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Abstract

A classic 1993 paper by Althöfer et al. proved a tight reduction from spanners, emulators,
and distance oracles to the extremal function γ of high-girth graphs. This paper initiated a
large body of work in network design, in which problems are attacked by reduction to γ or the
analogous extremal function for other girth concepts. In this paper, we introduce and study a
new girth concept that we call the bridge girth of path systems, and we show that it can be used
to significantly expand and improve this web of connections between girth problems and network
design. We prove two kinds of results:

• We write the maximum possible size of an n-node, p-path system with bridge girth > k

as β(n, p, k), and we write a certain variant for “ordered” path systems as β∗(n, p, k). We
identify several arguments in the literature that implicitly show upper or lower bounds on
β, β∗, and we provide some polynomial improvements to these bounds. In particular, we
construct a tight lower bound for β(n, p, 2), and we polynomially improve the upper bounds
for β(n, p, 4) and β∗(n, p,∞).

• We show that many state-of-the-art results in network design can be recovered or improved
via black-box reductions to β or β∗. Examples include bounds for distance/reachability
preservers, exact hopsets, shortcut sets, the flow-cut gaps for directed multicut and sparsest
cut, an integrality gap for directed Steiner forest.

We believe that the concept of bridge girth can lead to a stronger and more organized map
of the research area. Towards this, we leave many open problems related to both bridge girth
reductions and extremal bounds on the size of path systems with high bridge girth.

∗This work was supported by NSF:AF 2153680.
²Work partially done at University of Michigan, and partially supported by the NSF grant CCF-1815316 and the

NWO VICI grant 639.023.812.
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1 Introduction

A common goal in theoretical computer science is to compress a graph into a small-space represen-
tation while approximately preserving structural information related to shortest paths, distances, or
reachability. Examples include spanners [1, 3, 6, 7, 11, 14, 15, 32, 52, 69, 70, 84, 85, 86, 98, 104, 105],
emulators [45, 52, 97], distance oracles [33, 51, 53, 88, 96, 106], distance and reachability preservers
[2, 13, 21, 22, 27, 29, 30, 41], hopsets [17, 38, 47, 48, 49, 66, 81], shortcut sets [57, 64, 65, 68, 71, 72, 80,
95, 100], etc.; see survey [5] for more. We shall broadly refer to this research area as network design.

A successful strategy has been to reduce network design problems to girth problems in extremal
combinatorics. Generally speaking, a girth problem asks for the maximum possible size of a combina-
torial system that avoids short “cycles” of some kind. The contribution of this paper is to introduce a
new girth problem, based on a particular kind of cycle in path systems that we call “bridges.” We then
use our new girth problem to organize and improve the understanding of several well-studied problems
in network design. This paper contains two kinds of results:

1. We polynomially improve upper and lower bounds on the maximum possible size of path systems
of high bridge girth (over bounds implicit in the previous literature), and

2. We show reductions from various problems in network design to our new bridge girth problem,
and use them to recover or improve state-of-the-art upper and/or lower bounds.

Girth Problem γ(n, k)
mult. spanners, emulators,

distance oracles (upper & lower bds) [11]

vertex fault tolerant mult. spanners and vertex

dist. sensitivity oracles (upper & lower bds) [23, 25]

Weighted Girth Problem λ(n, k)
light mult. spanners (upper & lower bds) [50]

Bipartite Girth Problem γγ(n, p, k)
edge fault tolerant mult. spanners and

edge dist. sensitivity oracles (lower bds) [24]

comm. compl. of mult. spanners (lower bds) [101]

Set Girth Problem Σ(n, p, k)
Ruzsa-Szemerédi Problem rs(n)

undir. unweighted dist. preservers (upper bds) [22]

undir. unweighted dist. labeling schemes (upper bds) [76]

Ordered Bridge Girth Problem β∗(n, p, k)
dir. weighted dist. preservers and

shortest path oracles (lower bds)

dir. weighted exact hopsets (lower bds)

online reachability preservers (upper & lower bds)

Bridge Girth Problem β(n, p, k)
reachability preservers and

path oracles (upper & lower bds)

dir. weighted dist. preservers and

shortest path oracles (upper bds)

shortcut sets (lower bds)

dir. flow-cut gap (lower bds)

sparsest cut gap (lower bds)

DSF integrality gap (lower bds)

case p = n

(folklore)

equivalent

γγ(n, p, 2k) = Σ(n, p, k)

(folklore)

case
k = 6,

p larg
e [42]

case k = 3,

p large [42]

case k = 3,

p large [42] (see Thm 81)directed version

Σ ≤ β

ordered version,

β ≤ β∗

approx equivalent [77]

conjectured fully equivalent [50]

Figure 1: Relationships among some girth problems in the literature, and the problems they capture.
Bridge girth, ordered bridge girth, and the associated reductions – all in blue – are new in this paper.
See Appendix A for more detail on the prior work reflected in this chart.
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1.1 Bridge Girth and the Landscape of Girth Reductions

1.1.1 Previously-Studied Girth Concepts

In Appendix A, we provide a detailed tour through all the objects mentioned in Figure 1. Here we
give a much faster overview, to show how our new concept of bridge girth relates to previously-studied
girth concepts in the literature.

The strategy of reducing network design problems to girth problems was pioneered in a classic 1993
paper by Althöfer, Das, Dobkin, Joseph, and Soares [11]. They provided an exactly-tight reduction
between the extremal functions of spanners and high-girth graphs. We will rephrase their main result
a bit, to give an example of the reduction-based perspective used in this paper.

Definition 1 (Multiplicative Spanners). A multiplicative k-spanner of a graph G is a subgraph H
satisfying distH(s, t) ≤ k · distG(s, t) for all nodes s, t. The function MS(n, k) is the least integer such
that every undirected weighted n-node graph has a k-spanner on ≤ MS(n, k) edges.

Definition 2 (Graph Girth). The girth of a graph G is the least number of edges in a cycle in G (or
∞ if G is a forest). The function γ(n, k) is the maximum possible number of edges in an n-node graph
of girth > k.

Theorem 1 ([11]). γ(n, k) = MS(n, k + 1).

It remains a major open question in extremal combinatorics to determine the asymptotic value of γ.
Regardless, by tight reduction, Theorem 1 is considered by the community to close the question of the
existential size of multiplicative spanners. It has been highly influential in network design, spawning a
long line of work similarly reducing spanner or spanner-like problems to γ [23, 25, 34, 44, 50, 56, 77, 89].

More recently, some variants and extensions of the function γ have emerged as similarly fundamental
in network design. One example is an elegant paper by Elkin, Neiman, and Solomon, which developed
a notion of “weighted girth,” and showed that the corresponding extremal function is equivalent to the
tradeoff between stretch and lightness for spanners [50] (see Section A.2 for details). Another example
is a line of this work [24, 42, 101] that has developed reductions to γγ, a generalization of γ to bipartite
graphs:

Definition 3 (Bipartite Graph Girth). The function γγ(n, p, k) is the maximum possible number of
edges in a bipartite graph with n, p nodes on each side of its bipartition and girth > k.

There is a folklore reduction showing that γ(n, k) = Θ(γγ(n, n, k)) (see Theorem 72), and so any
reductions to γ(n, k) can be equivalently phrased as a reduction to γγ(n, n, k). The importance of γγ
was further shown in an important paper by de Caen and Székely [42], which proves an equivalence
between a special case of γγ and the Ruzsa-Szemerédi function (see Appendix A.4), another extremal
function that captures various problems in network design [22, 76]. The function γγ is sometimes
expressed in the equivalent language of set system girth:

Definition 4 (Set Systems). A set system is a pair S = (V, T ), where V is a ground set of nodes and
T is a multiset of subsets of V . The size of S is given by

∥S∥ :=
∑

T∈T

|T |.

Definition 5 (Set System Girth). A k-cycle in a set system S = (V, T ) is a circularly-ordered list
of distinct nodes v0, v1, . . . , vk = v0 ∈ V and distinct sets T0, T1, . . . , Tk = T0 ∈ T for which we have
vi, vi+1 ∈ Ti for all i. The girth of a set system is the smallest integer k for which the system has
a k-cycle. The maximum possible size of a set system with n nodes, s sets, and girth > k is written
Σ(n, s, k).

For example, a set system in which each set has size 2 can be viewed as an undirected graph.1

Set systems are in natural bijection with their bipartite incidence graphs, and this implies the folklore
equivalence Σ(n, p, k) = γγ(n, p, 2k) (see Theorem 74). Thus, we can consider the set system girth
problem as merely a rephrasing of the bipartite girth problem.

1A set system is equivalent to a (not necessarily uniform) hypergraph. We call these set systems rather than hyper-
graphs (1) to emphasize the way in which path systems can be viewed as a directed variant, and (2) because there are
several competing notions of hypergraph size/girth in the literature, but these terms are unambiguous for set systems.
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1.1.2 Bridge Girth and Ordered Bridge Girth

A directed version of a set system is a path system, in which we have node sequences instead of sets:

Definition 6 (Path Systems). A path system is a pair S = (V,Π) where V is a ground set of nodes
and Π is a multiset of vertex sequences called paths. Each path may contain at most one instance of
each node. The size of a path system is written2

∥S∥ :=
∑

π∈Π

|π|.

For example, a path system in which all paths have length 2 is essentially a directed graph. Our
new girth concept is based on the following notion of a “cycle” in a path system:

Definition 7 (b-Bridges). In a path system S = (V,Π), a b-bridge is a set of b distinct nodes
v1, . . . , vb ∈ V and b distinct paths π1, . . . , πb such that (1) for all 1 ≤ i ≤ b− 1 we have vi, vi+1 ∈ πi

with vi preceding vi+1, and (2) we have v1, vb ∈ πb with v1 preceding vb. The path πb is called the river,
and the other paths π1, . . . , πb−1 are called arcs.

Note that the nodes vi, vi+1 are not necessarily consecutive on their arc πi; there might be many
nodes between these, and it still counts as a bridge. Informally, a b-bridge resembles a directed b-cycle
with one of the path directions reversed; the reversed path is called the river, and the non-reversed
paths are called the arcs. See Figure 2 for an example.

Figure 2: A 4-bridge

Definition 8 (Bridge Girth). The bridge girth of a path system S is the smallest integer b for which
S contains a b-bridge. The function β(n, p, k) is the maximum possible size of a path system with n
nodes, p paths, and bridge girth > k. We allow k =∞, meaning that the system has no bridges of any
size.

We will also consider a related notion of bridge girth, based on path systems with an ordering on
their paths.

Definition 9 (Ordered Path Systems and Ordered Bridges). An ordered path system is a path system
S = (V,Π) equipped with a total ordering of its paths Π. An ordered bridge in an ordered path system
is a bridge in which the river comes after all the arcs in the ordering (and the arcs may occur in any
order relative to each other).

Definition 10 (Ordered Bridge Girth). The ordered bridge girth of an ordered path system S is the
smallest integer b for which S has an ordered b-bridge (with the river last in the ordering). The function
β∗(n, p, k) is the maximum possible size of an ordered path system with n nodes, p paths, and ordered
bridge girth > k.

It is immediate from the definitions that β∗(n, p, k) ≥ β(n, p, k), since an ordered path system
of ordered bridge girth > k is a strictly less constrained object than an (unordered) path system of
(unordered) bridge girth > k.

2Note that |π| counts the number of nodes in π, and so it differs by 1 from the length of π when viewed as a path
through a graph.
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We discuss our definitions before proceeding to their applications. Notice that a bridge is a directed
version of a set cycle, in the sense that a b-bridge becomes a set b-cycle if we forget the order of each
path and interpret it as a set. However, there are many other patterns besides bridges that correspond
to set cycles in the same way. Perhaps the most natural alternative is a directed cycle, defined like a
bridge but with the paths/nodes circularly ordered instead of having a river with reversed direction
(see Figure 3). Why focus on bridges rather than directed cycles?

river
Figure 3: A set system 4-cycle, a 4-bridge, and directed 4-cycle (left to right).

In part, this paper is a lengthy answer to this question. Our point is that, out of the many possible
directed versions of set cycles, bridges are the ones that realize applications in network design. Table 1
summarizes our findings to this effect, listing objects where state-of-the-art bounds can be improved,
or recovered in a black-box manner, via bridge girth reductions.

But a more succinct answer is that directed cycles do not have an interesting extremal function.
One can construct a path system of size ∥S∥ = np without directed cycles, by taking p identical paths
that all proceed through a sequence of the n nodes in the same order. This system would have no
directed cycles (but it would have many 2-bridges). In contrast, we shall see shortly that the extremal
function β for path systems of high bridge girth is highly nontrivial.

1.2 Reductions from Network Design to Bridge Girth

The main conceptual contribution of this paper is a series of reductions from problems in network
design to the functions β or β∗. Table 2 lists our results of this type, separated into three main
technical threads. For every row of this table, one can recover or improve the current state-of-the-art
bounds for the object in question by plugging in bounds for β or β∗ (see Table 1 for details). Thus,
(1) β, β∗ have arguably been under the surface in prior work on all of these problems, and (2) further
improved bounds for β, β∗ could have widespread, black-box consequences for the area.

While new ideas are often needed to prove the bounds in Table 2, this is overall the less technical
part of our paper; our main technical contributions lie in improved bounds for β, β∗, discussed next.

1.2.1 Technical Overview: Preservers

We begin with reachability preservers.

Definition 11 (Reachability Preservers [2]). Let G = (V,E) be a directed graph and let P ⊆ V ×V be
a set of demand pairs. A reachability preserver is a subgraph H ⊆ G in which, for all (s, t) ∈ P such
that there exists an s⇝ t path in G, there also exists an s⇝ t path in H.

We define RP(n, p) as the smallest integer such that every n-node graph and set of |P | = p demand
pairs has a reachability preserver on ≤ RP(n, p) edges.

Extremal bounds for reachability preservers have been studied recently [2, 13, 29, 30], but they
had long been studied algorithmically in the context of the Directed Steiner Forest problem, which
asks to compute a reachability preserver of minimum total weight of a given input instance G,P .
This problem is NP-hard, but the state-of-the-art approximation algorithms use extremal bounds for
reachability preservers as an ingredient [2, 36, 61]. We prove:

Theorem 2. RP(n, p) = Θ(β(n, p,∞)).

4



Object Bound Implied By First Proved

Reachability
Preservers

RP ≥ Ω(n
2

d+1 p
d−1
d ), d any pos int Thm 37, Cor 41 [2, 41]

RP ≤ O(n3/4p1/2 + n5/8p11/16 + n) Thms 37, 14 New

Online
Reachability
Preservers

RP
∗ ≥ Ω(n2/3p2/3 + n) Thms 44, 29 New

RP
∗ ≤ O(min{n1/2p, np1/2}+ n) Thms 44, 28 New

RP
∗ = Θ̃(n4/3) conditionally Hyp 30, Thms 44, 31 New

Path Oracles
PO ≥ Ω(n

2
d+1 p

d−1
d ), d any pos int Thm 43, Cor 41 New

PO ≤ Õ(n3/4p1/2 + n5/8p11/16 + n) Thms 43, 14 New

Shortcut Sets SS ≥ Ω(n
2

d+1 p
−1
d ), d any pos int Thm 48, Cor 41

[65] (p = n)

New (other p)

Distance
Preservers

DP ≥ Ω(n2/3p2/3 + n) Thms 32, 29 [41]

DP ≤ O(min
{
n2/3p, np1/2

}
+ n) Thms 32, 78, 79 [22]

Shortest Path
Oracles

SPO ≥ Ω(n2/3p2/3 + n) Thms 36, 29 New

SPO ≤ Õ(min
{
n2/3p, np1/2

}
+ n) Thms 36, 78, 79 [22, 41]

Exact Hopsets EH ≥ Ω
(
n2/3p−1/3

)
Thms 49, 29

[72] (p = n)

New (other p)

Directed
Flow-Cut Gap

MCG ≥ Ω̃
(
n1/7

)
Thm 52, Cor 41 [37]

Sparsest Cut Gap SCG ≥ Ω̃
(
n1/7

)
Thm 64, Cor 41 [37]

Directed Steiner
Forest Gap

DSFG ≥ Ω(n1/2−o(1)) Thm 65, Cor 41 New

Table 1: Quantitative bounds for the problems in network design considered in this paper, implied by
combining our bridge girth reductions with our bounds on β, β∗. For brevity the parameters (n, p) on
the functions are omitted. See also Figure 5.

That is, the extremal bounds for reachability preservers are entirely captured by the value of β.
This reduction is perhaps our most consequential one: with our improved upper bounds on β(n, p, 4)
discussed later, this implies a polynomial improvement in the extremal bounds for reachability pre-
servers.

Corollary 3. Every n-node graph and set of p demand pairs has a reachability preserver on O(n3/4p1/2+
n5/8p11/16 + n) edges.

The previous upper bound was O(n2/3p2/3 + n) [2]. The lower bound RP ≥ Ω(β(n, p,∞)) is
straightforward and perhaps implicit in [2], but the upper bound RP(n, p) ≤ O(β(n, p,∞) takes more
work. A natural proof attempt might be to take a hard input instance G,P for reachability preservers
requiring RP(n, p) edges, carefully choose a path for each demand pair, interpret these choices as a path
system, and hope that the resulting path system has bridge girth ∞ and therefore size ≤ β(n, p,∞).
Unfortunately, this attempt fails: for some inputs G,P , it is not possible to choose paths that yield
a path system of bridge girth ∞. Specifically, this may not work on input instances G,P that have
several possible paths for each demand pair, or where these paths are not edge-disjoint (the overlapping
parts of paths count as 2-bridges).

Our solution is perhaps conceptually unusual: we do not attempt to handle these troublesome
input instances G,P at all. Instead, we prove an independence lemma, showing that there exist highly
structured hard input instances realizing RP(n, p). This structure allows us to map these particular

5



Object Reduction Theorem

Reachability Preservers RP(n, p) = Θ (β(n, p,∞)) Thm 37

Online Reachability Preservers RP
∗(n, p) = Θ (β∗(n, p,∞)) Thm 44

Path Oracles PO(n, p) = Θ̃(β(n, p,∞)) Thm 43

Shortcut Sets SS(n, p) = Ω
(

β(n,p,∞)
p

)
Thm 48

Distance Preservers Ω(β∗(n, p,∞)) ≤ DP(n, p) ≤ β∗(n, p, 2) Thm 32

Shortest Path Oracles Ω (β∗(n, p,∞)) ≤ SPO(n, p) ≤ Õ (β∗(n, p, 2)) Thm 36

Exact Hopsets EH(n, p) = Ω
(

β∗(n,p,∞)
p

)
Thm 49

Directed Flow-Cut Gap MCG(β(n, n,∞)) = Ω̃
(

β(n,n,∞)
n

)
Thm 52

Sparsest Cut Gap SCG(β(n, n,∞)) = Ω̃
(

β(n,n,∞)
n

)
Thm 64

Directed Steiner Forest Gap DSFG(n, p) = Ω
(

β(n,p,∞)
n3/2

)
Thm 65

Table 2: Our results on the relationships between β, β∗, and objects in the literature on succinct
network design.

structured worst-case instances to systems of bridge girth∞, which is enough for an extremal reduction
between RP(n, p) and β(n, p,∞). We prove an analogous independence lemma for online reachability
preservers3. These independence lemmas are also the missing ingredient towards an incompressibility
theorem for reachability preservers: we show that no data structure (not necessarily a subgraph) can
encode paths among demand pairs with better space efficiency than a reachability preservers, which
yields our reduction for path oracles.

A distance preserver is a subgraph that preserves distance among demand pairs, not just reacha-
bility. Distance preservers were introduced by Coppersmith and Elkin [41], and extremal bounds for
distance preservers were studied in [22, 26, 27, 31, 36, 41].

Definition 12 (Distance Preservers [41]). Let G = (V,E,w) be a directed weighted graph and let
P ⊆ V × V be a set of demand pairs. A distance preserver is a subgraph H ⊆ G in which, for all
(s, t) ∈ P , we have distH(s, t) = distG(s, t).

We define DP(n, p) as the least integer such that every n-node graph and set of |P | = p demand
pairs has a distance preserver on ≤ DP(n, p) edges.

We prove:

Theorem 4. Ω(β∗(n, p,∞)) ≤ DP(n, p) ≤ β∗(n, p, 2).

This time, our main conceptual contribution is the lower bound DP(n, p) ≥ Ω(β∗(n, p,∞)), based
on realizing ordered path systems as unique shortest paths in a graph. The upper bound DP(n, p) ≤
β∗(n, p, 2) is arguably implicit in [41], and is based on a well-known connection to consistent path
systems: that is, it follows from the simple observation that no two unique shortest paths in a graph
may intersect, split apart, and then intersect again later.4 However, we note that the following section
contains a tight lower bound on β∗(n, p, 2) = β(n, p, 2). This implies a major technical limitation to
further progress on distance preservers: the power of consistency has been pushed to its limit, and so
if we are to improve the state-of-the-art upper bounds for distance preservers (see Table 1), we must
rely on more intricate structural properties of shortest paths.

We also prove an analogous independence lemma for distance preservers, which implies an analogous
incompressibility theorem: no data structure can record shortest paths among demand pairs with

3Our model of online reachability preservers is a slight variant of the one introduced recently by Grigorescu, Lin, and
Quanrud [61].

4Since β∗(n, p, 2) = β(n, p, 2), and so we could have just as well written β(n, p, 2) for the upper bound on DP. We
chose β∗(n, p, 2) because it suggests an open question: since DP is sandwiched between β∗(n, p,∞) and β∗(n, p, 2), can
it be placed more precisely in the β∗ hierarchy?
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significantly better space efficiency than a distance preserver. This yields our reduction for shortest
path oracles.

1.2.2 Technical Overview: Flow-Cut and Integrality Gaps

Finally, we consider integrality gaps for three problems in network design: Directed Multicut (DMC),
Directed Sparsest Cut (DSC), and Directed Steiner Forest (DSF). The standard integrality gaps for DMC
and DSC are often interpreted as flow-cut gaps, as we explain next.

In the DMC problem, we are given a graph G = (V,E) and a set of demand pairs P ⊆ V × V ,
and the objective is to find a minimum-size subset of E whose removal separates all pairs of nodes in
P . The Maximum Multicommodity Flow (MMF) problem asks for the maximum total flow that can be
simultaneously pushed between the demand pairs (under unit edge capacities). MMF is the LP dual of
the fractional relaxation D̂MC of DMC. Thus, for any input G,P , we have

MMF(G,P ) = D̂MC(G,P ) ≤ DMC(G,P ).

The famous min-cut max-flow theorem states that we have equality when |P | = 1, but we do not
have equality in general. It is interesting to study the maximum possible ratio between these terms,
as an approximate version of the min-cut/max-flow theorem, and which often has applications in
approximation algorithms. For undirected graphs, the seminal work of Leighton and Rao showed that
the maximum possible ratio is Θ(log p) [59, 78]. We will be interested in the corresponding quantity
for directed graphs, called the directed flow-cut gap:

Definition 13 (MCG). The function MCG(n) is the least integer k such that, for every n-node directed
graph G and set of demand pairs P (of any size), we have DMC(G,P ) ≤ k · MMF(G,P ).

This function MCG has been studied in [4, 35, 62, 75, 78, 91]. On the lower bounds side, an important
paper by Chuzhoy and Khanna was the first to show that the bound is polynomial, with a lower bound
of MCG(n) = Ω̃(n1/7) [37]. On the upper bounds side, the current bound is MCG(n) = Õ(n11/23) [4]. We
show the following reduction, which recovers the lower bound from [37] (see Table 1):

Theorem 5. MCG(β(n, n,∞)) = Ω̃
(

β(n,n,∞)
n

)
.

At a technical level, this theorem closely follows the construction of Chuzhoy and Khanna [37].
Their construction uses a particular path system construction as an internal ingredient, which may be
interpreted as a β(n, n,∞) lower bound system that also has many additional convenient properties
(e.g., it is layered and highly symmetric). Our contribution is a generalization of their analysis, to show
that these convenient properties are not really necessary, and one can plug in any system achieving
β(n, n,∞) as a black box. Similarly, we obtain a reduction for the sparsest cut problem, again based
on [37].

