
ar
X

iv
:2

30
4.

02
19

3v
2

 [c
s.D

S]
 3

0
A

ug
 2

02
3

Folklore Sampling is Optimal for Exact Hopsets: Confirming the√
n Barrier∗

Greg Bodwin Gary Hoppenworth
University of Michigan University of Michigan
bodwin@umich.edu garytho@umich.edu

Abstract

For a graph G, a D-diameter-reducing exact hopset is a small set of additional edges H that, when
added to G, maintains its graph metric but guarantees that all node pairs have a shortest path in G∪H

using at most D edges. A shortcut set is the analogous concept for reachability rather than distances.
These objects have been studied since the early ’90s, due to applications in parallel, distributed, dynamic,
and streaming graph algorithms.

For most of their history, the state-of-the-art construction for either object was a simple folklore
algorithm, based on randomly sampling nodes to hit long paths in the graph. However, recent break-
throughs of Kogan and Parter [SODA ’22] and Bernstein and Wein [SODA ’23] have finally improved
over the folklore algorithm for shortcut sets and for (1 + ε)-approximate hopsets. For either object, it is

now known that one can use O(n) hop-edges to reduce diameter to Õ(n1/3), improving over the folklore

diameter bound of Õ(n1/2). The only setting in which folklore sampling remains unimproved is for exact
hopsets. Can these improvements be continued?

We settle this question negatively by constructing graphs on which any exact hopset of O(n) edges

has diameter Ω̃(n1/2). This improves on the previous lower bound of Ω(n1/3) by Kogan and Parter
[FOCS ’22]. Using similar ideas, we also polynomially improve the current lower bounds for shortcut

sets, constructing graphs on which any shortcut set of O(n) edges reduces diameter to Ω̃(n1/4). This
improves on the previous lower bound of Ω(n1/6) by Huang and Pettie [SIAM J. Disc. Math. ’18]. We
also extend our constructions to provide lower bounds against O(p)-size exact hopsets and shortcut sets
for other values of p; in particular, we show that folklore sampling is near-optimal for exact hopsets in
the entire range of parameters p ∈ [1, n2].

∗This work was supported by NSF:AF 2153680.

http://arxiv.org/abs/2304.02193v2

1 Introduction

In graph algorithms, many basic problems ask to compute information about the shortest path distances or
reachability relation among node pairs in an input graph. In parallel, distributed, dynamic, or streaming
settings, algorithm complexity often scales with the diameter of the graph, i.e., the smallest integer d such
that every connected node pair has a path of at most d edges. Therefore, a popular strategy to optimize
these algorithms is to add a few edges to the input graph in preprocessing, with the goal to reduce diameter
while leaving the relevant distance or reachability information unchanged. In the context of reachability,
this set of additional edges is called a shortcut set.

Definition 1 (Shortcut Sets). For a directed graph G, a D-diameter reducing shortcut set is a set of
additional edges H such that:

• Every edge (u, v) ∈ H is in the transitive closure of G; that is, there exists a u v path in G.

• For every pair of nodes (s, t) in the transitive closure of G, there exists an s t path in G ∪H using
at most D edges.

Shortcut sets were introduced by Thorup [33], after they were used implicitly in prior work. Many
algorithmic applications of shortcut sets and their relatives were discovered in the following years [2, 6, 10,
15–20,24–26,34], but actual constructions of shortcut sets were elusive. For most of their history, essentially
the only known construction was the following simple algorithm: randomly sample a set S of |S| = n1/2

vertices, and add a shortcut edge between each pair of sampled nodes that lie in the transitive closure of the
input graph. To argue correctness: for any nodes s, t in the graph where the shortest path π(s, t) has length

≫ Ω̃(n1/2), with high probability we sample nodes u, v in S that respectively hit a prefix and suffix of π(s, t)

of length Õ(n1/2). Using the added shortcut edge (u, v), we obtain an s t path of length Õ(n1/2). This
analysis gives:

Theorem 1 (Folklore, [34]). Every n-node graph has a Õ(n1/2)-diameter-reducing shortcut set on O(n)
edges.

Remarkably, despite its simplicity, the diameter bound of Õ(n1/2) achieved by the folklore sampling
algorithm remained nearly unimproved for 30 years (log factors were removed in [5], improving the diameter
bound to O(n1/2)). This led researchers to wonder if the bound could be improved in the exponent at all.
This was finally answered affirmatively in a recent breakthrough of Kogan and Parter [29]:

Theorem 2 ([29]). The folklore algorithm is polynomially suboptimal for shortcut sets. In particular,

every n-node graph has a Õ(n1/3)-diameter-reducing shortcut set on O(n) edges.

Kogan and Parter proved this theorem via an elegant construction based on sampling vertices and sam-
pling from a set of carefully-chosen paths from the input graph. Following this, there are two clear avenues
for further progress. First, the new diameter bound of Õ(n1/3) is still not necessarily tight. It was still
conceivable to improve diameter as far as O(n1/6), at which point we encounter a lower bound construction
of Huang and Pettie [22] (improving on a classic construction of Hesse [21]). Second, many algorithms aim
to compute exact or approximate shortest paths of an input graph, rather than any path as in the case
of shortcut sets/reachability. These algorithms benefit from shortcut-set-like structures that more strongly
reduce the number of edges along (near-)shortest paths in the input graph. Such a structure is called a
hopset :

Definition 2 (Hopsets). For a graph G and ε ≥ 0, a D-diameter reducing (1+ε) hopset is a set of additional
edges H such that:

• Every edge (u, v) ∈ H has weight w(u, v) := distG(u, v).

