trated in the bottom graphic of this figure. This moves a very
snowy location to one with infrequent snow cover. This was
done by taking Model V’s parameters but changing a from 0
to20.001 and a∗ from 0 to 0.001.

Turning to estimation, our first simulation case studies a
50-yr series (N 5 2600), which is roughly the length of the
data studied here. The parameters chosen for this simulation
are those for Model I above; there is no trend in these simula-
tions. These parameters were chosen to correspond to fitted
parameters in some of our cells. Figure 8 shows violin plots of
the eight parameter estimators aggregated from 1000 inde-
pendent simulations. The solid line in each violin plot demar-
cates the median of the 1000 estimators for that parameter.
One sees little bias in the estimators. Specifically, the estima-
tion procedure was able to discern that there was no trend in
the series. Additional simulations (not shown here) indicate
that any estimator bias recedes with increasing series length.
Estimation of the eight model parameters by likelihood ap-
pears to work well in this case.

Our second simulation moves to a case with trends. This sim-
ulation takes the same series length and parameters as the
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above simulation but modifies the trend parameters to a 5 0.001
and a∗ 520:001. All parameters are fixed for the duration of
the series. Figure 9 shows violin plots of the estimates of each pa-
rameter and are again quite good; importantly, trend parameters

are accurately estimated. While the trend parameters are small in
magnitude in this simulation, they will be converted to days of
snow cover gained/lost per decade later for ease of interpretabil-
ity. Overall, the model parameters are reasonably accurately esti-
mated with 50 years of weekly data.

5. A sample cell

This section analyzes snow coverage in a cell near Napo-
leon, North Dakota (46.43098N, 99.88528W). This cell con-
tains a region studied in Woody et al. (2009).

In the ensuing analysis, our null hypothesis is that the snow
presence/absence series is not changing. This corresponds to
the null hypothesis

H0 : a 5 a* 5 0,

with the alternative hypothesis being that SCE is changing.

FIG. 6. Ten-year sample SCE series generated fromModels I–V.

TABLE 1. Model 1 is the base case: equal transitions from no
snow to snow in both fall and spring. Model II allows for more
variability in the spring snow presences. Model III allows more
variability in the fall snow presences. Model IV is for a cell that
rarely experiences snow; Model V describes a very snowy cell.

Sample simulated series

Model A0 A1 t a A*
0 A*

1 t* a*

I 0 30 25 0 0 30 0 0
II 0 30 25 0 0 30 42 0
III 0 30 20 0 0 30 0 0
IV 230 30 25 0 30 30 0 0
V 30 30 25 0 230 30 0 0
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Table 2 below shows the maximum likelihood estimates of
the parameters in the section 3 model along with a single stan-
dard error. All estimated parameters appear significantly non-
zero except for the a parameters (one does not usually assess
whether or not the phase shift parameters t and t∗ are zero).
Statistical significance is assessed using asymptotic normality.
There is no statistical evidence to conclude that a is different
from zero with a p value of 0.7708, and we conclude that
p0,1(t) is not changing. As p0,1(t) governs transitions from bare
ground to snow cover, this implies that the snow season is
starting about the same time and has not changed over the
study. In contrast, a∗ is concluded to be significantly negative
with a p value of 0.0001. A negative a∗ makes p1,0(t) smaller,
which makes it harder for snow to disappear when it is on the
ground. This translates to a later spring ablation.

To assess changes in the snow presences, the b̂ statistic in
(3) is b̂ 5 0:038 613 and Var(b̂)1/2 5 0:0247. This translates to
an additional 2.702 days of SCE over a decade. The test statis-
tic for changing SCE is Z 5 1.5633, which has a two-sided

p value of 0.1180. This p value is insignificant for a standard
5% test, but is borderline significant for a 10% test. Conclu-
sions may change further if one-sided alternative hypotheses
are considered. The Napoleon cell is experiencing increasing
(and not decreasing) SCE changes.

The top panel of Fig. 2 displays a 10-yr plot of weekly snow
presence/absence values at the Napoleon cell. The bottom
panel depicts data simulated from our model with the param-
eter estimates displayed in Table 2. Both series are of length
10 years, starting on 1 August 1967 and continuing through
31 July 1976. Visual inspection of the top and bottom panels
of Fig. 2 indicates the simulated data appear to model the real
data quite well.

6. Results

This section reports results for the 1618 cells where our
model fit was deemed reliable. Figure 10 spatially portrays the
trends b̂ over all analyzed cells. The corresponding Z scores

FIG. 7. Annual proportions of snowy days from Models IV and V with nonzero trends.
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for the trend statistics are displayed in Fig. 11. In totality, 573
of the cells (35.41%) report a positive b̂ (increasing snow),
while 1045 cells (64.58%) show a negative b̂. This is almost a
2 to 1 margin preference for declining to advancing snow
cover. The average trend over the 1618 analyzed cells has lost
1.522 days of snow cover per decade.

