

Environmental Controls of Carbon Dioxide (CO₂) Fluxes in Freshwater Wetlands Across the Globe

Omar I. Abdul-Aziz, Ph.D., Associate Professor Samira Jahan, Graduate Student

Wadsworth Dept. of Civil & Environmental Engineering West Virginia University, Morgantown, WV.

Ecological, Water Resources, and Environmental Engineering (EWREE): www.ecological-water.com <a href="mailto:Em

Background

- Wetlands are crucial in global carbon dynamics due to
 - substantial soil carbon reservoirs,
 - high methane emissions, and
 - ability to sequester carbon through peat formation, sediment deposition, and plant biomass accumulation (Turunen et al., 2002 and Mitra et al., 2005).
- Freshwater wetlands are important components in the global carbon budget by contributing to
 - the net source or sink of major greenhouse gas (GHG) fluxes, such as carbon dioxide (FCO₂) and methane (FCH₄) (Nahlik and Fennessy, 2016).

Study sites

- 38 Fluxnet Freshwater wetland sites.
- 5 major Koppen climate regions
 - Tropical or megathermal (A)
 - Dry or arid (B)
 - Temperate or mesothemal (C)
 - Continental or microthermal (D)
 - Polar or alpine climates (E)

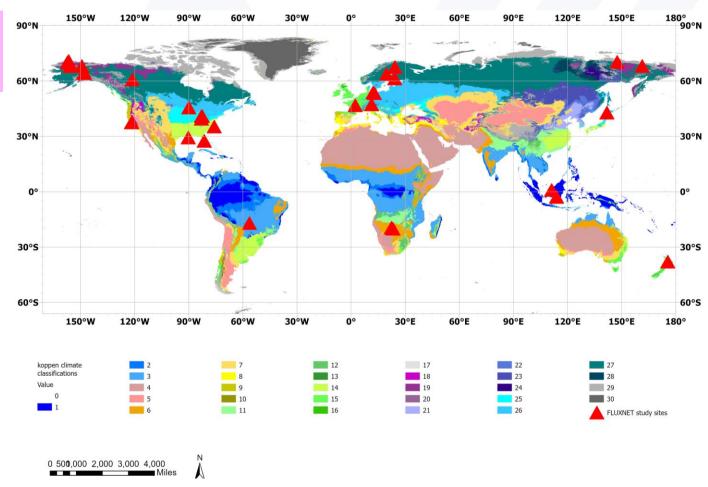
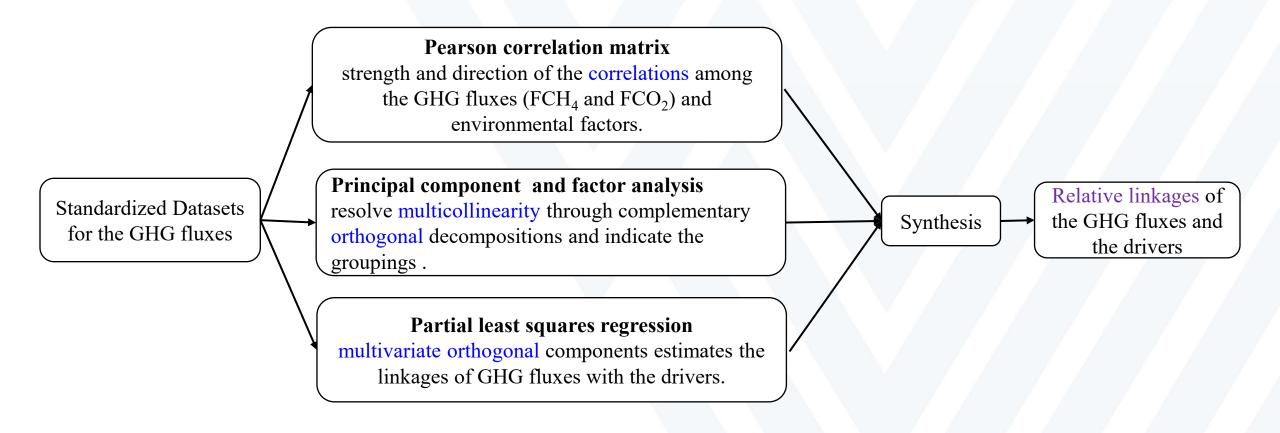
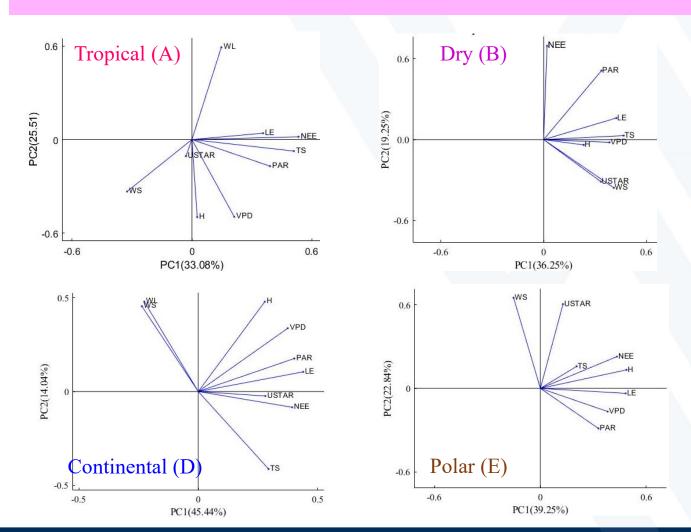



Fig. 1: Geographical locations of 38 freshwater wetland sites across the globe.