• For every pair of nodes (s, t) in the transitive closure of G, there exists an s t path π(s, t) in G∪H
that uses at most D edges, and which satisfies w(π(s, t)) ≤ (1 + ε) · distG(s, t).

When ε = 0, the path π(s, t) is required to be an exact shortest path in G∪H, so we call H an exact hopset.

1

A nice feature of the folklore sampling algorithm is that it extends immediately to hopsets with no real
changes. This yields:

Theorem 3 (Folklore). Every n-node graph has a Õ(n1/2)-diameter-reducing (exact or (1 + ε)) hopset on
O(n) edges.

Thus, the hunt is back on for a hopset construction algorithm that beats folklore sampling. Kogan and
Parter partially achieved this goal: they extended their shortcut set construction to also show a new diameter
bound of Õ(n2/5) for (1 + ε) hopsets [29]. Bernstein and Wein [7] then developed a clever extension of the
Kogan-Parter construction, further improving the bound for (1 + ε) hopsets to match the one achieved for
shortcut sets:

Theorem 4 ([7,29]). The folklore algorithm is polynomially suboptimal for (1+ε) hopsets. In particular,

for all fixed ε > 0, every (possibly directed and weighted) n-node graph has a Õ(n1/3)-diameter-reducing-
shortcut set on O(n) edges.

Still, both of these improvements required ε > 0, and so neither extended to exact hopsets, which still
remained as the last holdout where the folklore algorithm had not been improved. The only progress for
exact hopsets came on the lower bounds side, where a separate work of Kogan and Parter [29] showed a
diameter lower bound of Ω(n1/3) (see also [9]). Was it possible to translate the recent progress on shortcut
sets and (1 + ε) hopsets to exact hopsets, and finally move past folklore?

1.1 Our Results

folklore

[7] [29][28]

[22] [22]

upper bounds

new lower bounds

old lower bounds

Exact Hopsets (1 + ε) Hopsets Shortcut Sets

O(n)-size Edge Set vs. Weighted Input Graph

Diameter

n1/2

n1/3

n1/6

Figure 1: State-of-the-art bounds for O(n)-size hopsets and shortcut sets, before and after this paper

Our main results are polynomial improvements on the lower bounds for O(n)-size shortcut sets and
hopsets, which we depict in Figure 1. These lower bounds confirm that the folklore algorithm for exact
hopsets is essentially the right one, showing that its diameter bound is optimal up to logn factors:

Theorem 5 (New). The folklore algorithm is near-optimal for exact hopsets. In particular, there are

n-node graphs on which any exact hopset on O(n) edges reduces diameter to Ω̃(n1/2).

2

This provides a strong separation between exact and (1 + ε) hopsets. Our lower bound holds for both
directed and undirected input graphs, but it critically uses edge weights and thus does not extend to un-
weighted graphs as well. Our lower bound in the body of the paper (Theorem 7) is actually a bit more general
than the one stated in Theorem 5 above. Although it is popular to focus on hopsets of size O(n), one can
also ask about hopsets of size O(p) for any parameter p ∈ [1, n2]. The folklore sampling algorithm extends
to any p, by adjusting the size of the sampled vertex set to p1/2. Our generalized lower bound establishes
that the diameter bound from folklore sampling is near-optimal in the entire range of parameters.

We now turn to shortcut sets. Our new lower bound is the following:

Theorem 6 (New). There are n-node directed input graphs on which any shortcut set on O(n) edges reduces

diameter to Ω̃(n1/4).

This improves over the previous lower bound of Ω(n1/6) by Huang and Pettie [22], but a polynomial gap

to the upper bound of Õ(n1/3) still remains [29]. It is an interesting open question is to narrow this gap
further. We note that every (1 + ε) hopset is also a shortcut set, and so this lower bound extends to (1 + ε)
hopsets as well.1 In the body of the paper (Theorem 8) we prove a more general theorem giving improved
lower bounds against O(p) size hopsets, but this time the parameter range in which our extended theorem
is nontrivial is only p ∈ [1, n5/4].

1.2 Other Related Work and Open Questions

This work is only concerned with the existential bounds that can be achieved for shortcut sets and hopsets.
Some prior work in the area has also focused on constructions that are efficient in the appropriate computa-
tional model. This was perhaps most famously achieved by Fineman [15], whose breakthrough algorithm for
parallel reachability was centered around a new shortcut set construction. His construction reduced diameter
to Õ(n2/3) using O(n) edges; this is a worse diameter bound than the one achieved by folklore sampling, but
crucially its work-efficiency was much better than folklore. This was later improved by Jambulapati, Liu,
and Sidford [24], who achieved roughly the diameter bound from folklore sampling with work-efficiency com-
parable to Fineman [15]. Relatedly, another work of Kogan and Parter [27] gave a construction improving
the (centralized) construction time of their shortcut set algorithm.

