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Abstract

The offline reinforcement learning (RL) problem is often motivated by the need to
learn data-driven decision policies in financial, legal and healthcare applications.
However, the learned policy could retain sensitive information of individuals in the
training data (e.g., treatment and outcome of patients), thus susceptible to various
privacy risks. We design offline RL algorithms with differential privacy guarantees
which provably prevent such risks. These algorithms also enjoy strong instance-
dependent learning bounds under both tabular and linear Markov Decision Process
(MDP) settings. Our theory and simulation suggest that the privacy guarantee
comes at (almost) no drop in utility comparing to the non-private counterpart for a
medium-size dataset.

1 Introduction

Offline Reinforcement Learning (or batch RL) aims to learn a near-optimal policy in an unknown
environment! through a static dataset gathered from some behavior policy p. Since offline RL
does not require access to the environment, it can be applied to problems where interaction with
environment is infeasible, e.g., when collecting new data is costly (trade or finance [Zhang et al.,
2020]), risky (autonomous driving [Sallab et al., 2017]) or illegal / unethical (healthcare [Raghu
et al., 2017]). In such practical applications, the data used by an RL agent usually contains sensitive
information. Take medical history for instance, for each patient, at each time step, the patient reports
her health condition (age, disease, etc.), then the doctor decides the treatment (which medicine to use,
the dosage of medicine, etc.), finally there is treatment outcome (whether the patient feels good, etc.)
and the patient transitions to another health condition. Here, (health condition, treatment, treatment
outcome) corresponds to (state, action, reward) and the dataset can be considered as n (number of
patients) trajectories sampled from a MDP with horizon H (number of treatment steps). However,
learning agents are known to implicitly memorize details of individual training data points verbatim
[Carlini et al., 2019], even if they are irrelevant for learning [Brown et al., 2021], which makes offline
RL models vulnerable to various privacy attacks.

Differential privacy (DP) [Dwork et al., 2006] is a well-established definition of privacy with many
desirable properties. A differentially private offline RL algorithm will return a decision policy that
is indistinguishable from a policy trained in an alternative universe any individual user is replaced,
thereby preventing the aforementioned privacy risks. There is a surge of recent interest in developing
RL algorithms with DP guarantees, but they focus mostly on the online setting [Vietri et al., 2020,
Garcelon et al., 2021, Liao et al., 2021, Chowdhury and Zhou, 2021, Luyo et al., 2021].

"The environment is usually characterized by a Markov Decision Process (MDP) in this paper.
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Offline RL is arguably more practically relevant than online RL in the applications with sensitive data.
For example, in the healthcare domain, online RL requires actively running new exploratory policies
(clinical trials) with every new patient, which often involves complex ethical / legal clearances,
whereas offline RL uses only historical patient records that are often accessible for research purposes.
Clear communication of the adopted privacy enhancing techniques (e.g., DP) to patients was reported
to further improve data access [Kim et al., 2017].

Our contributions. In this paper, we present the first provably efficient algorithms for offline RL
with differential privacy. Our contributions are twofold.

* We design two new pessimism-based algorithms DP-APVI (Algorithm 1) and DP-VAPVI
(Algorithm 2), one for the tabular setting (finite states and actions), the other for the case
with linear function approximation (under linear MDP assumption). Both algorithms enjoy
DP guarantees (pure DP or zCDP) and instance-dependent learning bounds where the cost
of privacy appears as lower order terms.

* We perform numerical simulations to evaluate and compare the performance of our algorithm
DP-VAPVI (Algorithm 2) with its non-private counterpart VAPVI [Yin et al., 2022] as well
as a popular baseline PEVI [Jin et al., 2021]. The results complement the theoretical findings
by demonstrating the practicality of DP-VAPVI under strong privacy parameters.

Related work. To our knowledge, differential privacy in offline RL tasks has not been studied before,
except for much simpler cases where the agent only evaluates a single policy [Balle et al., 2016, Xie
et al., 2019]. Balle et al. [2016] privatized first-visit Monte Carlo-Ridge Regression estimator by an
output perturbation mechanism and Xie et al. [2019] used DP-SGD. Neither paper considered offline
learning (or policy optimization), which is our focus.

There is a larger body of work on private RL in the online setting, where the goal is to minimize regret
while satisfying either joint differential privacy [Vietri et al., 2020, Chowdhury and Zhou, 2021, Ngo
etal., 2022, Luyo et al., 2021] or local differential privacy [Garcelon et al., 2021, Liao et al., 2021,
Luyo et al., 2021, Chowdhury and Zhou, 2021]. The offline setting introduces new challenges in DP
as we cannot algorithmically enforce good “exploration”, but have to work with a static dataset and
privately estimate the uncertainty in addition to the value functions. A private online RL algorithm
can sometimes be adapted for private offline RL too, but those from existing work yield suboptimal
and non-adaptive bounds. We give a more detailed technical comparison in Appendix B.

Among non-private offline RL works, we build directly upon non-private offline RL methods known
as Adaptive Pessimistic Value Iteration (APVI, for tabular MDPs) [Yin and Wang, 2021b] and
Variance-Aware Pessimistic Value Iteration (VAPVI, for linear MDPs) [Yin et al., 2022], as they give
the strongest theoretical guarantees to date. We refer readers to Appendix B for a more extensive
review of the offline RL literature. Introducing DP to APVI and VAPVI while retaining the same
sample complexity (modulo lower order terms) require nontrivial modifications to the algorithms.

A remark on technical novelty. Our algorithms involve substantial technical innovation over
previous works on online DP-RL with joint DP guarantee®. Different from previous works, our
DP-APVI (Algorithm 1) operates on Bernstein type pessimism, which requires our algorithm to deal
with conditional variance using private statistics. Besides, our DP-VAPVI (Algorithm 2) replaces the
LSVI technique with variance-aware LSVTI (also known as weighted ridge regression, first appears
in [Zhou et al., 2021]). Our DP-VAPVI releases conditional variance privately, and further applies
weighted ridge regression privately. Both approaches ensure tighter instance-dependent bounds on
the suboptimality of the learned policy.

2 Problem Setup

Markov Decision Process. A finite-horizon Markov Decision Process (MDP) is denoted by a tuple
M = (S, A, P,r,H,dy) [Sutton and Barto, 2018], where S is state space and .4 is action space. A
non-stationary transition kernel Pp, : S x A x S + [0, 1] maps each state action (sp, ap,) to a probabil-
ity distribution Py, (-|sp, ap) and P, can be different across time. Besides, r;, : S x A — R is the ex-
pected immediate reward satisfying 0 < r;, < 1, d is the initial state distribution and H is the horizon.

Here we only compare our techniques (for offline RL) with the works for online RL under joint DP guarantee,
as both settings allow access to the raw data.



A policy m = (my,- -+ , ) assigns each state s, € S a probability distribution over actions accord-
ing to the map sp, — m,(+|sn), Vh € [H]. A random trajectory si,a1,71, " ,SH,QH, H, SH+1 1S
generated according to s1 ~ dy,ap ~ 7 (-|Sk), h ~ Th(Sh,an), She1 ~ Pr(:|sh,an),Vh € [H].

For tabular MDP, we have S x A is the discrete state-action space and S := |S|, A := |.A] are finite.
In this work, we assume that - is known>. In addition, we denote the per-step marginal state-action
occupancy dj (s, a) as: dj; (s, a) := P[s, = s|s1 ~ di, w|-mp(a|s), which is the marginal state-action
probability at time h.

Value function, Bellman (optimality) equations. The value function V;7(-) and Q-value func-
tion Q7 (-,-) for any policy = is defined as: V;7(s) = ]EW[Zih rilsn = s, Qi(s,a) =
]EW[Zf:h r¢|Sp,an = S,a], Yh,s,a € [H] x § x A. The performance is defined as v™ :=
Eq, V] = Er g, {ZtH: 1 rt}. The Bellman (optimality) equations follow Vh € [H]: Qf =
Th + Ph,V}ZT+1a V}ZT = anﬂh [Q;{]v Q;; =r,+ th}f+17 V}: = maX, QZ(? a)'

Linear MDP [Jin et al., 2020b]. An episodic MDP (S, A, H, P, r) is called a linear MDP with
known feature map ¢ : S x A — R if there exist H unknown signed measures v, € R? over S and
H unknown reward vectors 6, € R¢ such that

Py (s ] s,a) = (¢(s,a),vn (s")), 7n(s,a) = (d(s,a),0n), V(h,s,a,s)€HxSxAxXS.

Without loss of generality, we assume ||¢(s,a)|s < 1 and max(||v,(S)||2, [|0n]l2) < V/d for all
h,s,a € [H] x § x A. An important property of linear MDP is that the value functions are linear in
the feature map, which is summarized in Lemma E. 14.

Offline setting and the goal. The offline RL requires the agent to find a policy 7 in order to maximize
the performance v™, given only the episodic data D = {(s},, a},, },, 52+1)}fg5]4 rolled out from some
fixed and possibly unknown behavior policy i, which means we cannot change p and in particular
we do not assume the functional knowledge of u. In conclusion, based on the batch data D and a
targeted accuracy € > 0, the agent seeks to find a policy 7y such that v* — v™i < e,

2.1 Assumptions in offline RL

In order to show that our privacy-preserving algorithms can generate near optimal policy, certain
coverage assumptions are needed. In this section, we will list the assumptions we use in this paper.

Assumptions for tabular setting.

Assumption 2.1 ([Liu et al., 2019]). There exists one optimal policy *, such that 7 is fully covered
by i, i.e. Vsp,ap €S X A, dg*(sh, an) > 0 only if d)\(sp,an) > 0. Furthermore, we denote the
trackable set as Cp, := {(sp,an) : d} (sn,an) > 0}.

Assumption 2.1 is the weakest assumption needed for accurately learning the optimal value v* by
requiring p to trace the state-action space of one optimal policy (1 can be agnostic at other locations).
Similar to [Yin and Wang, 2021b], we will use Assumption 2.1 for the tabular part of this paper,
which enables comparison between our sample complexity to the conclusion in [Yin and Wang,
2021b], whose algorithm serves as a non-private baseline.

Assumptions for linear setting. First, we define the expectation of covariance matrix under the
behavior policy p for all time step h € [H] as below:

P =E, [¢(sn,an)d(sn. an) '] . M

As have been shown in [Wang et al., 2021a, Yin et al., 2022], learning a near-optimal policy from
offline data requires coverage assumptions. Here in linear setting, such coverage is characterized by
the minimum eigenvalue of ¥} . Similar to [Yin et al., 2022], we apply the following assumption for
the sake of comparison.

Assumption 2.2 (Feature Coverage, Assumption 2 in [Wang et al., 2021a]). The data distributions
w satisfy the minimum eigenvalue condition: ¥ h € [H], kp := Amin(X}) > 0. Furthermore, we
denote Kk = miny, kp,.

3This is due to the fact that the uncertainty of reward function is dominated by that of transition kernel in RL.
*For clarity we use n for tabular MDP and K for linear MDP when referring to the sample complexity.



2.2 Differential Privacy in offline RL

In this work, we aim to design privacy-preserving algorithms for offline RL. We apply differential
privacy as the formal notion of privacy. Below we revisit the definition of differential privacy.

Definition 2.3 (Differential Privacy [Dwork et al., 2006]). A randomized mechanism M satisfies
(e, 8)-differential privacy ((e,§)-DP) if for all neighboring datasets U, U’ that differ by one data
point and for all possible event E in the output range, it holds that

PM(U) € E] <ef-PM(U') € E] + 4.
When 6 = 0, we say pure DP, while for § > 0, we say approximate DP.

In the problem of offline RL, the dataset consists of several trajectories, therefore one data point in
Definition 2.3 refers to one single trajectory. Hence the definition of Differential Privacy means that
the difference in the distribution of the output policy resulting from replacing one trajectory in the
dataset will be small. In other words, an adversary can not infer much information about any single
trajectory in the dataset from the output policy of the algorithm.

Remark 2.4. For a concrete motivating example, please refer to the first paragraph of Introduction.
We remark that our definition of DP is consistent with Joint DP and Local DP defined under the
online RL setting where JDP/LDP also cast each user as one trajectory and provide user-wise privacy
protection. For detailed definitions and more discussions about JDP/LDP, please refer to Qiao and
Wang [2023a].

During the whole paper, we will use zCDP (defined below) as a surrogate for DP, since it enables
cleaner analysis for privacy composition and Gaussian mechanism. The properties of zCDP (e.g.,
composition, conversion formula to DP) are deferred to Appendix E.3.

Definition 2.5 (zCDP [Dwork and Rothblum, 2016, Bun and Steinke, 2016]). A randomized mecha-
nism M satisfies p-Zero-Concentrated Differential Privacy (p-zCDP), if for all neighboring datasets
U, U and all a € (1,00),

Do (MU)[|IMU")) < pa,

where D,, is the Renyi-divergence [Van Erven and Harremos, 2014].

Finally, we go over the definition and privacy guarantee of Gaussian mechanism.
Definition 2.6 (Gaussian Mechanism [Dwork et al., 2014]). Define the (s sensitivity of a function
f:NY = R as
Ay(f)= sup If(U) = f(U)]l2-
neighboring U,U’
The Gaussian mechanism M with noise level o is then given by
M(U) = f(U) + N(0,5°1,).
Lemma 2.7 (Privacy guarantee of Gaussian mechanism [Dwork et al., 2014, Bun and Steinke, 2016]).
Let f : N* — R? be an arbitrary d-dimensional function with {5 sensitivity Ao. Then for any p > 0,
Gaussian Mechanism with parameter 0 = é—;’ satisfies p-zCDP. In addition, for all 0 < J,e < 1,

Gaussian Mechanism with parameter ¢ = %\ /2log % satisfies (€, 6)-DP.

We emphasize that the privacy guarantee covers any input data. It does not require any distributional
assumptions on the data. The RL-specific assumptions (e.g., linear MDP and coverage assumptions)
are only used for establishing provable utility guarantees.