Finally, in the Directed Steiner Forest problem (DSF), we are given a weighted directed graph
G = (V,E,w) and a set of demand pairs P ⊆ V × V , and the goal is to find a minimum weight
subgraph H ⊆ G that contains a directed s ⇝ t path for all (s, t) ∈ P . DSF is NP-hard, but it has a
natural integer programming formulation (see Section 5.6), and studying the integrality gap of its LP
relaxation is a natural step towards designing approximation algorithms.

This integrality gap and related approximation algorithms have been studied in [18, 55, 79]. Letting
DSFG(n, p) be the integrality gap for instances with n nodes and p demand pairs, the previous best
bound was that there exists p for which DSFG(n, p) = Ω(n0.0418) [79], implied by work on Directed
Steiner Tree. We show:

Theorem 6. DSFG(n, p) = Ω
(

β(n,p,∞)
n3/2

)
for p ≤ n2−o(1).

In particular, plugging in p = n2−o(1), we improve the integrality gap to Ω(n1/2−o(1)). This theorem
partially addresses an open question in [9], where Alon, Moitra, and Sudakov asked whether bounds
on the Ruzsa-Szemerédi function, which is equivalent to bounds on β(n, p,∞) in the setting of large p
(see Theorem 81), could be useful towards proving integrality gaps for Directed Steiner Tree.
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k Bound Justification

2 β = β∗ = Θ
(
min

{
n2/3p, p1/2n

}
+ n + p

) Upper Implicit (see App D.1)

Lower New (see Thm 11)

3
β = O

(
min

{
n2/3p2/3, n2

2C log∗ n

}
+ n + p

)
Implicit (see App D.2)

β = Θ
(
n2/3p2/3

)
when p ∈ {n4/5, n7/8, n, n8/7, n5/4}

4 β = O
(
n3/4p1/2 + n5/8p11/16 + n + p

)
New (see Thm 14)

∞

β = O
(

p2

2C log∗ p + n
)

New-ish (see Thm 27)

β = Ω
(
n

2
d+1 p

d−1
d

)
, d any positive integer Implicit (see Cor 41)

β∗ = O
(
min

{
n1/2p, p1/2n

}
+ n + p

)
New-ish (see Thm 28)

β∗ = Ω
(
n2/3p2/3

)
New-ish (see Thm 29)

β∗ = Θ̃(n4/3) when p = n, conditional on Hyp 30 New-ish (see Thm 31)

Table 3: Asymptotic Bounds for β and β∗. For brevity, we write β in place of β(n, p, k), and similar
for β∗. Results are marked as fundamentally new in this paper, implicit in prior work, or “new-ish”
meaning that they reuse a major ingredient from prior work but also have a new idea.

1.3 New Extremal Bounds for Bridge Girth

The main technical contributions of this paper are some new upper and lower bounds for β and β∗,
polynomially improving over bounds implicit in the previous literature. These improved bounds imply
new results for various problems in network design; see Table 1 in the next section. Table 3 gives a
quick reference to our new bounds on β, β∗, as well as bounds implicit in prior work, and Figure 4
plots the state-of-the-art bounds on β, β∗ following our paper.

1.3.1 New Lower Bounds for β(n, p, 2)

Our first main new result is a tight lower bound for β(n, p, 2):

Theorem 7. β(n, p, 2) = Θ
(
min

{
n2/3p, p1/2n

}
+ n + p

)
.

The upper bound in this theorem is implicit in [22, 41], and the lower bound is new in this paper.
To explain our contribution, we discuss the previous (implicit) lower bound. The simplest way to
ensure that a path system avoids 2-bridges is to simply ensure that any two paths intersect on at most
one node. The largest path systems with this property have long been known: they are finite projective
planes5, which imply the lower bound

β(n, p, 2) = Ω
(

min
{
n1/2p, p1/2n

}
+ n + p

)
.

If one wants to design a path system that polynomially exceeds this bound, it is necessary for a typical
pair of paths π1, π2 to intersect on polynomially many nodes. To avoid 2-bridges, it would then be
required that π1, π2 contain the nodes in π1∩π2 in exactly opposite orders. It seems rather unlikely to
obtain this opposite-order property for all pairs of paths simultaneously. Cementing this intuition, the
work of Coppersmith and Elkin [41] implies that the finite projective plane lower bound on β(n, p, 2) is
indeed tight in the parameter regime p ≥ n. However, our Theorem 7 shows on the contrary that the
finite projective plane is polynomially far from optimal in the remaining parameter regime p≪ n, and a
denser construction with exactly this reverse-order property can in fact be achieved. The construction
is a (dualized) version of the finite projective plane, based on quadratics over finite fields instead of
lines.

5Finite projective planes are set systems rather than path systems, but one can place an arbitrary ordering on the
sets while retaining the property that any pair of resulting paths intersect on at most one node.
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Figure 4: Asymptotic bounds for β(n, p, k), drawn to a logarithmic scale.

As discussed in Section 1.2.1, the practical consequence of this lower bound is a technical limitation
on the tool of consistent path systems. In network design, a common strategy to limit the number of
edges in a graph is to show that it arises from a path system with the property that no two paths
intersect, split apart, and then intersect again later. Theorem 7 settles the worst-case size of such
a path system, and thus to obtain better upper bounds than the ones in Theorem 7, more careful
technical arguments are needed.

1.3.2 New Upper Bounds for β(n, p, 4)

Our next main result is a new upper bound for β(n, p, 4).

Theorem 8. β(n, p, 4) = O
(
n3/4p1/2 + n5/8p11/16 + n + p

)
.

It should be noted here that β is inverse-monotonic in k; that is, β(n, p, k1) ≤ β(n, p, k2) if k1 ≤ k2.
Hence, Theorem 8 also implies a polynomially improved upper bound for β(n, p, 5), . . . , β(n, p,∞). As
discussed in Section 1.2.1, one corollary is a new polynomially improved upper bound for reachability
preservers. Another consequence of this result is that it provides a clear avenue for further progress
towards understanding β(n, p,∞). A point of this paper, reflected more precisely in Table 2, is that
new lower bounds for β(n, p,∞) would be very consequential in network design. This in turn motivates
the study of upper bounds for β(n, p,∞), towards determining the extent to which these improved
lower bounds might be possible. The previous-best upper bounds on β(n, p,∞) were inherited all the
way from the implicit upper bounds on β(n, p, 3). Our theorem is proof-of-concept that exploiting
larger forbidden bridges is indeed a worthwhile avenue towards improved understanding of the value
of β(n, p,∞).

At a technical level, the proof of Theorem 8 is considerably more involved than other upper bounds
in the area, including those for β(n, p, 2), β(n, p, 3), and the extremal functions of high-girth graphs
(see Appendix A). All previous bounds are based roughly on a forward-search strategy, in which one
picks a node, counts the paths intersecting that node, counts the nodes contained in those paths, and
so on; bridge-freeness is used to argue that the nodes/paths that are witnessed are all distinct. See
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Theorems 70, 78, 80, for examples. Our challenge is that forward-search does not work so well for
4-bridges, in the sense that a lack of 4-bridges does not imply that distinct nodes/paths are discovered
at the appropriate level of the forward search. This requires considerable technical work to overcome,
and due to space constraints we defer further technical overviewing to Section 3.2.

1.4 Future Directions and Open Problems

Table 1 lists the quantitative bounds obtained by directly mixing the reductions from Table 2 with the
bounds on β, β∗ from Table 3. One category of open problem is to improve the quantitative upper or
lower bounds for any of these objects, whether or not via reductions to β, β∗.

It would also be interesting just to recover state-of-the-art quantitative bounds for network design
problems via bridge girth reductions, so that we gain black-box improvements if and when the bounds
for β, β∗ are improved. Some good candidates for this program might include:

• (Shortcut/Hopset Upper Bounds) We have proved that one can recover state-of-the-art
lower bounds on shortcut sets (SS) by reduction to β(n, p,∞). On the upper bounds side, a
recent breakthrough of Kogan and Parter [73] proved that6

SS(n, p) =

{
Õ
(
n2/3p−1/3

)
when p ≥ n

Õ
(
np−2/3

)
when p ≤ n

.

Subsequent work by Berenstein and Wein [19] obtained a similar bound for (1 + ε) hopsets.
Obtaining this bound with a bridge girth reduction would be interesting.

• (Exact Hopset Upper Bounds) We have proved that one can recover state-of-the-art lower
bounds on exact hopsets (EH) by reduction to β∗(n, p,∞). On the upper bounds side, there is
a simple folklore algorithm, sometimes attributed to Ullman and Yannakakis [100], that shows

EH(n, p) = Õ
(
np−1/2

)
. We refer to [72, 73] for discussion of this algorithm. We find the possibility

of recovering this upper bound with a bridge girth reduction intriguing.

• (Flow-Cut Gap Upper Bounds) We have proved that one can recover state-of-the-art lower
bounds on the flow-cut gaps (MCG, SCG) by reduction to β(n, p,∞). On the upper bounds side,

the state-of-the-art is MCG(n), SCG(n) = Õ(n11/23) obtained by Agarwal, Alon, and Charikar [4].
Can we recover this bound with a bridge girth reduction?

A recent paper by Kogan and Parter [72] perhaps makes some progress on this program by proving
reductions among several important objects in network design (although naturally it does not directly
consider bridge girth).

Another natural kind of open problem left by this paper is to obtain quantitative improved up-
per/lower bounds for β, β∗. We would also consider self-reductions very interesting, studying how the
values of β, β∗ evolve as k increases. The following is a concrete open problem in this vein. Notice
that the extremal functions of high girth graphs cease to benefit from bridge girth parameters above
log n (for example, γ(n, log n) = Θ(γ(n,∞)) = Θ(n)). We think it is likely that a similar effect holds
for β, β∗:

Conjecture 9. For all n, p, we have β(n, p, log n) = Θ(β(n, p,∞)), and β∗(n, p, log n) = Θ(β∗(n, p,∞)).7

In Theorem 51 we provide some additional evidence that Conjecture 9 is true, by showing that its
first half is implied by a plausible equality between the sizes of approximate distance preservers and
reachability preservers, analogous to results already known for undirected preservers [72] and directed
hopsets [19].

Finally, we discuss applications of β, β∗ with other values of k. This paper directly motivates
bridge girth parameters k = 2 and k = ∞, which are the settings that arise most commonly in our
reductions (see Table 2). We also consider the parameter k = 3 to be comparably important, because it
generalizes the Ruzsa-Szemerédi problem, which in turn captures prior work in network design [22, 76]
(see Appendix A for more details). What about finite k ≥ 4? Currently, we primarily use these

6These bounds are stated under a different parametrization than [73]: we use p as the size of the hopset, and SS(n, p)
as its hopbound, and thus SS is decreasing in p.

7We are grateful to an anonymous reviewer for suggesting this open problem.
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setting as a tool to understand β(n, p,∞). It is an interesting conceptual open problem to find direct
applications of β(n, p, k), β∗(n, p, k), with intermediate choices of k, to problems in network design.

A candidate area in which these applications could arise is in the theory of ordered graphs and
matrices. We have already applied this theory a bit, in the connections between Hypothesis 30 and
Theorem 31. More broadly, there is a line of work in extremal combinatorics on ordered matrix patterns,
as pioneered by Pach and Tardos [83]. In this problem, we consider binary n × n matrices, and we
receive a collection of one or more forbidden submatrices. The goal is to determine the maximum
possible number of 1’s that could appear in such a matrix. One can naturally interpret an n×n binary
matrix as the incidence matrix of an ordered, acyclic path system with n nodes and n paths, and high
bridge girth in such a system corresponds to a collection of forbidden patterns. These problems have
applications in data structures [87]. We refer to survey [94] for more on work in this space.
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Figure 5: A diagram representing the relationships between the different notions in this paper. Here,
a directed arrow from A to B means that A ≤ B, and an undirected double line means they are equal.
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2 Preliminaries on Path Systems

Here, we quickly review some standard definitions, notations, and technical lemmas for path systems
that will be useful.

• For a path system S = (V,Π), its incidence graph is the bipartite graph where the nodes on one
side of the bipartition correspond to V , the nodes on the other side of the bipartition correspond
to Π, and there is an edge between v ∈ V and π ∈ Π iff v ∈ π.

• A path system S = (V,Π) is said to be acyclic if it does not have any directed cycles; equivalently,
there is a total order of V (called a “topological order”) such that the order of every path π ∈ Π
is simply the order of V restricted to the nodes in π.

• For a path π, we write x <π y to mean that x, y are both nodes in π, and x strictly precedes y
in π. We use the notation x ≤π y similarly.

• For a path π, a subpath is a (not necessarily contiguous) subsequence π′ ⊆ π.

• A path system S′ = (V ′,Π′) is a subsystem of S = (V,Π), written S′ ⊆ S, if one can obtain S′

from S by a sequence of zero or more of the following operations: delete a node from V , delete
a path from Π, or delete a single instance of a node from a single path in Π. We say that S′ is
the induced subsystem on V ′ if it is the system obtained by deleting all nodes in V \ V ′.

• For a path system S = (V,Π), the degree of a node v ∈ V , written deg(v), is the number of paths
in Π that contain v.

• The length of a path π ∈ Π, written |π|, is the number of nodes in π (note that this length is
bigger by 1 than the length of π when viewed as a path in an unweighted graph).

• For a system S with n nodes and p paths, the average degree is the quantity

d =
∑

v∈V

deg(v)/n

and the average length is the quantity

ℓ =
∑

π∈Π

|π|/p.

The size identity is that
nd = ∥S∥ = pℓ.

The following “cleaning lemma” lets us assume some convenient regularity properties for the path
systems realizing β(n, p, k) and β∗(n, p, k).

Lemma 10 (Cleaning Lemma). For every triplet n, p, k there exists a path system S with ≤ n nodes,
≤ p paths, bridge girth > k, ∥S∥ = Ω(β(n, p, k)), and the following two additional properties:

• (Approximately Degree-Regular) All nodes have degree Θ(d), where d is the average degree in S,
and

• (Approximately Length-Regular) All paths have length Θ(ℓ), where ℓ is the average length in S.

An identical claim holds for ordered path systems and ordered bridge girth.

Slight variants of this lemma are standard in the area, so we defer the proof to Appendix B. In
the rest of this paper, we will often use the cleaning lemma as a tool to make assumptions about path
systems realizing β or β∗. In other words, as our proofs typically start along the lines of “Let S be a
path system with n nodes, p paths, bridge girth > k, and ∥S∥ = Ω(β(n, p, k))”, we may often then use
the cleaning lemma without loss of generality to guarantee that, additionally, S is both approximately
degree-regular and approximately length-regular.
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3 Bounds on β, β∗ Functions

In this section, we prove new bounds for β, β∗ in the settings k = 2, k = 4, and k =∞.

3.1 Lower Bounds for k = 2

We prove:

Theorem 11. β(n, p, 2) = β∗(n, p, 2) = Θ
(
min

{
np1/2, n2/3p

}
+ n + p

)

Since 2-bridges are not sensitive to ordering, we immediately have β(n, p, 2) = β∗(n, p, 2). The
upper bounds for Theorem 11 are implicit in [22, 41]; for completeness, we supply proofs in Appendix
D.1. The lower bound is new, and will be the focus of the rest of this section. We recall that

β(n, p, 2) ≥ Ω(n + p)

is an immediate lower bound, by considering either 1 path through all n nodes (giving a lower bound
of Ω(n)), or by considering p paths of 1 node each (giving a lower bound of Ω(p)). It thus remains to
prove

β(n, p, 2) ≥ Ω
(

min{np1/2, n2/3p}
)
.

These two minimized bounds meet at p = n2/3. We will begin by considering this special case: that
is, our goal is to construct a 2-bridge-free path system S = (V,Π) with p = Θ(n2/3) paths and
∥S∥ = Ω(n4/3). We will then generalize to the full bound at the end.

3.1.1 Construction of S

The nodes. Let q be an arbitrary prime and let Fq be the finite field on q elements. Let Q be the set
of polynomials over Fq of degree ≤ 2. The polynomials in Q will ultimately correspond to the nodes
of the path system: V = Q, so n = |V | = q3.

The paths. For each (x, y) ∈ F 2
q , let Q(x,y) ⊆ Q be the set of polynomials that intersect the point

(x, y); that is,
Q(x,y) := {f ∈ Q | f(x) = y} .

There are q2 points (x, y), and so there are q2 such sets in total. Our plan for defining our paths is
to put a circular ordering on the elements of each Q(x,y), and then split the ordering into three parts,
giving three paths for each (x, y). Hence there will be 3q2 paths in total.

To define an ordering on Q(x,y): for a polynomial f(x) = ax2 + bx+ c ∈ Q, we define its derivative
as f ′(x) := 2ax+ b, which we interpret as an element of Fq. Circularly order the polynomials in Q(x,y)

by derivative f ′(x). We note that some polynomials in Q(x,y) will have tied derivatives; these ties may
be broken arbitrarily. We then equitably partition the circular ordering into three contiguous parts,
and add all three parts as paths in Π.

Size analysis. We have q3 =: n nodes (polynomials). We have q2 points (x, y) ∈ F 2
q ; each point is

associated to three paths with q2 nodes between them. Thus we have

∥S∥ =
∑

v∈V

deg(v) = q4.

3.1.2 Proof of 2-bridge-freeness

We will need the following structural lemma:

Lemma 12 (See Figure 6 for intuition). Fix some x1 ̸= x2, y1, y2, and let

Z := Q(x1,y1) ∩Q(x2,y2).

Then we have:
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• For z ∈ Z, the values z′(x1) are pairwise distinct,

• For z ∈ Z, the values z′(x2) are pairwise distinct, and

• The circular ordering of Q(x1,y1) restricted to Z is exactly the reverse of the circular ordering of
Q(x2,y2) restricted to Z.

Proof. For any z(x) = ax2 + bx + c ∈ Z, subtracting the equations z(x1) = y1 and z(x2) = y2, we get

a(x2
2 − x2

1) + b(x2 − x1) = y2 − y1

and so, solving for b, we have

b =
y2 − y1 − a(x2

2 − x2
1)

x2 − x1
.

Rearranging z(x1) = y1, we also have

c = y1 − ax2
1 − bx1.

Thus the polynomials z ∈ Z can be written in the following form, parameterized by a ∈ Fq (only):

z(x) = ax2 +

(
y2 − y1 − a(x2

2 − x2
1)

x2 − x1

)
x +

(
y1 − ax2

1 −
(
y2 − y1 − a(x2

2 − x2
1)

x2 − x1

)
x1

)

We then have

z′(x) = 2ax +
y2 − y1 − a(x2

2 − x2
1)

x2 − x1
= 2ax +

y2 − y1
x2 − x1

− a(x2 + x1)

and so we compute

z′(x1) =
y2 − y1
x2 − x1

+ a(x1 − x2)

and

z′(x2) =
y2 − y1
x2 − x1

+ a(x2 − x1).

Both of these functions are affine in a, and hence they take different values for each possible choice of
a, proving the first two points. The third point follows from the observation that, letting za, z−a ∈ Z
be quadratics with parameters a,−a ∈ Fq respectively, the previous two equations imply that

z′a(x1) = z′−a(x2).

In particular: let ai be the choice of parameter a such that z′ai
(x1) = i (note that, since z′(x1) is

affine in a, such a choice ai must exist). Then the circular ordering of quadratics in Q(x1,y1) is
(
za0 , za1 , za2 , . . . , zaq−2 , zaq−1 , zaq = za0

)
.

Meanwhile, using that z′ai
(x1) = z′−ai

(x2), the circular ordering of quadratics in Q(x2,y2) is
(
za0

, za−1
, za−2

, . . . , za−(q−2)
, za−(q−1)

, za−q
= za0

)
.

Since the parameter a is taken mod q, these are reverse circular orderings, completing the proof.

Lemma 13. S is 2-bridge-free.

Proof. Let π1, π2 ∈ Π, and recall that π1, π2 are respectively constructed with respect to two points
(x1, y1), (x2, y2) ∈ F 2

q . We consider two cases:

• If x1 = x2 then by construction π1, π2 are node-disjoint, either because y1 ̸= y2 and so Q(x1=x2,y1)

and Q(x1=x2,y2) are disjoint, or because y1 = y2 and π1, π2 represent different parts in the node-
disjoint partition of Q(x1=x2,y1=y2). Hence π1, π2 do not form a 2-bridge.

• If x1 ̸= x2, then the points common to π1, π2 correspond to a subset of the polynomials in

Z = Q(x1,y1) ∩Q(x2,y2).

By Lemma 12, the polynomials in Z have distinct derivatives and opposite circular orderings in
Q(x1,y1), Q(x2,y2). It follows that, when we partition the points of Q(x1,y1), Q(x2,y2) into thirds to
form π1, π2, they have opposite orderings of any points z1, z2 ∈ π1 ∩ π2. (Here it is important
that we take ≪ 1/2 of the circular ordering to form each path, to avoid the possibility of two
paths wrapping around either side of the circular ordering to intersect both at the beginning and
the end.) Hence π1, π2 do not form a 2-bridge.
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Figure 6: In R2, if one plots quadratics that pass through two fixed points, the orderings by derivative
at these two points are exactly opposite. Lemma 12 proves that an analogous fact holds in F 2

q .

3.1.3 Remaining Lower Bound

We have now completed the lower bound proof in the special case p = Θ(n2/3), and it remains to
discuss the extension to general p. To obtain the remaining points on our lower bound curve, we can
post-process our construction in one of two ways:

• Suppose we delete nodes from the construction arbitrarily, until only n′ ≪ n nodes remain.
In our original construction, we had n nodes of degree Θ(n1/3) = Θ(p1/2) each. Thus, after
deletions, we have ∥S∥ = Θ(n′ · p1/2), which provides one part of our lower bound curve.

• Alternately, suppose we delete paths from the construction arbitrarily, until only p′ ≪ p paths
remain. In our original construction, we had p = Θ(n2/3) paths of length Θ(n2/3) each. Thus,
after deletions, we have ∥S∥ = Θ

(
p′n2/3

)
, which provides the other part of our lower bound

curve.

3.2 Upper Bounds for k = 4

We will prove:

Theorem 14. β(n, p, 4) = O
(
n3/4p1/2 + n5/8p11/16 + n + p

)
.

3.2.1 Technical Lemma: A Bound on the Sum Square of Path Lengths

A major technical lemma for our proof will be an upper bound on the quantity

∥T∥22 :=
∑

π∈Π

|π|2,

i.e., the squared L2 norm of path lengths in a path system (note that the size notion ∥T∥ may be
viewed as the L1 norm of path lengths). We name this path system T rather than S here because
our plan is not to apply this lemma to the entire path system S that we analyze in Theorem 14, but
rather to a specific subsystem T ⊆ S that we will construct later. We prove the following bound:

Lemma 15. Let T = (V,Π) be a path system with n nodes, p paths, bridge girth > 3, maximum path
length L, and average path length at least a sufficiently large constant. Then we have

∥T∥22 = O
(
nL + p1/3n4/3

)
.

We will split our proof into a few claims. Let us say that a path π ∈ Π is:

• long if |π| > Cn1/2, where C is a sufficiently large absolute constant that we leave implicit,
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• medium if ∥T∥2

2p1/2 ≤ |π| ≤ Cn1/2, or

• short if |π| ≤ ∥T∥2

2p1/2 .

Let us say that the long paths dominate if the sum square of long paths is at least as large as the sum
square of medium paths and as the sum square of short paths, and the medium/short paths dominate
if the analogous property holds for the medium/short paths. The two terms added together in Lemma
15 respectively arise from the cases where the long or medium paths dominate. The following lemma
dispatches with the remaining case:

Lemma 16. The short paths do not dominate.

Proof. There are ≤ p short paths, and by definition each one has length ≤ ∥T∥2/(2p1/2). By unioning,
their sum square is at most

p · ∥T∥
2
2

4p
=
∥T∥22

4
.

Thus the short paths contribute at most 1/4 of the total value of ∥T∥22, so they cannot dominate.