Data analytics



Correlation coefficients

Table 1 Pearson Correlation Matrix for the Net uptake Fluxes of FCO₂

Climatic Zones	PAR	LE	Н	WS	USTAR	TS	VPD	WL
Tropical Climate (A)	0.47	0.43	0.06	-0.62	0.04	0.77	0.38	0.27
Dry Climates (B)	0.44	0.21	0.07	-0.16	-0.16	-0.02	-0.23	
Temperate Climate(C)	0.50	0.60	-0.05	0.02	0.30	0.61	0.44	-0.22
Continental Climates (D)	0.57	0.59	0.39	-0.34	0.44	0.50	0.50	-0.35
Polar Climates (E)	0.27	0.54	0.64	0.02	0.32	0.38	0.40	

Biplots for FCO₂ from principal component analysis

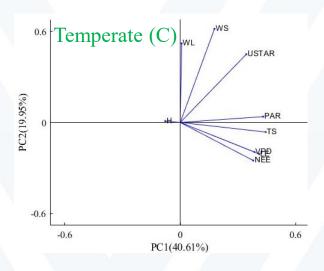


Fig. 2 Biplots obtained from principal component analysis showing the interrelationship of the climatic and ecohydrological drivers for (a) tropical climate (b)dry climate(c)temperate climate (d)continental climate and (e) polar climate.

Factor loadings

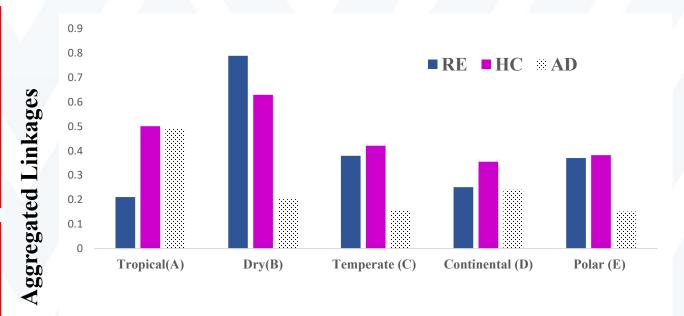
Table 2: Dominant Factors and Optimized Loadings of the Methane Fluxes (FCO₂) and the Environmental Variables.

Climatic Zones	Factors	PAR	LE	Н	WS	USTAR	TS	VPD	WL	FCO ₂
Tropical Climate (A)	Fac 1	0.71	0.66	-0.02	-0.11	0.14	0.83	0.33	0.07	0.74
	Fac 2	0.09	-0.14	0.73	0.12	-0.04	0.08	0.74	-0.78	0.12
	Fac 3	-0.07	-0.08	0.01	-0.96	-0.14	0.27	0.04	0.54	0.58
Dry Climates (B)	Fac 1	0.57	0.63	0.03	0.20	0.19	0.58	0.83		0.02
	Fac 2	0.07	0.15	0.46	0.97	0.52	0.40	0.09		-0.07
	Fac 3	0.43	0.20	0.11	-0.10	-0.12	-0.01	-0.24		0.99
Temperate Climate(C)	Fac 1	0.71	0.80	-0.09	0.01	0.37	0.81	0.70	-0.22	0.74
	Fac 2	0.28	-0.06	0.01	0.96	0.72	0.27	0.00	0.37	0.01
	Fac 3	0.10	0.39	-0.21	0.00	0.18	-0.10	0.18	0.55	-0.05
Continental Climates (D)	Fac 1	0.75	0.72	0.51	-0.20	0.20	0.15	0.90	-0.08	0.47
	Fac 2	0.33	0.46	-0.01	-0.32	0.14	0.99	0.14	-0.34	0.46
	Fac 3	0.06	0.32	0.28	-0.21	0.97	-0.06	0.05	-0.26	0.29
Polar Climates (E)	Fac 1	0.59	0.74	0.88	-0.35	0.26	0.14	0.61		0.63
	Fac 2	-0.29	-0.07	0.24	0.71	0.95	0.01	-0.11		0.21
	Fac 3	0.04	0.32	0.06	0.24	-0.15	0.96	-0.11		0.30
		D-1:-4:		Aerodynamic						
		Radiation energy component(β _{RE})			compo	component(β _{AD})		Hydro-climatic component(β _{HC})		