This work focuses on hopsets for weighted graphs, but hopsets can be studied for unweighted graphs as
well. Specifically for (1 + ε) hopsets in undirected unweighted graphs, it is known that far better diameter
bounds are achievable. In particular, following preliminary constructions in [11, 26, 32], constructions of
Huang and Pettie [23] and Elkin and Neiman [14] showed that one can reduce diameter to no(1) using O(n)
hop edges. These papers actually provide a more fine-grained tradeoff between hopset size, ε, and diameter
bound, which is shown to be essentially tight in [1]. Hopsets for undirected unweighted graphs with larger
stretch values were studied in [4], and a unification of the various hopset constructions in this setting was
developed in [31].

This work focuses on shortcut/hopset bounds in the setting where the edge budget is O(n), or more
generally some function of n. These objects are also sometimes studied in a related setting where the edge
budget is O(m), where m is the number of edges in the input graph. Lower bounds in this setting were
achieved in [21, 22, 30]; most recently, Lu, Williams, Wein, and Xu showed graphs where any O(m)-size
shortcut set reduces diameter to Ω(n1/8). On the upper bounds side, it is easy to get upper bounds as
functions of both m and n – for example, folklore sampling with |S| = m1/2 sampled nodes yields a diameter

bound of Õ(n/m1/2), and the construction by Kogan and Parter [29] implies a bound of Õ(n2/3/m1/3) for
O(m)-size shortcut sets. However, it is an interesting open problem to construct O(m)-size shortcut/hopsets
with nontrivial diameter upper bounds that depend only on n. By “nontrivial,” we mean that one can
always assume without loss of generality that the input graph is connected, and thus m = Ω(n), and so a
construction of O(n)-edge shortcut/hopsets is always valid in the O(m)-setting. A nontrivial construction is
one that beats that bound.

1Note that, since the shortcut set lower bound is only for directed graphs, the lower bound only extends to (1 + ε) hopsets
for directed input graphs. For (1 + ε) hopsets in undirected (but possibly weighted) input graphs, Elkin, Gitlitz, and Neiman
proved that much better diameter can be achieved [13].

3

Open Question 1. Prove that, for any m, every n-node, m-edge directed graph has an O(m)-edge short-
cut/hopset that reduces diameter to O(nc), where c is a constant strictly less than the one that can currently
be achieved for O(n)-edge shortcut/hopsets.

Finally, we remark that the setting of exact hopsets in unweighted graphs seems to be unexplored.
Although unpublished to our knowledge, one can obtain a lower bound by applying a standard analysis
in [9, 22, 28] to the n-node undirected unweighted distance preserver lower bound graphs constructed by
Coppersmith and Elkin [12]. This would imply that any O(n)-size exact hopset on the Coppersmith-Elkin
graphs would reduce diameter to Ω(n1/5). Our new hopset lower bound can also be interpreted as an
improved lower bound for this setting:2

Corollary 1. There are n-node undirected unweighted input graphs on which any exact hopset on O(n) edges

reduces diameter to Ω̃(n1/4).

But on the upper bounds side, folklore sampling remains the best known algorithm, and it only reduces
diameter to Õ(n1/2). It would be interesting to narrow this gap, and in particular to confirm or refute
whether folklore sampling is near-optimal.

Open Question 2. Is the folklore algorithm near-optimal for exact hopsets in unweighted graphs? Or,
alternately, does every n-node unweighted graph have an O(n)-size exact hopset that reduces diameter to
O(n1/2−c), for some c > 0?

2 Technical Overview

2.1 Recap of Prior Work

In order to explain the strategy used for our improved lower bounds, it will be helpful to first recall the
construction of Huang and Pettie [22] for shortcut set lower bounds, and the construction of Kogan and
Parter [28] for hopset lower bounds. The Huang-Pettie shortcut set lower bound is a construction of a
directed graph G and a set of paths Π with the following properties:

1. Each path in Π is the unique path in G between its endpoints

2. The paths in Π are pairwise edge-disjoint

3. There are |Π| = cn paths, where c is a constant that can be selected as large as we want

4. Subject to the above constraints, we want to make the paths in Π as long as possible. In particular,
in [22], every path in Π has the same length ℓ = Θ(n1/6).

Let us see why these properties imply a lower bound. Each time we add an edge (u, v) to our hopset H ,
by uniqueness and edge-disjointness of paths in Π, there can be at most one path π ∈ Π where the distance
between its endpoints decreases due to (u, v). Thus, if we build a shortcut set of size |H | = |Π| − 1, then for
at least one path π ∈ Π the distance between its endpoints is the same in G as in G ∪ H . Thus, the final
diameter of the graph is at least ℓ = Θ(n1/6), giving the lower bound.

The Kogan-Parter exact hopset lower bound is similar, except that each path π ∈ Π is only required to
be a unique shortest path between its endpoints in the weighted graph G. This is a more relaxed constraint
than requiring π to be the unique path of any kind, and this additional freedom in the construction lets us
improve the path lengths to ℓ = Θ(n1/3). Besides that, the argument is identical.

2This corollary is not immediate from the discussion so far: since our shortcut set lower bound is directed, it is not clear
that it would imply a lower bound against undirected unweighted exact hopsets. This holds specifically because our shortcut
set lower bound construction happens to be layered.