The following technical lemma will be useful towards bounding ∥T∥22 in both cases where the long
or medium paths dominate:

Lemma 17. Let j be a parameter that is at least a sufficiently large constant, and let Tj ⊆ T be the
subsystem of T that contains exactly the paths π of length j ≤ |π| ≤ 2j. Then:

∥Tj∥22 =

{
O (jn) if j ≥ n1/2

O
(
j−1n2

)
if j ≤ n1/2.

Proof. Let pj be the number of paths in Tj . Since Tj has bridge girth > 3, we may apply the bounds
on β(n, p, 3) implicit in prior work, which give:

∥Tj∥ = O
(
n2/3p

2/3
j + n + pj

)

(see Theorem 80 in the appendix for a formal proof). Since pj ≤ n2, the term +pj never dominates,
so we may simplify this bound to

∥Tj∥ = O
(
n2/3p

2/3
j + n

)
.

We then have:

j ≤ ∥Tj∥
pj

= O
(
n2/3p

−1/3
j + np−1

j

)
.

In the case where the first term in the right-hand sum dominates, we continue

p
1/3
j ≤ O

(
n2/3j−1

)

pj ≤ O
(
n2j−3

)
.

In the case where the second term in the right-hand sum dominates, we continue

pj = O
(
nj−1

)
.

Combining these, we get
pj = O

(
n2j−3 + nj−1

)
.

Plugging back into our bound on ∥Tj∥, we get

∥Tj∥ = O
(
n2/3

(
n2j−3 + nj−1

)2/3
+ n

)

= O
(
n2/3

(
n4/3j−2 + n2/3j−2/3

)
+ n

)

= O
(
n2j−2 + n4/3j−2/3 + n

)
.
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In the case where j ≥ n1/2, the latter +n term dominates the sum, and so this gives ∥Tj∥ = O(n).
Thus ∥Tj∥22 is the sum of O(nj−1) paths, each of which contribute Θ(j2) to the sum, so its total is
O(jn). On the other hand, in the case where j ≤ n1/2, this gives ∥Tj∥ = O(n2j−2). Thus ∥Tj∥22 is the
sum of O(n2j−3) paths, each of which contributes Θ(j2) to the sum, so its total is O(j−1n2).

Our next lemma counts the contribution of the long paths:

Lemma 18 (Long Path Gap Bound).
∑

π∈Π | π long

|π|2 = O (Ln) .

Proof. By Lemma 17, for any parameter j ≥ n1/2, we have
∑

π∈Π | π long and j≤|π|≤2j

|π|2 = O (jn) .

We may therefore control the sum square of long paths by partitioning into subsets of paths of length
j ≤ |π| ≤ 2j, and summing the contribution of these subsets. This gives:

∑

π∈Π | π long

|π|2 = O
(

(n1/2)n
)

+ O
(

(2n1/2)n
)

+ O
(

(4n1/2)n
)

+ . . . .

This is a geometric sum, which is thus dominated by its largest term. Recall that we have assumed
that all paths in T have length ≤ L, and so the last term has the form O(Ln), proving the lemma.

Next, we count the contribution of the medium paths.

Lemma 19 (Medium Path Gap Bound).
∑

π∈Π | π medium

|π|2 = O
(

p
∥T∥2

n2
)
.

Proof. Let
∥T∥2
2p1/2

≤ j ≤ n1/2

be a parameter. From Lemma 17 and the fact that medium paths have length ≤ Cn1/2, we have
∑

π∈Π | π medium and j≤|π|≤2j

= O
(
j−1n2

)
.

As in the long path case, we can bound the sum square of medium path lengths by partitioning the
medium paths into parts where all paths in a part have j ≤ |π| ≤ 2j. This gives

∑

j

O
(
j−1n2

)

where j ranges from ∥T∥2/(2p1/2) to n1/2 by multiples of 2. This is again a geometric sum which is
dominated by its largest term. The largest term occurs when j is smallest, i.e., j = ∥T∥2/(2p1/2), and
we get

O

(
p1/2

∥T∥2
n2

)
,

completing the proof.

Now we put the parts together:

Proof of Lemma 15. We consider two cases:

• If the long paths dominate, then by Lemma 18 we have ∥T∥22 = O (Ln).

• If the medium paths dominate, then by Lemma 19 we have

∥T∥22 = O

(
p1/2

∥T∥2
n2

)
.

Rearranging, we get

∥T∥32 = O
(
p1/2n2

)

∥T∥22 = O
(
p1/3n4/3

)
.
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Finally, we recall by Lemma 16 that the short paths do not dominate, and so this completes the
proof.

3.2.2 Setup and a Stronger Cleaning Lemma

In addition to the usual cleaning lemma, for technical reasons it will be helpful to assume an additional
property for the path system S that we analyze. Let us say that a 2-cycle in a path system is a pair
of nodes u, v, and a pair of paths π1, π2 with u <π1

v and v <π2
u. We use the following lemma to

remove 2-cycles from S:

Lemma 20. For any n, p and any k ≥ 3, there exists a path system S with n nodes, p paths, bridge
girth > k, size ∥S∥ = Θ(β(n, p, k)), and no 2-cycles.

Proof. Start with a path system S = (V,Π) with n nodes, p paths, ∥S∥ = β(n, p, k), and bridge girth
> k (which may have 2-cycles). Construct a path system S′ as follows.

Initially S′ = (V, ∅) is empty. For each π ∈ Π in an arbitrary order, add a subpath π′ ∈ π to Π′

generated as follows. For each node v ∈ π, omit v from π′ if there exists a node u and a previously-
added path q ∈ Π′ for which v <π u and u <q v. Otherwise, include v ∈ π′. In the following picture,
if π is the wavy path on top and q is the straight path at the bottom, the two hollow nodes would be
omitted and the four solid nodes would be included in π′ (unless another choice of path q causes them
to be omitted).

q

π

It is immediate from the construction that we do not complete any 2-cycles in S′, and since S′ ⊆ S
we still have that S′ has bridge girth > k. So it only remains to prove that ∥S′∥ = Θ(∥S∥). Consider
a fixed node v ∈ V . Each time we consider a path π with v ∈ π, we either keep v ∈ π or we omit
it. If we keep v, then π contributes +1 to the degree of v in S′. If we omit v, we do so because of a
previously-added path q with v ∈ q. In this case, let us say that q is marked by this action. We claim
that each path can only be marked once. To see this: suppose for contradiction, that there are two
different paths π, π′, which both contain v and which both mark q. This implies that q, π, π′ form a
3-bridge, as in the following picture (with v as the first node and π as the river):

q
π′

π

v

3-bridge

Thus, each time we omit a node v ∈ π from π in the construction of S′, we may amortize this against
a previously-added path q that kept v in S′. It follows that degS′(v) ≥ degS(v)/2. Since this holds for
all nodes v, we have ∥S′∥ ≥ ∥S∥/2, completing the proof.

Using this lemma, let S = (V,Π) be a path system with bridge girth > 4, no 2-cycles, n nodes,
p paths, and size ∥S∥ = Θ(β(n, p, 4)). By the Cleaning Lemma (Lemma 10), we may further let ℓ, d
be the average path length and node degree in S (respectively), and assume without loss of generality
that all paths have length Θ(ℓ) and that all nodes have degree Θ(d).8 We assume that ℓ, d are both at
least sufficiently large constants (if not, then we immediately have ∥S∥ = O(n + p)). Under all these
assumptions, our goal is now to prove that

∥S∥ = O
(
n3/4p1/2 + n5/8p11/16

)
.

8Technically, to assume the properties of the cleaning lemma and 2-cycle-freeness simultaneously, we need to use the
fact that the construction in the cleaning lemma cannot create 2-cycles. This is immediate from the proof.
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3.2.3 The Random Subsystem S′

Our next step is construct a particular subsystem of S that will be useful in analysis. Consider the
following process, parametrized by a positive integer h ≤ ℓ that we choose later, that generates a
random subsystem S′ ⊆ S:

• Choose a path πb ∈ Π uniformly at random, called the base path.

• Let Q ⊆ Π be the set of paths that intersect πb at exactly one node.

• (Vertices of S′) Flip a coin to choose either “forwards” or “backwards.” Let V ′ be the set of
nodes v ∈ V with the following property:

– If we choose “forwards,” then the property is: there exists a node u ∈ πb and a path q ∈ Q
with u ≤ v in q and with |q[u⇝ v]| < h. (That is, u weakly precedes v along q, and these
nodes are at most h− 1 positions apart in q.)

– If we choose “backwards,” the property is similar except that we require v ≤ u with |q[v ⇝
u]| < h. (That is, u weakly follows v along q, and these nodes are at most h− 1 positions
apart in q.)

• S′ = (V ′,Π′) is the induced subsystem of S on the vertex set V ′. Recall: this means that Π′

contains the subpath π ∩ V ′ for each π ∈ Π.

h nodes/path

πb
Θ(d) paths/node

on πb

Figure 7: The random subsystem S′, generated with respect to “height” parameter h, and a “forwards”
coin flip.

Let n′ := |V ′| be the number of surviving nodes in S′, let p′ := |Π′| be the number of surviving
paths in S′, and let ℓ′ := ∥S′∥/p′ be the average path length in S′. Note that part of each path in Q
survives in S′; we call the surviving parts Q′ ⊆ Π′. We have the following controls on their values:

Lemma 21 (Properties of S′).

• |Q′| = Θ(ℓd)

• All nodes in S′ have degree Θ(d)

• n′ ≤ O(ℓdh)

• The maximum path length in S′ is O(ℓ)

Proof. The fact that all nodes in S′ have degree Θ(d) is inherited directly from S, since the degrees of
surviving nodes do not change in an induced subsystem. Similarly, the fact that the maximum path
length in S′ is O(ℓ) is inherited from S.

Since |πb| = Θ(ℓ), and each node has degree Θ(d), and d is a sufficiently large constant, there exist
Θ(ℓd) paths that intersect πb. We notice that these paths are pairwise-distinct: if a path q hits πb at
two different nodes, then (since S has no 2-bridges) q, πb must form a 2-cycle, but from Lemma 20
there are no 2-cycles in S. Thus we have |Q′| = Θ(ℓd). (This is one of two places where the assumption
of no 2-cycles will be useful.)

By construction every node in V ′ is contained in a path in Q′, and every path in Q′ has length
O(h), so we also have n′ ≤ O(hℓd).
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Although the previous lemma acknowledges that the node degrees in S′ do not change from S, we
unfortunately have no such guarantee for the path lengths. That is, the average path length ℓ′ in S′

might be very different from the average path length ℓ in S, and moreover the path lengths in S′ might
fluctuate wildly instead of all being Θ(ℓ′). We unfortunately won’t be able to enforce approximate
length regularity in S′ by re-applying the cleaning lemma, either. The problem is that our strategy
in analysis will be to bound ∥S′∥22, and while the cleaning lemma gives approximate length regularity
while preserving ∥S′∥, it can significantly change the value of ∥S′∥22.

It will, however, be helpful in the following analysis to assume that ℓ′ is at least a sufficiently large
constant. We enable this assumption using the following lemma, which provides a good bound on the
size of S in the case where ℓ′ is only a constant:

Lemma 22. If E[ℓ′] = O(1), then ∥S∥ = O
(
n2/3p2/3h−1/3

)
.

Proof. First, we claim that E[n′] = Θ(ℓdh). This follows by noticing two facts. First, for any path
q ∈ Q, the expected length of the corresponding path in Q′ (over the forwards/backwards coin flip)
is Θ(h). Second, the paths in Q′ are pairwise node-disjoint, except possibly on nodes in πb. This
holds because, if we have two paths q1, q2 ∈ Q′ that intersect on a node v /∈ πb, then q1, q2, πb form a
3-bridge:

πb

q1 q2

3-bridge

Thus we have |Q′| = Θ(ℓd) (deterministically), and each path in Q′ contributes Θ(h) nodes to V ′

in expectation, so we have E[n′] = Θ(ℓdh). Additionally, from the previous lemma, we have n′ =
O(ℓdh) (deterministically). Together, these imply that there is positive constant probability c that
n′ = Θ(ℓdh).

Next, assuming that E[ℓ′] = O(1), we may apply Markov’s inequality (with a sufficiently large
hidden constant in the O(1)) to conclude that

Pr[ℓ′ = O(1)] > 1− c.

Hence, by an intersection bound, there is positive probability that we simultaneously have n′ = Θ(hℓd)
and ℓ′ = O(1). In this event, we have ∥S′∥ = Θ(hℓd2), and thus

p ≥ p′ = Ω
(
hℓd2

)
.

Rearranging, we have

p2n2

h
= Ω

(
ℓp · (nd)2

)

p2n2

h
= Ω

(
∥S∥3

)

∥S∥ = O
(
n2/3p2/3h−1/3

)
.

In the rest of the proof, we will make two simplifying assumptions: (1) that ℓ′ is at least a large
enough constant (otherwise we apply the previous lemma), and (2) that the forwards/backwards coin
flip comes up “forwards:” the only place we need to flip this coin, rather than deterministically choosing
“forwards,” is to argue that E[n′] = Θ(ℓdh) in the previous lemma. Every lemma in the rest of the
proof can be immediately proved by a symmetric argument in the case where the coin flip comes up
“backwards,” so we assume “forwards” for simplicity.

3.2.4 Analysis of ∥S′∥22 and ∥S∥22
We next make some structural observations on the intersection patterns exhibited by paths in S or S′.
For an ordered pair of paths (π1, π2) ∈ Π2, we define

RS(π1, π2) := {(x, y) ∈ π1 × π2 | there exists π ∈ Π with π ∩ π1 = {x}, π ∩ π2 = {y}} .
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and RS′ is defined similarly, with paths taken from Π′ rather than Π. We make a few observations in
order to motivate this definition.

• Suppose that π1, π2 ∈ Π′ and that π1 intersects πb before π2 (i.e. (π1 ∩ πb) <πb
(π2 ∩ πb)). Then

for a path π witnessing a pair (x, y) ∈ RS′(π1, π2), we must specifically have that x <π y. This
follows by noticing that, if instead y <π x, then π1, πb, π2, π together form a 4-bridge, with π1 as
the river.

πb

π1 π2

π

4-bridge

x y

• Our next observation is that it is not possible to have pairs (x, y), (x′, y′) ∈ RS(π1, π2) that
strictly cross each other, with x <π1

x′ and y′ <π2
y as in the following picture, if these pairs

(x, y), (x′, y′) are witnessed by two different paths. The reason for this is that otherwise, they
imply a 4-bridge, with the path intersecting (x, y) as the river.

x

x′

y′

y

π1 π2

4-bridge

• At first, one might worry that crossing node pairs (x, y), (x′, y′) ∈ R(π1, π2) can arise if both
node pairs are caused by a single path π, as in the following picture. However, this can arise
only if π intersects π1 at both x, x′, and π intersects π2 at both y, y′. This would imply a 2-cycle,
which we have removed from S via Lemma 20. So this does not occur. (This is our last use of
removing 2-cycles in the argument.)

x

x′

y′

y

π1 π2

2-cycle

• The previous observations imply that the node pairs in RS(π1, π2) are arranged roughly as in
the following picture, with their points of intersection with π1, π2 increasing along both paths.

πb

π1 π2

r1

r2

Can happen

Let
RS :=

∑

(π1,π2)∈Π2

|RS(π1, π2)| .

The size of ∥S∥22 can be related to RS as follows:
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Lemma 23. ∥S∥22 = Θ

(RS

d2

)

Proof. Recall we have used the cleaning lemma to assume that ℓ is at least a large constant, and so
by approximate length-regularity, we may assume that all paths in Π have ≥ 2 nodes. A given path π
contributes +|π|2 to the value of ∥S∥22. We may therefore only count node pairs satisfying x <π y, as

there are
(
|π|
2

)
= Θ(|π|2) such node pairs.

For each such node pair (x, y), there are Θ(d) paths in Π that intersect x and Θ(d) paths in Π that
intersect y. Thus, this node pair (x, y) appears in Θ(d2) different sets RS(π1, π2) with (π1, π2) ∈ Π2.
So the pair (x, y) contributes Θ(d)2 points to the value of RS . It follows that

∥S∥22 · d2 = Θ (RS) ,

and the lemma follows by rearranging.

Consider a fixed, ordered pair of paths (π1, π2) ∈ Π2. When we create S′, let us say that an ordered
node pair (x, y) is charged to the pair (π1, π2) if:

• π1, π2 ∈ Q, and hence subpaths π′
1 ⊆ π1, π

′
2 ⊆ π2 are in Q′, and

• (x, y) ∈ RS′(π′
1, π

′
2).

The next lemma gives a lower bound on the expected number of node pairs that get charged to
(π1, π2). Note that, in the case where π1 /∈ Q or π2 /∈ Q, then 0 node pairs are charged to (π1, π2).

Lemma 24. For each (π1, π2) ∈ Π2, the expected number of node pairs charged to (π1, π2) is

Ω

(
|RS(π1, π2)|2 · h

ℓp

)
.

Proof. For pairs (x, y), (x′, y′) ∈ RS(π1, π2), let us say that (x′, y′) is close behind (x, y) if we have

1 ≤ |π1[x⇝ x′]| < h and 1 ≤ |π2[y ⇝ y′]| < h.

We note that this definition implies that (x, y) is considered to be close behind itself.

π1 π2

x y

x′
y′

< h
< h

(x′, y′) is close behind (x, y) if
both marked segments contain < h nodes.

The point of this definition is that, if the path containing (x, y) is selected as the base path πb, then
we will charge some node pairs to (π1, π2), and the number of such node pairs is exactly the number
of pairs in RS(π1, π2) that are close behind (x, y).

Let us say that (x, y) is typical if, for some sufficiently large constant C, there are at least

|RS(π1, π2)| · h

Cℓ

pairs in RS(π1, π2) that are close behind (x, y). If we happen to sample a base path πb that contains
a typical pair (x, y) ∈ RS(π1, π2), then the number of pairs charged to (π1, π2) is

Ω

(
|RS(π1, π2)| · h

ℓ

)
.
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Thus, to prove the lemma, it suffices to prove that we sample a base path πb that contains a typical
pair (x, y) ∈ RS(π1, π2) with probability

Ω

(
|RS(π1, π2)| · 1

p

)
;

that is, a constant fraction of the pairs in RS(π1, π2) are typical. We show this using the following
counting argument:

By our analysis of the structure of path intersections, the pairs (x, y) ∈ RS(π1, π2) may be totally
ordered by positions of x ∩ π1, y ∩ π2. Consider these pairs (x, y) in increasing order, that is, the first
pair (x, y) considered is the one that intersects π1, π2 closest to their start nodes. When each pair
(x, y) is considered, if it is typical, then add 1 to the count of typical pairs. Otherwise, if (x, y) is not
typical, then we throw away the next

|RS(π1, π2)| · h

Cℓ

pairs in the ordering (including (x, y); these pairs are thrown out without increasing the count whether
or not they are typical), and then we continue. Each time we skip a pair (x, y), notice that the next
pair considered (x′, y′) is not close behind (x, y), which means we have

|π1[x⇝ x′]| ≥ h or |π2[y ⇝ y′]| ≥ h.

That is, we progress at least h nodes along π1, or at least h nodes along π2. Since |π1| = O(ℓ) and
|π2| = O(ℓ), we can thus only perform this skip operation O(ℓ/h) times. By unioning, it follows that
only

O

(
|RS(π1, π2)| · h

Cℓ

)
·O(ℓ/h) = O

(
|RS(π1, π2)| · 1

Cℓ

)

pairs get discarded. By choice of large enough C, this is only a constant fraction of the total pairs in
RS(π1, π2), which means a constant fraction of the pairs in RS(π1, π2) are counted as typical. By the
previous discussion, the lemma follows.

Lemma 25. E
[
∥S′∥22

]
= Ω

(
h
ℓp3 · R2

S

)

Proof. We can lower bound the expected value of ∥S′∥22 by counting the expected number of node
pairs (x, y) that get charged to some (q1, q2) ∈ Q2. By Lemma 24, this is

E[{|(x, y) ∈ V 2 | (x, y) charged}] = Ω


 ∑

(π1,π2)∈Π2

|RS(π1, π2)|2 · h
ℓp




=
h

ℓp3
· Ω


 ∑

(π1,π2)∈Π2

|RS(π1, π2)|2

 · p2

= Ω


 h

ℓp3
·


 ∑

(π1,π2)∈Π2

|RS(π1, π2)|




2

 Cauchy-Schwarz

= Ω

(
h

ℓp3
· R2

S

)
.

3.3 Proof Wrapup

The remainder of the proof is essentially just algebra. Using the previous two lemmas, we have:

Lemma 26. ∥S∥ = O
(
n3/4p1/2 + n8/13p9/13h1/13

)
.
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Proof. We have

∥S∥22 = Θ
(
d−2RS

)
Lemma 23

= d−2 ·O
(
ℓp3

h
· E

[
∥S′∥22

])1/2

Lemma 25

= O

(
ℓp3

d4h
· E

[
∥S′∥22

])1/2

.

Recall from Lemma 21 that S′ has O(ℓdh) nodes, ≤ p paths, maximum path length O(ℓ), and bridge
girth > 3. We may thus apply Lemma 15 to conclude that the following bound holds deterministically:

∥S′∥22 = O
(

(ℓdh) · ℓ + p1/3(ℓdh)4/3
)
.

Using this as an upper bound for expectation, we may continue:

∥S∥22 = O

(
ℓp3

d4h
·
(
ℓ2dh + p1/3(ℓdh)4/3

))1/2

= O
(
ℓ3p3d−3 + ℓ7/3p10/3d−8/3h1/3

)1/2

.

Our next step will be to apply the Cauchy-Schwarz inequality, which gives ∥S∥22 · p ≥ ∥S∥2. Using
this, we may continue:

∥S∥2
p

= O
(
ℓ3p3d−3 + ℓ7/3p10/3d−8/3h1/3

)1/2

∥S∥4
p2

= O
(
ℓ3p3d−3 + ℓ7/3p10/3d−8/3h1/3

)

∥S∥4 = O
(
ℓ3p5d−3 + ℓ7/3p16/3d−8/3h1/3

)

∥S∥4 = O
(
n3p2 + ∥S∥−1/3n8/3p3h1/3

)
∥S∥ = nd = pℓ.

We next split into two cases, by which of these terms in the right-hand side dominate. If the first term
dominates, then we get

∥S∥ = O
(
n3/4p1/2

)
.

If the second term dominates, then we get

∥S∥4 = O
(
∥S∥−1/3n8/3p3h1/3

)

∥S∥13 = O
(
n8p9h

)

∥S∥ = O
(
n8/13p9/13h1/13

)
.

Summing the two cases gives our claimed bound.

The next step is to choose h to balance terms. We are balancing the term n8/13p9/13h1/13 in the
previous lemma, which applies in the case where the expected average path length in S′ is at least
a large constant, with the term n2/3p2/3h−1/3 from Lemma 22 which applies in the case where the
average path length in S′ is bounded by a constant. The proper setting of h is computed as:

n8/13p9/13h1/13 = n2/3p2/3h−1/3

h16/39 = n2/39p−1/39

h = n1/8p−1/16.

These terms then balance at

n2/3p2/3
(
n1/8p−1/16

)−1/3

=n5/8p11/16.
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Thus, the total bound on the size of ∥S∥ is

∥S∥ = O
(
n3/4p1/2 + n5/8p11/16

)
.

Finally, we acknowledge that this proof used the assumption that ℓ, d were both at least sufficiently
large constants, so the final size of ∥S∥ also absorbs a O(n + p) term.

3.4 Bounds for k =∞
Theorem 27. β(n, p,∞) = O

(
p2

2O(log∗ p) + p
)

Proof. In this proof, it will be helpful to write
−→
β (n, p, k) for the extremal function of acyclic path

systems of high bridge girth. Let S be an acyclic path system with n nodes, p paths, bridge girth > 3,

and ∥S∥ =
−→
β (n, p, 3). Let G be its incidence graph, which has |E(G)| = ∥S∥ edges. We claim that G

has girth > 6. To see this, we argue:

• Since G is bipartite it does not have 3- or 5-cycles.