3 Results under tabular MDP: DP-APVI (Algorithm 1)

For reinforcement learning, the tabular MDP setting is the most well-studied setting and our first
result applies to this regime. We begin with the construction of private counts.
Private Model-based Components. Given data D = {(s},, a,, 77, 5741) }rcly » We denote ng, a,, =

S, 1[s},a}, = sp,an] be the total counts that visit (s, ay,) pair at time h and Np,an sner *=



S st aj, 8h41 = Sh,Qn, Sp+1] be the total counts that visit (sp,, an, sp41) pair at time A, then

given the budget p for zCDP, we add independent Gaussian noises to all the counts:

n/Sh,ah = {nsh,vah +N(0702)} ) n’S}L»ahaS}L+l = {nshnahxsml +N(Oa‘72)} ) ot =" 2

. . . / . , . p
However, after adding noise, the noisy counts n' may not satisty ng, , = Zsh+16 S Wenan,sni-

To address this problem, we choose the private counts of visiting numbers as the solution to the

Hlog 4H8%A . . .
Ogip‘s is chosen as a high probability uniform

following optimization problem (here F, = 4

bound of the noises we add):

~ - . /
{nshva}usl}sles - argmln{ﬁsl}sles 21}2"}5.( |CCS/ - nsh,ah,s/
h that —n! <L dzy >0,Vs' €S
suc a T nsh)ah -~ 2 an T = 5 S . (3)
s'eS
Nsp,an = E Nsp,an,s’ -
s'eS

Remark 3.1 (Some explanations). The optimization problem above serves as a post-processing step
which will not affect the DP guarantee of our algorithm. Briefly speaking, (3) finds a set of noisy
counts such that N, o, = ZS’ES N, .an,s' and the estimation error for each s, q, and s, q, s
is roughly E,.5 In contrast, if we directly take the crude approach that T, q, s, ., = nlsh»ahvsthl
and Ns, ., = 5, €8 Msnan,snirr W can only derive |1, a, — N a,| < O(V'SE,) through
concentration on summation of S i.i.d. Gaussian noises. In conclusion, solving the optimization
problem (3) enables tight analysis for the lower order term (the additional cost of privacy).

Remark 3.2 (Computational efficiency). The optimization problem (3) can be reformulated as:

|<tand zy >0Vs €8, sz/fnf <
s'eS

: !/
min ¢, s.t|Te — N, 4 o

Note that (4) is a Linear Programming problem with S + 1 variables and 25 + 2 linear constraints
(one constraint on absolute value is equivalent to two linear constraints), which can be solved
efficiently by the simplex method [Ficken, 2015] or other provably efficient algorithms [Nemhauser
and Wolsey, 1988]. Therefore, our Algorithm 1 is computationally friendly.

The private estimation of the transition kernel is defined as:

~ n ’
Pi(s'|sn, an) = =2 6)
Nsy,ap,

if g, a, > E, and Py, ('|sp, an) = % otherwise.

Remark 3.3. Different from the transition kernel estimate in previous works [Vietri et al., 2020,
Chowdhury and Zhou, 2021] that may not be a distribution, we have to ensure that ours is a
probability distribution, because our Bernstein type pessimism (line 5 in Algorithm 1) needs to take
variance over this transition kernel estimate. The intuition behind the construction of our private
transition kernel is that, for those state-action pairs with N, ., < E,, we can not distinguish
whether the non-zero private count comes from noise or actual visitation. Therefore we only take the
empirical estimate of the state-action pairs with sufficiently large i), q, .

5This conclusion is summarized in Lemma C.3.



Algorithm 1 Differentially Private Adaptive Pessimistic Value Iteration (DP-APVI)

1: Input: Offline dataset D = {(sﬁ,a;,rﬁ,szﬂ)}ffﬂ. Reward function r. Constants C; = v/2,Cs =

16, C' > 1, failure probability §, budget for zCDP p.
2: Initialization: Calculate 7, ), s}, ,a,, as (3), Pu(Sh+1lSn,an) as (5). Va41(:) <+ 0. E, «

»Sh+1
2
H log 4H§ A

4 5 L < log(HSA/J).
3:forh=H,H—1,...,1do

4 Qu(-) e ra() + (Pr- Vi) (o)
Var 5 (v )e .
5. Vsn,an let Ty (sn, an)  Ci ] —on _;1 CoSHE L i 55 0 > E,, otherwise CH.
Sh:0h Sh:%h
6: 72(7) <_Qh(7/\) _Fh('a')'
7: Qh(?) Emln{Qi(7)aH7h+1}+ _
8: Vs, let W (:|sn) < argmax, (Q),(sn, ), 7n(-[sn)) and Vi(sn) <= (@ (sh, ), Tn(-[sn))-
9: end for
10: Output: {7 }.

Algorithmic design. Our algorithmic design originates from the idea of pessimism, which holds
conservative view towards the locations with high uncertainty and prefers the locations we have
more confidence about. Based on the Bernstein type pessimism in APVI [Yin and Wang, 2021b], we
design a similar peSSlmlSth algorithm with private counts to ensure differential privacy. If we replace

7 and P with n and P" then our DP-APVI (Algorithm 1) will degenerate to APVI. Compared to
), which
h

the pessimism defined in APV, our pessimistic penalty has an additional term 9} (ﬁ
Sh

accounts for the additional pessimism due to our application of private statistics.

We state our main theorem about DP-APVI below, the proof sketch is deferred to Appendix C.1 and

detailed proof is deferred to Appendix C due to space limit.

Theorem 3.4. DP-APVI (Algorithm 1) satisfies p-zCDP. Furthermore, under Assumption 2.1, denote
A = mingepg{d}, (sn, an) : dj,(sp,an) > 0}. For any 0 < § < 1, there exists constant ¢, > 0,
such that when n > ¢y - max{H? , E,}/d,, - . (. = log(HSA/§)), with probability 1 — 6, the output
policy 7@ of DP-APVI satisfies

H
w * Va ‘|Sh,an Vi ‘) ~ H3 HQE
0<v =™ < 4\/52 Z dr (Sh,ah)\/ P, (Jsnmsan) Virg1 () L+O< +Sﬁ p> ’

lp, .
=1 (Sh’ah)ech, n h(Sh’ ah) n dm

ere (N) hi P H log 4HS
wh ides constants and OIyIOg terms, l;7 =4

Comparison to non-private counterpart APVI [Yin and Wang, 2021b]. According to Theorem
4.1 in [Yin and Wang, 2021b], the sub-optimality bound of APVI is for large enough n, with high
probability, the output 7 satisfies:

H
= ~ * Va.I'p (‘|sn,a )(Vh* ()) ~ H3
< T < § : 2 : dr h h>@h +1 _ (7
0<v"—v"<0 e h (sh’ah)\/ nd} (sp, ap) +0 n-d @
h

h=1 (sn,an) m

Compared to our Theorem 3.4, the additional sub-optimality bound due to differential privacy is
~<SH{EP>:6 sH: \ _ 7 sHE

nedm n-dm/p n-dme
p or € is a constant, the additional term due to differential privacy appears as a lower order term,
hence becomes negligible as the sample complexity n becomes large.

) .7 In the most popular regime where the privacy budget

Comparison to Hoeffding type pessimism. We can simply revise our algorithm by using Hoeffding

. . C . C2SHE,-
type pessimism, which replaces the pessimism in line 5 with C1 H -, /=— 22720t Then
sy ap, —Ep Msp,ap

5The non-private empirical estimate, defined as (15) in Appendix C.

"Here we apply the second part of Lemma 2.7 to achieve (e, §)-DP, the notation O also absorbs log % (only
here § denotes the privacy budget instead of failure probability).



with a similar proof schedule, we can arrive at a sub-optimality bound that with high probability,

H
o~ . 1 ~ H’E
0<v"—v" <0 HE E dy (spyan)y | —p—— +O(S p). )

nd! (sp,a n-d
h=1 (sp,an)€Ch h( hs h) m

Compared to our Theorem 3.4, our bound is tighter because we express the dominate term by the
system quantities instead of explicit dependence on H (and Varp, (.is,.a,) (V751 (-)) < H?). In
addition, we highlight that according to Theorem G.1 in [Yin and Wang, 2021b], our main term
nearly matches the non-private minimax lower bound. For more detailed discussions about our main
term and how it subsumes other optimal learning bounds, we refer readers to [Yin and Wang, 2021b].

Apply Laplace Mechanism to achieve pure DP. To achieve Pure DP instead of p-zCDP, we can
simply replace Gaussian Mechanism with Laplace Mechanism (defined as Definition E.19). Given
privacy budget for Pure DP ¢, since the /1 sensitivity of {n, 4, } U {1, ,ap,sn.1 } 15 A1 = 4H, we
can add independent Laplace noises Lap(%) to each count to achieve e-DP due to Lemma E.20.
Then by using E, = O (%) instead of E/, and keeping everything else ((3), (5) and Algorithm 1) the
same, we can reach a similar result to Theorem 3.4 with the same proof schedule. The only difference

is that here the additional learning bound is 9] (ns g 36

), which still appears as a lower order term.

4 Results under linear MDP: DP-VAPVI(Algorithm 2)

In large MDPs, to address the computational issues, the technique of function approximation is
widely applied, and linear MDP is a concrete model to study linear function approximations. Our
second result applies to the linear MDP setting. Generally speaking, function approximation reduces
the dimensionality of private releases comparing to the tabular MDPs. We begin with private counts.

Private Model-based Components. Given the two datasets D and D’ (both from ) as in Algorithm
2, we can apply variance-aware pessimistic value iteration to learn a near optimal policy as in
VAPVI [Yin et al., 2022]. To ensure differential privacy, we add independent Gaussian noises to the
5H statistics as in DP-VAPVI (Algorithm 2) below. Since there are 5H statistics, by the adaptive
composition of zCDP (Lemma E.17), it suffices to keep each count po-zCDP, where py = . In
DP-VAPVI, we use ¢1, ¢2, ¢3, K1, Ko® to denote the noises we add. For all ¢;, we directly apply
Gaussian Mechanism. For K, in addition to the noise matrix %(Z + ZT), we also add %Id to

ensure that all K; are positive definite with high probability (The detailed definition of E/, L can be
found in Appendix A).
Below we will show the algorithmic design of DP-VAPVI (Algorithm 2). For the offline dataset,

we divide it into two independent parts with equal length: D = {(s},a], 7], s], +1)}h€[H]

TE[K]
D' = {(s},a}, 7,5 +1)}}Tlg% One for estimating variance and the other for calculating ()-values.

and

Estimating conditional variance. The first part (line 4 to line 8) aims to estimate the condi-
tional variance of V},41 via the definition of variance: [VaryVii1](s,a) = [Py(Vig1)2](s,a) —
([PiVis1)(s,a))%.  For the first term, by the definition of linear MDP, it holds that
[th/h%rl} (s,a) = ¢(s,a)T [ V2, (s") dup (8') = (8, [s V2,1 (s') dup (s')). We can estimate

Br = Js 17,12+1 (s") dvy, (') by applying ridge regression. Below is the output of ridge regression
with raw statistics without noise:

argminz [<¢(§Iﬁﬁﬁ)75> ~ Vil (§Ifb+1>]2 + 18I = =57 i(gﬁ(gﬁﬁlﬁ)f/fﬂ <§§+1) ;

BERY k=1

8We need to add noise to each of the 5H counts, therefore for ¢1, we actually sample H i.i.d samples ¢1 5,
h =1,---, H from the distribution of ¢1. Then we add ¢1, to Zle o(57,,ap) - Vas1(8h41)% VR € [H].
For simplicity, we use ¢1 to represent all the ¢ 5. The procedure applied to the other 4H statistics are similar.



Algorithm 2 Differentially Private Variance-Aware Pessimistic Value Iteration (DP-VAPVI)

1: Input: Dataset D = {(s},,af, 77, s,TLH)}T hHl D' = {(s},a}, 7}, EZLH)}T ,_,- Budget for zCDP p.
Failure probability §. Universal constant C.

2: Initialization: Set po < 2, Vir11(-) < 0. Sample ¢ ~ (o 2H Id) b2, b3 ~ (0 2H? Id)

> po ’ po

Ki Ky « £1,+ 3(Z + Z7). where Zi; ~ N( s )(m.d.)7 E = 6(@). Set D «
O (M2E 4+ BV 4 V).

cforh=H,H—-1,...,1do

Set S = Y, 657, aR)$(57,a5) |+ M + K

Set B = £, 135, $(57,a7) - Vs (57.42)° + ]

Set Oy + 27 [Z 71 o(5h, ah) Vh+1(5h+1) + ¢2]

Set [VarthH} — (o(, >[07(H_h+1) - [(a(, >[07H_h+1]]2

Set 54 (+,-)? <—max{17Varth+1( )}

Set A, 25:1 b (sh,al) o (sp,ap) " Ja2(sh,al) + A + K

10: Seti = Ay (0L, @ (7, an) - (i + Viws (s7.41) ) /53 (s, ak) + 9

11:  SetD'n(:,-) + CVd- (¢>(.7 .)77\;1@3(.7 ,))1/2 +L
120 SetQu(,-) = ¢() wn = Ta(,")

D ANl

13: Set Qn(-,-) < min {Qn (-, )AH h+1} _ N
14: Set7n(- | ) < argmax, <Q () mh >,4a Vi(-) <= maxq, <Qh('a ), (- | ')>A
15: end for

16: Output: {7} .

where definition of 3, can be found in Appendix A. Instead of using the raw statistics, we replace
them with private ones with Gaussian noises as in line 5. The second term is estimated similarly in

line 6. The final estimator is defined as in line 8: &5,(+,-)? = max{1, @'hvh+1(', 9}

Variance-weighted LSVI. Instead of directly applying LSVI [Jin et al., 2021], we can solve the
variance-weighted LSVI (line 10). The result of variance-weighted LSVI with non-private statistics
is shown below:

~ 2 ~

Aol ZK:[<¢>(sﬁ,aiﬁ),w>—rii—vhﬂ(siim} & (shyah) - [k + Vi (shn)]
argmin A||w||2+ = ) =

weR k=1 U%(Sfmal}i) k=1 U%(Sﬁ,aﬁ)

)

where definition of /A\h can be found in Appendix A. For the sake of differential privacy, we use
private statistics instead and derive the wy, as in line 10.

Our private pessimism. Notice that if we remove all the Gaussian noises we add, our DP-VAPVI
(Algorithm 2) will degenerate to VAPVI [Yin et al., 2022]. We design a similar pessimistic penalty
using private statistics (line 11), with additional % accounting for the extra pessimism due to DP.

Main theorem. We state our main theorem about DP-VAPVI below, the proof sketch is deferred to
Appendix D.1 and detailed proof is deferred to Appendix D due to space limit. Note that quantities
M, L, E can be found in Appendix A and briefly, L = O(y/H3d/p), E = O(y/Hd/p). For the
sample complexity lower bound, within the practical regime where the privacy budget is not very
small, max{M,} is dominated by max{O(H2d3/x5), (H14d//~c )}, which also appears in the
sample complexity lower bound of VAPVI [Yin et al., 2022]. The O’V (s,a) in Theorem 4.1 is defined
as max{1, Varp, (V)(s,a)} for any V.