4

2.2 Allowing Paths to Overlap

The change in our construction is a relaxation of item (2); that is, the paths in our constructions are not
pairwise edge-disjoint. This has appeared in prior work only in a rather weak form: all of the lower bounds
against O(m)-size shortcut sets use paths that may intersect pairwise on a single edge [21, 22, 30]. These
constructions begin with a system of paths as above, and then apply a tool called the alternation product
which introduces path overlap. However, the alternation product is not a useful tool for our purposes, and
it does not appear in this paper at all. The alternation product harms the path lengths of the construction
(relative to its number of nodes), in exchange for also reducing the number of edges m relative to the number
of paths in the construction. This is useful for constructing lower bounds against O(m)-size shortcut/hopsets,
but is not helpful for our goal of constructing lower bounds against O(n)-size shortcut/hopsets.

In our construction, paths that may intersect pairwise on polynomially many edges. This property arises
from an entirely different technique, and for an entirely different reason: our goal is to use this overlap to
get improved path lengths. Let us first observe why we can tolerate some path overlap while maintaining
correctness of the lower bound. Suppose our shortcut set has a budget of cn edges, and we construct a graph
G and a set of |Π| = 2cn paths, where each path has length ℓ and each path is the unique path between its
endpoints. Let P be the set of node pairs that are the endpoints of paths in Π, and consider the following
potential function over shortcut sets H , which simply sums distances over critical pairs:

φ (H) :=
∑

(s,t)∈P

distG∪H(s, t)

Initially, we have φ(∅) = |Π| · ℓ = 2cnℓ. Then we add edges to our shortcut set one at a time, gradually
reducing φ. How much could any given shortcut edge (u, v) ∈ H reduce φ? Clearly it could reduce by ℓ− 1,
in the case where (u, v) are a pair in P , since this reduces dist(u, v) from ℓ to 1. This is acceptable: if all
edges reduce φ by at most ℓ− 1, then the final potential would be

φ(H) ≥ φ(0) − (ℓ− 1)cn = 2ℓcn− (ℓ− 1)cn = (ℓ+ 1)cn.

Thus, over the |P | = 2cn critical pairs, the average distance in G ∪H is Θ(ℓ), and so the lower bound still
holds.

So the only overlap constraint we need to enforce in our lower bound is that no shortcut edge can reduce
the potential φ by more than ℓ. This is a much more forgiving constraint than edge-disjoint paths. For
example, for two internal nodes u, v with distG(u, v) = ℓ/2, we could allow two different paths to coincide
on a u v subpath: adding (u, v) to the shortcut set would then reduce φ by only 2 · (ℓ/2 − 1) = ℓ− 2. In
general, for two nodes at distance ℓ/x, we can safely allow x paths to coincide on the subpath between these
nodes while maintaining correctness of the lower bound.

2.3 Constructing Overlapping Paths

The previous part explains why we are allowed overlapping paths, but it is still not clear how to leverage
this freedom into an improved lower bound construction. This is where our technical contribution lies. It is
again a bit easier to explain the new idea in the context of shortcut sets, but the intuition is essentially the
same in the context of hopsets.

Let us return to the previous lower bound constructions. For the shortcut lower bounds of [22], one
constructs an (ℓ + 1)-layered directed graph where the nodes in each layer are a copy of a grid within Z

2.
The next step is to construct a set of convex vectors C. A key perspective shift in this paper is that we
think of the vectors in C as playing two independent roles in this previous construction:

• They play the role of edge vectors : we include an edge from a node u in layer i to a node v in layer
i+ 1 iff the difference between the grid points u, v is a vector v − u = ~c ∈ C.

• They also play the role of (objective) direction vectors. The paths π ∈ Π are indexed by a node u in
the first layer and a vector ~c ∈ C, and we generate πu,~c by using u as its first node, and then iteratively
selecting its node in the next layer by adding ~c to the node in the previous layer. (A technical detail is
that only choices of (u,~c) are allowed that reach the last layer without the path falling off the side of the

5

grid.) Notice the argument for path uniqueness: using ~c as an objective direction, due to the convexity
of the vectors in C, the edge vector ~c itself is the one that maximizes progress in the direction ~c. Thus,
no alternate path beginning at u can reach the grid point u + ℓ~c within ℓ steps, since it necessarily
makes less progress in the direction of ~c, implying path uniqueness.

Our constructions disentangle these two uses of the vector set C: we depart from prior work by explicitly
using a separate edge vector set C and direction vector set D. These vector sets crucially do not have
the same size: instead we will have |D| ≫ |C|, and this difference allows for a technical optimization of
parameters leading to improved lower bounds. Roughly, we can choose D large enough to have |Π| = Θ(n),
while also allowing |C| ≪ n. This smaller size |C| can be achieved using shorter convex vectors, which in
turn lets us pack more layers into the construction without worrying about paths falling off the sides of the
grid before reaching the final layer.

We use the following generalized process for iteratively generating critical paths. Each path π ∈ Π is
indexed by a node u in the first layer and a direction vector ~d ∈ D, and at each layer, we greedily select the
edge vector ~c ∈ C that maximizes progress in the objective direction ~d. Since |D| ≫ |C|, by necessity many
different objective directions will all select the same edge vector at each layer. This leads to overlapping
paths discussed above, but more technical ingredients are still needed to ensure that paths don’t overlap too
much. We explain these next.