• A 4-cycle in G implies that there are two paths π1, π2 ∈ Π that intersect the same pair of nodes
u, v ∈ V . Since S is acyclic, these paths would need to use u, v in the same order, and hence they
would form a 2-bridge. But since S has bridge girth > 3, this means G may not have a 4-cycle.

• Similarly, a 6-cycle in G implies that there are three paths π1, π2, π3 and three nodes t, u, v with
t, u ∈ π1, u, v ∈ π2, t, v ∈ π3. Since S is acyclic, we may assume without loss of generality that
these nodes are ordered t, u, v in a topological sort. Thus π1, π2, π3 form a 3-bridge with π3 as
the river. Since S has bridge girth > 3, this means G may not have a 6-cycle.

Hence G is a bipartite graph with n, p nodes per side, girth > 6, and
−→
β (n, p, 3) edges. It follows that9

−→
β (n, p, 3) ≤ γγ(n, p, 6).

We also notice that γγ is symmetric in its first two parameters, and so

γγ(n, p, 6) = γγ(p, n, 6).

With these two facts in mind, we now have:

β(n, p,∞) = Θ
(−→
β (n, p,∞)

)
Corollary 42

≤ O
(−→
β (n, p, 3)

)

≤ O (γγ(n, p, 3))

= O (γγ(p, n, 3))

≤ O

(
p2

rs(p)
+ n

)
[43, 58, 82].

Theorem 28. β∗(n, p,∞) = O
(
min

{
n1/2p, np1/2

}
+ n + p

)

Proof. This follows as a consequence of Corollary 47. Recall that it suffices to bound the maximum
possible size of an acyclic ordered path system S with bridge girth ∞. If we drop the path ordering
in S, and treat it as a normal unordered path system, then it still has bridge girth > 2. Since S is
acyclic, this implies that any two paths intersect on at most one node. So if we further drop the order
of nodes within each path, and instead treat S as a set system, it has girth > 2. It thus satisfies

∥S∥ = O
(

min
{
n1/2p, np1/2

}
+ n + p

)

by well-known bounds on the size of high-girth set systems (or bipartite graphs) [102].

9In fact this reduction can be reversed, showing that these functions are equal. But we will only need to use the
inequality in one direction, so we omit the proof on the other side.
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Theorem 29. β∗(n, p,∞) = Ω
(
n2/3p2/3 + n + p

)

Proof. This construction is a slight modification of a construction from [93], although the analysis is
somewhat new. We will construct an ordered path system S = (V,Π) on n = |V | nodes and p = |Π|
paths realizing this lower bound. Let 1 ≤ ℓ ≤ n1/2 be an integer parameter; all paths in our system
will have length exactly ℓ. Let

V := [1, ℓ]×
[
1,

n

ℓ

]

be a rectangular subset of the integer lattice Z2.10 Our paths in Π will correspond to lines in Z2. The
starting points of our lines (paths) are captured by the set

X := {1} ×
[
1,

n

2ℓ

]
.

The slopes of our lines are captured by the set

W :=
{

(1, i) | i ∈
[
1,

n

2ℓ2

]}
.

For each x ∈ X and w⃗ ∈W , we add the path

(x, x + w⃗, x + 2w⃗, . . . , x + (ℓ− 1)w⃗)

to Π. To order our paths: for paths π, π′ ∈ Π, we assign π < π′ if w⃗y < w⃗′
y, where v⃗y denotes the

y-component of vector v⃗ ∈ Z2; if w⃗y = w⃗′
y then the tie may be broken arbitrarily. Intuitively, this

orders our paths in Π by increasing value of the slope of the corresponding line in Z2. This completes
the construction, and we now check its parameters. We have

p = |Π| = |X||W | = Θ

(
n2

ℓ3

)
.

Additionally, all paths in Π have length exactly ℓ, and so

∥S∥ = pℓ = p ·Θ
(
n2/3

p1/3

)
= Θ

(
n2/3p2/3

)
.

Now it only remains to verify that S is an ordered bridge-free path system. Let π ∈ Π be a path
constructed via start point x ∈ X and slope w⃗ ∈W , and suppose for the sake of contradiction that π
is the river for an ordered bridge in S. Since S is layered, this implies there is a collection of vectors
v⃗1, v⃗2, . . . , v⃗ℓ−1 ∈ W (not necessarily distinct), which correspond to the differences among adjacent
nodes along the path formed by the arcs of the bridge, and such that

ℓ−1∑

i=1

v⃗i = (ℓ− 1)w⃗.

Moreover, the vectors {v⃗i} may not all be identical to w⃗. This implies that there exists at least one
vector v⃗i with (v⃗i)y > w⃗y, and there exists at least one vector v⃗i with (v⃗j)y < w⃗y. However, since we
order our paths by increasing slope, the arc corresponding to v⃗i would be placed later in the ordering
than the path corresponding to w⃗. Thus this arc cannot participate as an arc of an ordered bridge
with w⃗ corresponding to the river. This completes the contradiction, and we conclude that π has no
ordered bridge.

Finally, we show that this lower bound is conditionally tight in the setting p = n. We first give
some background on the relevant condition. An ordered graph is a simple graph with a total ordering
on its vertices. A natural problem is to investigate how classic results from extremal graph theory
extend to this setting. Let:

• ex(n,H) be the Turán function of the graph H; that is, the maximum possible number of edges
in an n-node graph that does not contain H as a subgraph.

10We will assume for convenience that n/ℓ and similar terms are integral; otherwise, rounding to the nearest integer
affects our argument only by lower-order terms which may be ignored.
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• ex<(n,H) be the ordered Turán function of the ordered graph H, defined analogously.

These extremal functions satisfy the basic inequality ex<(n,H) ≥ ex(n,H), where H denotes the
(unordered) graph underlying the ordered graph H. Tardos [94] asked how high the ratio can be, that
is, the value of

max
H

ex<(n,H)

ex(n,H)
.

The current lower bound is Ω(n1/3−ε), and the current upper bound is O(n1−ε). A reasonable hypoth-
esis could be that the lower bound is closer to the correct answer:

Hypothesis 30. Let H be an ordered graph with greater than two vertices and at least one edge. Then
ex<(n,H)

ex(n,H)
= O(n1/3).

Under this hypothesis, our new lower bound for β∗(n, p,∞) is nearly-tight when p = n. To be clear,
we do not necessarily think there is evidence that Hypothesis 30 is true. However, we do think that it
represents a natural limitation on current methods in the theory of ordered graphs, and a significant
new idea will be needed to prove or refute it. Thus, our point is simply that it is likely beyond the
reach of current techniques to significantly improve our lower bound on β∗(n, n,∞) (if it is improvable
at all).

Theorem 31. Under Hypothesis 30, β∗(n, n,∞) = Θ̃(n4/3).

Proof. Note that by Theorem 29, β∗(n, n,∞) = Ω(n4/3). We will prove that under Hypothesis 30,
β∗(n, n,∞) = O(n4/3 log n).

Let S = (V,Π) be an acyclic ordered path system with n nodes, n paths, no ordered bridges, and
size ∥S∥ = Ω(β∗(n, n,∞)). (S must exist by the cleaning lemma and by Corollary 47.) Since S is
acyclic, there is a total order σ1 on V such that for all s, t ∈ V , s <σ1 t if s <π t for some π ∈ Π.
Likewise, let σ2 be the total order on Π in the ordered path system S.

Let GS be the incidence graph corresponding to S. Recall that this means: GS = (L ∪ R,E) is
the bipartite graph such that L := V , R := Π, and for all v ∈ V and π ∈ Π, (v, π) ∈ E if vertex v is
contained in path π in S. Note that |E| = ∥S∥. Define the following total order on the vertices L ∪R
of GS :

• If u, v ∈ L, then apply ordering σ1.

• If u, v ∈ R, then apply ordering σ2.

• If u ∈ L and v ∈ R, then let u < v.

We claim that graph GS (with vertices ordered as above) does not contain any simple, ordered 2k-cycles
Hk of form

Hk := (v1, π1, v2, π2, . . . , vk, πk),

where

• v1 < π1,

• vi < vj if i < j ∈ [1, k],

• πi < πk for i ∈ [1, k − 1],

• and k ≥ 2.

Suppose for the sake of contradiction that such an ordered graph Hk is contained in GS . Then since
GS is bipartite and v1 < π1 in Hk, we must have that vi ∈ L and πi ∈ R for i ∈ [1, k]. Additionally,
by the choice of edges E in GS , it follows that vi, vi+1 ∈ πi for i ∈ [1, k − 1] and v1, vk ∈ πk in S.
Moreover, by our choice of ordering σ1, since vi < vi+1 in H and vi, vi+1 ∈ πi it follows that vi <πi

vi+1

and v1 <πk
vk in S. Finally, since πi < πk for all i ∈ [1, k − 1] in Hk, path πk comes last in the total

order σ2 of paths Π in S, so nodes v1, . . . , vk ∈ V and paths π1, . . . , πk ∈ Π correspond to an ordered
k-bridge in S. This contradicts our assumption that S has no ordered bridges, so we conclude that
GS does not contain Hk. Consequently, the size of S is at most

∥S∥ = |E| ≤ ex<(2n,Hk).
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By known bounds on the extremal function of cycles, ex(n,Hk) = O(kn1+1/k) [28]. Then under
Hypothesis 30,

∥S∥ ≤ ex<(2n,H) ≤ ex(2n,H) ·O(n1/3) = O(kn4/3+1/k).

Taking k = log n completes the proof.

4 Extremal Reductions to Bridge Girth

In this section, we discuss various objects in network design where the extremal state-of-the-art upper
or lower bounds on size can be reduced to extremal functions of bridge girth.

4.1 Distance Preservers

Recall Definition 12 for the formal definition of distance preservers and their associated extremal
function DP. Our goal is to prove:

Theorem 32. Ω (β∗(n, p,∞)) ≤ DP(n, p) ≤ β(n, p, 2).

We begin by proving the upper bounds of Theorem 32. As a warmup, let us restrict attention to a
very specific kind of distance preserver input G = (V,E,w), P that enjoys a property that we will call
independence among the demand pairs:

Definition 14 (Independence). For a graph G = (V,E,w) and set of demand pairs P ⊆ V × V , we
say that P is independent in G if for all (s, t) ∈ P there is a unique shortest path π(s, t) in G, and
these paths are pairwise edge-disjoint.

An independent input instance G = (V,E,w), P can be naturally associated to a path system
S = (V,Π), where the paths in Π are precisely the node sequences corresponding to the unique
shortest paths for demand pairs in P . We claim that this system S is 2-bridge-free. To see this, notice
that S has a 2-bridge iff there are two distinct nodes u, v ∈ V and two distinct paths π1, π2 ∈ Π that
both contain u and then v (in that order). On one hand, we cannot have π1, π2 coincide on their u⇝ v
subpaths, as this would imply that the associated paths in G share edges, violating independence. On
the other hand, we cannot have that π1, π2 use distinct u ⇝ v subpaths, as this would violate the
property that π1, π2 are each unique shortest paths in the underlying graph. Thus it is not possible
for S to have a 2-bridge, and so we have

∥S∥ ≤ β(n, p, 2).

The natural distance preserver for G,P is obtained by overlaying the unique edge-disjoint shortest
paths for the demand pairs in P , and it has exactly ∥S∥ − p edges.11 Thus any such independent
instance G,P has a distance preserver on β(n, p, 2)− p edges, which satisfies Theorem 32.

This part of the proof is not exactly surprising, and it is essentially a rephrasing of the well-known
fact that unique shortest paths in graphs exhibit consistency. The more interesting part of the proof
is to show that independence of input instances may be assumed without loss of generality. This is
accomplished in the following lemma:

Lemma 33 (Independence Lemma for Distance Preservers). For any positive integers n, p, there exists
an n-node graph G and a set of |P | ≤ p independent demand pairs such that the minimal distance
preserver of G,P has exactly DP(n, p) edges.

Proof. Let G,P be a (not necessarily independent) input instance on n nodes and p paths realizing
DP(n, p). We may assume without loss of generality that G itself has exactly DP(n, p) edges (otherwise,
replace G with a distance preserver of G,P and then perform the following analysis). We may also
assume without loss of generality that every demand pair in P has a unique shortest path in G. This
follows by the standard method of random reweighting: that is, for each edge e, randomly choose
a real number in the range [0, ε] and add this number to w(e). Shortest path ties are broken with

11The −p term arises since ∥S∥ counts the number of nodes in each path, while for the distance preserver we count
the number of edges in each path.
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probability 1, and if we choose ε > 0 small enough, the changes in edge weights will not cause a
previously non-shortest path to become a shortest path.

The instance G,P might still not be independent, because the unique shortest paths for the pairs
in P might overlap on edges. To remove overlap, we will further modify G,P by executing either of
the following two steps until neither one is possible. In the following, for a demand pair (s, t) ∈ P we
will write π(s, t) for its unique shortest path, and we will say that π(s, t) uniquely uses an edge e if
e ∈ π(s, t) and there is no other demand pair (s′, t′) ∈ P with e ∈ π(s′, t′).

• If there exists a demand pair (s, t) ∈ P that does not uniquely use any edges, we delete (s, t)
from P . Note that it is still the case that every edge in G is used by at least one unique shortest
path for a demand pair.

• Suppose that there exists a demand pair (s, t) ∈ P and a sequence of three contiguous nodes
(x, y, z) ∈ π(s, t), such that π(s, t) uniquely uses one of the two edges {(x, y), (y, z)}, but the other
of these two edges is used by another unique shortest path π(s′, t′) as well. For ease of notation
we will assume that (x, y) is the edge uniquely used by π(s, t); the other case is symmetric. We
then add (x, z) to G as a new edge, and we set its weight to w(x, z) := w(x, y) +w(y, z), and we
delete the edge (x, y). Notice that:

– We add (x, z) to G and we remove (x, y) from G, so the number of edges in G stays the
same. The demand pair (s, t) still has a unique shortest path, which now uses the edge
(x, z) in place of the 2-path (x, y, z).

– No other unique shortest path besides π(s, t) is affected by this change to the structure of
the edges in G. This holds because (x, y, z) must be the unique x ⇝ z shortest path, and
π(s, t) is the only path that uses (x, y), and therefore π(s, t) is the only path that contains
the nodes (x, z) in that order.

– The other edge (y, z) is still used by a unique shortest path, since by hypothesis we have
(y, z) ∈ π(s′, t′) for some other demand pair (s′, t′).

𝑦
𝑥

𝑧

𝜋 𝑠, 𝑡
𝑦

𝑥
𝑧

𝜋 𝑠, 𝑡

𝑑𝑖𝑠𝑡𝐺′ 𝑥, 𝑧

Figure 8: The “edge skip” operation used in the second case of the proof of Lemma 33

In either case, the sum of lengths of the paths {π(s, t)}(s,t)∈P decreases by at least 1, and thus the
process eventually terminates. Once it terminates, every unique shortest path π(s, t) uniquely uses at
least one edge, and it does not contain two consecutive edges where one is uniquely used and the other
is not. Therefore π(s, t) uniquely uses all of its edges, which implies independence.

This implies:

Lemma 34. DP(n, p) ≤ β(n, p, 2).

Proof. By the independence lemma (33), there exists an n-node graph and a set of |P | ≤ p independent
demand pairs that have DP(n, p) edges in their union. By an earlier discussion, any such instance can
be associated to a 2-bridge-free path system of size DP(n, p)+p. It follows that DP(n, p) ≤ β(n, p, 2).
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Now we turn to the lower bounds:

Lemma 35. Ω(β∗(n, p,∞)) ≤ DP(n, p)

Proof. Let S = (V,Π) be an ordered path system with n nodes, p paths, no ordered bridges, and size
∥S∥ = β∗(n, p,∞). We will use S to construct an independent instance G,P that requires ∥S∥ − p
edges for any distance preserver.

Starting with an empty graph G = (V, ∅), consider the paths in Π in their order in S. When a
path π(s, t) ∈ Π is considered, add (s, t) as a demand pair to P , and then add all consecutive pairs of
nodes on π(s, t) as new directed edges in G. Since S is 2-bridge-free, the paths {π(s, t)} are pairwise
edge-disjoint, and moreover since S has no ordered bridges, each path π(s, t) is the unique s ⇝ t
path in G at the time it is added. Hence it is the unique shortest s⇝ t path at the time it is added,
regardless of the edge weights we assign to its edges. We may therefore choose sufficiently large weights
for the new edges on π(s, t), so that no previously-added demand pair will gain a new shortest path
using any edges in π(s, t).

Once all paths in Π have been considered, we have unique edge-disjoint shortest paths in G for all
p demand pairs, and the union of these paths contains

β∗(n, p)− p = Ω(β∗(n, p))

edges. Thus, we can interpret this graph G together with the set P holding the endpoints of the paths
in Π as an input instance for distance preservers. All edges in paths in Π must remain in a distance
preserver, which implies

Ω (β∗(n, p)) ≤ DP(n, p).

4.2 Shortest Path Oracles

We next prove an incompressibility theorem for distance preservers. We consider shortest path oracles,
which are the natural data structure version of distance preservers:

Definition 15 (Path Oracles). Given a directed graph G = (V,E,w) and a set of demand pairs P , a
shortest path oracle is a data structure that, when queried with (s, t) ∈ P , can report a shortest s⇝ t
path in G (or “no path” if none exists).

We define SPO(n, p) as the smallest integer such that every n-node graph and set of |P | = p demand
pairs has a path oracle on ≤ SPO(n, p) bits.

Note that a distance preserver of G,P on m edges implies a shortest path oracle of G,P on
O(m log n) bits. Consequently, we have

SPO(n, p) ≤ O (DP(n, p) log n) .

The following theorem states that we cannot expect much smaller shortest path oracles in general.

Theorem 36. Ω (DP(n, p)) ≤ SPO(n, p) ≤ O (DP(n, p) log n).

Proof. Let G = (V,E,w) be an n-node graph and let P be a set of |P | = p independent demand pairs
such that the minimal distance preserver of G,P has exactly DP(n, p) edges. Note that such G and P
exist by the independence lemma for distance preservers (Lemma 33). We associate with G,P a path
system S = (V,Π) where the paths π(s, t) in Π are precisely the node sequences corresponding to the
unique shortest paths for demand pairs (s, t) in P . Note that

∥S∥ =
∑

π∈Π

|π| = DP(n, p) + p.

Let S′ = (V,Π′) be a path system obtained from S by replacing each s⇝ t path π(s, t) in Π with an
arbitrary s ⇝ t subpath π′(s, t). Let S denote the set of all path systems S′ generated in this way.
Note that the total number of pairs (v, π) ∈ V ×Π such that v is an internal node in π is DP(n, p)− p,
so |S| = 2DP(n,p)−p.

For each path system S′ ∈ S, we construct a graph GS′ = (V,E′, w′) as follows. For each path
π′(s, t) ∈ Π′, we add all consecutive pairs of nodes on π′(s, t) to E′. For each edge e = (u, v) ∈ E′, we
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assign the weight distG(u, v) to the edge (u, v) in GS′ . Observe that by our choice of weights, for all
s, t ∈ V , distG(s, t) ≤ distGS′ (s, t). Additionally, for every (s, t) ∈ P , the path in GS′ corresponding to
π′(s, t) ∈ Π′ has path length exactly distG(s, t). Since G,P is independent, π(s, t) is a unique shortest
s⇝ t path in G, and so π′(s, t) is a unique shortest s⇝ t path in GS′ .

We have shown that every demand pair (s, t) ∈ P has a unique shortest path in GS′ that corresponds
exactly to path π′(s, t) ∈ Π′ of S′. Then any shortest path oracle for GS′ , P will have to output the
path π′(s, t) when queried with (s, t). Now consider the graph family G = {GS′}S′∈S . Any two distinct
graphs G1, G2 ∈ G will require distinct shortest path oracle data structures, since the corresponding
path systems S′

1, S
′
2 ∈ S are distinct. Consequently, at least one of the graphs in G will need

Ω (log |G|) = Ω (DP(n, p))

bits to represent its shortest path oracle data structure.

4.3 Reachability Preservers

Here we will prove:

Theorem 37. RP(n, p) = Θ(β(n, p,∞)).

We note that RP(n, p) is only well-defined in the range p ≤ O(n2), so naturally we prove Theorem
37 only in this parameter range. We again start with the upper bound, and we will need another inde-
pendence lemma. We will overload the word “independent” for the analogous definition for reachability
preservers:

Definition 16 (Independence). For a graph G = (V,E) and set of demand pairs P ⊆ V × V , we say
that P is independent (in the context of reachability preservers) if for all (s, t) ∈ P there is a unique
path π(s, t), and these paths are pairwise edge-disjoint.

Lemma 38 (Independence Lemma for Reachability Preservers). For any positive integers n, p, there
exists an n-node graph G and a set of |P | = p independent demand pairs such that any reachability
preserver of G,P has exactly RP(n, p) edges.

Proof. The proof is somewhat analogous to Lemma 33, but it requires an additional technical ingredi-
ent. The reason for the change in proof is essentially that for distance preservers we can assume that
demand pairs have unique shortest paths, but for reachability preservers we cannot immediately make
the analogous assumption that each demand pair has a unique path.

Let G,P be a (not necessarily independent) instance realizing RP(n, p). First, we will use a helpful
reduction from [2], allowing us to assume that G is a DAG. If not, we may consider each strongly
connected component, add an in- and out-BFS tree from an arbitrary node to preserve reachability
among all node pairs in that component, and then contract the component into a single super-node.
The resulting contracted graph is a DAG, and it suffices to build a reachability preserver on this
graph.12

Next, let us introduce some terminology. We will say that a demand pair (s, t) ∈ P requires an
edge e if every s ⇝ t path includes e. We will say that (s, t) uniquely requires e if it requires e, and
there is no other demand pair that also requires e. We may assume without loss of generality that
every edge in G is required by at least one demand pair (or else that edge may be removed from G).
Thus G itself is the unique reachability preserver of G,P , so it has RP(n, p) edges. We then further
modify G,P by the following steps:

• For each demand pair (s, t), considered in arbitrary order, choose any s⇝ t path π(s, t). Then:

– If (s, t) does not uniquely require any edge in π(s, t), delete (s, t) from P .

– Otherwise, let (u, v) ∈ π(s, t) be the first edge uniquely required by (s, t). Replace the
demand pair (s, t) with (u, t), and replace π(s, t) with its u⇝ t suffix.

We note that every edge in G is still required by at least one demand pair, and in the end every
remaining demand pair (s, t) uniquely requires the first edge in π(s, t).

12The contraction step costs O(n) edges, which may be safely ignored since we already have RP(n, p) = Ω(n), e.g. by
considering a path on input for which a reachability preserver must keep n− 1 edges.
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• Next, repeat the following until no longer possible. Find a demand pair (s, t) ∈ P and a contigu-
ous 3-node subpath (x, y, z) ⊆ π(s, t), such that the demand pair (s, t) uniquely requires (x, y)
but it does not uniquely require (y, z). If there are several possible choices of {(s, t), (x, y, z)},
then we will specifically need to consider one in which the node y comes as early as possible in
the topological ordering of nodes in G. (There may still be several possible choices using this
same minimal node y, in which case we can choose among these arbitrarily.) We then delete
(x, y) from G, and add (x, z) to G as a new edge We modify the path π(s, t) by replacing its
subpath (x, y, z) with the single edge (x, z). After this operation, the number of edges in G stays
the same.

For correctness, we now need to argue that after this change, it is still the case that every edge
in G is required by at least one demand pair. We have:

– The new edge (x, z) is uniquely required by (s, t). This follows from the fact that (x, y)
was required by (s, t), and so when (x, y) is deleted (but before (x, z) is added), there is no
s ⇝ t path. When (x, z) is added there is an s ⇝ t path again, which implies that every
s⇝ t path uses the edge (x, z).

– We also claim that the edge (y, z) is still required by at least one demand pair. We argue
this as follows. Before our modification of G, we know that the demand pairs (s, t) and
(s′, t′) each uniquely requires all edges in their prefixes s⇝ y and s′ ⇝ y, respectively. This
means that s′ still cannot reach x, and thus (s′, t′) cannot use the new edge (x, z) and still
requires the edge (y, z).