Theorem 4.1. DP-VAPVI (Algorithm 2) satisfies p-zCDP. Furthermore, let K be the number of

episodes. Under the condition that K > max{Mj, Ma, M3, M4} and Vd > &, where £ =

SUDPV €0, H], s'~ Py (s,a), he[H] Th+v(8(73/zszsv)(s°a) , for any 0 < X\ < Kk, with probability 1 — 6, for

The max{1, -} operator here is for technical reason only: we want a lower bound for each variance estimate.



all policy 7 simultaneously, the output T of DP-VAPVI satisfies

v — U% < 5 (\/& . ZETF|: ¢(7 ')TAgld)(’? ):|> + %7 (9)
h=1

kK k_kNT ~ . ~
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In particular, define A7 = Zk:l Do h I ekl Ny, we have with probability 1 — 6,
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Comparison to non-private counterpart VAPVI [Yin et al., 2022]. Plugging in the definition
of L, E (Appendix A), under the meaningful case that the privacy budget is not very large, DH is

- 1 3
dominated by O HQ\%”) . According to Theorem 3.2 in [Yin et al., 2022], the sub-optimality
bound of VAPVI is for sufficiently large K, with high probability, the output 7 satisfies:
H
I 2H*V/d
* ™ —1
vt~ §0<¢E~’;Eﬂ* W¢<~,~)TA; ¢>(-,~)D t (1)

Compared to our Theorem 4.1, the additional sub-optimality bound due to differential privacy is
. 13 - 1 o3
0] H}T%fz = H?‘%“) .10 In the most popular regime where the privacy budget p or € is

a constant, the additional term due to differential privacy also appears as a lower order term.

Instance-dependent sub-optimality bound. Similar to DP-APVI (Algorithm 1), our DP-VAPVI
(Algorithm 2) also enjoys instance-dependent sub-optimality bound. First, the main term in (10)

improves PEVI [Jin et al., 2021] over O(\/ﬁ) on feature dependence. Also, our main term admits no
explicit dependence on H, thus improves the sub-optimality bound of PEVI on horizon dependence.
For more detailed discussions about our main term, we refer readers to [Yin et al., 2022].

Private and safe policy improvement. In addition to the sub-optimality bound (10), we have
the so called oracle inequality (9). Therefore, the performance v™ can be lower bounded by

sup,, [U” -0 (\/& Zthl E, |:\/(b(-, VTA (- )}) - le] . When choosing 7 to be the opti-

mal policy in the neighborhood of the behavior policy p, our DP-VAPVI (Algorithm 2) sheds light
on safe policy improvement with differential privacy guarantee.

5 Tightness of our results

We believe our bounds for offline RL with DP is tight. To the best of our knowledge, APVI and
VAPVI provide the tightest bound under tabular MDP and linear MDP, respectively. The suboptimality
bounds of our algorithms match these two in the main term, with some lower order additional terms.
The leading terms are known to match multiple information-theoretical lower bounds for offline
RL simultaneously (this was illustrated in Yin and Wang [2021b], Yin et al. [2022]), for this reason
our bound cannot be improved in general. For the lower order terms, the dependence on sample
complexity n and privacy budget e: O(i) is optimal since policy learning is a special case of ERM
problems and such dependence is optimal in DP-ERM. In addition, we believe the dependence on
other parameters (H, S, A, d) in the lower order term is tight due to our special tricks as (3) and
Lemma D.6.

'Here we apply the second part of Lemma 2.7 to achieve (¢, §)-DP, the notation O also absorbs log % (only
here § denotes the privacy budget instead of failure probability).



6 Simulations

In this section, we carry out simulations to evaluate the performance of our DP-VAPVI (Algorithm 2),
and compare it with its non-private counterpart VAPVI [Yin et al., 2022] and another pessimism-based
algorithm PEVI [Jin et al., 2021] which does not have privacy guarantee.

Experimental setting. We evaluate DP-VAPVI (Algorithm 2) on a synthetic linear MDP example that
originates from the linear MDP in [Min et al., 2021, Yin et al., 2022] but with some modifications.!!
For details of the linear MDP setting, please refer to Appendix F. The two MDP instances we use
both have horizon H = 20. We compare different algorithms in figure 1(a), while in figure 1(b), we
compare our DP-VAPVI with different privacy budgets. When doing empirical evaluation, we do not
split the data for DP-VAPVI or VAPVI and for DP-VAPVI, we run the simulation for 5 times and
take the average performance.

~

- PEVI \ —=- VAPVI

6 I === VAPVI o | —— DP-VAPVI,p=0.1
‘. DP-VAPVI,p=1 DP-VAPVI,p=1
‘| —— DP-VAPVI,p=25 —— DP-VAPVI,p=5

«
w

—— DP-VAPVI,p=25

IS
IS

w

Suboptimality gap
Suboptimality gap

w

N}

0 200 400 600 800 1000 0 200 400 600 800 1000
Number of episodes Number of episodes

(a) Compare different algorithms, H = 20  (b) Different privacy budgets, H = 20

Figure 1: Comparison between performance of PEVI, VAPVI and DP-VAPVI (with different privacy
budgets) under the linear MDP example described above. In each figure, y-axis represents sub-
optimality gap v* — v™ while x-axis denotes the number of episodes K. The horizons are fixed to be
H = 20. The number of episodes takes value from 5 to 1000.

Results and discussions. From Figure 1, we can observe that DP-VAPVI (Algorithm 2) performs
slightly worse than its non-private version VAPVI [Yin et al., 2022]. This is due to the fact that
we add Gaussian noise to each count. However, as the size of dataset goes larger, the performance
of DP-VAPVI will converge to that of VAPVI, which supports our theoretical conclusion that the
cost of privacy only appears as lower order terms. For DP-VAPVI with larger privacy budget, the
scale of noise will be smaller, thus the performance will be closer to VAPVI, as shown in figure
1(b). Furthermore, in most cases, DP-VAPVI still outperforms PEVI, which does not have privacy
guarantee. This arises from our privitization of variance-aware LSVI instead of LSVIL.

7 Conclusion and future works

In this work, we take the first steps towards the well-motivated task of designing private offline RL
algorithms. We propose algorithms for both tabular MDPs and linear MDPs, and show that they
enjoy instance-dependent sub-optimality bounds while guaranteeing differential privacy (either zCDP
or pure DP). Our results highlight that the cost of privacy only appears as lower order terms, thus
become negligible as the number of samples goes large.

Future extensions are numerous. We believe the technique in our algorithms (privitization of
Bernstein-type pessimism and variance-aware LSVI) and the corresponding analysis can be used in
online settings too to obtain tighter regret bounds for private algorithms. For the offline RL problems,
we plan to consider more general function approximations and differentially private (deep) offline RL
which will bridge the gap between theory and practice in offline RL applications. Many techniques
we developed could be adapted to these more general settings.

""We keep the state space S = {1, 2}, action space A = {1,--- ,100} and feature map of state-action pairs
while we choose stochastic transition (instead of the original deterministic transition) and more complex reward.
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A Notation List

A.1 Notations for tabular MDP

2
E, o ] Hlog 1524
P

n The original counts of visitation
n The noisy counts, as defined in (2)
n Final choice of private counts, as defined in (3)
P Private estimate of transition kernel, as defined in (5)
P Non-private estimate of transition kernel, as defined in (15)
L log HSA
p Budget for zCDP
) Failure probability
A.2 Notations for linear MDP
I OF] ] BHAlog( 10Hd)
E N (2 i ((lstsestrse)) 3)
D O (IL 4 1BV 4 j3Va)
An Zszl o(si, ap)o(si, ai) T /a7 (sy, ap) + M
An Zé{ L B(sh,af) (s, af) T /h (sy, ai) + Mg + Ko
KZ E,, h[ahz(s,a)cé(s a)p(s,a)’]
An Sy o(shan)e(sT,ap) /J~ (527 ap) + M
A Epnlo :i (5.0)0(s.0)i(s.)T]
h S, é(sh, an)e(sE, ah)T/Uv* (shaf) + A1
Zh S 6(55,a7) (57, a5) T + My
S S re1 07,007 a7) T + A+ K
=5 E,n (s, ) (s,0)7]
K ming, Amin (X5)
0% (s,a) max{1, Varp, (V)(s,a)} for any V
agz(s,a) max {1,Varpth+1(s,a)}
o2 (s,a) max{1, Vary, V11 (s, a)}
M,y max{2), 128 log(2dH /), 2 1og2A1/0) 3Ly
Mo max{O(H"2d3 /%), O(HYd/x%)}
Ms max 121’ ng(z%H), 4’\52 }
My max{ L% HPES pra g
p Budget for zCDP
0 Failure probability (not the § of (e, §)-DP)
§ SUPv c(0,H], s'~P(s,a), he[H] Th+V(i‘),zs(Zh)'V)(S’a)
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B Extended related work

Online reinforcement learning under JDP or LDP. For online RL, some recent works analyze
this setting under Joint Differential Privacy (JDP), which requires the RL agent to minimize regret
while handling user’s raw data privately. Under tabular MDP, Vietri et al. [2020] design PUCB by
revising UBEV [Dann et al., 2017]. Private-UCB-VI [Chowdhury and Zhou, 2021] results from
UCBVI (with bonus-1) [Azar et al., 2017]. However, both works privatize Hoeffding type bonus,
which lead to sub-optimal regret bound. Under linear MDP, Private LSVI-UCB [Ngo et al., 2022]
and Privacy-Preserving LSVI-UCB [Luyo et al., 2021] are private versions of LSVI-UCB [Jin et al.,
2020b], while LinOpt-VI-Reg [Zhou, 2022] and Privacy-Preserving UCRL-VTR [Luyo et al., 2021]
generalize UCRL-VTR [Ayoub et al., 2020]. However, these works are usually based on the LSVI
technique [Jin et al., 2020b] (unweighted ridge regression), which does not ensure optimal regret
bound.

In addition to JDP, another common privacy guarantee for online RL is Local Differential Privacy
(LDP), LDP is a stronger definition of DP since it requires that the user’s data is protected before the
RL agent has access to it. Under LDP, Garcelon et al. [2021] reach a regret lower bound and design
LDP-OBI which has matching regret upper bound. The result is generalized by Liao et al. [2021] to
linear mixture setting. Later, Luyo et al. [2021] provide an unified framework for analyzing JDP and
LDP under linear setting.

Some other differentially private learning algorithms. There are some other works about dif-
ferentially private online learning [Guha Thakurta and Smith, 2013, Agarwal and Singh, 2017, Hu
et al., 2021] and various settings of bandit [Shariff and Sheffet, 2018, Gajane et al., 2018, Basu et al.,
2019, Zheng et al., 2020, Chen et al., 2020, Tossou and Dimitrakakis, 2017]. For the reinforcement
learning setting, Wang and Hegde [2019] propose privacy-preserving Q-learning to protect the reward
information. Ono and Takahashi [2020] study the problem of distributed reinforcement learning
under LDP. Lebensold et al. [2019] present an actor critic algorithm with differentially private critic.
Cundy and Ermon [2020] tackle DP-RL under the policy gradient framework. Chowdhury et al.
[2021] consider the adaptive control of differentially private linear quadratic (LQ) systems. Zhao
et al. [2022] designed differentially private linear sketch algorirthms.

Offline reinforcement learning under tabular MDP. Under tabular MDP, there are several works
achieving optimal sub-optimality/sample complexity bounds under different coverage assumptions.
For the problem of off-policy evaluation (OPE), Yin and Wang [2020] uses Tabular-MIS estimator to
achieve asymptotic efficiency. In addition, the idea of uniform OPE is used to achieve the optimal
sample complexity O(H?/d,,€?) [Yin et al., 2021] for non-stationary MDP and the optimal sample
complexity O(H?/d,,€?) [Yin and Wang, 2021a] for stationary MDP, where d,,, is the lower bound
for state-action occupancy. Such uniform convergence idea also supports some works regarding
online exploration [Jin et al., 2020a, Qiao et al., 2022, Xu et al., 2023]. For offline RL with single
concentrability assumption, Xie et al. [2021b] arrive at the optimal sample complexity O(H?3SC* /€?).
Recently, Yin and Wang [2021b] propose APVI which can lead to instance-dependent sub-optimality
bound, which subsumes previous optimal results under several assumptions. Madhow et al. [2023]
consider offline policy evaluation for adaptively collected datasets.

Offline reinforcement learning under linear MDP. Recently, many works focus on offline RL
under linear representation. Jin et al. [2021] present PEVI which applies the idea of pessimistic value
iteration (the idea originates from [Jin et al., 2020b]), and PEVI is provably efficient for offline RL
under linear MDP. Yin et al. [2022] improve the sub-optimality bound in [Jin et al., 2021] by replacing
LSVI by variance-weighted LSVI. Xie et al. [2021a] consider Bellman consistent pessimism for
general function approximation, and their result improves the sample complexity in [Jin et al., 2021]
by order O(d) (shown in Theorem 3.2). However, there is no improvement on horizon dependence.
Zanette et al. [2021] propose a new offline actor-critic algorithm that naturally incorporates the
pessimism principle. Besides, Wang et al. [2021a], Zanette [2021] study the statistical hardness of
offline RL with linear representations by presenting exponential lower bounds. When relaxing the
offline setting to low adaptive RL, Gao et al. [2021], Wang et al. [2021b], Qiao and Wang [2023b],
Qiao et al. [2023] designed algorithms with low adaptivity.
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C Proof of Theorem 3.4

C.1 Proof sketch

Since the whole proof for privacy guarantee is not very complex, we present it in Section C.2 below
and only sketch the proof for suboptimality bound.

First of all, we bound the scale of noises we add to show that the 7 derived from (3) are close to real
visitation numbers. Therefore, denoting the non-private empirical transition kernel by P (detailed
definition in (15)), we can show that ||[P — P||; and |,/Var (V) — \/Var (V)| are small.

Next, resulting from the conditional independence of I~/h+1 and 15h, we apply Empirical Bernstein’s

inequality to get |(P, — Pp)Vis1| < \/Varlg(?h+1)/ﬁs,L,a,L + SHE,/ns, a,- Together with our
definition of private pessimism and the key lemma: extended value difference (Lemma E.7 and E.§),
we can bound the suboptimality of our output policy 7 by:

A . Varg o oy (Vig(+))
v =" S E g dy (sn,an) Fn(lan,an) + SHE,/Ts, a,- (12)
h

ﬁs a
=1 (sp,an)€Cp hoth

Finally, we further bound the above suboptimality via replacing private statistics by non-private ones.
Specifically, we replace 72 by n, P by P and V by V*. Due to (12), we have ||V — V*|o0 < 4/ m% .