2.4 Symmetry Breaking

There is an important problem with the construction sketched so far. Consider two nearby direction vectors
~d1, ~d2 ∈ D, which have the same optimizing edge vector ~c. Then for any start node u, the paths πu, ~d1

, πu, ~d2

will simply select the same edge vector ~c at each layer, and these two paths will entirely coincide. In other
words, the “extra paths” bought by using |D| ≫ |C| are actually just identical copies of a much smaller set
of paths, which is not interesting or useful.

We therefore need to somehow break the symmetry between paths that use nearby direction vectors,
getting them to eventually choose different edge vectors at some layer to split apart. This is where our lower
bound constructions diverge; we will need to use two different symmetry-breaking strategies for shortcut and
hopset lower bounds.

Hopset Lower Bounds and ε-Shifting. In our hopset lower bound construction G, like [28], our vertices
can be interpreted as points in R

2. More specifically, they initially form a square grid within the integer
lattice Z

2, and the columns of this grid act as layers of G. Our edges initially have the form e = (v, v + ~c)
for edge vectors ~c ∈ C; edge vectors always have first coordinate 1, so that they go from one layer to the
next. Initially, the weight of an edge is the Euclidean distance between its endpoints.

Our symmetry-breaking step is a random operation where for each layer i we choose a random variable
εi sampled uniformly from the interval (0, 1), and we shift the ith layer upwards so that its nodes are offset
εi higher than the nodes in the previous layer. The shifts therefore compound across the layers. See Figure
2 for a picture.

Our ε-shifting strategy does not affect the edge set of G, nor does it affect the set of direction vectors in
any way, but it does affect the Euclidean distance between nodes in adjacent layers, and hence it changes
the edge weights. It achieves symmetry-breaking for roughly the following reason. In our greedy generation
of paths, a path with direction vector ~d will use the closest edge vector ~c at each level. If two paths π1 and
π2 with direction vectors ~dj , ~dk ∈ D intersect at a node v in the ith layer of G, then there will be an interval
(a, b) ⊆ (0, 1) such that if εi+1 lands in (a, b), then π1, π2 have different closest edge vectors after shifting.
Thus, in this event, the paths π1 and π2 split apart at v and never reconverge (this is formalized in Lemma 3).
The size of the interval (a, b), and hence the probability that it gets hit by εi+1, is proportional to the distance

between ~dj and ~dk. The effect is that paths generated by nearby direction vectors tend to intersect on long
subpaths, while paths generated by far apart direction vectors intersect on shorter subpaths or perhaps just
a single node, but with high probability all pairs of paths split apart eventually. Paths generated by the
same direction vector remain parallel, and do not intersect at all.

There is a technical detail remaining: we still need to prove that each critical path is a unique shortest
path between its endpoints. In [28], the critical paths correspond to lines in Euclidean space, and since edge

6

ε1

ε2

ε3

ε4

ε5

Figure 2: Vertex set of the graph G used for our lower bounds against exact hopsets. Each parameter εi is
the amount the ith column is shifted upwards in the plane, relative to the previous column; the {εi} values
are chosen uniformly and independently from the interval (0, 1).

weights correspond to Euclidean distances, the analogous unique shortest paths property follows instantly
from the geometry of R2. Since our critical paths are generated by a more involved process, it is much more
technical to prove that they are unique shortest paths. Proposition 3 contains the optimization lemma that
needs to hold for our process to generate unique shortest paths, and to push it through, it turns out that
we essentially need the derivative of edge weights to be proportional to Euclidean distances. We therefore
differ again from [28] by squaring all of our edge weights, meaning that our graph metric is ultimately quite
different from R

2. See Section 4.4 for additional details.

Shortcut Set Lower Bounds and Edge Vector Subsampling. Shortcut set lower bounds are un-
weighted, and this makes the technique of ε-sampling essentially useless in this setting, since it only affects
edge weights in the construction and it does not change the edge set. For shortcut sets, we need an entirely
different symmetry-breaking strategy that actually changes the edge set from layer to layer.

Our starting graph is similar to the one used by Huang and Pettie [22], mentioned earlier. Each layer of
the graph is an independent copy of a square grid in Z

2. We generate a large convex set W ⊆ R
2; initially, W

plays the role of both edge vectors C and direction vectors D. However, for the sake of symmetry-breaking,
we do not put edges between all nodes in adjacent layers whose difference is a vector in W . Instead, at each
layer i we randomly sample exactly two adjacent vectors ~cλi ,~cλi+1 ∈ W , and we use only these two edge
vectors to generate edges to the next layer. This is depicted in Figure 3.

The fact that the sampled vectors are adjacent, and hence typically close together, allows for a key
optimization in the construction. The rate at which paths drift apart from each other is much slower than
in [22], even when they are generated by very different direction vectors. This allows us to apply a carefully-
chosen translation of the grid from layer to layer, in order to keep all of the paths contained in the grid.
This in turn lets us pack many more layers into the construction while still ensuring that all of our paths
stay within the confines of the grid.