Each time we repeat this step, the sum of lengths of the paths {π(s, t)}(s,t)∈P decreases by 1.
Therefore, we halt after finitely many steps.

To summarize, once this process halts, every demand pair (s, t) has the property that π(s, t) uniquely
requires its first edge, and moreover for any two consecutive edges (x, y), (y, z) ∈ π(s, t), if (s, t)
uniquely requires the first edge (x, y), then it also uniquely requires the second edge (y, z). Together,
these properties imply that each demand pair (s, t) uniquely requires every edge on its path π(s, t),
which implies independence.

Lemma 39. RP(n, p) ≤ O(β(n, p,∞)).

Proof. By our independence lemma, there is an n-node graph G = (V,E) and set of |P | = p indepen-
dent demand pairs for which any reachability preserver has at least RP(n, p) edges. We can naturally
associate G,P to a path system S = (V,Π) by associating each demand (s, t) ∈ P to the unique s⇝ t
path in G. We thus have ∥S∥ = RP(n, p) + p. Moreover, this path system cannot have bridges, since
the paths for demand pairs in P are unique. Thus we have constructed a ∞-bridge-free path system
of size ∥S∥ ≥ RP(n, p), and the lemma follows.

We now turn to the lower bound:

Lemma 40. RP(n, p) ≥ Ω (β(n, p,∞)).

Proof. Let S = (V,Π) be a∞-bridge-free path system with n nodes, p paths, and size ∥S∥ = β(n, p,∞).
Let G = (V,E) be the directed graph over the same vertex set, where we put an edge (u, v) ∈ E iff
there is a path in Π where the nodes u, v appear consecutively (in that order). Define demand pairs
P to be the set of node pairs (s, t) that are endpoints of the paths in Π.

Since S is ∞-bridge-free, for every demand pair (s, t) ∈ P there is a unique s ⇝ t path in G, and
these paths are pairwise edge-disjoint. Thus, it is necessary and sufficient for a reachability preserver
to keep all edges contained in these paths. The number of edges contained in these paths is exactly

∥S∥ − p = β(n, p,∞)− p.

This proves that
β(n, p,∞)− p ≤ RP(n, p),

and we then notice that always β(n, p,∞) ≥ Ω(p), and so in fact we have

β(n, p,∞) ≤ O (RP(n, p)) .
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The previous two lemmas imply Theorem 37. We now turn to its consequences.

Corollary 41. For all positive integers d, we have β(n, p,∞) = Ω
(
n

2
d+1 p

d−1
d

)
.

Proof. Follows from Theorem 37 and from plugging in the state-of-the-art lower bounds on RP(n, p)
from [2] (which, in turn, are directly based on the distance preserver lower bounds from [41]). We
remark that one does not really need Theorem 37 to prove this lower bound on β(n, p,∞), in the
sense that it is straightforward to interpret the reachability preserver lower bound construction from
[2] directly as a lower bound against β(n, p,∞).

The following corollary uses the equivalence between β(n, p,∞) and reachability preservers more
directly. It shows that the extremal path systems realizing the lower bound for β(n, p,∞) have some
extra structure: they must in fact be acyclic.

Corollary 42. For all n, p, there exists an acyclic path system S with n nodes, p paths, bridge girth
∞, and size ∥S∥ = Θ(β(n, p,∞)).

Proof. Let
−→
β (n, p,∞) be the maximum possible size of an n-node, p-path, acyclic path system of

bridge girth ∞. Let
−→
RP(n, p) be the maximum number of edges needed for a reachability preserver

of an n-node DAG and p demand pairs. We first notice that, by exactly the same reduction as in
Theorem 37, we have −→

β (n, p,∞) = Θ
(−→
RP(n, p)

)
.

Next, it is proved in [2] that −→
RP(n, p) = Θ (RP(n, p)) .

That is, they show a reduction from finding reachability preservers in general graphs to DAGs. To
briefly summarize this reduction, suppose we are given a graph G and demand pairs P , and we wish
to construct a reachability preserver. For each strongly-connected component C, choose an arbitrary
node c ∈ C and add two trees in C rooted at c; one with edges pointing away from c, and one with
edges pointing towards c. Thus, reachability is preserved between all pairs of nodes in C, and we can
contract C into a single node before proceeding. This reduction costs at most 2n = O(RP(n, p)) edges
in total.

Finally, from Theorem 37 we have

RP(n, p) = Θ(β(n, p,∞)).

Putting the parts together, we have

−→
β (n, p,∞) = Θ(β(n, p,∞)),

as required.

4.4 Path Oracles

We next prove an incompressibility theorem for reachability preservers, much like the one proved
previously for distance preservers. We consider path oracles, which are the natural data structure
version of reachability preservers:

Definition 17 (Path Oracles). Given a directed graph G and a set of demand pairs P , a path oracle
is a data structure that, when queried with (s, t) ∈ P , can report an s⇝ t path in G (or “no path” if
none exists).

We define PO(n, p) as the smallest integer such that every n-node graph and set of |P | = p demand
pairs has a path oracle on ≤ PO(n, p) bits.

Note that a reachability preserver of G,P on m edges implies a path oracle of G,P on O(m log n)
bits, by simply writing down a description of the reachability preserver. Consequently, we have

PO(n, p) = O(RP(n, p) log n).

The following theorem states that we cannot expect much smaller path oracles in general.

34



Theorem 43. Ω(RP(n, p)) ≤ PO(n, p) ≤ O(RP(n, p) log n).

Proof. The upper bound follows from the previous discussion. The lower bound follows follows from
an argument identical to that of Theorem 36, except we use the independence lemma for reachability
preservers (Lemma 38), and we replace DP with RP, and we replace “unique shortest path” with “unique
path.”

4.5 Online Reachability Preservers

Here we discuss the online version of the reachability preserver problem. There are several ways to
reasonably define such online versions; this one is a slight variation of the one introduced [61] in the
context of online directed Steiner forest algorithms.13

Definition 18 (Online Reachability Preservers). The online reachability preserver game is the follow-
ing two-player game, between a builder and an adversary:

• The adversary starts with an n-node directed graph A = (V, ∅), and the builder starts with an n-
node directed graph B = (V, ∅). Both graphs are initially empty. The builder is trying to minimize
the final number of edges in B, and the adversary is trying to maximize the final number of edges
in B.

• Repeat the following for p rounds:

– (Adversary’s Turn) The adversary adds any number of edges to A, and then names a pair
of nodes (s, t) such that an s⇝ t path in A exists.

– (Builder’s Turn) The builder must respond by choosing a set of edges that are currently in
A, and adding those edges to B. Afterwards, we require that an s⇝ t path must exist in B.

• The value of the game is the final number of edges in the graph B.

We define RP
∗(n, p) as the min-max value of this game, where the adversary is maximizing and the

builder is minimizing (the value of the game), relative to parameters n, p.

In the same way that (offline) reachability preservers are captured by β(n, p,∞), as in Theorem
37, we claim that online reachability preservers are captured by β∗:

Theorem 44. β∗(n, p,∞) = Θ(RP∗(n, p))

First we will prove an upper bound for β∗(n, p, k):

Lemma 45. RP
∗(n, p) ≥ Ω (β∗(n, p,∞)).

Proof. The strategy of the adversary works as follows. First, they think of an ordered path system
S = (V,Π) with n nodes, p paths, no ordered bridges, and size ∥S∥ = β∗(n, p,∞). Let πi ∈ Π denote
the ith path in the ordering. In each round i of the game, the adversary considers πi, and adds each
consecutive pair of nodes along πi as a new edge in A. Then, they name the endpoints (s, t) of π as
the pair for this round. Since S has no ordered bridges, currently πi is the unique simple s ⇝ t path
in A. Thus the builder has no choice but to add the |π| − 1 edges corresponding to π to B. In total,
the builder thus adds β∗(n, p,∞)− p = Ω (β∗(n, p,∞)) edges to B.

Next, we prove a matching lower bound:

Lemma 46. RP
∗(n, p) ≤ β∗(n, p,∞)

Proof. In the online reachability preserver game, we will assume only that the builder adds a minimal
set of edges in each round. That is, when the builder adds edge set Ei in round i, we assume that there is
no proper subset E′

i ⊊ Ei that could have been added instead, and still satisfy the adversary’s demand.
We claim that, so long as the builder’s choices satisfy this property, they will add ≤ β∗(n, p,∞) edges
to B in total.

13More specifically: we allow the adversary to add edges to the graph A throughout the game, whereas [61] essentially
require the adversary to commit to a graph in preprocessing.
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Indeed, given a sequence of choices made by a builder and an adversary, let us track an auxiliary
ordered path system S as follows. The vertex set V of S is the same as the vertex set of the graphs A,B
in the game. We next describe the paths of S. By minimality of the builder’s choices, their selected
edge set Ei may be interpreted by considering a simple path πi between the adversary’s demand pair,
and setting Ei := πi \ E(B). In round i, we add a path qi to the auxiliary path system S, where qi
is the sequence of vertices v for which there is an edge in Ei entering v, ordered by appearance in πi.
We have |qi| = |Ei|, and therefore ∥S∥ = |E(B)|. So it only remains to show that S has no ordered
bridges, and thus |E(B)| ≤ β∗(n, p,∞).

Suppose for contradiction that S has an ordered bridge, with path qi as its river, and nodes s, t ∈ qi
participating in the bridge. Since t ∈ qi, there exists an edge of the form (u, t) ∈ Ei. However, since
nodes s, t participate in the bridge, there exists an s ⇝ t path in B before round i, that is, the one
corresponding to the arcs of said bridge. Therefore, the builder could have added Ei \{(u, t)} in round
i. This contradicts minimality of the builder’s choices, and thus S has no ordered bridges.

Analogous to Corollary 42, the following corollary implies that, without loss of generality, acyclic
graphs are enough to achieve lower bounds for β∗(n, p,∞):

Corollary 47. For all n, p, there exists an acyclic ordered path system S with n nodes, p paths, ordered
bridge girth ∞, and size ∥S∥ = Ω(β∗(n, p,∞)).

Proof. In the parameter regime where β∗(n, p,∞) = O(n), one can take S to be any ordered path
system with one path of length n and the remaining paths of length 1, and so the claim is trivial. In
the following, we assume that β∗(n, p,∞) ≥ cn for a sufficiently large constant c.

By Theorem 44, it suffices to prove that in the online reachability preserver game, the adversary has
a (near-)optimal strategy in which the underlying graph G is always acyclic. To show this, imagine the
following strategy that the builder could use. Any time the adversary adds an edge to G that completes
a directed cycle C, the builder immediately adds all edges in C to their reachability preserver, and
then for the rest of the game they treat C as a single contracted supernode. Since each contraction
step costs |C| edges and reduces the number of nodes in G by |C|−1, the builder pays only O(n) edges
in total for these contraction steps, which is negligible.

We now shift perspective back to the adversary. Any time the adversary would add an edge (u, v) to
the graph that completes a directed cycle C, they could instead omit (u, v) and contract C into a single
supernode in their internal representation of the graph. By the above analysis, this is without loss of
generality, and affects the overall min/max value of the game by at most O(n), which is negligible.
Thus, the adversary never completes a directed cycle in G, and the theorem follows.

4.6 Shortcut Sets and Exact Hopsets

Here we show that the lower bounds for reachability and distance preservers can be extended to
shortcut sets and exact hopsets, respectively. The proofs are similar to each other in spirit.

Definition 19 (Shortcut Sets). For a directed graph G = (V,E), a ∆-diameter-reducing shortcut set
is a set of additional directed edges H such that every edge (u, v) ∈ H is in the transitive closure of G,
and

max
s,t∈V, exists s⇝t path in G

distG∪H(s, t) ≤ ∆.

We write SS(n, p) for the smallest integer ∆ such that every n-node graph has an ∆-diameter-reducing
shortcut set of |H| = p edges.

Theorem 48. SS(n, p) = Ω
(

β(n,p,∞)
p

)

Proof. Let S = (V,Π) be an ∞-bridge-free path system on n = |V | nodes and p + 1 = |Π| paths, such
that14

∥S∥ = Θ (β(n, p + 1,∞)) = Θ(β(n, p,∞)).

The average path length in S is thus

ℓ = Θ

(
β(n, p,∞)

p + 1

)
= Θ

(
β(n, p,∞)

p

)
.

14This latter equality is intuitive, but for completeness it is formally proved in Lemma 76 in the appendix.
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By the Cleaning Lemma (Lemma 10), we may further assume without loss of generality that all
paths in S have length Θ(ℓ). Let us now associate to S a directed graph G as usual, by including
a directed edge (u, v) for each pair of nodes u, v that appear consecutively on any path in S (so
|E(G)| = Θ(β(n, p,∞))). We also define a set P of |P | = p + 1 demand pairs as the endpoints of the
paths in S. Recall that shortcut sets require diameter reduction among all node pairs, rather than
just a specific set of demand pairs, but nonetheless it will be helpful to focus our analysis on these
demand pairs.

Since S has bridge girth ∞, for each demand pair (s, t) ∈ P there is a unique simple s⇝ t path in
G; let us denote this path by π(s, t). Since these paths {π(s, t)} do not have 2-bridges, we additionally
have that for any ordered pair of nodes (x, y), there is at most one demand pair (s, t) with x <π(s,t) y.
In particular, let H be an arbitrary shortcut set of size |H| = p. Since |P | = p + 1 but |H| = p, there
exists a demand pair (s, t) ∈ P such that there is no (x, y) ∈ H with x <π(s,t) y. It follows that π(s, t)
remains the unique simple s⇝ t path in the graph G ∪H. The number of hops in this path is

|π(s, t)| − 1 = Θ(ℓ) = Ω

(
β(n, p,∞)

p

)
,

and so the hopset H cannot reduce diameter below this threshold.

We now give an analogous proof for exact hopsets.

Definition 20 (Exact Hopsets). For a directed weighted graph G = (V,E), a β-hop exact hopset is a set
of additional directed weighted edges H such that every edge (u, v) ∈ H has weight w(u, v) = distG(u, v),
and for all node pairs s, t, there exists a shortest s⇝ t path in G ∪H that uses at most β edges.

We write EH(n, p) for the smallest integer β such that every n-node graph has a β-hop exact hopset
of |H| = p edges.

Although we give the following theorem in terms of β∗, we note that the following proof essentially
shows that

EH(n, p) ≥ Ω

(
DP(n, p)

p

)
≥ Ω

(
β∗(n, p,∞)

p

)

where the latter equality is from Theorem 32.

Theorem 49. EH(n, p) = Ω
(

β∗(n,p,∞)
p

)
.

Proof. Let S = (V,Π) be an ordered path system with n nodes, p + 1 paths, ordered bridge girth ∞,
and size ∥S∥ = Ω (β∗(n, p + 1,∞)). So the average path length in S is

ℓ = Ω

(
β∗(n, p + 1,∞)

p + 1

)
= Ω

(
β∗(n, p,∞)

p

)
.

By the Cleaning Lemma (Lemma 10), we may assume without loss of generality that all paths in S
have length Θ(ℓ). As in Lemma 35, we may associate S to a directed weighted n-node graph G and set
of demand pairs P such that there is a unique shortest path for each demand pair, and these shortest
paths are pairwise edge-disjoint.

Now let H be an arbitrary exact hopset of G of size |H| ≤ p. The rest of the proof is identical to
Theorem 48. In particular, since |P | = p + 1 and |H| = p, there exists a demand pair (s, t) ∈ P such
that there is no edge (x, y) ∈ H where both x, y lie along the unique shortest path π(s, t). Thus π(s, t)
remains the unique shortest s⇝ t path in the graph G ∪H, and it has

Θ(ℓ) = Ω

(
β∗(n, p,∞)

p

)
.

edges. So H cannot reduce the number of hops below this value.

4.7 Approximate Distance Preservers and Evidence for Conjecture 9

Next, we present evidence in favor of the first part of Conjecture 9. We do so by considering approxi-
mate distance preservers (also sometimes called pairwise spanners):
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Definition 21 (α-Approximate Distance Preservers). Let G = (V,E,w) be a directed weighted graph,
P ⊆ V × V a set of demand pairs, and α ≥ 1 a parameter. An α-approximate distance preserver is a
subgraph H ⊆ G in which, for all (s, t) ∈ P , we have distH(s, t) ≤ α · distG(s, t).

We define ADP(n, p, α) as the least integer such that every n-node graph and set of |P | = p demand
pairs has an α-approximate distance preserver on ≤ ADP(n, p, α) edges.

Lemma 50. β(n, p, k) ≤ O(ADP(n, p, 2k/ℓ)), where ℓ = β(n, p, k)/p is the average path length in a
system realizing β(n, p, k).

Proof. Let S = (V,Π) be a path system realizing β(n, p, k). By Lemma 10, we may assume that all
path lengths in S are at most

ℓ′ <
β(n, p, k)

2p
.

Interpret the endpoints of the paths in Π as demand pairs, and consider the unweighted directed graph
G that contains an edge (u, v) iff there is a path that uses the nodes u, v consecutively. The size of G
is

|E(G)| = Θ(∥S∥) = Θ (β(n, p, k)) .

Moreover, we claim that G is the unique approximate distance preserver of G,P with error parameter
α = 2k/ℓ. To see this, let H ⊊ G be a subgraph that does not contain an edge (u, v) from G, and let
π ∈ Π be a path with endpoints s, t that uses u, v consecutively. The distance from s to t in H must
be at least k. Hence, the distance increases by a factor of

k

ℓ′
>

2pk

β(n, p, k)
=

2k

ℓ
.

It follows that H is not a 2k/ℓ approximate distance preserver of G, and the lemma follows.

We note that this lemma is not interesting for constant k, since we will clearly have ℓ = Ω(k)
in this regime and so the approximation factor is meaningless. Rather, the most interesting regime
for this lemma is when k ≥ ω(1) but k ̸= ∞. This lemma might imply new bounds in this regime.
In particular, if Conjecture 9 is false, then choosing k = log n implies new lower bounds against ADP

(in the regime where ℓ = Θ(log n) as well). Or, stated in the contrapositive, and using the fact that
RP(n, p) = Θ(β(n, p,∞)) from Theorem 37:

Theorem 51. If ADP(n, p, α) = O(RP(n, p)) for all fixed α > 1 then Conjecture 9 is true.

We think this premise is plausible. In support, we note that results in [72] could be interpreted
as the analogous statement for undirected weighted distance preservers, and that results in [19] imply
that for directed hopsets, the state-of-the-art bounds for error α = ∞ (reachability) and for (1 + ε)
essentially match.

5 Flow-Cut and Directed Steiner Forest Integrality Gaps

In this section, we give polynomial integrality gap lower bounds for the standard LP relaxations of the
directed multicut, directed sparsest cut, and directed Steiner forest problems as a function of β(n, p,∞).
The duals of the LP relaxations of directed multicut and directed sparsest cut correspond to the well-
studied maximum multicommodity flow and maximum concurrent flow problems, so the integrality
gaps for these LPs correspond to flow-cut gaps. We also give new integrality gap lower bounds for
the standard LP relaxation of directed Steiner forest. This LP relaxation can be interpreted as a
generalization of minimum-cost flow to multiple demand pairs.

5.1 Directed Edge Multicut and Statement of First Result

In the directed multicut problem, we are given a directed graph G = (V,E) and a set of p demand pairs
P = {(si, ti) ∈ V × V | i ∈ [1, p]}, and the objective is to find a minimum subset of E whose removal
separates all pairs of vertices (si, ti) in P . It will be helpful to phrase this as an integer program, as
follows:
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• For each edge e ∈ E, let xe ∈ {0, 1} be an indicator variable that takes value 1 if e is in the
multicut solution and else 0.

• For each demand pair (si, ti) ∈ P , denote by Πi the set of directed paths from si to ti in G.

• Then the multicut problem is equivalent to minimizing
∑

e xe, subject to the constraint
∑

e∈π xe ≥
1 for all i ∈ [1, p] and π ∈ Πi.

We will write MCut(G,P ) for the value of the directed multicut problem on inputs G,P . A natural
LP relaxation of directed multicut is to let xe ≥ 0, so that cuts on edges can be fractional. We will

write the fractional value as M̂Cut(G,P ), and we state the LP formally as:

(PLP ) M̂Cut

min
∑

e∈E xe

s.t.
∑

e∈π xe ≥ 1 ∀i ∈ [p], π ∈ Πi

xe ≥ 0 ∀e ∈ E

(DLP ) MMFlow

max
∑

i∈[p]

∑
π∈Πi

fπ

s.t.
∑

π:e∈π fπ ≤ 1 ∀e ∈ E

fπ ≥ 0 ∀i ∈ [p], π ∈ Πi

The dual program DLP of this LP relaxation is equivalent to the maximum multicommodity flow
problem. In this problem, we get a directed graph G and set of demand pairs P on input, and for
each demand pair (si, ti) ∈ P we choose a flow fi that has si as its source, ti as its sink, and which
is conserved at all other nodes. Among the p flows {f1, . . . , fp}, their total must respect the edge
capacity constraints; that is, the sum of flows on each edge must be ≤ 1. The value of flow fi is the
amount of flow created at si and destroyed at ti. Subject to these constraints, the goal is to maximize
the sum of flow values.15 We write MMFlow(G,P ) for this maximized sum of flow values.

For any G,P , we have:

MCut(G,P ) ≥ M̂Cut(G,P ) = MMFlow(G,P ).

The min-cut/max-flow theorem states that we have equality in the special case where |P | = 1, but
in general the functions can be quite different. The largest possible gap between them is the flow-cut
gap, captured by the following function:

Definition 22 (MCG). The function MCG(n) is the least integer k such that, for every n-node directed
graph G and set of demand pairs P (of any size), we have

MCut(G,P ) ≤ k ·MMFlow(G,P ).

Since M̂Cut(G,P ) = MMFlow(G,P ), we may equivalently interpret this function as the inte-
grality gap of MCut. We refer to [37] for further discussion and proofs of all of the claims in the
previous discussion. Our goal is to prove:

Theorem 52. For all n, the flow-cut gap satisfies

MCG(β(n, n,∞)) = Ω

(
β(n, n,∞)

n log n

)
.

As in [37], we will actually prove something slightly stronger: this gap holds even when the multicut
solution only needs to disconnect a (1− ϵ)-fraction of the demand pairs, for some ϵ > 0. Our proof of
Theorem 52 will closely follow the previous directed multicut integrality gap lower bound construction
of [37].

15The dual LP given here works by choosing a scalar for each si ⇝ ti path, which implicitly defines flow values on the
edges by the sum of the scalars on paths that contain that edge.
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5.2 Directed Vertex Multicut

We will begin by lower bounding an integrality gap for the directed vertex multicut problem. This
problem is defined as MCut, except instead of deleting edges to disconnect demand pairs, we delete
non-terminal vertices.16 The least number of nonterminal vertices required to disconnect demand pairs

P in a graph G is written VMCut(G,P ). We will also consider the LP relaxation ̂VMCut, defined
as follows:

̂VMCut

min
∑

v∈V xv

s.t.
∑

v∈π∩V xv ≥ 1 ∀i ∈ [p], π ∈ Πi

xv ≥ 0 ∀v ∈ V

As noted in [37], the integrality gap of the vertex multicut problem is at most the integrality gap
of the (edge) multicut problem. In particular, we will use the following lemma:

Lemma 53. [[37]] Suppose we can construct an n-node graph G and set of demand pairs P with

VMCut(G,P )

̂VMCut(G,P )
≥ k.

Then MCG(n) ≥ k.

Thus, our lower bound on MCG will work by lower bounding the integrality gap for VMCut. The
authors of [37] used the same strategy. Specifically, they constructed a directed graph G and a set of
demand pairs P such that:

1. For every pair (s, t) ∈ P , the shortest s⇝ t path in G is of length at least L = Ω̃(n1/7).

2. A vertex cut of size Ω(n) is required to separate the set of pairs P .

By property 1, if we assign a 1/L-fraction cut to each vertex in G, then we obtain a valid fractional

vertex cut of G of size Õ(n6/7). Together with property 2 this implies an integrality gap of Ω̃(n1/7).
The authors of [37] construct the graph G by combining a certain random graph H and a graph L
called a labeling scheme, which carries a set of demand pairs with long, unique paths. Our proof
of Theorem 52 largely follows their construction and analysis, but we generalize some piece of the
argument to show that the particular properties of the graph L are not really needed, and instead
we can use an arbitrary bridge-free path system with n nodes and n paths that realizes the bound
β(n, n,∞) bound.