Together with the upper bounds of | P — P||; and |\/Var5(V) — /Var (V)

Varg, span) (Va1 () S \/V&rﬁhcsmah)(V’f“(')) 4L

, we have

Nsy,,an Nsp,an ndp,

<\/V&rﬁh(.|sh,ah)(Vh*+1('))+ 1 <\/Varph(-|sh,ah)(V;f+1(')) 1 (13)

— — +
Nsp,an ndm Nsp,an ndm

S\/VarPMsh,ah)(V;f+1('))+ =

ndl, (sn, an) ndy,

The final bound using non-private statistics results from (12) and (13).

C.2 Proof of the privacy guarantee

The privacy guarantee of DP-APVI (Algorithm 1) is summarized by Lemma C.1 below.
Lemma C.1 (Privacy analysis of DP-APVI (Algorithm 1)). DP-APVI (Algorithm 1) satisfies p-zCDP.

Proof of Lemma C.1. The {5 sensitivity of {ns, 4, } is V2H. According to Lemma 2.7, the Gaussian
Mechanism used on {ns, 4, } with 0% = % satisfies £-zCDP. Similarly, the Gaussian Mechanism

used on {ng,, 4,55, } With o2 = % also satisfies £-zCDP. Combining these two results, due to the

composition of zCDP (Lemma E.16), the construction of {n'} satisfies p-zCDP. Finally, DP-APVI
satisfies p-zCDP because the output 7 is post processing of {n’}. O

C.3 Proof of the sub-optimality bound
C.3.1 Utility analysis

First of all, the following Lemma C.2 gives a high probability bound for |n’ — n|.

24
Lemma C.2. Let £, = 2v/204/log % =44/ %, then with probability 1 — 6, for all

Sh, Gk, Sh+1, it holds that

E,

77

! Lo (14)

1
‘nsh,ah - n5h70«h| < |nsh,ah,sh+1 - nSh,ah,Sh+1| < 9
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Proof of Lemma C.2. The inequalities directly result from the concentration inequality of Gaussian
distribution and a union bound. O

According to the utility analysis above, we have the following Lemma C.3 giving a high probability
bound for | — n|.

Lemma C.3. Under the high probability event in Lemma C.2, for all sy, ap, Sp+1, it holds that

mS;“ah — NspLan < EP’ |ﬁsh;ah75h+1 - nSh,ah,Sh+1| < EP'

Proof of Lemma C.3. When the event in Lemma C.2 holds, the original counts {n,, 4, s }s’cs is a
feasible solution to the optimization problem, which means that

<

~ / !/
Hlsa/JX |n5h7ah78' - nsh,ah,s’| < HlSE/LX |n8h7uh7$' - nsh,ah,s/|

E,
5 "

Due to the second part of (14), it holds that for any s, ap, Sp+1,

~ ~ , ,
|n8h,ah,sh+1 - nS;L,a;L,S}L+1| < ‘n3h7ah7$h+1 - ns;L,a;L,s;L+1| + ‘ns;L,a;L,s;L+1 - nsh7ah75h+1| < Ep'

For the second part, because of the constraints in the optimization problem, it holds that

E
- , 0
‘nshyah - nsh,ahl S 7'
Due to the first part of (14), it holds that for any sp, ap,
~ ~ / /
‘nsluah - nshyah| < |n5mah - nsh,ah| + |nsh,ah - nsh,»ahl < EP'
O
Let the non-private empirical estimate be:
ﬁ / _ Nsp,an,s’ 15
h(8'[Sh, an) = —=—, (15)
Nsp,an

if ng, 4, > 0and ﬁh(s’ [sh,an) = % otherwise. We will show that the private transition kernel Pis

close to P by the Lemma C.4 and Lemma C.5 below.

Lemma C.4. Under the high probability event of Lemma C.3, for sy, ap, if s, a, > 3E,, it holds

that ESE
th('|3h7ah) - Ph(‘|5h7ah)H1 < —*. (16)

sy, yGh

Proof of Lemma C.4. If ng, 4, > 3E, and the conclusion in Lemma C.3 hold, we have

B Clsnsan) = PuClsnsan) | < 37 |Puls'lsns an) = Pals'lsns an)
s'eS

< Z ﬁshvahus/ + Ep N ﬁSmah,S’
- - F

s'eS nsh,ah 4 nsh,ah
1 2F - n /
<2 [(~ + =55 | A an,s + Ep) — =225 (17)
o'eS Nsy,an N, .an Nsy,an
SE, 2E, 2SE§
<= + = =
nsh,,ah, nsh,ah nshyah
5SE,
<= .
Ny an
. . . ﬁq 4/7E ng sl ﬁs 1+ E ﬁs ‘/JrE
The second inequality is because —a2b" 7 < _Swtht L _fhethr P ogpd Zheth P
My ap, TEp Nsp,ap Tsp,ap —Ep Ny ,ap, —Ep
Mgy ap,s! Nopap,s’  Tsyap,s' —Ep oo S
S > e — s o= The third inequality is because of Lemma E.6. The last
Sp.ap Sp.ap Sp.ap P
inequality is because 1), o, > 3E,,. O
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Lemma C.5. Let V € R be any function with ||V || < H, under the high probability event of
Lemma C.3, for sy, an, if g, ., > 3E,, it holds that

SE,

nsh sQh

Va5, o (V) = A/ VaTp, (g, 0 (V)] < 4H (18)

Proof of Lemma C.5. For sp,ap such that ng, ., > 3E,, we use P(-) and P(.) instead of
Py, (|, an) and Py (+|sp, ap,) for simplicity. Because of Lemma C.4, we have

_ 5SE,

1 nsh:‘lh

|1P6) - PO
Therefore, it holds that

‘\/Varﬁ(.)(V) — \/Var]g(,)(V)’ < \/|Var]3(.)(V) — Varp (V)]

<> ]13(3/) —P(s)| V()2 + | Y |P(s) + 15(3/)} V(s') P(s') — P(s)|V(s)
s'€S s'€S s'€S
<y [P0~ P02 [ - P
<4H NSE” .
Ny an
19)
The second inequality is due to the definition of variance. O

C.3.2 Validity of our pessimistic penalty
Now we are ready to present the key lemma (Lemma C.6) below to justify our use of I" as the
pessimistic penalty.

Lemma C.6. Under the high probability event of Lemma C.3, with probability 1 — 6, for any sy, ap,
if N, .an > 3E, (Which implies s, o, > 0), it holds that

2Vars, 1o Vit () -4 | 16SHE, -«

Nsp,an — Ep Nsp,an

(Py — Pp) - Vi (sn,an)| < (20

where V is the private version of estimated V function, which appears in Algorithm 1 and | =
log(HSA/9).

Proof of Lemma C.6.

‘(ﬁh - P,)- ‘7h+1(8h,ah)‘ < ‘(ﬁh — B - Viga(sn, ah)} + ‘(ﬁh — Py) - Vi (sny an)

<H Hﬁh('|8h7ah) - ﬁh('|8hvah)H1 + ‘(ﬁh — D) ‘7h+1(3h,ah)‘ 1)
5SHE ~ ~
<=——"~+ ‘(Ph = Pp) - Vg1 (sn,an)|

Nsy,an
where the third inequality is due to Lemma C.4.

Next, recall 7y in Algorithm 1 is computed backwardly therefore only depends on sample tuple

from time h + 1 to H. As aresult, Vi, 41 = (Qp41, Tht1) also only depends on the sample tuple
from time h 4 1 to H and some Gaussian noise that is independent to the offline dataset. On the other

side, by the definition, ﬁh only depends on the sample tuples from time h to i 4 1. Therefore YN/hH
and Py, are Conditionally independent (This trick is also used in [Yin et al., 2021] and [Yin and Wang,
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2021b]), by Empirical Bernstein’s inequality (Lemma E.4) and a union bound, with probability 1 — 4,
for all sp,, ap, such that ng, o, > 3E,,

2Varp, (1, o) (Vir1() -0 L TH

(P — Pp) - Vinya (sn, ah)‘ < (22)
‘ nsh,ah 3n5h7ah
Therefore, we have
- _ oVarp o o (Vi ()t 7H.. 5SHE
’(Ph —Pp) - Vh+1(8h,ah)’ < Pnllonan) + 42277
Nsy,,an 3ns, an, Nsp,an
2var13h(.|sh,,ah)(Vh—i—l(')) L n 9SHE, -1
- nsh,ah ﬁshyah
S9SHE,, c L i 2V&rﬁh(.|sh’ah)(vh+1(')) L i 4\[2H SEp <L (23)

ﬁSh,7ah Nsp,,an ﬁsh,ﬂh, “MspLan
_ 2Varg, (s, an) Vit1() - ¢ 4 Y6SHE, -4
N Nsn,an s, ,an
- 2Varp, (15, any(Vas1()) - ¢ | 168HE, .
B ﬁshaah - E,D ﬁs}nah .

. o ~ 25, a .
The second and forth inequality is because when 7ig, o, > 3E,, ng, 4, > —&*n. Specifically,

these two inequalities are also because usually we only care about the case when SE, > 1, which is
equivalent to p being not very large. The third inequality is due to Lemma C.5. The last inequality is
due to Lemma C.3. O

Note that the previous Lemmas rely on the condition that 72 is not very small (), 4, > 3E,). Below
we state the Multiplicative Chernoff bound (Lemma C.7 and Remark C.8) to show that under our
condition in Theorem 3.4, for (sp,, an) € Cp, Nis), q,, Will be larger than 3E, with high probability.

Lemma C.7 (Lemma B.1 in [Yin and Wang, 2021b]). For any 0 < § < 1, there exists an absolute
constant ¢y such that when total episode n > ¢y - 1/d,, - log(HSA/§), then with probability 1 — 6,
Vh € [H]
Nep,an = 1 diy (Sh,an)/2, Y (Sh,an) € Ch.
Furthermore, we denote
E:={ns, a, =n-di(sn,an)/2, ¥V (sp,an) € Cp, h € [H].} (24)
then equivalently P(E) > 1 — 4.

In addition, we denote
3
& ={ng, a, < o di;(sh,an), ¥ (sn,an) € Cy, h € [H].} (25)

then similarly P(E') > 1 — 6.

Remark C.8. According to Lemma C.7, for any failure probability §, there exists some constant ¢; >
0 such that when n > %, with probability 1 — 6, for all (sp,, ap) € Cp, Ns,, a, > 4E,. Therefore,
under the condition of Theorem 3.4 and the high probability events in Lemma C.3 and Lemma C.7, it

holds that for all (s, an) € Ch, Nis,, o, > 3E, while for all (sy,, ap) & Ch, Ns),a, < Ep.

Lemma C.9. Define (T,V)(-,") == ra(:,) + (PaV)(:,-) for any V' € RS. Note 7, Q,, Vj, are
defined in Algorithm 1 and denote &1,(s,a) = (ThVi+1)(s,a) — Q) (s, a). Then it holds that

H H
VI () = Vi (s) <O B [Gn(snran) | 51 = 5] = > Bz [€n(snan) [ s1=5].  (26)
h=1

h=1 -
Furthermore, (26) holds for all V™" (s) — V[ (s).
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Proof of Lemma C.9. Lemma C.9 is a direct corollary of Lemma E.8 with 7 = 7%, @h = Qp»

Vi = Vi andj = 7 in Algorithm 1, we can obtain this result since by the definition of 7 in
Algorithm 1, (Q}, (sn, ), 7n (-|sn) — 7 (|s1)) < 0. The proof for V;™" (s) — V;7 (s) is identical. [

Next we prove the asymmetric bound for &,, which is the key to the proof.

Lemma C.10 (Private version of Lemma D.6 in [Yin and Wang, 2021b]). Denote £,(s,a) =
(ThVii1)(s,a) — Qy (s, a), where Vi, 11 and Q,, are the quantities in Algorithm 1 and Tp,(V) :=
rn 4+ Py, - V forany V. € RS. Then under the high probability events in Lemma C.3 and Lemma C.6,
forany h, sy, ay, such that ng,, o, > 3E,, we have

0 <&n(snran) = (TaVig1)(snan) — Qp (51, an)

2Vars, (o any(Var1() -t | 82SHE, -1

<2 —
Nsy,an — Ep Nsp,an

where . = log(HSA/9).
Proof of Lemma C.10. The first inequality: We first prove &5, (sp,, ap) > 0 for all (sp, ap), such that
ﬁshﬂlh 2 3Eﬂ'

Indeed, if C/Q\Z(sh, ah) < 0, then @h(sh, ah) = 0. In this case, fh(Sh7 ah) = (771‘7h+1)(3h7 ah) >0
(note Vi, > 0 by the definition). If Q7 (sp,an) > 0, then by definition Q,(sp,an) =
min{@fb(sh7 ap), H—h+1}7T < @ﬁ(sh, ay) and this implies
En(snyan) > (TVier) (sn, an) — Qf (s, an)
=(Pn = Ph) - Vg1 (sn, an) + T (sn, an)

2Varg, (jsan (Va1 () -0 16SHE, -4

nsh,ah - Ep ,n’Shyllh

>

+Tn(sn,an) =0,

where the second inequality uses Lemma C.6, and the last equation uses Line 5 of Algorithm 1.

Qvarlsh(;\sipah)(vh+1('))'L 32~SHEp'L for
Meap,ap, —Ep Msp,ap

The second inequality: Then we prove & (s, ap) < 2\/
all (sp,an) such that ng, 4, > 3E,.