As before, paths π ∈ Π are generated greedily: for direction vector ~d ∈ D, an associated path π will
traverse the sampled edge vector in each layer that maximizes progress in the objective direction ~d. For
two paths π1, π2 with direction vectors ~dj , ~dk ∈ D and v ∈ π1 ∩ π2, these paths split at v in the event that

the sampled edge vectors ~cλi ,~cλi+1 ∈ W lie between ~dj and ~dk in D. This again leads to behavior where
paths generated by nearby direction vectors tend to coincide on long subpaths, while paths generated by
far apart direction vectors have smaller intersections, but with high probability all pairs of paths split apart
eventually. Paths with the same direction vector again remain parallel. This is formalized in Lemma 10.

7

Figure 3: Our symmetry-breaking strategy for shortcut set lower bounds starts with a large set of convex
vectors, but independently subsamples adjacent pairs of convex vectors to generate the edges between adja-
cent layers. In this picture, there are 4 edge vectors and 4 layers, but only two of the edge vectors (in blue)
are sampled and available between any given pair of adjacent layers. For clarity, we have only drawn the
edges leaving one particular node in each layer.

3 Preliminaries

We use the following notations:

• For a path π, we use |π| to denote the number of nodes in π. This is 1 different from the (unweighted)
length of π. In weighted graphs, we write w(π) for the sum of edge weights in π.

• We write distG(s, t) for the shortest path distance from node s to node t in graph G (counting edge
weights, if G is weighted). We write hopdistG(s, t) for the least number of edges contained in any
s t shortest path.

• We use 〈·, ·〉 to denote the standard Euclidean inner product.

4 Exact Hopsets

In this section we will prove the following theorem.

Theorem 7. For any parameter p ∈ [1, n2], there exists an n-node weighted undirected graph G = (V,E,w)
such that for any exact hopset H of size |H | ≤ p where p ∈ [1, n2], the graph G ∪ H must have hopbound

Ω
(

n
p1/2 log1/2 n

)
.

We will prove this via a construction of the following type:

Lemma 1. For any p ∈ [1, n2], there is an infinite family of n-node undirected weighted graphs G = (V,E,w)
and sets Π of |Π| = p paths in G with the following properties:

• G has ℓ = Θ
(

n
p1/2 log1/2 n

)
layers, and each path in Π starts in the first layer, ends in the last layer,

and contains exactly one node in each layer.

• Each path in Π is the unique shortest path between its endpoints in G.

8

• For any two nodes u, v ∈ V , there are at most ℓ
hopdistG(u,v) paths in Π that contain both u and v.

Next we show how Lemma 1 implies Theorem 7.

4.1 Proving Theorem 7 using Lemma 1

Fix an n and p ∈ [1, n2]. Let G = (V,E,w) be the graph in Lemma 1 with associated set Π of |Π| = 2p
paths in G. Let H be an exact hopset of size |H | ≤ p. Let P ⊆ V × V be the set of node pairs that are
the endpoints of paths in Π. We define the following potential function over hopsets H , which simply sums
hopdistances over critical pairs:

φ (H) :=
∑

(s,t)∈P

hopdistG∪H(s, t)

Observe that by Lemma 1, we have φ(∅) =
∑

(s,t)∈P hopdistG(s, t) = |Π| · (ℓ − 1) = 2p(ℓ − 1). Now fix a

pair of nodes (x, y) ∈ V × V , and let Π′ ⊆ Π be the set of paths π ∈ Π such that x, y ∈ π. We make the
following observations.

• For all (s, t) ∈ P , if the unique shortest s t-path π ∈ Π in G is not in Π′, then

hopdistG∪{(x,y)}(s, t) = hopdistG(s, t).

• For all (s, t) ∈ P , if the unique shortest s t-path π ∈ Π in G is in Π′, then

hopdistG(s, t) − hopdistG∪{(x,y)}(s, t) ≤ hopdistG(x, y).

Then by Lemma 1, φ(∅) − φ({(x, y)}) ≤ |Π′| · hopdistG(x, y) ≤ ℓ. We obtain the following sequence of
inequalities:

φ(∅) − φ(H) ≤
∑

(x,y)∈H

(φ(∅) − φ({(x, y)})) ≤ ℓ · |H | ≤ ℓp.

Rearranging, we find that
φ(H) ≥ φ(∅) − ℓp ≥ 2p(ℓ− 1) − ℓp = (ℓ− 2)p.

Thus, over the |P | = 2p pairs of path endpoints in P , the average hopdistance in G∪H is Θ(ℓ), and so there
must be a pair (s, t) ∈ P such that hopdistG∪H(s, t) = Θ(ℓ) by the pigeonhole principle.

4.2 Constructing G

Our goal is now to prove Lemma 1. Let n be a sufficiently large positive integer, and let p ∈ [n, n2].3 For
simplicity of presentation, we will frequently ignore issues related to non-integrality of expressions that arise
in our construction; these issues affect our bounds only by lower-order terms. Initially, all edges (u, v) in G
will be directed from u to v; we will convert G into an undirected graph in the final step of our construction.

Vertex Set V .

• Let ℓ be a positive integer parameter of the construction to be specified later. Our graph G will have
ℓ layers L1, . . . , Lℓ, and each layer will have n/ℓ nodes, ordered from 1 to n/ℓ. Initially, we will label
the jth node in layer Li with tuple (i, j). We will interpret the node labeled (i, j) as a point in R

2

with integer coordinates. These n nodes arranged in ℓ layers will be the node set V of graph G.