5.3 Multicut Flow-Cut Gap Construction

Let n be a parameter. Let S = (V,Π) be a path system with n nodes, p = n paths, bridge girth ∞,
and size Ω(β(n, n,∞)). By the cleaning lemma (Lemma 10) we may assume without loss of generality
that S is approximately degree-regular and length-regular. Specifically, we may assume every node
has degree Θ(d), where d is the average degree of S. Since pℓ = nd and p = n, d is also the average
path length in S; we thus also have that all paths have length Θ(d). Note that d = ω(1), by applying
known lower bounds on β(n, n,∞).

Our next step is to use S to build a corresponding graph GS that will inherit the long, unique
paths property of S. We will use graph GS as a black box version of the labeling scheme L in [37].

Lemma 54. The set of paths Π can be partitioned into d nonempty sets Π1,Π2, . . . ,Πd such that
|Πi| = n/d for i ∈ [1, d] and at least Ω(d) sets Πi satisfy the property that17

∣∣∣∣∣
⋃

π∈Πi

π

∣∣∣∣∣ = Ω(n).

16A terminal vertex is one that appears as either endpoint of a demand pair. We assume the input is such that no
demand pair (s, t) has an edge going directly from s to t, so that the cut exists.

17We assume for convenience that n is divisible by d. If not, some part sizes may be rounded up or down while only
affecting the following argument by lower-order terms.
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Proof. Uniformly at random, partition Π into d sets Πi for i ∈ [1, d], each containing n/d paths. Fix a
node v ∈ V and an index i ∈ [1, d]. Note that the probability a node v belongs to a randomly chosen
path in Π is at least Ω(d/n), since S is approximately degree-regular. Then v belongs to a path in Πi

with constant probability. It follows that E [|Πi|] = Ω(n). Since the maximum possible size is |Πi| ≤ n,
by Markov’s inequality we have |Πi| = Ω(n) with constant probability. Thus, over all choices of i ∈ [d],
the expected number of parts Πi satisfying |Πi| = Ω(n) is Ω(d). So there exists a possible partition in
which Ω(d) parts all satisfy |Πi| = Ω(n).

Construction of GS. We build our graph GS = (VS ∪ V ′
S , ES) corresponding to path system S as

follows. Let VS denote the set of nonterminal nodes of GS , and let VS := V . Let V ′
S denote the set

of terminal nodes si,j , ti,j , where i ∈ [1, d] and j ∈ [1, n/d]. Add all terminal pairs (si,j , ti,j) to our
set of demand pairs PS . Let Π1,Π2, . . . ,Πd be the partition of Π as specified in Lemma 54. For every
path π ∈ Πi, if edge e is in the transitive closure of path π, then add e to edge set ES

i . Here, we
say that e is in the transitive closure of π if π contains e as a (possibly noncontiguous) subsequence.
Additionally, for i ∈ [1, d], order the n/d paths in Πi arbitrarily, and let πi,j denote the jth path in
Πi, for i ∈ [1, d] and j ∈ [1, n/d]. Add to edge set ES

i an edge from si,j to the first vertex of πi,j .
Likewise, add to edge set ES

i an edge from the last vertex of πi,j to ti,j . We define the edge set ES of
GS to be ES = ∪iES

i . We refer to the edges of GS belonging to ES
i as edges of type i. We say that an

si,j ⇝ ti,j path is canonical if it is composed exclusively of edges of type i. The following properties
of GS follow immediately from our choice of path system S.

Observation 55. Graph GS has the following properties:

1. Every si,j ⇝ ti,j path in GS is a canonical path, for all (si,j , ti,j) ∈ PS.

2. There exists an si,j ⇝ ti,j path of length at least Ω(d) in GS, for all (si,j , ti,j) ∈ PS.

Recall that graph GS is intended to replace the labeling scheme graph L in the argument of [37].
Our final graph G will be the product of graph GS and an additional graph H that we construct
next. Roughly, the properties of GS summarized above will ensure that our final graph G has long
shortest paths between all demand pairs, and therefore has a small fractional vertex multicut. The
graph H will be a well-connected random graph, which will roughly ensure that our final graph G has
a large minimum vertex multicut of its demand pairs. These two properties together will ensure that
G has a large integrality gap between its fractional and integral vertex multicut. The graph H will be
essentially identical to the graph H given in [37], but with different construction parameters.

Construction of H (c.f. Section 3.1.2 of [37]). We build H = (VH ∪ V ′
H , EH) as follows. Let

VH denote the set of nonterminal nodes of H, and let VH := {v1, . . . , vd}. Additionally, graph H will
have d distinct pairs of terminal nodes PH := {(si, ti) | i ∈ [1, d]} as demand pairs, with V ′

H denoting
the set of all terminal nodes. Graph H will be defined as the union of graphs Hi = (V ∪ {si, ti}, EH

i )
for i ∈ [1, d].

We construct graph Hi for i ∈ [1, d] as follows. Graph Hi has terminal nodes si, ti and will
contain d′ := d/(2 log d) layers each containing log d nonterminal nodes. We denote the layers as
L1
i , L

2
i , . . . , L

d′

i ⊆ VH and construct them sequentially as follows. To construct the jth layer Lj
i for

j ∈ [1, d′], select uniformly at random log d distinct nodes from VH \ (L1
i ∪ L2

i ∪ · · · ∪ Lj−1
i ). Note

that by construction, | ∪j Lj
i | ≤ d/2. Now define the set of edges EH

i of Hi as follows. Add an edge

from si to every vertex in L1
i . Likewise, add an edge from every vertex in Ld′

i to ti. Finally, add an

edge from every vertex in layer Lj
i to every vertex in layer Lj+1

i for j ∈ [1, d′ − 1]. This concludes the
construction of Hi. We define H to be ∪iHi. Likewise, we define EH = ∪iEH

i to be the edge set of
H. We refer to the edges in H belonging to EH

i as edges of type i. We say that an si ⇝ ti path in
H is a canonical path if it contains only edges of type i. The following properties of graph H will be
used in the analysis.

Observation 56. Graph H has the following properties:

1. Every canonical si ⇝ ti path in H contains at least d′ nonterminal nodes.

2. Ω(d) nonterminal nodes must be removed from H to disconnect a constant fraction of demand
pairs in PH .
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Property 1 is immediate from construction, and property 2 holds for H with high probability, as
proven in [37] and proven in a slightly stronger form below.

Lemma 57 (c.f. Lemma 3.1 of [37]). Fix an ε > 0. For sufficiently large d, the following holds with
probability ≥ 1− 2−d:

There does not exist a set S ⊆ VH of nonterminal nodes of H, of size |S| ≤ d/16, such that for
more than (1− ε)d distinct indices i ∈ [1, d], removing S disconnects the demand pair (si, ti) ∈ PH in
graph Hi.

Proof. We defer the proof of this lemma to Appendix C.1 since it follows from the same argument as
Lemma 3.1 of [37].

Note that d is sufficiently large, since we assumed that d = ω(1). Then we may assume that
property 2 of H, as formalized in Lemma 57, holds for the specific graph H we will use in our
construction of G. Note that while all canonical si ⇝ ti paths in H are of length at least d′ by
property 1 of H, this is not true in general for all si ⇝ ti paths in H. We will see that composing
graph H with graph GS will allow us to ensure that the shortest paths between all demand pairs are
of length d′ in the final graph G.

Construction of G. We now construct our final graph G = (VG ∪ V ′
G, E) by composing GS and H

in a natural way. Let graphs GS = (VS∪V ′
S , ES) and H = (VH ∪V ′

H , EH) be as defined previously. Let
VG := VH × VS be the set of nonterminal vertices of G. We let V ′

G denote the set of terminal vertices
of G and let V ′

G := V ′
S . Likewise, we let P denote the set of n demand pairs in G and let P := PS .

The set of edges E of G are defined as follows. Let (x, x′) and (y, y′) be nonterminal vertices in
VG.

• We add edge ((x, x′), (y, y′)) to set Ei if (x, y) ∈ EH
i and (x′, y′) ∈ ES

i .

• For si,j ∈ V ′
G and (x, x′) ∈ VG we add edge (si,j , (x, x

′)) to Ei if (si, x) ∈ EH
i and (si,j , x

′) ∈ ES
i .

• Finally, we add edge ((x, x′), ti,j) to Ei if (x, ti) ∈ EH
i and (x′, ti,j) ∈ ES

i . We let E = ∪iEi.

As with GS and H, we refer to the edges in Ei as edges of type i, and we say an si,j ⇝ ti,j path in G
is canonical if its composed of only type i edges. This completes the construction of G.

The number of nonterminal vertices in graph G is N := |VH | · |VS | = dn = β(n, p,∞). Then the
value of d′ is

d′ =
d

2 log d
≥ N

2n logN
= Ω

(
β(n, p,∞)

n log n

)
.

In the following section, we will show that the multicut integrality gap of G is at least d′, which
will complete our lower bound.

5.4 Integrality Gap Analysis of G

We now analyze the gap between the fractional cost of a vertex multicut of G,P and the cost of an
integral vertex multicut of G,P . Our analysis largely follows that of [37].

Fractional solution. Assign a fractional cut of 1/d′ to each nonterminal node in G. We will show
that this is a valid fractional vertex multicut of G of size N/d′. It is clear that the size of this prospective
cut is N/d′ as desired. The validity of this fractional cut will be immediate from the following claim.

Claim 58. For all (si,j , ti,j) ∈ P , any si,j ⇝ ti,j path in G contains at least d′ nonterminal nodes.

Proof. Observe that every si,j ⇝ ti,j path π for (si,j , ti,j) ∈ P corresponds to a si ⇝ ti path in H
and a si,j ⇝ ti,j path in GS . Then every si,j ⇝ ti,j path in G is canonical, since every si,j ⇝ ti,j
path in GS is canonical, by property 1 of Observation 55. If a si,j ⇝ ti,j path in G is canonical,
then the corresponding si ⇝ ti path in H is canonical by the definition of G, and so by property 1 of
Observation 56, π has at least d′ nonterminal nodes.
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Integral solution. We will show that Ω(N) vertices must be removed from G to separate all demand
pairs in P . Before proving this, we must first introduce some notation and prove some intermediate
results. For the remainder of this section, fix S ⊆ VG to be any subset of non-terminal vertices of G
with |S| ≤ λN , where λ > 0 is a sufficiently small constant to be specified later. For any set U ⊆ VG,
we let UH denote the preimage of U in H. Namely,

UH := {v ∈ VH | (v, v′) ∈ U}.

For v ∈ VS , we define the set Sv ⊆ VG as

Sv := S ∩ (VH × {v}).

Now for i ∈ [1, d] and v ∈ VS , we say that the pair (i, v) ∈ [1, d] × VS is H-good if SHv does not
disconnect demand pair (si, ti) ∈ PH in graph Hi.

Claim 59. Fix an ε > 0. There are at least (1−ε)(1−16λ)N pairs (i, v) ∈ [1, d]×VS that are H-good.

Proof. Note that there are N = dn pairs (i, v) ∈ [1, d] × VS . For any v ∈ VS , we know that if
|SHv | ≤ d/16, then there are at least (1 − ε)d pairs (i, v) that are H-good by Lemma 57. Moreover,
since |S| ≤ λN , it follows that there are fewer than 16λn vertices v ∈ VS such that |SHv | > d/16. Then
the number of pairs (i, v) ∈ [1, d]× VS that are H-good is at least

(1− ε)(1− 16λ)N.

We say that a pair (i, v) ∈ [1, d]× VS is S-good if there is a path π in Πi such that v ∈ π.

Claim 60. There are Ω(N) pairs (i, v) ∈ [1, d]× VS that are S-good.

Proof. By Lemma 54 at least Ω(d) of the sets Πi, i ∈ [1, d], satisfy |∪π∈Πi
π| ≥ Ω(n). Then the number

of pairs (i, v) ∈ [1, d]× VS such that (i, v) is S-good is Ω(N).

Let λ1 > 0 be a constant such that for sufficiently large N at least λ1N pairs (i, v) in [1, d] × VS

are S-good. By Claim 60, such a λ1 must exist. We choose λ to be

λ := λ1/32.

We say that a pair (i, v) ∈ [1, d] × VS is G-good if (i, v) is H-good and S-good. Let J ⊆ [1, d] be the
set of all indices j ∈ [1, d] such that the number of G-good pairs in {j} × VS is at least λ2

1/8 · n.

Claim 61. |J | ≥ λ2
1/8 · d.

Proof. Let ε = λ1/2. Since there are at least (1− ε)(1−16λ)N H-good pairs and at least λ1N S-good
pairs, by an overlap argument it follows that there are at least

((1− ε)(1− 16λ) + λ1 − 1)N = ((1− λ1/2)2 + λ1 − 1)N = λ2
1/4 ·N

G-good pairs. Now note that for any i ∈ J , there are at most n G-good pairs in {i} × VS . Likewise,
for any i ̸∈ J , there are at most λ2

1/8 · n G-good pairs in {i} × VS . Then there are at most

n|J |+ λ2
1/8 · n(d− |J |)

G-good pairs. We obtain the following inequality:

n|J |+ λ2
1/8 · n(d− |J |) ≥ λ2

1/4 ·N

Solving for |J |, we conclude that |J | ≥ λ2
1/8 · d = Ω(d).

We need one more claim before we can prove that S is not a valid multicut.

Claim 62. For every i ∈ J , there are Ω
(
n
d

)
paths π ∈ Πi such that at least d′ pairs in {i} × π are

G-good.
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Proof. Fix an i ∈ J . By the definition of J , there are at least λ2
1/8 · n G-good pairs in {i} × VS .

Now let Ji ⊆ Πi denote the set of all paths π in Πi such that at least d′ pairs in {i} × π are G-good.
Since S is approximately length-regular by the cleaning lemma, each path π in Ji is of length at most
|π| ≤ cd for some constant c ≥ 1, and therefore {i} × π has at most cd G-good pairs. Likewise, each
path π ∈ Πi \ Ji has at most d′ G-good pairs. Recall that (i, v) ∈ {i} × VS is G-good only if v ∈ π for
some π ∈ Πi. Then by the above discussion there are at most

cd|Ji|+ d′
(n
d
− |Ji|

)

G-good pairs in {i} × VS . We obtain the following inequality:

cd|Ji|+ d′
(n
d
− |Ji|

)
≥ λ2

1/8 · n

Using the fact that d′ = d/(2 log d) ≤ λ2
1/16 · d for sufficiently large d, we conclude that

|Ji| ≥
λ2
1

16c
· n
d

We will now show that a constant fraction of the demand pairs P remain connected in G \ S.

Lemma 63. Ω(n) demand pairs in P are connected in G \ S.

Proof. Fix an i ∈ J and a j ∈ [1, n/d] such that path πi,j satisfies the property of Claim 62. (Recall
that πi,j is the canonical si,j ⇝ ti,j path in GS .) Now let u1, u2, . . . , ud′ be a set of d′ vertices in πi,j

(listed in the order in which they appear in πi,j) such that all pairs in {i} × {u1, . . . , ud′} are G-good.
Recall that by the construction of GS , all edges in the transitive closure of πi,j are added to ES

i in
graph GS , so in particular, (si,j , u1), (uk, ti,j) ∈ ES

i and (uk, uk+1) ∈ ES
i for all k ∈ [1, d′ − 1].

Now for all k ∈ [1, d′], we claim that there exists a vertex in Lk
i × {uk} ⊆ VG that survives in

G \ S, i.e. (Lk
i × {uk}) \ S ̸= ∅. Recall that Lk

i denotes the vertices in the kth layer of Hi. We know
that (i, uk) is a G-good pair, so it is also an H-good pair, which implies that Lk

i ̸⊆ SHv . (If Lk
i ⊆ SH ,

then SHv would disconnect (si, ti) in Hi, a contradiction.) Let wk denote a vertex in Lk
i \ SHv ∈ VH

for k ∈ [1, d′]. Note that since wk ∈ Lk
i for k ∈ [1, d′], it follows from the construction of H that

(wk, wk+1) ∈ EH
i for k ∈ [1, d′ − 1].

Let xk = (wk, uk) ∈ VG for k ∈ [1, d′]. By the discussion in the last paragraph, xk ∈ VG survives
after S is removed from G, i.e. xk ∈ G \ S for k ∈ [1, d′]. Furthermore, since (uk, uk+1) ∈ ES

i and
(wk, wk+1) ∈ EH

i for k ∈ [1, d′ − 1], by the construction of G it follows that edge (xk, xk+1) ∈ E
survives in G after S is removed, for k ∈ [1, d′ − 1]. Finally, note that by the construction of G, edges
(si,j , x1) and (xd′ , ti,j) are in E. Consequently, (si,j , x1, x2, . . . , xd′ , ti,j) is a valid si,j ⇝ ti,j path in
G \ S, so demand pair (si,j , ti,j) ∈ P is connected in G \ S. Since |J | = Ω(d) by Claim 61 and for all
i ∈ J there are Ω

(
n
d

)
paths π in Πi satisfying the property of Claim 62, we conclude that Ω(n) of the

|P | = n demand pairs in P are connected in G \ S.

We assumed S was an arbitrary vertex set of size |S| ≤ N/1600, so we conclude by Lemma 63 that
any vertex multicut of G,P is of size Ω(N). Then since G,P has a fractional vertex multicut of cost
N/d′, we obtain an integrality gap of Ω(d′) for the minimum vertex multicut problem. Additionally,
even if the multicut solution only needs to disconnect a constant fraction (1 − ε)n of the n demand
pairs in P for some sufficiently small ε > 0, the size of the vertex multicut of G,P remains Ω(N) by
Lemma 63. (We will make use of this fact in the sparsest cut flow-cut gap argument.) Theorem 52 is
immediate from the above discussion and Lemma 53.

5.5 Sparsest Cut Flow-Cut Gap

In the directed sparsest cut problem, we are given a directed graph G = (V,E) and a set of p demand
pairs P = {(si, ti) ∈ V ×V | i ∈ [1, p]}, and the objective is to find a subset E′ of E that minimizes the
ratio |E′|/|PE′ |, where PE′ is the subset of P that is disconnected in graph G \ E′. It will be helpful
to phrase this as an integer program, as follows:

• For each edge e ∈ E, let xe ∈ {0, 1} be an indicator variable that takes value 1 if e is in the
solution E′.
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• For each demand pair (si, ti) ∈ P , denote by Πi the set of directed paths from si to ti in G.

• For each i ∈ [1, p], let hi ∈ {0, 1} be an indicator variable that takes value 1 if source-sink pair
(si, ti) is disconnected in G \ E′, i.e. (si, ti) ∈ PE′ .

• Let D :=
∑k

i=1 hi be the total number of disconnected pairs |PE′ |. For e ∈ E, let x′
e := xe/D,

and for i ∈ [1, p], let h′
i := hi/D.

• Then the sparsest cut problem is equivalent to minimizing
∑

e x
′
e subject to

∑
i h

′
i ≥ 1 and∑

e∈π x
′
e ≥ h′

i for all i ∈ [1, p] and π ∈ Πi.

We will write SCut(G,P ) for the value of the directed sparsest cut problem on inputs G,P . A
natural LP relaxation of directed sparsest cut is to let xe ≥ 0, so that cuts on edges can be fractional.

We will write the fractional value as ŜCut(G,P ), and we will state the LP formally as:

(PLP ) ŜCut

min
∑

e∈E x′
e

s.t.
∑

e∈π x
′
e ≥ h′

i ∀i ∈ [p], π ∈ Πi

∑p
i=1 h

′
i ≥ 1

x′
e, h

′
i ≥ 0 ∀e ∈ E, ∀i ∈ [p]

(DLP ) MCFlow

max λ

s.t.
∑

π∈Πi
fπ ≥ λ ∀i ∈ [p]

∑
π:e∈π fπ ≤ 1 ∀e ∈ E

fπ ≥ 0 ∀i ∈ [p], π ∈ Πi

The dual program DLP of this LP relaxation is equivalent to the maximum concurrent flow problem.
In this problem, we are given a directed graph G and a set of demand pairs P on input, and for each
demand pair (si, ti) ∈ P we choose a flow fi that has si as its source, ti as its sink, and which is
conserved at all other nodes. As with minimum multicut, the sum of the flows on each edge must be
≤ 1, and the value |fi| of each flow fi is the amount of flow created at si and destroyed at ti. Subject
to these constraints, the goal is to maximize λ = mini |fi|, the least amount of flow routed from si to
ti for any (si, ti) ∈ P . We write MCFlow(G,P ) to denote this maximized λ. We define the following
function to capture the flow-cut gap between maximum concurrent flow and sparsest cut:

Definition 23. The function SCG(n) is the least integer k such that, for every n-node directed graph
G and set of demand pairs P (of any size), we have

SCut(G,P ) ≤ k ·MCFlow(G,P ).

Since ŜCut(G,P ) = MCFlow(G,P ) by LP duality, we may equivalently interpret this function

as the integrality gap of ŜCut. We refer to [37] for further discussion. Using our graph G from the
proof of Theorem 52 and a standard reduction argument from [37], we can prove:

Theorem 64. For all n, the flow-cut gap between maximum concurrent flow and sparsest cut satisfies

SCG(β(n, n,∞)) = Ω

(
β(n, n,∞)

n log n

)
.

We defer the proof of this theorem to Appendix C.2 since it is essentially identical to the argument
in Section 3.2 of [37].

5.6 Integrality Gap of the Flow LP of Directed Steiner Forest

In the Directed Steiner Forest problem, we are given a weighted, directed graph G = (V,E,w) with
weight w : E 7→ R≥0, and a set of p demand pairs P = {(si, ti) ∈ V × V | i ∈ [1, p]}. We are asked to
return a subgraph H ⊆ G minimizing

∑
e∈E(H) we, subject to there being a directed path from si to ti

in H for all (si, ti) ∈ P . For each edge e ∈ E, let xe ∈ {0, 1} be an indicator variable that takes value
1 if e is in the solution subgraph and else 0. We can rephrase the Directed Steiner Forest problem as
the following (informal) integer program:
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DSF IP

min
∑

e∈E wexe

s.t. edge capacities {xe}e∈E support a one unit s-t flow fs,t in G ∀(s, t) ∈ P

xe ∈ {0, 1}

We will write DSF(G,P ) for the value of the Directed Steiner Forest problem on inputs G,P . A
natural LP relaxation of Directed Steiner Forest is to let xe ≥ 0, so that edge capacities can be
fractional. We refer to this LP relaxation as the “flow LP” of Directed Steiner Forest, since we can
interpret it as a generalization of the s-t minimum-cost flow problem to multiple demand pairs. We

will write D̂SF(G,P ) for the value of the flow LP on inputs G,P . Now let Πi denote the set of all
si ⇝ ti-paths in G for all i ∈ [1, p]. We formally state the flow LP as:

Flow LP for DSF

min
∑

e∈E wexe

s.t.
∑

π∈Πi
f i
π ≥ 1 ∀i ∈ [1, p]

∑
π∈Πi

f i
π ≤ xe ∀e ∈ E, i ∈ [1, p]

xe ≥ 0 ∀e ∈ E

f i
π ≥ 0 ∀i ∈ [1, p], π ∈ Πi

We define the following function to capture the integrality gap of the flow LP of Directed Steiner
Forest as a function of the sizes of the inputs G and P .

Definition 24 (DSFG). The function DSFG(n, p) is the least integer k such that for every n-node
weighted, directed graph G and set of demand pairs P of size |P | = p, we have

DSF(G,P ) ≤ k · D̂SF(G,P ).

Our goal is to prove:

Theorem 65. For all n and p ∈ [1, n2−o(1)],

DSFG(n, p) = Ω

(
β(n, p,∞)

n3/2

)
.

In particular, DSFG(n, n2−o(1)) = Ω
(
n1/2−o(1)

)
.