First, since by construction YN/h < H — h+ 1forall h € [H], this implies
Q= Qn—Th <Qn=rn+ P Vi) <1+ (H—h)=H—h+1

which is because r, < 1 and P, is a probability distribution. Therefore, we have the equivalent
definition

G = minf ), H— b+ 1) = max(Q},0) 2 O
Then it holds that
&n(snran) = (ThVig1)(snyan) — Qp(snan) < (TaVigr)(sno an) — Q4 (s, an)
=(TiVis1)(sn,an) — Qn(sn,an) + Tr(sn, an)
=(Py — Pp) - Vigr(sn,an) + Th(sn, an)

2Varp, (i, ) (Va1 () -0 | 16SHE, 1

Nsp,an — EP Nsp,an

+Th(sn,an)

2Varg, oo (Vi (4) -0 | B28HE,

Nsp,an — Ep Nsh,an

The proof is complete by combining the two parts. O
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C.3.3 Reduction to augmented absorbing MDP

Before we prove the theorem, we need to construct an augmented absorbing MDP to bridge V and
V*. According to Line 5 in Algorithm 1, the locations with 1, o, < E, is heavily penalized with

penalty of order 5(H ). Therefore we can prove that under the high probability event in Remark C.8,
d7 (sn,an) > 0 only if d} (s, an) > 0 by induction, where 7 is the output of Algorithm 1. The
conclusion holds for b = 1. Assume it holds for some i > 1 that d} (s, ap) > O only if d (sp, az) >
0, then for any s,41 € S such that d ,; (sp41) > 0, it holds that dy, 1 (8n+1) > 0, which leads to
the conclusion that d§+1(8h+17 any1) > 0only if dj 1 (8p41,an41) > 0. To summarize, we have

dy°(sn,ap) > 0 only if d) (sp,an) > 0, mo € {7*,7}. (27)

Let us define M by adding one absorbing state s,TL forall h € {2,..., H}, therefore the augmented
state space ST = S'U {s;fl} and the transition and reward is defined as follows: (recall Cp, =

{(sn,an) : dii(sh,an) > 0})

(\shah) Sh,an € Cp, C
PJ( | sh,an) = { 7 7 ; T;(Sh,ah) = { ru(on, an) o o € Cr

_ +
63114-1 Sh = S, O Sph, Gh ¢Ch7 0 Sh = Sy, OI Sp, ap, %Ch

and we further define for any 7,

V™ (s) = Ef

>

H
Sp = s] iT =R lz 7«11 Vh € [H], (28)

t=1

where Ef means taking expectation under the absorbing MDP M.
Note that because 7* and 7 are fully covered by p (27), it holds that

o™ =0 T =7 (29)

Define (7;l V() = TIL( )+ (PTV)( -) for any V' € RS+, Note 7, Q,,, Vj, are defined
in Algorithm 1 (we extend the definition by letting V}, (s h) = 0and Q,(s! h»+) = 0) and denote
§h(s7 a) = (7;3Vh+1)(5, a) — Q,(s,a). Using identical proof to Lemma C.9, we have

H
Vi (s) = VT (s ZE [éh shyan) | s1= 8} > EL {§Z(Sh,ah) | s1= 5} , (30)
h=1

where V|'™ is defined in (28). Furthermore, (30) holds for all VJ”* (s) — Vhﬁ(s).

C.3.4 Finalize our result with non-private statistics

For those (s, an) € Ch, f,i(sh,ah) = rn(snyan) + PuVig1(sn, an) — Qp(sn,an) = En(sn, an).

For those (sp,, ap) ¢ Cp, or s, = sL, we have 5;2(5;“ ap) = 0.
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Therefore, by (30) and Lemma C.10, under the high probability events in Lemma C.3, Lemma C.6
and Lemma C.7, we have for all t € [H], s € S (S does not include the absorbing state st)

H
VtTﬂ (s) VT” < ZE [{h Shyan) | st = s} ZE; [E}TL(S;L,CL;L) | st = s

h=t
H
§ZEL {5;(5,1,%) | s¢ = s] -0
h=t
1 2Varp, (. (Vis1() -t 32SHE, -
<Y EL |2 PrClon,an) \TIT + 22 g = | 0 ((shyan) €Cp)
_ Nsp,an — EP Nsp,an
h=t
d 2Varp (Vair1()) -t 328HE, -« GD
< ]Ejr* 9 Py (-|sh,an) P ‘ 5 = 1 ((Sh,ah) c Ch)
; Nopan — 28, Nopan — Lo
u Varg . (Vat1()) -t 128SHE, -
<3 EL |4y | —Dellene) BT n 2 s = s| -1 ((sn,an) €Ch)
nsh,,(l.h 3nshvah
h=t
1 2Var \(Vara() -t 256SHE, -«
< ET* 4 P (-|sn,an) P _ 1 ’ cC
*hz::t i nd} (sp, ap) * 3nd), (sh, an) 50 =35 ((sn, an) n)

The second and third inequality are because of Lemma C.10, Remark C.8 and the the fact that either
¢t =0or&t = ¢ while (sp,, ar,) € Cp,. The forth inequality is due to Lemma C.3. The fifth inequality
is because of Remark C.8. The last inequality is by Lemma C.7.

Below we present a crude bound of ’V; 4 (s) — Vi(s)],

term in the main result.

Lemma C.11 (Self-bounding, private version of Lemma D.7 in [Yin and Wang, 2021b]). Under the
high probability events in Lemma C.3, Lemma C.6 and Lemma C.7, it holds that for all t € [H| and
seS,

x ~ 4+/20H?* 256SH?E
Vi (5) = Vils)| < == Zelt

where d,, is defined in Theorem 3.4.
Proof of Lemma C.11. According to (31), since Varﬁh(.‘sh ah)(i}h.l,_l(')) < H?, we have for all

t € [H],
4V2H?  256SH%E, -1

ViT (s5) — Vi ’ < . 32
Next, apply Lemma E.7 by setting 7 = 7, 7’ = 7%, @ = @ V = V under M, then we have
H J—
VT7r ZE [fh Shyap) | st = s} +> ELL [(Qh (s ) o7y Clsn) — Tn (lsn)) | se = s]
h=t
<Z]E [fh Shyan) | st = s}
<4ﬁ1{2 N 256SH>E, - 1.
B \/n - dm 3n - dm
(33)

23



Also, apply Lemma E.7 by setting 7 = 7’

Vi(s) —

VI (s)

=7,Q =0,V =V under M, then we have

EH:ET [ﬁh shyan) | st = s] <.

(34)

The proof is complete by combing (32), (33) and (34). O

Now we are ready to bound \/Varph( lsn,ar )(Vh+1

) by \/Varph |Sh7ah)(vh+l( )). Under the

high probability events in Lemma C.3, Lemma C.6 and Lemma C.7, with probability 1 — 4, it holds

that for all (sp,ap) € Ch,

VYA, Pt ) € 4 Varz, (o G O) 4 [T = VT, 0,568
420H?  256SH?E, -1
_ T :
S\/Varph(~|sh,ah)(‘/;l+l( )) + \/m + 3n . Jm
4v/20H?  256SH?E SE
< Var - e (VT* ())+ i s +4H 14
\/ Pr(-|sn,an)\ " h+1 m 3n - dm Nsp,an
- - AW2H? | 256SH?E, -1 o | SE, e
_\/ arﬁh(lsmah)( h-&-l('))Jr m + 3n«J + Tl'dm
4v2eH?  256SH?E, -1
t L
S\/V&I‘Ph('|siuah)(Vh-‘rl(')) m + 3n - dpy, 8 J
9yLH? | 256SH?E SE,
el By
s\/VarPh(wsh,ah,)(VhH( )+ i, s, 8 n- Jm'

The second inequality is because of Lemma C.11. The third inequality is due to Lemma C.5. The
forth inequality comes from Lemma C.3 and Remark C.8. The fifth inequality holds with probability
1 — 4 because of Lemma E.5 and a union bound.

Finally, by plugging (35) into (31) and averaging over s;, we finally have with probability 1 — 44,

H
ik < Z ]E;rr*
h=1

2Var13h(,|8h’%)(‘7,l+1(.)) .
ndl (sp,ap)

~ (H? H?E

n-dpy

*

~ *
o — T =l -

| 256SHE, 1
3nd b (sn,an)

H Tx
<2y El. \/ Varr lon ) (Vi1 (0) ¢
h=1

ndl, (sp, an)

. Varp, (fspan) Vit ()) -t ~ (H3 + SH2E
dﬂ h hyQh —+1 O i P
h (Sh7ah)\/ nd‘;ﬁ(sh,ah) + - dm
Ep)

where O absorbs constants and Polylog terms. The first equation is due to (29). The first inequality is
because of (31). The second inequality comes from (35) and our assumption that n - d,,, > ¢; H>.

The second equation uses the fact that df (sp,ap) = d;rl”*(s;“ ap), for all (sp,ap). The last
equation is because for any (sp, ap, Sp+1) such that dg*(sh, ap) > 0 and Pp(spi1|sn,an) > 0,
Vi (sna1) = Vi (sng)-

(36)

IS

h=1 (sp,an)€ECh

SOND>

h=1 (sp,an)ECh

“ Va dsnany (V1 (4) - ~ [ H3 g2
dy (Sh;ah)\/ i clomen) Va0 L+0< 5

ndl, (sp, an) n-dpy

C.4 Put everything together

Combining Lemma C.1 and (36), the proof of Theorem 3.4 is complete.
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D Proof of Theorem 4.1

D.1 Proof sketch

Since the whole proof for privacy guarantee is not very complex, we present it in Section D.2 below
and only sketch the proof for suboptimality bound.

First of all, by extended value difference (Lemma E.7 and E.8), we can convert bounding the subopti-
mality gap of v* — v™ to bounding Zthl E [Th(sn,an)). given that |(Th Vi1 — T Vig1) (s, a)| <
T}, (s,a) for all s,a,h. To bound (77J~/h+1 — '7~7J~/h+1)(s, a), according to our analysis about the
upper bound of the noises we add, we can decompose (77, YN/hH — 7~7J~/h+1)(s, a) to lower order terms
(O( )) and the following key quantity:

@(s,a) TA quﬁ spyap) - (7’; + Vi1 (She1) — (Th‘N/;H_l) (sg,ag)) /5%(52,@2)] . (3D

— 02| , so we can convert 7; to 02
oo’ Vi1’

For the term above, we prove an upper bound of H oy
h+1

Next, since Var [rh + Vit (8541) — (’T;LVhH) (s7,a7) | sT, aﬂ ~ 0\27h+1’ we can apply Bern-

stein’s inequality for self-normalized martingale (Lemma E.10) as in Yin et al. [2022] for deriving
tighter bound.

Finally, we replace the private statistics by non-private ones. More specifically, we convert 0‘27 to
h+1

and matrix concentrations.
oo

or? (A;1 to A,*fl) by combining the crude upper bound of HKN/ - V=

D.2 Proof of the privacy guarantee

The privacy guarantee of DP-VAPVI (Algorithm 2) is summarized by Lemma D.1 below.

Lemma D.1 (Privacy analysis of DP-VAPVI (Algorithm 2)). DP-VAPVI (Algorithm 2) satisfies
p-2zCDP.

Proof of Lemma D.1. For Zle o(57,a}) - ‘7h+1(52+1)2’ the /¢ sensitivity is 2H?.  For

S (R R) - Vier (5740) and XI5, 0 (sh,af) - (] + Vi (5744) ) /33 (57, a7, the £ sen-
sitivity is 2H. Therefore according to Lemma 2.7, the use of Gaussian Mechanism (the additional
noises ¢1, @9, ¢3) ensures py-zCDP for each counter. For Ele #(57,a7)p(s7,a7) " + A and
Zle ¢ (s],ap) ¢ (s}, aﬁ)T /o2(sT,a}) + A, according to Appendix D in [Redberg and Wang,
2021], the per-instance /5 sensitivity is

1 1 1
18alla = 5 sup_ 1697 = 75 sup > 003 =
,J

¢ #ll2<1 loll2<1
Therefore the use of Gaussian Mechanism (the additional noises K, K5) also ensures py-zCDP for

each counter.'> Combining these results, according to Lemma E.17, the whole algorithm satisfies
5H py = p-zCDP. [

D.3 Proof of the sub-optimality bound
D.3.1 [Utility analysis and some preparation

We begin with the following high probability bound of the noises we add.

"2For more detailed explanation, we refer the readers to Appendix D of [Redberg and Wang, 2021].
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Lemma D.2 (Utility analysis). Let L = 2H d Llog(149) = 2H M and

2 2
E = %;i (2 n <log(56021;1/5)) 3) =, /7105(1 (2 + <71°g(5c°’21;{/5)) 3)for some universal constants

c1, co. Then with probability 1 — 6, the following inequalities hold simultaneously:

Forallh € [H], ||¢1ll2 < HL, [|d2l2 < L, [I¢s]l2 < L (38)
Forallh € [H|, K1, K are symmetric and positive definite and || K;||2 < E, i € {1,2}.

Proof of Lemma D.2. The second line of (38) results from Lemma 19 in [Redberg and Wang, 2021]
and Weyl’s Inequality. The first line of (38) directly results from the concentration inequality for
Guassian distribution and a union bound.

Define the Bellman update error (j, (s, a) := (75 Vig1)(s,a) — Qn (s, a) and recall
Tn(s) = argmax,, (Qn(s,-), Ta(- | 5)).4, then because of Lemma E.8,

H
Vi(s) = Vi (s) <> Ex[Gu(sn,an) [ 51 = 5] = Y Bz [Ca(sn,an) [s1=5].  (39)

h=1

M=

>
Il
—

Define 75 Vig1(-,-) = &(-,) @ Then similar to Lemma C.10, we have the following lemma
showing that in order to bound the sub-optimality, it is sufficient to bound the pessimistic penalty.

Lemma D.3 (Lemma C.1 in [Yin et al., 2022]). Suppose with probability 1 — 6, it holds for all
s,a,h € § x A x [H| that |(EVh+1 - 771Vh+1)(s a)| < Ty(s,a), then it implies Vs,a,h €
S x Ax [H], 0 < (p(s,a) < 2T (s, a). Furthermore, with probability 1 — 4, it holds for any policy
m simultaneously,

H
V() Z 7 [Ch(sh,an) | s1=].

Proof of Lemma D.3. We first show given |(7'h1~/h+1 - 7~}J~/h+1)(s,a)| < T'(s,a), then 0 <
Cn(s,a) < 2Ty (s,a), Vs,a,h € S x A x [H].

Step 1: The first step is to show 0 < ((s,a), Vs,a,h € S x A x [H].

Indeed, if Q5 (s, a) < 0, then by definition @h(s7 a) = 0 and therefore (, (s, a) := (TpViy1)(s, a) —
Qn(s,a) = (ThVhi1)(s,a) > 0. If Qp(s,a) > 0, then Qp(s,a) < Qn(s,a) and

Cn(s,a) =(TVii1)(s,a) — Qn(s,a) > (TaVias1)(s,a) — Qn(s, a)
=(ThVit1)(s,a) — (TiVis1)(s,a) + Ti(s,a) > 0.