PLSR coefficients

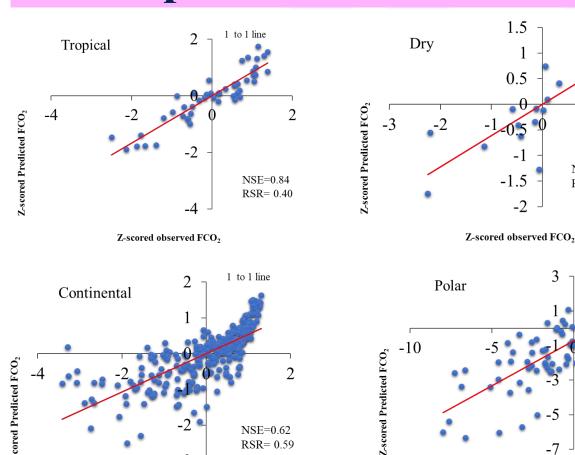
Table 3:Coefficients (β) of the log10-transformed, standardized (Z-score) PLSR models for methane emission fluxes(FCO₂) for five different climatic zones.

	Tropical climates	Dry climates	Temperate climates	Continental climates	Polar climates
Variables	(A)	(B)	(C)	(D)	(E)
PAR	0.06	0.63	0.09	0.19	-0.01
LE	0.20	0.47	0.37	-0.01	0.07
H	-0.03	0.06	0.03	0.16	0.36
WS	-0.46	-0.04	-0.06	-0.03	0.00
USTAR	0.16	-0.20	0.14	0.24	0.15
TS	0.36	-0.17	0.32	0.33	0.34
VPD	0.34	-0.61	-0.10	0.11	0.17
WL	0.05		-0.25	-0.06	
NSE	0.84	0.61	0.52	0.54	0.62
RSR	0.40	0.61	0.69	0.68	0.59

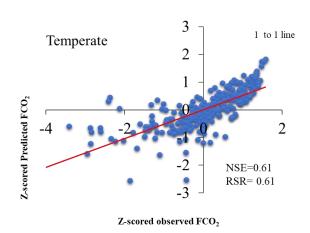

Relative linkages

$$\beta_{RE} = \sqrt{\beta_{PAR}^2 + \beta_{LE}^2 + \beta_H^2}$$

$$\beta_{HC} = \sqrt{\beta_{TS}^2 + \beta_{VPD}^2 + \beta_{WL}^2}$$


$$\beta_{AD} = \sqrt{\beta_{WS}^2 + \beta_{USTAR}^2}$$

- HC: strongest linkages in tropical(A), temperate(C),continental(D) and polar(E) region.
- RE: strongest linkages in dry(B), region.



Climatic zones

Model performance

RSR = 0.59

1 to 1 line

NSE=0.54

RSR = 0.68

1 to 1 line

NSE=0.52

RSR = 0.69

Z-scored observed FCO2

Fig 3:Observed vs predicted fluxes of FCO₂ in five climatic zones.

NSE=Nash-Sutcliffe efficiency RSR=ratio of root-mean-square error to the standard deviations of the observations

Z-scored observed FCO₂

Conclusion

- In tropical regions, FCO₂ fluxes are mainly controlled by PAR, TS, WS, and VPD.
- In dry regions, LE, VPD, PAR, TS, and USTAR, dominate FCO₂ fluxes.
- WL, TS, and LE are primary controlling factors in temperate regions.
- In continental wetlands, PAR, LE, TS, VPD, and USTAR are dominant controlling factors.
- In wetlands of the polar region, H has a strong linkage with FCO₂ fluxes, along with PAR, TS, VPD, WS, and USTAR.

Conclusions

- "Hydro climatic" component (TS, VPD, WL) has a stronger influence on FCO₂ uptake compared to "radiation energy" component (PAR, LE, and H) and "aerodynamic" exchange component (WS and USTAR), with approximately two to three times stronger controls on FCO₂ uptake than the other two components.
- In dry regions, the radiation energy component (PAR, LE, H) is the dominant control, with approximately 1.5 times stronger controls than the hydro climatic component and 4 times stronger controls than the aerodynamic component.

Discussion and recommendation

- The research findings and global knowledge on the major controls of GHG fluxes(such as Carbon Dioxide) would help develop effective strategies for mitigating global warming such as through
 - Wetland restoration and maintenance, minimizing anthropogenic disturbances, and/or
 - Promoting appropriate (e.g., native) plant species that enhances the atmospheric carbon uptake, while reducing the net emissions of GHG (such as Carbon Dioxide) fluxes to the atmosphere.
- The differential environmental controls on the GHG fluxes (such as Carbon Dioxide) among the different climatic zones suggest that a uniform set of wetland management strategies would not effective everywhere.
- We, therefore, recommend climatic zone-specific interventional measures to maximize the contributions of global freshwater wetlands as an ecological (i.e., green) technology to the mitigation of global warming and climatic changes.

Acknowledgements

- Profound gratitude to Dr. Omar I. Abdul-Aziz, my supervisor, for his invaluable guidance, counseling, and motivation.
- Appreciation to Dr. Radhey Sharma and Dr. P.V. Vijay for their valuable assistance and guidance.
- Gratefully acknowledge funding awarded to Dr. Omar I. Abdul-Aziz from,
 - NSF CBET Environmental Sustainability (Award ID. 1705941)