As with our flow-cut gap lower bounds, we will actually achieve this integrality gap by lower
bounding the integrality gap of Vertex Directed Steiner Forest, which we define below.

Definition 25 (Vertex Directed Steiner Forest). In the Vertex Directed Steiner Forest problem, we are
given an n-node graph G = (V ∪V ′, E), where V denotes the nonterminal vertices of G and V ′ denotes
the terminal vertices of G and V ∩ V ′ = ∅. We are also given a set of demand pairs P ⊆ V ′× V ′. We
are asked to return a subgraph H ⊆ G minimizing |V (H) ∩ V |, subject to there being a directed path
from s to t in H for all (s, t) ∈ P .

We write VDSF(G,P ) for the value of the Vertex Directed Steiner Forest problem on inputs G,P .

We will also consider a natural LP relaxation V̂DSF, defined as follows.

V̂DSF

min
∑

v∈V xv

s.t. node capacities xv support a one unit s-t flow fs,t in G ∀(s, t) ∈ P

xv ≥ 0
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Let V̂DSF(G,P ) denote the value of the V̂DSF LP on inputs G,P . To lower bound DSFG, it will

suffice to lower bound the integrality gap of V̂DSF. Specifically, we will need the following lemma:

Claim 66. Suppose we can construct an n-node graph G and a set of demand pairs P of size p with

VDSF(G,P )

V̂DSF(G,P )
≥ k.

Then DSFG(2n, p) ≥ k.

Proof. This claim follows from a standard reduction of maximum flow in node-capacitated graphs to
maximum flow in edge-capacitated graphs. We defer the proof to Appendix C.3.

Our Vertex Directed Steiner Forest instance G,P will have the following two properties:

1. For all (s, t) ∈ P , there are at least Ω(β(n, p,∞)/n) pairwise internally vertex-disjoint s ⇝ t
paths in G.

2. Any feasible subgraph H ⊆ G must satisfy |V (H) ∩ V | = Ω(
√
n).

Note that by property 1, if we assign a fractional node capacity of xv = cn/β(n, p,∞) for some

sufficiently large constant c > 0 to each vertex v ∈ V , then we obtain a feasible solution to V̂DSF LP
of size O(n2/β(n, p,∞)). This, together with property 2, implies an integrality gap for Vertex Directed

Steiner Forest on the G,P of size Ω(
√
n/(n2/β(n, p,∞))) = Ω

(
β(n,p,∞)

n3/2

)
, as desired.

To construct G,P , we will start with a path system S on n nodes and p paths, and with bridge girth
∞ and size ∥S∥ = β(n, p,∞). To obtain our desired construction, we will need to modify S = (V,Π)
so that it is source-restricted with respect to a set of source nodes X ⊆ V . We say:

Definition 26 (Source-Restricted Path Systems). A path system S = (V,Π) is source-restricted with
respect to some X ⊆ V if every path π ∈ Π has its first node in X and every following node in V \X.

To obtain our desired source-restricted path system, we will use the following modified cleaning
lemma.

Lemma 67 (Source-Restricted Cleaning Lemma). For all n, p, k, there exists a path system S with ≤ n
nodes, ≤ p paths, bridge girth > k, ∥S∥ = Ω(β(n, p, k)), and the following two additional properties:

• S satisfies the properties of the original Cleaning Lemma (Lemma 10); that is:

– (Approximately Degree-Regular) All nodes have degree Θ(d), where d is the average degree
in S, and

– (Approximately Length-Regular) All paths have length Θ(ℓ), where ℓ is the average length
in S.

• S is source-restricted with respect to a set X of size |X| = Θ(p/d).

Proof. We defer the proof of this lemma to Appendix C.4 since it’s similar to the original cleaning
lemma (Lemma 10).

Now, using the source-restricted cleaning lemma, we may assume S = (V,Π) is a path system
on n nodes and p ∈ [1, n2−o(1)] paths that is source-restricted with respect to a set X ⊆ V of size
|X| = Θ(p/d); S has bridge girth ∞ and size ∥S∥ = Θ(β(n, p,∞)); and S is approximately degree-
regular and approximately length-regular. Let d be the average node degree of S and ℓ be the average
path length of S; we will assume that ℓ = ω(1). We can easily guarantee this assumption by requiring

that p = n2

eω(
√

log n) ≤ n2−o(1) (this follows from existing reachability preserver lower bounds implied by
[16]).

For each x ∈ X, let Πx denote the set of paths in Π that start with node x. Note that by
construction, {Πx}x∈X is a partition of the set of paths in Π. We will use path system S, along with
set X and collection {Πx}x∈X , to construct our directed graph G and set of demand pairs P . Roughly,
each node x ∈ X will be a terminal source node in G, and for each x ∈ X we will add a new terminal
sink node yx to G. The paths in Πx will become the internally vertex-disjoint x⇝ yx paths in G for
(x, yx) ∈ P . We will explicitly construct G using the following procedure.
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• Let G← (V, ∅), let P ← ∅, and let V ′ ← X.

• Fix a path π ∈ Πx for some x ∈ X. For each consecutive pair of vertices in π, add a directed
edge between the corresponding pair of vertices in G. Repeat this procedure for each π ∈ Πx,
where x ∈ X.

• For each x ∈ X, add a new terminal vertex yx to G, so that G← G∪{yx}. Let V ′ ← V ′ ∪{yx}.
For each path π[x⇝ y] ∈ Πx, add a directed edge (y, yx) to G. Add the demand pair (x, yx) to
P , so that P ← P ∪ {(x, yx)}.

• Return the directed graph G and set of demand pairs P . The terminal vertices of G will be V ′,
and the nonterminal vertices of G will be V \ V ′.

We will now prove that the resulting graph G and set of demand pairs P has our desired properties.

Lemma 68. The above procedure outputs a directed graph G = (V ∪V ′, E) and a set of demand pairs
P ⊆ V ′ × V ′ of size |P | = Θ(p/d) satisfying the following properties:

• for all (x, yx) ∈ P , there are Θ(d) pairwise internally vertex-disjoint x⇝ yx paths in G.

• for all (x, yx) ∈ P , any solution H ⊆ G to vertex directed Steiner forest on G,P must contain a
subpath of length Ω(ℓ) of some path in Πx.

Proof. Fix a node x ∈ X. Note that x has degree Θ(d) in S by Lemma 67, so |Πx| = Θ(d). Note that
each path π ∈ Πx implies an x ⇝ yx path in G. These paths are pairwise internally node-disjoint,
since this would otherwise imply a 2-bridge in S. This proves the first property.

To see why the second property is true, observe that every x⇝ yx-path in G contains as a subpath
a path π ∈ Πx (otherwise, this would imply a bridge in S). Then since every path π ∈ Πx is of length
|π| = Ω(ℓ), the second property immediately follows.

Now we are ready to lower bound the integrality gap of V̂DSF on G,P using Lemma 68.

Fractional solution. For each vertex v ∈ V , let the fractional node capacity be xv = c/d for a
sufficiently large constant c > 0. Then by property 1 of Lemma 68, since there are Θ(d) pairwise
internally vertex-disjoint x ⇝ yx paths in G for all (x, yx) ∈ P , our node capacities {xv}v∈V support
one unit of flow for all demand pairs (x, yx) ∈ P . Then our fractional solution is feasible and has size
cn/d = O(n/d).

Integral solution. By property 2 of Lemma 68, for all (x, yx) ∈ P , any solution subgraph H ⊆ G
to Vertex Directed Steiner Forest on G,P must contain a subpath of length Ω(ℓ) of some path in Πx.
Note that Πx1

∩ Πx2
= ∅ for distinct x1, x2 ∈ X. Additionally, note that for distinct π1, π2 ∈ Π, the

corresponding paths in G are edge-disjoint, since S has bridge girth ∞. Then we conclude that any
feasible solution subgraph H ⊆ G to Vertex Directed Steiner Forest must have at least

|E(H)| = |P | · Ω(ℓ) = Ω

(
ℓp

d

)
= Ω(n)

edges. Moreover, Ω(n) of these edges must be in the induced subgraph H[V ], since path system S is
source-restricted with respect to X. If the number of edges in H[V ] is |E(H[V ])| = Ω(n), then

|V (H) ∩ V | = |V (H[V ])| = Ω(|E(H[V ])|1/2) = Ω(
√
n).

We conclude that the integral solution of Vertex Directed Steiner Forest must have size at least Ω(
√
n).

By the above analysis, the integrality gap of Vertex Directed Steiner Forest on G,P is at least
Ω(
√
n/(n/d)) = Ω(d/

√
n) = Ω(β(n, p,∞)/n3/2), as desired. We note that in particular, the generalized

Ruzsa-Szemerédi lower bound constructions implied by [16] prove that for p = n2−o(1), we have that
β(n, p,∞) = Ω(n2−o(1)), and in particular, the average path length is ℓ = β(n, p,∞)/p = ω(1).
Consequently, DSFG(n, n2−o(1)) = Ω(n1/2−o(1)). Theorem 65 follows from the above discussion and
Claim 66.
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[42] D De Caen and László A Székely. The maximum size of 4-and 6-cycle free bipartite graphs on
m, n vertices. 1, 2, 57, 58
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[93] Endre Szemerédi and William T. Trotter. Extremal problems in discrete geometry. Combina-
torica, 3(3-4):381–392, 1983. 27
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A A Tour through Prior Work on Girth Problems

A.1 The Girth Problem

We first recall the pioneering work on girth reductions by Althöfer, Das, Dobkin, Joseph, and Soares
[11]:

Definition 27 (Multiplicative Spanners). A (multiplicative) k-spanner of a graph G is a subgraph H
satisfying distH(s, t) ≤ k · distG(s, t) for all nodes s, t. The function MS(n, k) is the least integer such
that every undirected weighted n-node graph has a k-spanner on ≤ MS(n, k) edges.

Definition 28 (Graph Girth). The girth of a graph G is the least number of edges in a cycle in G
(or ∞ if G is a forest). The function γ(n, k) is the maximum possible number of edges in an n-node
graph of girth > k.

Theorem 69 ([11]). MS(n, k) = γ(n, k + 1).

Proof Sketch. First we show that γ(n, k + 1) ≤ MS(n, k). Let G be an unweighted graph with n nodes,
girth > k + 1, and γ(n, k + 1) edges. If one removes any edge (u, v) from G, then distG(u, v) changes
from 1 to > k. Thus G is the only k-spanner of itself. So if G is taken as an input to the multiplicative
spanner problem, one must keep γ(n, k + 1) edges in the spanner, so MS(n, k) ≥ γ(n, k + 1).

Next we show that MS(n, k) ≤ γ(n, k + 1). Let G = (V,E,w) be an n-node graph for which we
want to build a k-spanner. Consider the following greedy algorithm to build a k-spanner. Initially
H = (V, ∅). Consider the edges of G in nondecreasing order of weight. When each edge (u, v) is
considered, we add it to H iff w(u, v) ≤ k ·distH(u, v), i.e., the edge is currently needed in the spanner.
One can show that (1) in the end H is indeed a k-spanner of G, and (2) for any cycle C in G that
contains ≤ k+ 1 edges, not all edges in cycle will be added to the spanner H. This is roughly because,
when we consider the last edge (u, v) ∈ C, then if all previous edges from C were added to H then
there is already a u⇝ v path of length ≤ k · w(u, v) using these edges. Thus H has girth > k + 1, so
it has ≤ γ(n, k + 1) edges. So MS(n, k) ≤ γ(n, k + 1).

The reduction of Althöfer et al. [11] generalizes also to emulators and more generally to distance
oracles, which are arbitrary data structures that can approximate the distances of the input graph
on query (see also [97]). Recently, tight reductions to γ have been achieved for vertex fault tolerant
spanners as well, which ask for the size bounds for k-spanners that retain their distance approximation
even after a bounded number of vertices fail in both the spanner and the original graph [23, 25].

The “girth problem” asks for the asymptotic value of γ, which hence would also determine the
asymptotic value of MS. This is a major open question in extremal combinatorics and theoretical
computer science. The following upper bound is known:

Theorem 70 (Moore Bounds, Folklore). For any integers n, k, we have γ(n, 2k) = O
(
n1+1/k

)
.

Proof Sketch. Let G be an n-node graph of average degree d, and assume that d is at least a sufficiently
large constant. A non-backtracking k-path is a path in G, containing exactly k + 1 nodes and k edges,
which may repeat nodes or edges but which never uses an edge (u, v) followed consecutively by its
reverse (v, u). The following are facts from graph theory:
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• G has n · Ω(d)k non-backtracking k-paths, and

• If G has two different non-backtracking k-paths with the same pair of endpoints (s, t), then G
has a cycle on ≤ 2k.

Together, these imply that if G has girth > 2k, then it can only have O(n2) non-backtracking k-paths,
and hence n · Ω(d)k = O(n2). Rearranging gives d = O(n1/k), proving the theorem.

Unfortunately, lower bounds are not as well understood. The Moore bounds are known to be
asymptotically tight when k ∈ {1, 2, 3, 5} [99, 103]. The girth conjecture, attributed to Erdös [54],
posits that the Moore bounds are tight for all other values of k as well. The girth conjecture is
controversial, with no clear consensus from experts on whether it is likely to be true.

A.2 The Weighted Girth Problem

Besides number of edges, in some applications one wants to minimize the total weight of a spanner.
This is often measured as the lightness of the spanner, relative to the input graph:

Definition 29 (Spanner Lightness). The lightness of a subgraph H of a graph G is

ℓ(H | G) :=
w(H)

w(MST(G))

where MST(G) is any minimum spanning tree of G (or spanning forest if disconnected). We write
LMS(n, k) for the least18 L such that every n-node graph G has a k-spanner H of lightness ℓ(H | G) ≤ L.

In their study of light spanners, Elkin, Neiman, and Solomon [50] made the interesting point that
an extension of the Althöfer et al [11] reduction between γ and MS also gives equivalence between the
extremal function of graph lightness and weighted girth, defined as follows:

Definition 30 (Weighted Girth). The weighted girth of a graph G is defined as

min
C

w(C)

max
e∈C

w(e)

where the min is over the set of cycles C in G. We define λ(n, k) as the maximum19 lightness over
n-node graphs of weighted girth > k.

Note that weighted girth generalizes girth, in the sense that the concepts coincide for an unweighted
graph. Elkin et al. [50] proved:

Theorem 71 ([50]). LMS(n, k + 1) = λ(n, k).

A natural next question is to ask for the relative values of λ and γ. It follows by considering the
unweighted graph realizing γ that

λ(n, k) = Ω

(
γ(n, k)

n

)

(note: we divide by n on the right, since an unweighted graph has an MST of weight n − 1). A
fascinating conjecture by Elkin et al. [50], known as the weighted girth conjecture, implies that these
bounds are asymptotically equal. This remains open, but recent work of Le and Solomon [77] implies
that they are approximately equal.

18Formally, one takes the inf of the values L satisfying this condition
19Formally, λ is determined by the sup of the lightness of graphs satisfying this property.
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A.3 The Bipartite Girth Problem

The function γ has a natural generalization to the setting of bipartite graphs:

Definition 31 (The Extremal Function of Bipartite High-Girth Graphs). The function γγ(n, p, k) is
the maximum possible number of edges in a bipartite graph with n nodes on one side of the bipartition,
p nodes on the other side, and girth > k.

We say that γγ generalizes γ, rather than merely being different, due to the following fact:

Theorem 72 (Folklore). γγ(n, n, k) = Θ(γ(n, k)).

Proof Sketch. In one direction, we have

γγ(n, n, k) ≤ γ(2n, k) = Θ(γ(n, k))

where the first inequality is immediate from the definitions, and the second inequality is by observing
that γ depends at most polynomially on its first parameter. In the other direction, we show

γ(n, k) ≤ 2 · γγ
(n

2
,
n

2
, k
)
≤ O (γγ(n, n, k)) .

The second inequality is immediate from the definitions. For the first inequality, we start with a graph
G realizing γ(n, k), and randomly bipartition its nodes into two parts of size n/2 each. Let G′ be the
bipartite subgraph that keeps only edges crossing the random bipartition. Each edge survives in G′

with probability ≥ 1/2. Thus we have constructed a bipartite graph with n/2, n/2 nodes per side,
girth > k, and ≥ γ(n, k)/2 edges in expectation, which implies the first inequality.

Thus every extremal reduction to γ can also be expressed as a reduction to a special case of
γγ. However, there are some further problems in distance sketching and extremal combinatorics
that can only be reduced to γγ, rather than the non-bipartite version. First, the obvious bipartite
generalizations of multiplicative spanners and related objects can be reduced to γγ, again by the
reduction of Althöfer et al. [11]. More interestingly:

• Fernández, Yasuda, and Woodruff [101] constructed lower bounds against the communication
complexity of spanner construction, converting γγ lower bounds to lower bound instances, and

• Bodwin, Dinitz, and Robelle [24] used γγ to provide lower bounds against edge fault tolerant
spanners and edge distance sensitivity oracles (based on a construction from [23]).

The following natural extension of the Moore bounds holds for bipartite graphs:

Theorem 73 (Bipartite Moore Bounds). For all n, p, k, we have

γγ(n, p, 2k) =

{
O
(
(np)1/2+1/(2k) + n + p

)
if k is odd

O
(
n1/2+1/kp1/2 + n + p

)
if k is even

The proof is in the same spirit as Theorem 70, but with sensitivity to the average degree on either
side of the bipartite graph. The bipartite Moore bounds are known to be fully tight for girth parameters
2k when k ∈ {1, 2}, and they are also tight for various relative values of n, p when k ∈ {3, 5, 7} [102].
Analogizing the girth conjecture, one might conjecture that the Moore bounds are tight for all n, p, k.
However, this was refuted in an important paper by de Caen and Székely [42], which showed that
the Ruzsa-Szemerédi theorem (discussed next) is equivalent to a (subpolynomial) improvement to the
upper bounds on γγ(n, p, 6), and thus it implies an improvement on the bipartite Moore bounds in a
particular parameter setting. At a technical level, this proof is very similar to Theorem 81, so we shall
not repeat it here.

Recent work of Conlon, Fox, Sudakov, and Zhao [40] implies an analogous improvement to γγ(n, p, 10);
it is an interesting open problem to obtain an analogous improvement to γγ(n, p, 2k) for any other odd
k.
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A.4 The Ruzsa-Szemerédi Problem

The Ruzsa-Szemerédi problem was introduced by Ruzsa and Szemerédi [90], in the context of a com-
binatorial problem about hypergraphs. Their result was one of the first major uses of the famous
Szemerédi regularity lemma [92]. Although it has been interpreted and reinterpreted over the years,
the standard phrasing is as follows:

Definition 32 (Induced Matchings and rs(n)). In a graph G = (V,E), an induced matching is an
edge subset M ⊆ E that is a matching, and also the edge subset of an induced subgraph. In other
words, for any two edges (u1, v1), (u2, v2) ∈M , we have (u1, u2), (u1, v2), (v1, u2), (v1, v2) /∈ E.

We define rs(n) as the largest integer such that, for every n-node graph G whose edge set can be
partitioned into n induced matchings, we have

|E(G)| ≤ n2

rs(n)
.

Besides induced matchings, there are many other natural ways to interpret rs(n) [39]. The following
transformation can be used to connect rs(n) One is: let G be a graph that can be decomposed into n
induced matchings, which has n2/rs(n) edges. Direct the edges of G arbitrarily, and then add a new
node m1, . . . ,mn for each of the n induced matchings. Then, for each i and for each directed edge
(u, v) in the ith induced matching, interpret the triple (mi, u, v) as a 3-path. One can verify that this
yields a bridge-free path system. This transformation is well known, even though the description as a
“bridge-free path system” is new.

It is not at all obvious from the definition of rs(n) that the function is nontrivial, i.e., super-
constant. But indeed, Ruzsa and Szemerédi proved that rs(n) = Ω(log∗ n). The state-of-the-art
upper bound is due to Fox [58]; a notable alternate proof was discovered by Moshkovitz and Shapira
[82]. The state-of-the-art lower bound is due to Behrend [16] (see also [46]). These bounds are:

2Ω(log∗ n) ≤ rs(n) ≤ 2O(logc n).

While it is not clear from the definition that the Ruzsa-Szemerédi problem should be regarded as
a girth concept, an important paper by de Caen and Székely [42] explains its inclusion, by tightly
reducing between rs(n) and γγ. Specifically, their reduction may be interpreted as follows. Given a
value of n, let p∗ be the largest integer such that γγ(n, p∗, 6) ≥ 3p∗. Then:

γγ(n, p∗, 6) = Θ

(
n2

rs(n)

)
.

Thus, the Ruzsa-Szemerédi problem is a special case of the bipartite girth problem. In network design,
we mention three applications of the Ruzsa-Szemerédi problem:

• Given an n-node undirected unweighted graph and a set of p demand pairs, one can construct a
distance preserver on O(n2/rs(n) + p) edges [22].

• For undirected unweighted input graphs with n nodes and O(n) edges, one can construct a
distance labeling scheme with average label size O(n/rs(n)c) [76].

• Bansal and Williams [12] developed a combinatorial algorithm for All-Pairs Shortest Paths in
unweighted graphs, by reducing to a certain algorithmic version of the Ruzsa-Szemerédi problem.

Some other miscellaneous uses of rs(n) or Ruzsa-Szemerédi graphs in theoretical computer science
include connections to the PCP theorem by H̊astad and Wigderson [63], applications in Channel
Scheduling by Birk, Linial, and Meshulam [20], a line of work on maximum matching in streams
[60, 67, 74], and a line of work on subgraph testing algorithms [8, 10].

A.5 The Set Girth Problem

The function γγ(n, p, k) has an equivalent interpretation in the language of set systems rather than
graphs. We consider:

Definition 33 (Set Systems).
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• A set system is a pair S = (V, T ), where V is a ground set of “nodes” and T is a multiset of
node subsets.

• A k-cycle in a set system S is a circularly-ordered list of distinct nodes v0, v1, . . . , vk = v0 ∈ V
and sets T0, T1, . . . , Tk = T0 ∈ T with each vi, vi+1 ∈ Ti.

• The girth of a set system is the smallest integer k for which the system has a k-cycle.

• The size of a set system is written ∥S∥ :=
∑

T∈T

|T |.

For example, a set system in which each set has size 2 can be considered as an undirected graph. Set
systems are merely a rephrasing of bipartite graphs, and one can switch between them via incidence
graphs. In particular:

Theorem 74 (Folkore). Over set systems S with n nodes, p sets, and girth > k, the maximum possible
value of ∥S∥ is exactly γγ(n, p, 2k).

Proof Sketch. A set system S = (V, T ) can be naturally bijected with its incidence graph GS . This is
a bipartite graph whose nodes on the left correspond to V , whose nodes on the right correspond to T ,
and whose edges correspond to set membership; that is, we put an edge between v ∈ V and T ∈ T iff
v ∈ T . Set systems carry the same information as their incidence graph. One can verify that (1) the
size ∥S∥ of the set system is the same as the number of edges |E(GS)| of its incidence graph, and (2)
if the set system has girth k, then its incidence graph has girth 2k. The theorem follows from these
properties.

B Proof of Cleaning Lemma

We now prove the Cleaning Lemma (Lemma 10). We will state the proof only for unordered bridge
girth; the proof for ordered bridge girth is completely identical. We split the proof into the following
two lemmas:

Lemma 75. Suppose S is a path system with n nodes, p paths, bridge girth b, average node degree d,
and average path length ℓ. Then there exists a path system S′ that has:

• n′ = Θ(n) nodes,

• p′ = Θ(p) paths,

• size ∥S′∥ = Θ(∥S∥),

• bridge girth ≥ b,

• average degree d′ = Θ(d), and all nodes have degree Θ(d′),

• average length ℓ′ = Θ(ℓ), and all paths have length Θ(ℓ′).

Proof. We construct S′ by the following process. Start with S = (V,Π) as a path system with n nodes,
p paths, bridge girth > k, and size ∥S∥ = β(n, p, k). Fix ℓ, d as the initial average length and degree
of S. Then, perform the following sequence of operations on S:

1. While there exists a path π ∈ Π of length |π| ≥ ℓ/2, split π into two node-disjoint paths π1 and
π2 in any way such that π = π1 ◦ π2, |π1| ≥ ℓ/4, and |π2| ≥ ℓ/4.