Step 2: The second step is to show (p,(s,a) < 2T (s, a), Vs,a,h € S x A x [H].
Under the assumption that |(’Th‘7h+1 — ’7~?L17h+1)(s, a)] <Th(s,a), we have
Qh(57 CL) = (ﬁL‘A/I/L—i-l)(S)a) - Fh(57 C(,) S (ﬁbf/lh-i-l)(sya) S H—-h + 17

which implies that Q, (s, a) = max(Qp (s, a), 0). Therefore, it holds that

Gu(5,0) ==(TaVis1)(s,0) = Qu(s, @) < (TaViya)(s, @) — Qnls, a)
=(ThVis1)(s,a) — (ThVig1)(s,a) + Th(s,a) < 2-Th(s, a).

For the last statement, denote § := {0 < (,(s,a) < 2T'4(s,a), Vs,a,h € S x A x [H]}. Note
conditional on §, then by (39), V" (s) — V{7 (s) < Zthl 2-E,;[Th(sh,an) | s1 = s] holds for any
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policy 7 almost surely. Therefore,

H
PV, Vi(s) = Vi(s) < 2-Ex[Th(sn,an) | 51 = s].]

which finishes the proof. O

D.3.2 Bound the pessimistic penalty

By Lemma D.3, it remains to bound | (75 Vig1) (s, @) — (Th Vis1 ) (s, a)|. Suppose wy, is the coefficient
corresponding to the 73V, 41 (such wy, exists by Lemma E.14), i.e. Tp Vi1 = ¢Twh, and recall
(ThVii1)(s,a) = ¢(s,a) " wp, then:

(th+1) (s,a) — (TthH) (s,a) = d(s,a)T (wn — @)

K
=(s,a) Twp, — (s, a)"'f\;l (Z o (sy,,ap,) - (7’; + X~/h+1 (sﬁﬂ)) Joa(sh,a}) + ¢3>

T=1

®

K
_ ¢(s7a)TK}:1¢3 +¢(s,a) " (A, — K;l) <Z o (sh,ap) - (r; + Vit (S,TLJFI)) Joa(sh,a}) + (bg),
—_—

(ii) =1

(iii)
N (40)
where A, = Ay — Ko = Y5 o (s7,a]) ¢ (s],a}) | /52(sT,af) + AL
Term (ii) can be handled by the following Lemma D.4

Lemma D.4. Recall k in Assumption 2.2. Under the high probability event in Lemma D.2, suppose

4 op( 2Hd
K > max il ng( 2 ), 4>‘52 }, then with probability 1 — 6, for all s,a,h € S x A x [H], it
holds that
~ 4H?L
‘¢(s,a)TA;1¢3 < T/K

Proof of Lemma D.4. Define 7\,’1 =E, 1[0}, %(s,a)¢(s,a)¢(s,a)"]. Then because of Assumption
2.2 and 0, < H, it holds that A, (A}) > 7z Therefore, due to Lemma E.13, we have with

27



probability 1 — 4,
d(s,a) A, ds| < [lo(s, a)llz-1 - l¢sllz -
SE”Qb(Sva)H(Kﬁ)—l ’ ||¢3||(7\1;L)71
AL |~
< IR
4H?L/K
<—F—.
- K

The first inequality is because of Cauchy-Schwarz inequality. The second inequality holds with
probability 1 — § due to Lemma E.13 and a union bound. The third inequality holds because

VaT - A-a < /la]2]|A]2 ||a||2 = |la|l2v/]|All2. The last inequality arises from H(Kﬁ)_lﬂ =
maX((Ap) )_ At (Ap) < H 0

min

The difference between Kgl and JA\;l can be bounded by the following Lemma D.5

4o 24H
Lemma D.S. Under the high probability event in Lemma D.2, suppose K > %

probability 1 — 6, for all h € [H), it holds that |A;* — < A B/

, then with

Proof of Lemma D.5. First of all, we have
AT = A= AT (An = M) - A
<IAG - IR = Anll- 1AL 4D
)‘mln( ) )\m}n(Ah)
The first inequality is because | A - B|| < || 4] - HB|| The second inequality is due to Lemma D.2.
Let A} = %Kh, then because of Lemma E.12, with probability 1 — 4, it holds that for all h € [H],
_ 42 ( 2dH> bz
= \/E og 5 )

, it holds that (according to Weyl’s Inequality)

A, —E,p[o(s,a)p(s,a) T /53 (s,a)] — ffd

4 2dH
which implies that when K > 123 los =

A_K K&
K 2H? = 2H?
and therefore )\min(/~\h) > )\min(Kh) >

i (8%) = Anin (B n[6(s, ) (s, a) T /57 (5,0)]) +

Under this high probability event, we have A, (Ah) > K
Plugging these two results into (41), we have

2H2

2H2
AH*E /K2

A=A < =

Then we can bound term (iii) by the following Lemma D.6

4 d
Lemma D.6. Suppose K > max {M \‘Z%}, under the high probability events in

Lemma D.2 and Lemma D.5, it holds that for all s,a,h € S x A x [H],

o K _ N 4V2HEVd/K3/?
‘QS(S,G)T(A;LI _ A,jl) <Z¢(s;7a;) . (7«; + Vit (S}TLJrl)) [T (sh,a}) + (;53> < V2 K\f/l‘f .
=1

Proof of Lemma D.6. First of all, the left hand side is bounded by

K
ARk (Z o (sp,af) - <r; + Vi1 (S;H)) /53 (sT, a;)>
T=1

AHAEL/k?
_|_ -
K2

2
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due to Lemma D.5. Then the left hand side can be further bounded by

AH'EL/K?

K
HY ([R5 = K76 sk, ap) /60 (s7 af) =

+
2

LGN

K T T T TT
S ov (@ - At UL i) SEL

K2

~_ e N ~_ 4H*EL/K?
SH\/Kd Ao (<Ah,1 -5 R B -EY) + T/

—H\/Kd R =AY - A (B3 K;l)Hz+74H4IE(2L/H2

— — R R — 4 4 2
<oy frca- 57 2-HAh—Ah\LHA?—A?H;L L

<2\/§H4E\/E/m3/2 N AH*EL/K?
= K K2
<4ﬁH4E\/E//@3/2

The first inequality is because ||all, = VaTa = /Tr(aa’). The second inequality is due to
Cauchy-Schwarz inequality. The third inequality is because for positive definite matrix A, it holds
that Tr(A) = Zle Ai(A) < dAmax(A). The equation is because for symmetric, positive definite
matrix A, [|All; = Amax(A). The forth inequality is due to ||A- B|| < ||A]| - || B||. The fifth
mequahty is because of Lemma D.2, Lemma D.5 and the statement in the proof of Lemma D.5 that

)\mm(Ah) > 21}(;2 The last inequality uses the assumption that K > \‘/fé O

Now the remaining part is term (i), we have

é(s,a)Twy — B(s,a) TA (Z(Z) sy, ar,) - (r,: + Vit (S,TH_I)) /5%(82,&2))
(1)
~ K ~
= 6(s.0) Twn — 6(s,0) TR} (Z 6 (707) - (TaVis1) (sh,ap) /a,%<sz,az>)
T=1
(iv)
~ K ~ ~
~ ols,0) TRy (Z 6 (57,07) - (i + Vi (s72) = (TaViun ) (shoah)) /2 (s, o@) .

™)

(42)
We are able to bound term (iv) by the following Lemma D.7.

Lemma D.7. Recall r in Assumption 2.2. Under the high probability event in Lemma D.2, suppose
4 1o ( 2Hd
K > max { p12n ng( 2 ), 4>‘52 }, then with probability 1 — §, for all s,a,h € S x A x [H],

SAH?\d /K
—

IN

’¢(Saa)waL S Cl TA <Z¢ Shaah (ﬁzfih-l-l) (8270’2) /5%(8270’2))
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Proof of Lemma D.7. Recall 77117h+1 = ¢ "wy, and apply Lemma E.13, we obtain with probability
1—4¢,forall s,a,h € S x Ax[H]

K
6(s,0)Twn — 6(s,0) A" <Z¢ (shoai) - (TuVasr) (k. ap) /@%@M))‘

T=1

K
= ¢(s7a)Twh - S a’ Ai; <Z¢ Shaah sh’a;)Twh/E%(sg,a}rL))‘

r=1
=[o(s.0) Twn — o(s,0) TR;" (Rn = A1) w
= A.¢(57a)TK;1wh‘

<Mo(s; a)llz-r - lwnllz—

4\

*”925(5 a)||(Ap) 1 ||wh||(AP) 1
<i i
<8)\H3\/§//<;

— K )

where A? := E,, j, [74(s,a)"2¢(s, a)¢(s,a)T]. The first inequality applies Cauchy-Schwarz in-
equality. The second inequality holds with probability 1 — ¢ due to Lemma E.13 and a union bound.
The third inequality uses vVaT - A -a < \/[[a[l, [ A]l, [[all, = |||, \/||AH2 and ||wy|| < 2HV/d. Fi-

nally, as )\min(T\Z) > ——Ff——5 > 5 implies H(Ap H < 8= the last inequality holds. [

— maXp, s,a on(s,a)? =

Uh(s ah)’

then by Cauchy-Schwarz inequality, it holds that for all h, s,a € [H] x S X A,

For term (v), denote: z, = M Ny = (’I";; + ‘7h+1 (S;_H) — (771‘7h+1) (sﬁ,aﬁ)) Jon(s},ar),

K
: <Z¢<s;,a;> (4 Vi (510) = (TVir) (57 ) /5i<s;,a;>> ’
T=1

<\/(s,0) TR 6(s,a) -

= K;l
(43)
We bound \/gb(s, a)T/A\;qu(s, a) by \/gb (s,a) T/~\_1¢(s, a) using the following Lemma D.8.
Lemma D.8. Suppose K > ma {% m} under the high probability events in
Lemma D.2 and Lemma D.5, it holds that for all s,a,h € S x A x [H],
H2\/E//-e
A TA .
\/(b( a)TA Y p(s,a) < \/(bsa Yo(s,a) + %
Proof of Lemma D.S8.
Vs, @) TR, 16(s,0) = \/6(s, ) TR, ' 6(s,0) + 6(s, @) T (R — &y (s, a)
<\/¢>(s, a)TT\;1¢(5, a) + HK;l - 7\}71”2
(44)

<o) TR ols.) 4871 - K2

<\fo(s.0) TRy ol ) + ZVEL
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The first inequality uses |a ' Aa| < ||a||§ - ||A]|- The second inequality is because for a,b > 0,
Va+ Vb > v/a + b. The last inequality uses Lemma D.5. O

Remark D.9. Similarly, under the same assumption in Lemma D.8, we also have for all s,a, h €

S x A x [H],

2H?*\/E
\/gb(s a)TA Lo(s,a) < \/gbsaTAh (s, a) + I\(/H

D.3.3 An intermediate result: bounding the variance

Before we handle HZfZl Tt || _yo We first bound sup,, ||o7 — 0‘27 by the following

= h+1 oo

Lemma D.10. "

Lemma D.10 (Private version of Lemma C.7 in [Yin et al., 2022]). Recall the deﬁnition of on(-, )2 =
max{1, Var,Vy11(-,-)} in Algorithm 2 where [VaryVii1](-) = ((., >[ oH-hi12]

[{(&(-,") 0;L>[0H h+1]}2 (Bh and ), are defined in Algorlthm 2) and o"~,h+1(-,-)2 =

512log(284) 4y 128log 242 /31,
max{l,VarpthJrl(-,-)}. Suppose K > max{ — Bl rovr =
32E% 16A°

max{ H2 d%, T i }, under the high probability event in Lemma D.2, it holds that with proba-

bility 1 — 60,
_ HAd3 (A + K)2KdH?
2 _ 52 < .
supllai, = o, llee < 36\/ KK bg(

}andKz

Ad

Proof of Lemma D.10. Step 1: The first step is to show for all h, s, a € [H| x S x A, with probability
1 — 34,

A0

~ ~ H4d3 A+ K)2KdH?
’<¢(3aa)aﬁh>[0,(H7h+1)2] - Ph(Vh+1)2<57a)‘ < 12\/ T log <( ) )

Proof of Step 1. We can bound the left hand side by the following decomposition:
(605, @), B o, 11 ns2) = B (Vis1)?(5,0)| < [(@(5. @), B} = Pa(Vasa)* (s, 0)

K

- ’¢<s 0) ;! (Z 6(5%,aF) - Vi (571)° + m) — Pu(Vi)*(5.0)

K
( &(5h, ap) Vh+1(82+1)2> —Pp(Vas1)*(s,a)

=1

+[o(s, )72 01
—_———
(2)

(1)

K
¢(s,a) (S =5 (Z é(57,an) - Vi1 (57401)° + ¢1> ‘

(3)
where &3, = ¥, — Ky = Y5 6(s7,a)6(5],a) T + AL

Similar to the proof in Lemma D.5, when K > max{%, 7 F} it holds that with probabil-
ity 1 — 9, forall h € [H],
- Kk = Kk & - 4E | K?
)\min b > 5 >\min b)) > 5 H271 - ZilH < .
( h) = 9 ( h) = 9 h h 9 — K2

(The only difference to Lemma D.5 is here E,, ,[$(s, a)d(s,a) "] > k.)
Under this high probability event, for term (2), it holds that for all h, s,a € [H] X S x A,

2HL/k
T

[6(s,0) 55 n] < llos, )l - [|Z5 ] - lonll < Agiu(Bn) - HL < (45)
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For term (3), similar to Lemma D.6, we have for all h, s,a € [H] X S x A,

K
1 ae = 42H?EVd /K32
|¢<s,a>T<2h1 -5 (Z ¢(57,,a5) - Vi1 (541)° + ¢1>‘ < i [ e
T=1
(The only difference to Lemma D.6 is that here V}, 1 (s)? l, <HL, ~;1H < 2 and
S SE 4E /K>
HE”’l - Ethz = K/2 )
We further decompose term (1) as below.
— K ~ ~
(1) = ’é(s,a)TEﬁl <Z o(57,, ap,) - Vh+1(82+1)2> = Pp(Vit1)*(s, a)
=1
K _ K ~
= ‘(/5(57@)T2;:1 Z (b(g;;a a;;) : Vh-‘rl(g;-z-&-l)Q - ¢(3a a)TE,:l(Z ¢(§£7a;)¢(527a2)—r + )‘I) /S(Vh-l—l)Q(S/)th(sl)
=1 =1
— K ~ ~ — ~
< |6(s,0) ™S S (6 ah) - (Vs (5F40)” — B (Vo) (7)) +A]¢<s,a>Tzh1 | T2 ().
T=1

(4) (5)
47)

2Hd
512l0g(2) % , by Lemma E.13 and a union bound, with

For term (5), because K > max {’#,

probability 1 — §, forall h, s,a € [H] x S X A,

Mot [ T 6 )| < Aot s
S

(Vo) (5" dim ()| |
S 2;1

<an|=D) 1||Hf 4Aﬂ

=)=t

ATWS ;)| s )- \FH/ Vi 1)2(s")dvp (')

where 3} = E,, 5[¢(s,a)¢(s,a) "] and Apin(Z]) > k.
For term (4), it can be bounded by the following inequality (because of Cauchy-Schwarz inequality).