Examination of the spatial structure in Figs. 10, 11, and 15
reveals regions of increasing and decreasing snow presence.
Decreasing snow presence in the Arctic, particularly in Russia
and western Canada and Alaska, is seen, agreeing with the
findings of Bormann et al. (2018) and Estilow et al. (2015). In-
creasing snow is encountered in eastern Canada, the Kamchatka

Peninsula, and Japan. Other regions experiencing positive trends
can be seen in Fig. 10. The Fig. 11 Z scores are deemed signifi-
cantly nonzero should they exceed 2.0 in absolute value (the ex-
act two-sided confidence level is 0.9544). Red colored Z scores
demarcate cells where snow cover is declining with at least
97.72% confidence and blue colors depict increasing snow with
at least 97.72% confidence. Overall, a general declining snow
presence is seen along coastal areas and the periphery of the
continental snowpack, with some inland increases in SCE, espe-
cially within North America. This pattern could be associated
with a deeper snowpack within continental interiors and a shal-
lower or patchier snowpack along its edges, leading to more

FIG. 8. Violin plots of the parameter estimates from 1000 independent simulations. The red lines demarcate the true parameter values.
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rapid retreat of the snowpack and a longer duration of its center.
This coincides with the finding of the fourth IPCC report in
Lemke et al. (2007).

The left panel in Fig. 12 shows a histogram of the trend esti-
mates b̂ over all analyzed cells. The estimated trends b̂ are

approximately normally distributed with a mean of 20.02174
(the loss of 1.522 days of SCE per decade alluded to above).
The center and right panels in Fig. 12 show histograms of the
â and â* parameters, respectively, over these same cells. The
average a is20.0004168 and the average a∗ is20.0001431.

FIG. 9. Violin plots of the parameter estimates aggregated from 1000 independent simulations. The red lines demarcate the true parameter
values.

TABLE 2. Model parameter estimates and their standard errors for a cell containing Napoleon, ND.

Parameter A0 A1 t a A*
0 A*

1 t* a*

Estimate 23.2016 4.1499 24.3492 0.000 038 2 1.7258 3.7889 49.8375 20.000 493 5
Standard error 0.2538 0.2936 0.264 60 0.000 131 5 0.3774 0.4139 0.3800 0.000 127 3
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We now move to an investigation of temporal changes in
the total SCE area. Figure 13 plots the total snow covered
area in each week of the study over all analyzed cells. Areas
were obtained by adding the area of all snow covered cells;
cell areas are included with metadata (Robinson et al.
2012).

The seasonal cycle of SCE is evident, with winter weeks
having the most prevalent snow cover. While interannual vari-
ability is apparent, changes in this series are not visually evi-
dent in a visual inspection.

The Fig. 13 series is denoted by {Gt} and is now analyzed
with a periodic linear regression. More on periodic regression
analyses can be found in Lund et al. (1995) and Lund (2006).
Our regression model forGt at time t5 nT1 n is

GnT1n 5 mn 1 bn |(nT 1 n)| 1 enT1n : (4)

The parameter bn quantifies the linear rate of change in data
during the n th week, for 1 # n # 52; mn is a location parame-
ter for week n . The trend slope bn is allowed to depend on
the week of year n , enabling us to investigate changes within
a calendar year. The regression errors {et} are assumed to
have a zero mean for every week n .

The week n trend bn can be estimated via (Lund et al.
1995)

b̂n 5

∑
d

n51
(GnT1n 2 Gn )(nT 1 n)

∑
d

n51
(nT 1 n 2 tn )2

: (5)

Here, tn 5 d21∑
d
n51(nT 1 n)5(d1 1)T/21 n and Gn 5

d21∑
d
n51GnT1n . The denominator in (5) can be worked out as

T2d(d 1 1)(d 2 1)/12. We will not delve into standard error
computations for b̂n , but refer the interested reader to Lund
et al. (2001) for more on the issue.

Figure 14 plots estimates of bn against n for each week of
year; see Lund et al. (1995) for the equations to fit this model.
Increasing SCE is evident in the fall (late October through
early December), with a corresponding decrease in late winter
through summer. While increases span only a few months and
include brief peaks above 0.5 million km2, the decrease spans
February–September, with losses below 0.5 million km2 from
May through July. This implies that while the snow season is
experiencing a shift toward an earlier onset and ablation pe-
riod, there is a more pronounced decrease in snow cover
through the warm season that is not being offset by increased
snow in the fall and early winter. Implications of this finding
include a change in seasonal water availability.