2. While there exists a node v ∈ V of degree ≥ d/2, split v into two new nodes v1, v2. Replace
each occurrence of v in a path with either v1 or v2, in any way such that deg(v1) ≥ d/4 and
deg(v2) ≥ d/4.

3. While there exists a node of degree < d/4, or a path of length < ℓ/4, delete that node or path
from S.
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Let S′ be the resulting path system on n′ nodes and p′ paths. First note that the construction
must terminate, since no step of the construction increases the size of ∥S′∥. Our only operations are
to delete nodes/paths and to split nodes/paths, which do not create bridges; thus, since S does not
have a bridge of size < b, S′ also has no bridge of size < b. Operations that split nodes and paths do
not change the size of S. It is immediate from the construction that all surviving paths π have length
Θ(ℓ) and that all surviving nodes have degree Θ(d). Meanwhile, we only delete nodes of degree < d/4
and paths of length < ℓ/4, so we have

∥S′∥ > ∥S∥ − (nd/4 + pℓ/4) = ∥S∥/2.

Thus we have ∥S′∥ = Θ(∥S∥). Moreover, we notice that

ℓ′p′ = n′d′ = ∥S′∥ > ∥S∥/2 = nd/2 = pℓ/2.

Since ℓ′ = Θ(ℓ) and d′ = Θ(d), this implies that p′ = Θ(p) and n′ = Θ(n), completing the proof.

Lemma 76. For any absolute constant 0 < c < 1, we have β(cn, cp, k) = Ω(β(n, p, k)).

Proof. We will prove for β; the proof for β∗ is identical. Let S = (V,Π) be path system with n nodes,
p paths, bridge girth > k, and ∥S∥ = β(n, p, k). Let S′ ⊆ S be a subsystem obtained by choosing
exactly cn nodes in V uniformly at random and cp paths in Π uniformly at random, and keeping these
nodes and the paths induced on these nodes in S′, while deleting the rest of S. Then S′ has cn nodes,
cp paths, bridge girth > k and expected size

E [∥S′∥] = c2∥S∥ = Ω(β(n, p, k)),

which completes the proof.

We can now state the proof of the cleaning lemma. Using the latter lemma, we can choose c > 0
as a sufficiently small constant, and then start with S as a path system with ⌈cn⌉ nodes, ⌈cp⌉ paths,
bridge girth > k, and ∥S∥ = Ω(β(n, p, k)). Then, applying the former lemma, we can find a path
system S′ that has n′ = Θ(cn) nodes, p′ = Θ(cp) paths, bridge girth > k, size ∥S′∥ = Ω(β(n, p, k)),
all nodes have degree Θ(d′), and all paths have length Θ(ℓ′). By choice of sufficiently small c, we have
n′ ≤ n and p′ ≤ p, and thus S′ satisfies the cleaning lemma.

C Missing Proofs for Section 5

C.1 Lemma 57

Fix an ε > 0. Let S ⊆ VH be a set of vertices of size |S| ≤ d/16 in H. Fix an i ∈ [1, d], and observe
that when we are choosing the vertices in layer Lj

i , the size of the set VH \ (L1
i ∪L2

i ∪ · · · ∪Lj−1
i ) is at

least d/2. Therefore, the probability that Lj
i ⊆ S is at most

( |S|
d/2

)log d

≤
(

1

8

)log d

= d−3

Note that S separates (si, ti) if and only if Lj
i ⊆ S for some j ∈ [1, d′]. Then the probability that S

separates (si, ti) is at most d′ · d−3 ≤ d−2, by the union bound and the fact that d′ ≤ d. Now since
our constructions of each graph Hi are independent, the probability that at least εd distinct demand
pairs (si, ti), i ∈ [1, d] are disconnected by S is at most

(
d

εd

)
(d−2)εd =

(
1

d

)εd

= 2−εd log d < 2−d

for sufficiently large d. We have established our desired claim.
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C.2 Theorem 64

Recall that our goal is to lower bound the flow-cut gap between concurrent multicommodity flow and
(non-bipartite) sparsest cut. We will accomplish this by lower bounding an integrality gap for the
directed sparsest vertex multicut problem, SVCut. This problem is defined identically to sparsest cut
except we choose a set of non-terminal vertices S that minimizes the ratio |S|/|PS |, where PS is the

set of demand pairs disconnected in G \ S. Below we describe a natural LP relaxation ̂SVCut of the
directed sparsest vertex cut problem.

̂SVCut

min
∑

v∈V x′
v

s.t.
∑

v∈π∩V x′
v ≥ h′

i ∀i ∈ [p], π ∈ Πi

∑p
i=1 h

′
i ≥ 1

x′
v, h

′
i ≥ 0 ∀v ∈ V, ∀i ∈ [p]

By the discussion in Section 2.2 of [37], the integrality gap between ̂SVCut and SVCut is at most

the integrality gap between ŜCut and SCut. By lower bounding the integrality gap of ̂SVCut, we
will immediately obtain lower bounds for the directed sparsest cut flow-cut gap.

We will lower bound the integrality gap for ̂SVCut using our construction from the proof of
Theorem 52 and a standard argument from [37]. Let G = (V ∪V ′, E) be the graph on N := β(n, n,∞)
non-terminal nodes defined in Section 5.3, and let P ⊆ V ′×V ′ be the corresponding set of demand pairs
of size |P | = n. Observe the following solution to the sparsest vertex cut LP. For every (si, ti) ∈ P ,
let h′

i := 1/n. For every non-terminal vertex v ∈ V , let x′
v := 1/(nd′). This is a feasible solution to

̂SVCut of size N/(nd′) by Claim 58.

Now assume that ̂SVCut has integrality gap less than g(N) for some function g, and fix a suffi-
ciently small ε > 0. We will show that there is an (integral) vertex cut S of G of size |S| = O(N/d′)g(N)
that disconnects more than a (1 − ε)-fraction of the demand pairs P in G. Recall that by Theorem
52, there is an ε > 0 such that |S| = Ω(N) if S disconnects more than a (1 − ε)-fraction of demand
pairs P in G. Then we will conclude that g(N) = Ω(d′).

Fix a sufficiently small ε > 0. Our construction of S will proceed in rounds, where in each round
we will add nodes in G to S and disconnect some demand pairs in G\S. We will repeat our procedure
until S disconnects more than a (1− ε)-fraction of the demand pairs P . Let G1 := G and P1 := P . In

round 1, G1, P1 has a feasible solution to ̂SVCut of size φ := N/(nd′), so there is an integral solution
to SVCut of size φ · g(N). This means there is a set S1 ⊆ V in G of size |S1| = φ · g(N) · p1 that
disconnects p1 ≥ 1 pairs PS1

⊆ P1. Add S1 to S, and let G2 := G \ S1 and P2 := P1 \ PS1
.

In round i, we are given a graph Gi ⊆ G and a set of demand pairs Pi ⊆ P that are connected in
Gi. We halt when |Pi| < ε|P |, so we may assume that |Pi| ≥ ε|P |. Then if we let h′

j := ε−1n−1 for

every (sj , tj) ∈ Pi and let x′
v := (εnd′)−1, then this is a feasible solution to ̂SVCut for Gi, Pi of size at

most N/(εnd′) by Claim 58. Then there is an integral vertex cut Si of size at most ε−1φ ·g(N) ·pi that
disconnects pi ≥ 1 pairs PSi ⊆ Pi. Add Si to S, and let Gi+1 := Gi \ Si and Pi+1 := Pi \ PSi . When
our procedure ends in round k, we will have a set S of size at most ε−1φ · g(N) · n = O(N/d′)g(N)
that disconnects at least |P | − |Pk| > (1 − ε)|P | pairs in P . Then |S| = Ω(N) by Lemma 63 and the
subsequent discussion, so we conclude that g(N) = Ω(d′), as desired. The theorem is immediate from
the above discussion.

C.3 Claim 66

Fix an n-node unweighted directed graph G = (V ∪ V ′, E) with non-terminal nodes V and terminal
nodes V ′, and a set of demand pairs P ⊆ V ′ × V ′ of size p. Inputs G,P correspond to an instance of
the Vertex Directed Steiner Forest problem. Given G,P , we will construct an instance G1, P1 of the

Directed Steiner Forest problem. We will then show that the integrality gap of V̂DSF on G,P is at

most the integrality gap of D̂SF on G1, P1, which will imply Claim 66.
We construct the weighted directed graph G1 = (V1, E1, w) as follows. Initialize G1 as G1 :=

(V ∪ V ′, E). For each vertex v ∈ V , we replace v in G1 with a special directed edge (v+, v−), which
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we assign weight w(v+,v−) = 1. For each original edge (u, v) ∈ E ∩ (V × V ), we replace it with edge
(u−, v+), which we assign weight w(u−,v+) = 0. For each original edge (u, v) ∈ E∩(V ×V ′), we replace
it with (u−, v) and assign it weight w(u−,v) = 0; and for each original edge (u, v) ∈ E ∩ (V ′ × V ), we
replace it with (u, v+) and assign it weight w(u,v+) = 0. This concludes our construction of G1. We
let P1 := P . Then G1, P1 will be our corresponding instance of Directed Steiner Forest.

Let {xv}v∈V be a feasible solution to V̂DSF on G,P . Now for every v ∈ V , assign capacity xv to
edge (v+, v−) in G1. For all other edges in G1, assign capacity 1. Observe that the resulting solution

to D̂SF on inputs G1, P1 is feasible and has capacity

∑

e∈E(G1)

wexe =
∑

v∈V

xv ≤ V̂DSF(G,P ).

Then the size of the optimal solution to D̂SF(G1, P1) is at most

D̂SF(G1, P1) ≤ V̂DSF(G,P ).

Now consider a feasible solution to Directed Steiner Forest on inputs G1, P1. This optimal solution
corresponds to a subgraph H1 of G1. Now we define a corresponding feasible solution to Vertex
Directed Steiner Forest as follows. Let H be the induced subgraph

H = G[{v ∈ V | (v+, v−) ∈ E(H1)} ∪ V ′].

Observe that H is a feasible solution for Vertex Directed Steiner Forest on inputs G,P and has size
at most

|V (H) ∩ V | = |{v ∈ V | (v+, v−) ∈ E(H1)}| =
∑

e∈E(H1)

we ≤ DSF(G1, P1).

Then the size of the optimal solution to Vertex Directed Steiner forest on G,P is at most

VDSF(G,P ) ≤ DSF(G1, P1).

Now suppose that for some integer k, inputs G,P satisfy

k ≤ VDSF(G,P )

V̂DSF(G,P )
.

Then

k ≤ VDSF(G,P )

V̂DSF(G,P )
≤ DSF(G1, P1)

D̂SF(G1, P1)
= DSFG(|V (G1)|, p) ≤ DSFG(2n, p).

C.4 Lemma 67

We now prove the source-restricted cleaning lemma (Lemma 67). The proof will require the following
lemma:

Lemma 77. Suppose S is a path system with n nodes, p paths, bridge girth b, average node degree d,
and average path length ℓ. Then there exists a path system S′ that has:

• n′ = Θ(n) nodes,

• p′ = Θ(p) paths,

• size ∥S′∥ = Θ(∥S∥),

• bridge girth ≥ b,

• average degree d′ = Θ(d), and all nodes have degree Θ(d′),

• average length ℓ′ = Θ(ℓ), and all paths have length Θ(ℓ′),

• S′ is source-restricted with respect to a set X of size |X| = Θ(p/d).
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Proof. By the cleaning lemma (Lemma 10), we may assume that S = (V,Π) is approximately degree-
regular and length-regular.20 In particular, we may assume that c1ℓ ≤ |π| ≤ c2ℓ for π ∈ Π, and
deg(v) ≤ c3d for v ∈ V , where c1, c2, c3 are positive universal constants. Additionally, we will assume
that ℓ is greater than a sufficiently large constant; when ℓ ≤ c for a constant c > 0, we can simply take
X := V and make our path system source-restricted with respect to X by shortening all paths in Π
until they contain only one node. Now perform the following sequence of operations on S:

1. Uniformly at random, sample a subset X ⊆ V of size |X| = p
d . Delete all paths from S that do

not contain a node in X.

2. For each path π ∈ Π, let xπ ∈ π ∩X be the first node in π that is also in X. Delete all nodes
from π preceding xπ; that is, all nodes y such that y <π xπ.

3. For each path π ∈ Π, delete all occurrences of nodes in X \ {xπ} from π.

4. While there exists a node v of degree deg(v) < λd or a path π of length |π| < λℓ, where λ > 0 is
a sufficiently small constant, delete that node or path from S. If a node v ∈ X is deleted, then
delete all paths in Π that contain v.

Let S′ := (V ′,Π′) be the resulting path system. We will now prove that with nonzero probabil-
ity, ∥S′∥ = Θ(∥S∥). All other properties of S′ claimed in the lemma are immediate or follow from
arguments identical to those of Lemma 75.

Fix a path π in Π, and let π1 be the prefix of π corresponding to the first c1/2 · ℓ nodes. Observe
that π1 contains a node in X with probability

Pr[π1 ∩X ̸= ∅] = 1−
(

1− p/d

n

)|π1|

≥ 1− e−
c1/2·ℓp

dn = 1− e−c1/2.

Now suppose that π1 ∩X ̸= ∅, so that xπ ∈ π1. Then π survives step 1 of our procedure. Let π2 be
a subpath of π such that π = π1 ◦ π2. Since xπ ∈ π1, we are guaranteed that π2 is a subpath of a
path surviving after the second step of our procedure; moreover, |π2| ≥ c1/2 · ℓ, since |π| ≥ c1ℓ. Let
S2 be the path system obtained after performing the first two steps of our procedure on S. Then the
expected size of ∥S2∥ is

E[∥S2∥] ≥
∑

π∈Π

Pr[π1 ∩X ̸= ∅] · |π2| ≥ (1− e−c1/2)p · c1/2 · ℓ = c1/2 · (1− e−c1/2)∥S∥.

Consequently, we may assume that S2 satisfies ∥S2∥ ≥ c1/2 · (1 − e−c1/2)∥S∥. Now we just need to
bound the amount that ∥S2∥ decreases in steps 3 and 4 of our procedure. Note that the total decrease
of ∥S2∥ in step 3 is at most ∑

x∈X

deg(x) ≤ |X| · c3d = c3p.

As stated earlier, we may assume ℓ is greater than a sufficiently large constant. If we assume ℓ >
4c3

c1/2·(1−e−c1/2)
, then the total decrease of ∥S2∥ in step 3 is at most

c3p ≤
(
c1/2 · (1− e−c1/2)

4
· ℓ
)
· p ≤ c1/2 · (1− e−c1/2)

4
· ∥S∥ ≤ ∥S2∥/4.

In step 4, if we delete a node v ∈ V \X of degree deg(v) < λd, then the decrease in ∥S2∥ is at most
λd. Else if we delete a path π of length |π| < λℓ, then the decrease in ∥S2∥ is at most λℓ. Finally, if
we delete a node x ∈ X, then the decrease in ∥S2∥ is at most λd · c2ℓ, since we delete at most λd paths
each of length at most c2ℓ. Then the total decrease in ∥S2∥ in step 4 is at most

|V | · λd + |Π| · λℓ + |X| · λd · c2ℓ ≤ λ(2 + c2)∥S∥.

If we choose our constant λ to be λ := c1/2·(1−e−c1/2)
4(2+c2)

, then this decrease is at most ∥S2∥/4. We

conclude that ∥S′∥ ≥ ∥S2∥/2 = Θ(∥S∥), as desired.

Now the proof of Lemma 67 follows by using Lemma 77 and Lemma 76 in an argument identical
to the proof of the cleaning lemma (Lemma 10) in Appendix B.

20This initial application of the cleaning lemma is not technically needed to make the following analysis work, but it
simplifies the analysis a bit.
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D Implicit Bounds on β in Prior Work

D.1 Upper Bounds for k = 2

Here, we repeat some arguments from prior work that implicitly show upper bounds on the value of
β, translated into language directly about β. We note that β(n, p, 2) = β∗(n, p, 2), since 2-bridges are
not sensitive to ordering, and so we typically prove only the upper bounds on β(n, p, 2).

Theorem 78 ([41]). β(n, p, 2) = β∗(n, p, 2) = O(np1/2 + p).

Proof. Let S = (V,Π) be a path system with n nodes, p paths, and bridge girth > 2. By the Cleaning
Lemma (Lemma 10), we may assume without loss of generality that all paths have length Θ(ℓ), where
ℓ is the average length in S. We may also assume that ℓ is at least a sufficiently large constant, as
otherwise the bound O(p) is immediate.

There are O(n2) ordered pairs of distinct nodes in S. Since S does not have 2-bridges, for each
such ordered pair (x, y), there is at most one path π ∈ Π with x <π y. On the other hand, each path

π contains
(
|π|
2

)
= Θ(ℓ2) such node pairs (note: this equality uses that ℓ is a large constant, and so

|π| ≥ 2). We therefore have:

pℓ2 = O
(
n2

)

∥S∥2 = p2ℓ2 = O
(
n2p

)

∥S∥ = O
(
np1/2

)
.

Theorem 79 ([22]). β(n, p, 2) = β∗(n, p, 2) = O
(
n2/3p + n

)
.

Proof. Let S = (V,Π) be a path system with n nodes, p paths, and bridge girth > 2. By the Cleaning
Lemma (Lemma 10), we may assume without loss of generality that all nodes have degree Θ(d), where
d is the average degree in S. We may also assume that d is at least a sufficiently large constant, as
otherwise the bound O(n) is immediate.

We first claim that, for any triple of distinct paths π1, π2, π3 ∈ Π, there exists at most one node v
in π1∩π2∩π3. To see this, suppose for contradiction that there are distinct nodes u, v ∈ (π1∩π2∩π3).
Notice that there must be two paths that use u, v in the same order; e.g., without loss of generality,
we have u <π1

v and also u <π2
v. But this implies that π1, π2 form a 2-bridge, giving contradiction.

Meanwhile, consider an arbitrary node v. There are
(
deg(v)

3

)
= Θ(d3) triples of paths that intersect

at v (note: this equality uses that d is a large enough constant, and so deg(v) ≥ 3). We therefore have

nd3 = O
(
p3
)

∥S∥3 = n3d3 = O
(
n2p3

)

∥S∥ = O
(
n2/3p

)
.

D.2 Bounds for k = 3

Theorem 80 (Tweaked Folklore Argument). β(n, p, 3) = O
(
(np)2/3 + n + p

)

Proof. This argument can be viewed as a slightly more careful version of the standard O((np)2/3+n+p)
upper bound on γγ(n, p, 6). While technically slightly different, it follows the same rhythms and overall
does not contain a significant new idea.

Let S = (V,Π) be a path system with n nodes, p paths, and bridge girth > 3. By the Cleaning
Lemma (Lemma 10), we may assume without loss of generality that all nodes have degree Θ(d) and all
paths have length Θ(ℓ), where d, ℓ are respectively the average degree and length in S. We may also
assume that both d, ℓ are sufficiently large constants, as otherwise the bound O(n + p) is immediate.

Choose an arbitrary path π ∈ Π, which we will call the main path. We have that π intersects
Ω(ℓ) nodes, and each of these nodes have Ω(d) paths of length ℓ each. For a path q that intersects π,
let us say that the downstream part of q is the suffix following the first point at which q, π intersect,
and the upstream part of q is the prefix preceding the last point at which q, π intersect (so if q, π
intersect at several nodes, which is conceivable so long as they use those nodes in opposite order, the
downstream/upstream parts of q overlap).
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Let U,D be the set of upstream, downstream parts of paths (respectively) that intersect π. We
claim that the subpaths in U are pairwise node-disjoint from each other, and also the paths in D are
pairwise node-disjoint from each other. To see that the paths in D are pairwise node-disjoint, suppose
for contradiction that there are paths q1, q2 ∈ D that intersect at a node v. Also suppose that the full
paths containing q1, q2 intersect π at nodes x, y, respectively. Then we notice that these paths form
a 3-bridge with π, on the nodes {v, x, y}, reaching contradiction. A similar argument works to show
node-disjointness of paths in U .

This node-disjointness implies that ∥U∥+ ∥D∥ = Ω(dℓ2), and so without loss of generality we may
assume ∥D∥ = Ω(dℓ2). Since the paths in D are node-disjoint we have dℓ2 = O(n), and so

(nd)(p2ℓ2) = O(n2p2).

Since nd = pℓ = ∥S∥, this implies
∥S∥ = O((np)2/3)

as claimed.

𝒒𝟏
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𝒙 𝒚
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upstream part of 𝒒𝒒

𝝅

Figure 9: The upper bound for β(n, p, 3). In the top is an illustration of the upstream and the
downstream parts of a path π, and in the bottom the 3-bridge on the paths q1, q2, and π.

Theorem 81 (Based on [43]). β(n, p, 3) = O
(

n2

rs(n) + p
)
.

Proof. Let S = (V,Π) be a path system with n nodes, p paths, and bridge girth > 3. We may assume
that the average path length ℓ is at least a large enough constant, as otherwise the bound of O(p) is
immediate. We associate S to an auxiliary graph G as follows:

• Split each path π ∈ Π into as many node-disjoint subpaths as possible of length exactly 3 each.
(We may discard one or two nodes at the end of the path.) Note that, since ℓ is a large enough
constant, we change the size of ∥S∥ by at most a constant factor over this splitting process.

• Take a uniform-random equitable tripartition V = V1 ∪ V2 ∪ V3. For each path π = (x, y, z) ∈ Π,
keep π iff x ∈ V1, y ∈ V2, z ∈ V3; otherwise delete π from Π. Each path survives with constant
probability, and so in expectation we again change the size of ∥S∥ by at most a constant factor.

• Let G be the bipartite graph between vertex sets V2, V3, where we include an edge (v2, v3) iff
there exists a path π ∈ Π with v2 <π v3. Note that there is one edge in G per path in Π, and
thus |E(G)| = Θ(∥S∥), so it suffices to bound |E(G)|.
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• For each node v1 ∈ V1, define an edge subset M [v1] ⊆ E(G) as all edges (v2, v3) where there
exists a path (v1, v2, v3) ∈ Π.

In order to bound |E(G)|, we will show that each edge subset M [v1] is an induced matching. To
see this, suppose for contradiction that there are distinct edges (u2, u3), (v2, v3) ∈ M [v1], and also an
edge (v2, u3) ∈ E(G). Suppose this other edge is caused by a path (v′1, v2, u3). Then we notice that the
three paths (v1, u2, u3), (v1, v2, v3), (v′1, v2, u3) form a 3-bridge, with the first path as the river, giving
contradiction.

Thus each set M [v1] is an induced matching, and so E(G) may be partitioned into |V1| < n induced
matchings. Thus, by definition of rs(n) we have |E(G)| = O

(
n2/rs(n)

)
, completing the proof.

Corollary 82. β(n, p, 3) = O
(

n2

2O(log∗ n) + n
)
.

Proof. Follows from the previous theorem, and by plugging in the state-of-the-art bounds on rs(n)
from [58, 82].

Theorem 83. β(n, p, 3) = Θ((np)2/3) when p ∈ {n4/5, n7/8, n, n8/7, n5/4}.

Proof. The upper bound follows from Theorem 80. For the lower bound, for each of the given values
of p, it is known [102] that

γγ(n, p, 6) = Ω
(

(np)2/3
)

;

that is, there are constructions of bipartite graphs with n nodes on one side, p nodes on the other side,
and girth > 6. We may convert any such graph to a path system S = (V,Π) by taking V as the n
nodes one one side, taking Π as the p nodes on the other side, and including a node v in a path π iff
(v, π) is an edge in the graph. The order of the nodes in each path can be chosen arbitrarily. Notice
that a 2-bridge in S corresponds to a 4-cycle in the graph, and a 3-bridge in S corresponds to a 6-cycle
in the graph. Since neither such cycle exists, S has bridge girth > 3, and its size is ∥S∥ = Ω((np)2/3),
completing the proof.
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