(48)

K

S 0(57a7) - (Vs (5740)° = Bu(Visn) (55, az>)’

T=1

(4) < [19(s. )5+ 49)

s—1
Zh,

Bounding using covering. Note for any fix V},1, we can define z. = ¢(57,aj},) (||¢|l, < 1) and
N = Vie1(5741)* — Pu(Vag1)?(57,, aj,) is H?-subgaussian, by Lemma E.9 (where t = K and

L = 1), it holds that with probability 1 — 4,
d A+ K
< 4.2 ).
_1_\/8H 2log< Y )

Zp

K

> 6Gi,an) - (Va1 (5hs1)” = Pu(Vaga)* (55, a7))

T=1

Let A7, (€) be the minimal e-cover (with respect to the supremum norm) of
Vh {Vh Vi (1) = maxge 4 {min{e(s,a) "0 — Cl\/d . TA Lo(-,) — 027H—h+1}+}}

That is, for any V' € V, there exists a value function V' € A(e) such that
supges [V(s) — V'(s)| < e. Now by a union bound, we obtain with probability 1 — 6,

s\/sm.jlog(“ N (9)])

=

sup
Vh41€Np11(e)

Z o(5h,a7,) - (Vi1 (8h41)” = Pu(Vira)* (57, ar))
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which implies
K ~ ~
> 6Ghar) - (Vi (5h40)* = Pa(Varn) (57, 07))

T=1

K
g\/ st oz (A1 N (0] ) + 42/ ERT

choosing € = dﬁ/K, applying Lemma B.3 of [Jin et al., 2021]"3 to the covering number A}, ;1 (€)
w.r.t. V11, we can further bound above by

d3 A+ K A+ K
<\/8H4 = log <+2dHK) +4H>V @2 < 6\/H4 - d3log (+2dHK>

Ad Ad

Apply a union bound for h € [H], we have with probability 1 — 4, for all h € [H],

AN+ K)2KdH?
< 6\/H4d3 log (H))
2—1

Ad

K
> (57 a7) - (Vasa(570) = Pa(Viin) (55, 7))
T=1

h

(50)
and similar to term (2), it holds that for all h, s,a € [H] X S x A,

= 2
lo(s, a)llss < IIZ5 ] < \/; (51)

Combining (45), (46), (47), (48), (49), (50), (51) and the assumption that K >
max{ 4L 3257 16)° }, we obtain with probability 1 — 34 for all h, s,a € [H] x S x A,

H2d3k’ d?k2° d?k

3, e H4d3 A+ K)2KdH?
’<¢(3aa)75h>[0,(H—h+1)2] - Ph(VhH)Q(s,a)’ < 12\/ T log (( )?5 )

Step 2: The second step is to show for all h,s,a € [H]| x § x A, with probability 1 — 34,

~ ~ H2d3 A+ K)2KdH?
‘<¢(57a)a9h>[0,H7h+1] - Ph(Vthl)(Saa)‘ < 12\/ e log (( /\)5 ) (52)

The proof of Step 2 is nearly identical to Step 1 except IN/hQ is replaced by ‘7h.

Step 3: The last step is to prove sup,,[|5}, — 0% [[oc < 36\/f{;?3 log ((A+Kg\2{SKdH2) with high
h+1
probability.

Proof of Step 3. By (52),
(620 0.1 nya)” = [PV (s, 0]

= ’<¢(37a)a§h>[0,H—h+1] Jr]P’h(‘N/hH)(Saa) : ’<¢(3>a)a§h>[O,H—h+1] - Ph(vh—&-l)(saa)‘

Ad

~ ~ H4d3 A+ K)2KdH?
<2H - }<¢(Saa)79h>[0,H—h+1} - Ph(VhH)(&a)‘ < 24\/ P log <( ) >

Combining this with Step 1, we have with probability 1 — 66, Vh,s,a € [H] X S x A,
H4d3 A+ K)2KdH?
< 36\/ % log <( + K) )

Varh‘N/hH (s,a) — Varp, ‘N/hH (s,a)

K Y

Finally, by the non-expansiveness of operator max{1, -}, the proof is complete. O

3Note that the conclusion in [Jin et al., 2021] hold here even though we have an extra constant C5.
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D.3.4 Validity of our pessimism

Recall the definition A, = -5 ¢ (s7,a]) ¢ (sf,a}) " /52(s],a}) + A- I and
Ap = Zf:l B(sh,al)p(st,af)T /O’~ (s}, a},)+Al. Then we have the following lemma to bound
Vht1

the term \/¢(s7a)TA,j o(s,a) by \/¢ s,a)TA, 1 o(s, a).

Lemma D.11 (Private version of lemma C.3 in [Yin et al., 2022]). Denote the quantities C; =
max{2\, 128log(2dH/J), W} and Cy = O(H"Yd3/kP). Suppose the number of
episode K satisfies K > max{C}, CQ} and the condition in Lemma D.10, under the high probability

events in Lemma D.2 and Lemma D.10, it holds that with probability 1 — 20, for all h,s,a €
[H] x 8 x A,

V(s @) TR, 6(s.a) < 2¢/0(s,0)TA; 65, ).

Proof of Lemma D.11. By definition \/gb(s, a)T/A\_lgb(s a) = [|¢(s,a)||z-1. Then denote
h
. 1 ~
A;L = 7Ah7 I Ahv

where Aj, = Zle o(s7,a})p(sh,af) " /0’~ (sh, aj) + Al. Under the assumption of K, by the

conclusion in Lemma D.10, we have

N ¢(8,G)¢(8,G)T ¢)(57a)¢(s7a’)T
‘ Mg = Ay| = sup o2(s,a) 02 (s,a)
@ hA™ Vg1
~2 2
op(s,a) —o5  (s,a)
<sup|—= bl (s, a)||?
sa | 02(s,a)- a‘%h 1(s, a) lo(s, @)
<2 ) (53)
o1 (s,a) — o, 1(s,a) |
<sup - ~
s,a 1
Hd® ([ (A + K)2KdH?
< .
36¢ KK 1°g( b¥; )

Next by Lemma E.12 (with ¢ to be ¢/ OFia and therefore C' = 1) and a union bound, it holds with
probability 1 — 4, for all h € [H],
A 42 [ 2dH\'?
A}, — (Eu’hw)(s,a)zj)(s,a)T/a‘%hH(s,a)] + KId> H < Vi (log 6) .

Therefore by Weyl’s inequality and the assumption that K satisfies that
4
K > max{2), 1281og(2dH/¢), W}, the above inequality leads to

4f( 2dH>1/2

A5 =M (45) < A (Bponl(s.a)(s.0) /0%, (s,0)]) +

KT VE g
:HEM,}Lw(s,a)cﬁ(s,aF/m all,+ 5+ Af(l 2?{)/
<llés, )l + 2 ‘iﬁ( Q‘fSH)/ <1+ f( Q%sH>/ =%
Noin(84) 2 i (B0l 0)os.) 7, (5.0)]) + = “f; <1°g 2655}[)1/2
2 i (Bl 000,007 /o2, _ (5,0)]) — 22 (lOg Q%H)m
1/2



Hence with probability 1 — 4, |A},|| < 2 and ||A}, || = A
HA;L ! H < % with probability 1 — ¢ using identical proof.

2 . .
min(A}) < 2Z= Similarly, one can show

Now apply Lemma E.11 and a union bound to /A\;z and A}, we obtain with probability 1 — ¢, for all
h,s,a € [H] xS x A,

(s, 0)ll g+ < |1+ \/ A - A | R - [As = 44| | - Hotss @dllag
[ 2H? _ 2H? |~
< i 220 2 g | ot

988H4 [ [HAd3 [ (A + K)2KdH?
< 1 1 . r—1
<[4, 2 (\/ s (B )) I6(s. )z,

<26(s,a) 5+

where the third inequality uses (53) and the last inequality uses K > O(H'2d3/x5). Note the
conclusion can be derived directly by the above inequality multiplying 1/ VK on both sides. O

In order to bound HZle TNy

Pp we apply the following Lemma D.12.

h

Lemma D.12 (Lemma C.4 in [Yin et al., 2022]). Recall z, = :"<(;’“h)) and
h?

Ny = (r; + Vi (sh41) — (Tth_H) (sﬁ,aﬁ)) /on(s},a},). Denote
rhn+V (s') = (ThV) (s,a)

¢ = sup
VE[0,H], s'~Pp(s,a), h€[H] ov(s,a)
Suppose K > 5(H12d3/n5)14, then with probability 1 — 6,
<0 (max{\/g,f}) ,

where O absorbs constants and Polylog terms.

Now we are ready to prove the following key lemma, which gives a high probability bound for
(TaVhs1 = TaVaia)(s,a)].

Lemma D.13. Assume K > max{M, My, M3, My}, for any 0 < \ < k, suppose \/d > &,

PA V() (V) (s,0) . Then with probability 1 — 6, for all

ov(s,a)

where § 1= SUDy ¢, H], s/~ Py (s,0), he[H]
h,s,a € [H] xS x A,

(s = TiFh) 0] < 0 (Vayots.o) T3, o(s.0) ) + 2.

where Ay = S0 ¢(sf, af)o(s]. af) T /52 (sh, af) + A + Ko,
H?L HYE H? vVE H?L HYE
D= 0( AE | povas ) O< + f+H3\f>

K 13/2 K 3/2

and O absorbs constants and Polylog terms.

“Note that here the assumption is stronger than the assumption in [Yin et al., 2022], therefore the conclusion
of Lemma C.4 holds.
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Proof of Lemma D.13. The proof is by combining (40), (42), Lemma D.4, Lemma D.6, Lemma D.7,
Lemma D.8, Lemma D.12 and a union bound. O

Remark D.14. Under the same assumption of Lemma D.13, because of Remark D.9 and Lemma D.11,
we have with probability 1 — 0, for all h,s,a € [H] X S X A,

‘(7}‘7;1“ — ﬁvhﬂ)(&a)‘ <0 (\/&\/¢(S7Q)T/~\h1¢(s,a)> + D

K
<0 <\/&\/¢(5’G)TK;1¢(S’Q)) + % (54)
<0 (2\/&\/@1)(3, a)TA; L o(s, a)) + %

Because D = O (HT% + an/;f + H3 \[) and O absorbs constant, we will write as below for
simplicity:

’(n?hH - ﬁffhﬂ)(s,a)’ <0 <\/E\/¢>(s,a)TA}—Ll¢(s,a)> + %. (55)

D.3.5 Finalize the proof of the first part

We are ready to prove the first part of Theorem 4.1.
Theorem D.15 (First part of Theorem 4.1). Let K be the number of episodes. Suppose \/d > &, where
Th'JrV(S )7(771‘/)(5’&) and K > maX{./\/ll, Mg, Mg, M4}

g = SupV€[07H]7 s'~Py(s,a), he[H] ov(s,a)
Then for any 0 < A\ < k, with probability 1 — 0, for all policy 7 simultaneously, the output 7
of Algorithm 2 satisfies

v”—qﬁ§5< d- ZE [COPITE ))1/2}>+l;f,

where A}, = Zf 1 % + Mg D=0 ( + H4§/[ + H3\f) and O absorbs
Vh41(s]a)

constants and Polylog terms.

Proof of Theorem D.15. Combining Lemma D.3 and Remark D.14, we have with probability 1 — 4,
for all policy 7 simultaneously,

2 DH
Vi (s) — Vi (s) ( d- ZE (60,7870 ) " |51:S}>+K, (56)
now the proof is complete by taking the initial distribution d; on both sides. O

D.3.6 Finalize the proof of the second part

To prove the second part of Theorem 4.1, we begin with a crude bound on sup,, HV,:‘ — ‘N/h

oo
Lemma D.16 (Private version of Lemma C.8 in [Yin et al.,, 2022]). Suppose K >
max{ My, Mo, M3, My}, under the high probability event in Lemma D.13, with probability at

least 1 — 0,
H?Vd
VK .

supHVh VhH <O<

Proof of Lemma D.16. Step 1: The first step is to show with probability at least 1 — d,
=~ ~ 2
supy [V = Vil < O (%)
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Indeed, combine Lemma D.3 and Lemma D. 13, similar to the proof of Theorem D.15, we directly
have with probability 1 — 4, for all policy 7 simultaneously, and for all s € S, h € [H],

ViT(s) - Vh<)<0<f D [(90.)TA ol ))”2\shs}>+zf, 57)

. 512log(284) 4y . .
Next, since K > max { — 2>+, 22 5 by Lemma E.13 and a union bound over h € [H], with

K2 ' K

probability 1 — 4,
2 _
Sup||¢(57a')”A;1 < WSUP||¢(&@)H(A£)4 f Amln( ) \/t Vh € [H]7

where A} = Emh[a‘;}il(s, a)p(s,a)p(s,a)’] and Amin(A]) > #5.

Lastly, taking 7 = 7* in (57) to obtain

. N u NG DH
0< vy <s>—vff<s><0<¢&-§jzap (60,07 A7 6 \sh:s}>+
t=h

K
, (58)
~ ([ H*\/d ~ ( H3L HSEVd/k3? H*/d
<o (TN L5 [5  HEVA/E | V)
VK K K K
This implies by using the condition K > max { dn et 6E : , H*K}, we finish the proof of Step 1.

Step 2: The second step is to show with probability 1 — 4, sup, HVh - Vme <0 (HT\I/E)

Indeed, applying Lemma E.7 with 7 = 7’/ = 7, then with probability 1 — ¢, for all s, h

“7}7,(8) — Vf(s)’ = ‘iE; [@h(sh,ah) — (77J~/h+1) (sh,ah)‘sh = s}

iH (TaVhs = TuVia)(s.) |+ H - [Ch(s.0)
=h

(%)

<0 (H\/E H\/gb(s,a)TA,;lgz)(s, a)

~ ( H2\/d

where the second inequality uses Lemma D.13, Remark D.14 and the last inequality holds due to the
same reason as Step 1.