• We now perform the following random operation on the node labels of V . For each layer Li, i ∈ [1, ℓ],
uniformly sample a random real number in the interval (0, 1) and call it εi. Now for each node in layer
Li of G labeled (i, j), relabel this node with the label

(
i, j +

j∑

k=1

εk

)
.

3We will handle the case where p ∈ [1, n] later.

9

Again, we interpret the resulting labels for nodes in V as points in R
2. In a slight abuse of notation,

we will treat v ∈ V as either a node in G or a point in R
2, depending on the context. Less formally:

for each layer i, this step shifts the nodes in layer i vertically upwards to be εi higher than the previous
layer (and thus, these vertical shifts compound across the layers). See Section 2 for intuition on this
design choice.

Edge Set E.

• All the edges in E will be between consecutive layers Li, Li+1 of G. We will let Ei denote the set of
edges in G between layers Li and Li+1.

• Just as our nodes in V correspond to points in R
2, we can interpret the edges E in G as vectors in R

2.
In particular, for every edge e = (v1, v2) ∈ E, we identify e with the corresponding vector ~ue := v2−v1.
Note that since all edges in E are between adjacent layers Li and Li+1, the first coordinate of ~ue is 1 for
all e ∈ E. We will use ue to denote the 2nd coordinate of ~ue, i.e., for all e ∈ E, we write ~ue = (1, ue).

• We begin our construction of E by defining the following set C of vectors:

C :=
{

(1, x) | x ∈
[
0,

n

4ℓ2

]}
.

We will refer to the vectors in C as edge vectors.

• For each i ∈ [1, ℓ− 1], let
Ci := {~c+ (0, εi+1)}~c∈C .

Intuitively: we want the edge vectors in C to point between nodes in adjacent layers, and due to the
random vertical shifts between layers applied to the nodes, we need to apply a similar shift to C at
each layer to adjust for this.

• For each v ∈ Li and edge vector ~c ∈ Ci, if v+~c ∈ V , then add edge (v, v+~c) to Ei. After adding these
edges to Ei, we will have that

Ci = {~ue | e ∈ Ei}.
Additionally, note that the case v + ~c 6∈ V only occurs if v + ~c = (i + 1, j) for some j that is higher

than any point in the (i+ 1)st layer; that is, j > n
ℓ +

∑i+1
k=1 εk.

• For each e ∈ E, if ~ue = (1, ue), then we assign edge e the weight w(e) := u2e.

This completes the construction of our graph G = (V,E,w).

4.3 Direction Vectors, Critical Pairs, and Critical Paths

Our next step is to generate a set of critical pairs P ⊆ V ×V , as well as a set of critical paths Π. Specifically,
there will be one critical path πs,t ∈ Π going between each critical pair (s, t) ∈ P , and we will show that
πs,t is the unique shortest (weighted) s t path in G. We will identify our critical pairs and paths by first
constructing a set of vectors D ⊆ R

2 that we call direction vectors, which we define next.

Direction Vectors D.

• Let q ∈ Z≥0 be a sufficiently large integer parameter to be specified later. The size of q will roughly
correspond to the maximum number of edges shared between any two critical paths in G.

• We choose our set of direction vectors D to be 4

D :=

{(
1, x+

y

q

) ∣∣x ∈
[
1,

n

4ℓ2
− 1
]

and y ∈ [0, q]

}
.

Note that there are q + 1 direction vectors between adjacent vectors (1, x), (1, x + 1) ∈ C for x 6= 0.
Additionally, adjacent direction vectors in D differ only by 1/q in their second coordinate.

4Note that if (1, x) ∈ D, then x ∈
[

1, n
4ℓ2

]

. However, if (1, x) ∈ C, then x ∈
[

0, n
4ℓ2

]

. This +1 gap between C and D is

needed to accommodate the ε-shifting operation used to obtain Ci, and is relevant in the proof of Lemma 3.

10

Proposition 1. With probability 1, for every i ∈ [1, ℓ− 1] and every direction vector ~d = (1, d) ∈ D, there
is a unique vector (1, c) ∈ Ci that minimizes |c− d| over all choices of (1, c) ∈ Ci.

Proof. There are only finitely many choices of εi+1 ∈ (0, 1) that result in there being two distinct vectors
(1, c1), (1, c2) ∈ Ci such that |c1 − d| = |c2 − d|. We conclude that the claim holds with probability 1.

In the following we assume that this event holds, i.e., there is a unique minimizing vector in Ci for all ~d ∈ D.
Each of our critical paths π in Π will have an associated direction vector ~d ∈ D, and for all i ∈ [1, ℓ − 1],

path π will take an edge vector in Ci that is closest to ~d in the sense of Proposition 1 (see Section 2 for more
intuition).

Critical Pairs P and Critical Paths Π.

• We first define a set S ⊆ L1 containing half of the nodes in the first layer L1 of G:

S :=
{

(1, j + ε1) ∈ L1 | j ∈
[
1,
n

2ℓ

]}
.

We will choose our set of demand pairs P so that P ⊆ S × Lℓ. For every node s ∈ S and direction
vector ~d ∈ D, we will create a critical pair (s, t) ∈ S ×Lℓ and a corresponding critical path πs,t to add
to P and Π.