FIG. 10. Raw trends in the SCE data converted to days gained/lost per decade. Red and blue
depict SCE losses and increases, respectively. Declining SCE cells outnumber advancing SCE
cells by roughly a two to one ratio.
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As a final task of this section, we analyze possible issues in-
duced by the methodological changes used to extract the SCE
data (these are called breakpoint times or interventions). As
noted in section 2, there are five potential breakpoints in the
data (Estilow et al. 2015).

Breakpoints are discontinuity features in time series that
occur at known times. Breakpoints (also called interventions)
often take place when measuring conditions change, such as
station relocations or updates to gauge sensors. We will

investigate possible breakpoints in June 1977, February 1988,
January 1989, May 1999, and June of 2008, all times where
the methods to extract the zero-one SCE data changed. It
would require more work to find and adjust the data for un-
documented breakpoint times (called changepoints when the
time of the discontinuity is unknown). Future work will assess
changepoint features and homogenize the data in the individ-
ual cells. A caveat: while Lu et al. (2010) is one changepoint
reference for approximately normally distributed temperature

FIG. 11. Z scores of the SCE trends. Trends in around half of the cells are not significantly
changing (nonzero). Red indicates declining SCE and blue increasing SCE, with one-sided confi-
dence of at least 97.5%.
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FIG. 12. Histograms over all 1618 analyzed cells of (left) the estimated SCE trends b̂, (center) the â estimates, and (right) the â* estimates.
All histograms appear roughly unimodal (normally distributed). The mean of the left histogram is slightly negative.
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data, methods to homogenize zero-one count data have yet to
be developed (or have not matured) in the statistics literature.

This will be done for the total SCE only; a deeper analysis
exploring the effects on the individual cells is omitted. To con-
duct this analysis, shifts are allowed during June 1977, Febru-
ary 1988, January 1989, May 1999, and June 2008. The setting
is quantified through the regression

GnT1n 5 mn 1 bn (nT 1 n) 1 ∑
5

i51
Di1(nT1n $bi)

1 enT1n , n 5 0, 1, …, d 2 1: (6)

Here, b1 5 515, b2 5 1069, b3 5 1117, b4 5 1654, and
b5 5 2126 are the week time indexes of the June 1977,

February 1988, January 1989, May 1999, and June 2008 break-
point times and Di is the associated shift size of the ith breakpoint
time. We do not allow Di to depend on n , but could do so if
desired.

Next, a backward elimination regression procedure at level
95% was conducted to eliminate insignificant breakpoint times.
This procedure found the June 1977 and June 2008 breakpoints
to be insignificant. The regression model was refitted with the
other three breakpoints, D2, D3, and D4. Estimates of these three
shift sizes are shown in Table 3. The listed p values for these shift
sizes indicate high confidence that the methodological changes
impacted observations, essentially making observations
“snowier.” In fact, the only positive trend slopes occur fromOcto-
ber to December after the breakpoints are taken into account.
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FIG. 13. Total SCE area by week over the period of record. Trends are not visually obvious.
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7. Summary and comments

This paper estimated Northern Hemispheric SCE trends
over the last 54 (winter-centered) years. A flexible model was
developed to quantify trends in periodic presence/absence
data and assess their uncertainty margins. The SCE data were
collected weekly and are count valued, taking the value of
unity if snow is present and zero if snow cover is absent. The
data are periodic, with snow being more prevalent in the win-
ter weeks. A contribution of this paper is the development of
a model that adequately captures the data’s periodicities and
count structure. Uncertainty margins of the trend estimates
were developed. The model is highly flexible and could be fit-
ted to most cells in Europe, North America, and Asia that re-
port snow. In most of the contiguous United States, trends

could be reliably assessed down to latitudes of Prescott, Ari-
zona; Carlsbad, New Mexico; and Knoxville, Tennessee (the
exception being some questionable SCE data from cells in
mountainous area).

The results show that snow cover is declining overall, by a
margin of almost 2 to 1 in terms of cell numbers. Arctic locali-
ties are showing heavy snow cover loss; however, some
regions are experiencing increasing snow coverage, most no-
tably central and eastern Canada and the Kamchatka and Ja-
pan vicinity. Along with this general decline, a shift in the
snow season toward an earlier onset and an earlier ablation
period was seen, with the onset trending toward more snow in
November and the ablation period showing declines from
February through late spring and early summer. The in-
creased ablation in the warm season is not offset by the in-
creased snow cover in the late fall, possibly implying an
overall change in the timing and distribution of water avail-
ability to regions that rely on spring snowmelt.