Step 3: The proof of the lemma is complete by combining Step 1, Step 2, triangular inequality and a
union bound.

O

Then we can give a high probability bound of sup,[|0Z  — 07?||oc.
h+1
Lemma D.17 (Private version of Lemma C.10 in [Yin et al., 2022]). Recall 0‘27 =
h+1

max {1, Varp, ‘7h+1} and 0,’;2 = max {1, Varp, Vi, | } Suppose K > max{Mj, Mo, M3, M4},
then with probability 1 — ¢,

H3\/d
supl,., — il <O ( m)
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Proof of Lemma D.17. By definition and the non-expansiveness of max{1, -}, we have

HU‘%}HA — 022 . < HV&YV}HFl — VaI'V;:(JrlHOO
< th (‘7;?-"-1 - VI:f—l) H + H(th/h—&-l)z - (]P’th*H)QH
< [0 = Vi |+ || @i + PV ) @i — PaVi)||

<2H H‘N/hH - VI:HH +2H HPthH —]P)hV;fHH

- H3\/g
SO(M)'

The second inequality is because of the definition of variance. The last inequality comes from
Lemma D.16. 0

We transfer \/¢(s, a)TA; (s, a) to \/¢(s, a)TA} "1 ¢(s, a) by the following Lemma D.18.

Lemma D.18 (Private version of Lemma C.11 in [Yin et al., 2022]). Suppose K >
max{ My, Ma, M3, My}, then with probability 1 — §,

V(s 0)TA 6(s.0) < 2/0(s,0)TA; M 6(s,a), Vh,s,a € [H] x S x A,

Proof of Lemma D.18. By definition \/gb(s, a)TA; '¢(s,a) = ||¢(s,a)||,—1. Then denote
h

1 o1,
A/h = EA’M Ay = K
where A} = S°F gb(s;,a;)(b(s;,a;)T/U‘Q,}:H(s;,a;) + M. Under the condition of K, by
Lemma D.17, with probability 1 — ¢, for all h € [H],

! ¢(s7a)¢(57a)—r ¢(8,G)¢($,G)T
‘AZ — M| = sup o2(s,a) o2 (s,a)
5@ h AT Vig1
*2 2
op, (S,CL) — 05 (S,CL)
<sup |~ 2 é(s, 0)|?
s,a | Op (Sa Cl) : 0"7h+1 (57 a) (59)
072(s,a) — a‘2~/h 1(3, a)
<sup T

Next by Lemma E.12 (with ¢ to be ¢/ TV, and C' = 1), it holds with probability 1 — 4,

1/2
HAZ - (Eu,hW)(s,a)¢(s,a)T/a‘2/;+l(8,a)] + 21d> H < Zi/\/; <1Og 2@‘?{) _
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(QdH) 128H* log2(2dH/6)}
K 9

Therefore by Weyl’s inequality and the condition K > max{2), 128 log
the above inequality implies

‘ A3 = Amax (M) < Amax (E“’h[¢(s’a)¢(3»a)T/U%;+ (s, )D N % ( 2c§H>1/2
1/2
<HEuh [p(s,a)p(s, a) /gv* (s a H L2 K 4\\/C <log Q(sz)

/\

<ot + o+ D2 (10g ) A B (g 2

, A dH\"?
)\min(AZ ) Z)\min (E/L,h[d)(‘s? a>¢(57 a)T/J‘Q/hf+1 (57 a’)]) + E - f/\%ﬁ (10g 2>

)
a2 [ 2dH\'?
i (Bualols.0)o(s.0) 7t ()]) = 2 (100 257
1/2
ZL_4\/§ 1ngdﬂ L
o2 UK 5 20>
Hence with probability 1 — 4, A* < 2and ’ Aj 1 H = )\mm(AZI) < % Similarly, we can show

that HA;L_1 H < % holds with probability 1 — § by using identical proof.

Now apply Lemma E.11 and a union bound to A;/ and A}, we obtain with probability 1 — ¢, for all
hys,a € [H] x 8 x A,

66 @)llar < 14+ /A5 1Ay

< 1+\/2H 2 M g
K

A = 83 ot -

lle(s; a)ll yor—1

HY | ~ [ H3vd
S|y 2 O(%)] '||¢(8’a)||A;’71

<2 6(s,0)]

where the third inequality uses (59) and the last inequality uses K > 5(H 14d/k5). The conclusion
can be derived directly by the above inequality multiplying 1/v/K on both sides. O

Finally, the second part of Theorem 4.1 can be proven by combining Theorem D.15 (with 7 = 7*)
and Lemma D.18.

D.4 Put everything toghther

Combining Lemma D.1, Theorem D.15, and the discussion above, the proof of Theorem 4.1 is
complete.

E Assisting technical lemmas

Lemma E.1 (Multiplicative Chernoff bound [Chernoff et al., 1952]). Let X be a Binomial random
variable with parameter p,n. For any 1 > 0 > 0, we have that

92pn

_6%pn _
PX<(1-0pnj<e 2, and PX>1+0pn]<e 3
Lemma E.2 (Hoeffding’s Inequality [Sridharan, 2002]). Let x1, ..., x,, be independent bounded
random variables such that B[x;] = 0 and |z;| < & with probability 1. Then for any € > 0 we have

2n2e?
< Zwl>e><e ST
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Lemma E.3 (Bernstein’s Inequality). Let z1, ..., x,, be independent bounded random variables such
that Elz;] = 0 and |z;| < & with probability 1. Let * = L1 3" | Var[x;], then with probability
1 — 6 we have

1 & 202 - log(1 /5) 25

— i <y ———= L2 1/6

PILE . 0g(1/9).
Lemma E.4 (Empirical Bernstein’s Inequality [Maurer and Pontil, 2009]). Let x4, ..., x,, be i.i.d
random variables such that |z;| < & with probability 1. Let & = - 3" | z;and V,, = L 31" (2 —
%), then with probability 1 — § we have

n
1
fE T; —
n -

=1

Lemma E.5 (Lemma 1.8 in [Yin and Wang, 2021b]). Letn > 2 and V € R® be any function with

[|Vl]leo < H, P be any S- dimensional distribution and P be its empirical version using n samples.
Then with probability 1 —

In—1
|1/Varp n Varp(V

Lemma E.6 (Claim 2 in [Vietri et al 2020]) Let y € R be any positive real number. Then for all
x € Rwithx > 2y, it holds that — < =+ 2y

1| < 217n-1og(2/5) 75 og(2/5).

n

log 2/(5)
n—1

<2H

E.1 Extended Value Difference

Lemma E.7 (Extended Value Difference (Section B.1 in [Cai et al., 20201)). Let m = {m;}L | and
7’ = {m, HL | be two arbitrary policies and let {Qn}_ | be any given Q-functions. Then define
Vi(s) :=(Qn(s, ), mrn(- | 8)) forall s € S. Thenforall s € S,

H
Vils) = Vi () = D B [(@n (s 2) s nn (| sn) =74 (- [ s0)) | 51 = 5]

h=1 (60)

+ ZE {Qh (8n,an) — (7—h‘7h+1) (sn,an) | s1 = S}

where (ToV) (-, ) == rp(s,+) + (PhV)(~, ) forany V€ RS,

Lemma E.8 (Lemma 1.10 in [Yin and Wang, 2021b]). Let 7 = {%h}le and Qn(-,") be the
arbitrary policy and Q-function and also Vi,(s) = (Qn(s,-),Tr(:|s)) Vs € S, and &,(s,a) =
(ThVit1)(s,a) — Qn(s, a) element-wisely. Then for any arbitrary 7, we have

H

H
VI(s) = ViT(s) = > Ex [én(sn,an) | 51 = 5] = Y Ex [n(sn, an) | s1 = o]

h=1 h=1

n
M=

Er [(@n (sn. ) m (lsn) =7 (lsn) | 1 = s|

>
Il

1
where the expectation are taken over sy, ay,.
E.2 Assisting lemmas for linear MDP setting

Lemma E.9 (Hoeffding inequality for self-normalized martingales [Abbasi-Yadkori et al., 2011]).
Let {n;}32, be a real-valued stochastic process. Let {F;}2, be a filtration, such that n, is F-
measurable. Assume 1, also satisfies 1, given JF;_1 is zero-mean and R-subgaussian, i.e.

vVieR, E [e)‘m | .7-}_1} < NR/2,
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Let {x,}$°, be an R-valued stochastic process where x is F;_1 measurable and ||| < L. Let
A=A+ Zizl x,x). Then for any § > 0, with probability 1 — 6, for all t > 0,

t

d A+ tL
> wans §8R2-210g< . )
s=1

Ad
Lemma E.10 (Bernstein inequality for self-normalized martingales [Zhou et al., 20211). Ler {n:}$2,
be a real-valued stochastic process. Let {F;}32 be a filtration, such that 0, is Fi-measurable.
Assume 1 also satisfies

2
AT?

Inel < RE[ny | Fooa] = O,E [0} | Foon] < 02

Let {x,}2°, be an R%-valued stochastic process where x is F;_1 measurable and ||x,|| < L. Let
Ay =M+ 22:1 xsx) . Then for any § > 0, with probability 1 — 6, for all t > 0,

t

tL? 442 442
E < 1 1+ —1-1 — 4R1 —
Slesns _80\/d0g<—|—)\d> 0g<5>+ Rog((s)

Lemma E.11 (Lemma H.4 in [Yin et al., 2022]). Let Ay and Ay € R¥*? be two positive semi-definite
matrices. Then:

At

IATHE< IAZ+ AT A - [[Ar = Asll

and

ol < [+ 1A Ball- IAT - 1A = ol - B

forall ¢ € R%,
Lemma E.12 (Lemma H.4 in [Min et al., 2021]). Let ¢ : S x A — RY satisfies ||¢(s,a)|| < C for

all s,a € S x A Forany K > 0,\ > 0, define Gx = Zle b (sk, ap)d(sk,ar) " + Mg where
(sk,ax)’s are i.i.d samples from some distribution v. Then with probability 1 — 6,

Gk Gr 1|l 4v2C2 [, 24\'?
— —E,|—1] < log — .
K K VK ]
Lemma E.13 (Lemma H.5 in [Min et al., 2021]). Let ¢ : S x A — R? be a bounded function s.t.
|l dll2 < C. Define G = Zle B(sk, ap) (s, ar) " + Mg where (sy, ax)’s are i.i.d samples from
some distribution v. Let G = E,[$(s,a)d(s,a)"]. Then for any § € (0,1), if K satisfies

K > max {51204 HG‘lelog (256[) 24N HG_lu} :

Then with probability at least 1 — 6, it holds simultaneously for all u € R? that

2
ez < el

Lemma E.14 (Lemma H.9 in [Yin et al., 2022]). For a linear MDP, for any 0 < V() < H, there
exists a wy, € R s.t. TV = (¢, wy) and |fwy, ||z < 2HNd for all h € [H]. Here T, (V)(s,a) =
ro(x,a) + (P,V)(s,a). Similarly, for any , there exists wf € R%, such that QF = (¢, w}) with
lwflla < 2 — h+ 1)V

E.3 Assisting lemmas for differential privacy

Lemma E.15 (Converting zCDP to DP [Bun and Steinke, 2016]). If M satisfies p-zCDP then M
satisfies (p + 2+/plog(1/9),9)-DP.
Lemma E.16 (zCDP Composition [Bun and Steinke, 2016]). Let M : U™ — Y and M’ : U™ — Z

be randomized mechanisms. Suppose that M satisfies p-zCDP and M’ satisfies p'-zCDP. Define
M'": U - Y x Zby M"(U) = (M(U),M'(U)). Then M" satisfies (p + p')-zCDP.
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Lemma E.17 (Adaptive composition and Post processing of zCDP [Bun and Steinke, 2016]). Let
M:X" - Yand M' : X™ x Y — Z. Suppose M satisfies p-zCDP and M’ satisfies p'-zCDP
(as a function of its first argument). Define M" : X™ — Z by M" (x) = M'(x, M (z)). Then M"
satisfies (p + p')-zCDP.

Definition E.18 (¢, sensitivity). Define the {1 sensitivity of a function f : N¥ — R% as

Ai(f)= sup  [f(U) = f(U)]h-

neighboring U,U’

Definition E.19 (Laplace Mechanism [Dwork et al., 2014]). Given any function f : N* — R%, the
Laplace mechanism is defined as:

ML(I,f,é) = f(l‘) + (Y1,~-~ ,Yd),

where Y; are i.i.d. random variables drawn from Lap(A1(f)/e).

Lemma E.20 (Privacy guarantee of Laplace Mechanism [Dwork et al., 2014]). The Laplace mecha-
nism preserves (€, 0)-differential privacy. For simplicity, we say e-DP.

F Details for the Evaluation part

In the Evaluation part, we apply a synthetic linear MDP case that is similar to [Min et al., 2021, Yin
et al., 2022] but with some modifications for our evaluation task. The linear MDP example we use
consists of |S| = 2 states and |.A| = 100 actions, while the feature dimension d = 10. We denote
S ={0,1} and A = {0,1,...,99} respectively. For each action a € {0,1,...,99}, we obtain a
vector a € R® via binary encoding. More specifically, each coordinate of a is either 0 or 1.

1 ifl{s=0}=1{a =0}
0 otherwise

our non-stationary linear MDP example can be characterized by the following parameters.

First, we define the following indicator function (s, a) = { , then

The feature map ¢ is:
#(s,a) = (a,é(s,a),1— 5(5,@))T e R,
The unknown measure vy, is:
Vh(O) = (0, s ,O, Qp 1, Oéhﬁg) s
vp(1) =(0,---,0,1 —ap1,1 —an2),

where {ap, 1, an 2} hefn is a sequence of random values sampled uniformly from [0, 1].
The unknown vector 6, is:

0n = (rn/8,0,74/8,1/2 —r,/2,71,/8,0,71/8,0,71,/2,1/2 — 1}, /2) € R,

where 7y, is also sampled uniformly from [0, 1]. Therefore, the transition kernel follows P, (s'|s, a) =
(p(s,a),vp(s")) and the expected reward function 1, (s, a) = (¢(s,a), ).

Finally, the behavior policy is to always choose action a = 0 with probability p, and other actions
uniformly with probability (1 — p)/99. Here we choose p = 0.6. The initial distribution is a uniform
distribution over S = {0, 1}.
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