Statistical improvements can be made to this analysis.
There is undoubtedly some nonzero spatial correlation be-
tween neighboring cells. Accounting for spatial correlation
would potentially lower uncertainty margins in the trend es-
timates; correlation usually does not appreciably change
trend estimates, but accounting for correlation in multiple
similar cells could reduce uncertainty margins in the trends.

TABLE 3. Estimates, standard errors (S.E.), and p values for the
breakpoints in February 1988, January 1989, and May 1999.

D̂2
(February 1988)

D̂3
(January 1989)

D̂4
(May 1999)

Estimate 21.871 1.196 0.407
S.E. 0.291 0.291 0.144
p value 1.48 3 10210 4.06 3 1025 0.0047

FIG. 15. Model-based trends estimated via (7) and converted to days gained/lost per decade.
Red and blue depict SCE losses and increases, respectively. Declining SCE cells outnumber
advancing SCE cells by roughly a two to one ratio. The graphic is similar to Fig. 10.
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Given the data quality issues present, the authors felt it
more prudent to analyze the cells one by one and report
which ones were “unusable,” which a spatial analysis
would not do (at least initially). It is also possible to
smooth the Fig. 10 trends and/or their Z scores in Fig. 11
in a spatial manner. We did not pursue this here due to
length concerns.

The reader may note that our trend estimates are based on
the data only and do not depend on the model (as it should
be). This said, one can also extract a trend estimate from the
model. One model-based trend is

E[Sn] 2 E[S1]
n 2 1

: (7)

Both E[Sn] and E[S1] are computed from the estimated model
parameters, say computed ignoring the breakpoint. Figure 15
shows a plot of these trends, converted to days of SCE
gained/lost per decade. The graphic naturally resembles
Fig. 10. Differences in the estimated and modeled trends are
shown in Fig. 15 and are very small overall.

While most cells report what appears to be high-quality
data, the green-colored cells in Fig. 4 contain suspect data.
The hope is that the data from these cells can be reexamined/
fixed in the future for inclusion in studies such as this.
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Data availability statement. The Northern Hemispheric
snow cover extent data in this study are available at https://
www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=
gov.noaa.ncdc:C00756. The data from August 1967 to July
2021 were used here to obtain 54 complete winter-centered
years.

APPENDIX

Derivation of Variance for Eq. (3)

We start by computing Cov(Sn, Sn1h) for every h . 0 and
n in {1, … , d 2 h}. For this, Cov(Sn, Sn1h) 5 E[SnSn1h] 2
E[Sn]E[Sn1h]. To get E[Sn], use

E[Sn] 5 E ∑
T

n51
1[X(n21)T1n 51]

[ ]
5 ∑

T

n51
P[X(n21)T1n 5 1]

5 ∑
T

n51
p1[(n 2 1)T 1 n]:

This quantity will need to be estimated/evaluated at the
model’s maximum likelihood parameters.

The calculation of E[SnSn1h] for h . 0 is a little more
delicate. First, suppose that h . 0; the case where h 5 0
will be handled separately. Then

E[SnSn1h] 5 E ∑
T

u51
1[X(n21)T1u51]

( )
∑
T

n51
1[X(n1h21)T1n 51]

( )[ ]

5 ∑
T

u51
∑
T

n51
P[X(n21)T1u 5 1>X(n1h21)T1n 5 1]

5 ∑
T

u51
∑
T

n51
P[X(n21)T1u 5 1]

3 P[X(n1h21)T1n 5 1|X(n21)T1u 5 1]

5 ∑
T

u51
∑
T

n51
p1(t1)P*(t1,t2)2,2,

where, t1 5 (n 2 1)T1u, t2 5 (n 2 1)T 1 n , and the nota-
tion Ai,j denotes the element in the ith row of the jth col-
umn of the matrix A.

For the case where h 5 0, direct computation yields

E[S2n] 5 E
[
∑
T

u51

(
1[X(n21)T1u51]

)2]

1 2E
[
∑
T

u51
∑
T

n5u11
1[X(n21)T1n 51] 3 1[X(n21)T1n 51]

]

5 ∑
T

u51
P[X(n21)T1u 5 1]

1 2∑
T

u51
∑
T

n5u11
P[X(n21)T1u 5 1>X(n21)T1n 5 1]

5 ∑
T

u51
p1(t1) 1 2∑

T

u51
∑
T

n5u11
p1(t1)P(t1,t2)2,2

after the relation 12A 5 1A is applied. Here, t1 5 (n 2 1)T 1 u
and t2 5 (n 2 1)T 1 n . This calculation allows us to compute
Cov(Si, Sj) for every i and j.
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