• Let v1 ∈ S, and let ~d = (1, d) ∈ D. The associated path π has start node v1. We iteratively grow π,
layer-by-layer, as follows. Suppose that currently π = (v1, . . . , vi), for i < ℓ, with each vi ∈ Li. To
determine the next node vi+1 ∈ Li+1, let Evi

i ⊆ Ei be the edges in Ei incident to vi, and let

ei := argmine∈E
vi
i

(|ue − d|).
By definition, ei is an edge whose first node is vi; we define vi+1 ∈ Li+1 to be the other node in ei,
and we append vi+1 to π.

• This completes our construction of P and Π. Note that

– we will show that the paths generated in this way have distinct endpoints (with high probability),

and therefore |P | = |S||D| ≥ n2q
16ℓ3 , and

– every path πs,t ∈ Π contains one node in each layer, and therefore its number of nodes is |πs,t| = ℓ.

An important feature for correctness of our construction is that, when we iteratively generate paths, we
never reach a point vi such that vi + Ci 6⊆ Li+1 (i.e. vi + ~c 6∈ Li+1 for some ~c ∈ Ci). This follows by
straightforward counting, based on the maximum second coordinate used in our edge vectors C and also on
our choice of start nodes S as only the “lower half” of the nodes in the first layer. The following proposition
expresses this correctness in a particular way, pointing out that for any node v lying on a generated path π,
none of the edges from v to the following layer are omitted from the graph due to falling off the top of the
grid with a too-high second coordinate.

Proposition 2. Let v ∈ Li ∩ π for some i ∈ [1, ℓ− 1] and π ∈ Π. Then {~ue | e ∈ Ev
i } = Ci.

Proof. Let v =: (i, j), and let (s, t) ∈ P be the endpoints of π. Since s ∈ S, we have s = (1, s2) ∈ R
2, where

s2 ≤ n

2ℓ
+ ε1.

Moreover, since for all e ∈ Ei the corresponding vector ~ue = (1, ue) satisfies εi+1 ≤ ue ≤ n
4ℓ2 + εi+1, we have

j ≤ n

2ℓ
+ (i− 1) · n

4ℓ2
+

i∑

k=1

εk ≤ 3n

4ℓ
+

i∑

k=1

εk.

Then observe that for all ~c = (1, c) ∈ Ci, we have that v + ~c = (i + 1, j + c), where

j + c ≤
(

3n

4ℓ
+

i∑

k=1

εk

)
+
(n

4ℓ2
+ εi+1

)
≤ n

ℓ
+

i+1∑

k=1

εk.

Thus (i+1, j+c) ∈ Li+1, and so we have (v, v+~c) ∈ Ev
i for all ~c ∈ Ci. It follows that {~ue | e ∈ Ev

i } = Ci.

11

4.4 Critical paths are unique shortest paths

We now verify that graph G and paths Π have the unique shortest path property as stated in Lemma 1.

Lemma 2 (Unique shortest paths). With probability 1, for every (s, t) ∈ P , path πs,t ∈ Π is a unique
shortest (weighted) s t-path in G.

We begin with a technical proposition:

Proposition 3. Let b, x1, . . . , xk ∈ R. Now consider x̂1, . . . , x̂k such that

• |x̂i − b| ≤ |xi − b| for all i ∈ [1, k], and

•

∑k
i=1 xi =

∑k
i=1 x̂i.

Then
k∑

i=1

x2i ≥
k∑

i=1

x̂2i ,

with equality only if |x̂i − b| = |xi − b| for all i ∈ [1, k].

Proof. We will prove the equivalent statement
∑k

i=1(x̂2i − x2i) ≤ 0. Fix an i ∈ [1, k]. First we will show that

x̂2i − x2i ≤ 2b(x̂i − xi).

We split our analysis into four cases:

• Case 1: b ≤ x̂i ≤ xi. In this case, x̂2i − x2i = (x̂i + xi)(x̂i − xi) ≤ 2b(x̂i − xi).

• Case 2: xi ≤ x̂i ≤ b. In this case, x̂2i − x2i = (x̂i + xi)(x̂i − xi) ≤ 2b(x̂i − xi).

• Case 3: x̂i ≤ b ≤ xi. In this case, x̂2i − x2i = (x̂i + xi)(x̂i − xi) ≤ 2b(x̂i − xi), since b− x̂i ≤ xi − b.

• Case 4: xi ≤ b ≤ x̂i. In this case, x̂2i − x2i = (x̂i + xi)(x̂i − xi) ≤ 2b(x̂i − xi), since x̂i − b ≤ b− xi.

Then

k∑

i=1

(x̂2i − x2i) ≤ 2b

k∑

i=1

(x̂i − xi) = 0.

This inequality is strict if |x̂i − b| < |xi − b| for some i ∈ [1, k].

Using Proposition 3, we can now prove Lemma 2.

Proof of Lemma 2. Fix an (s, t) ∈ P , and let (1, x) ∈ D be the direction vector associated with πs,t. Let
x̂1, . . . , x̂ℓ−1 ∈ R be real numbers such that the ith edge of πs,t has the corresponding vector (1, x̂i) ∈ Ci for
i ∈ [1, ℓ− 1]. Now consider an arbitrary s t-path π in G, where π 6= πs,t. Since all edges in G are directed
from Li to Li+1, it follows that π has ℓ− 1 edges and the ith edge of π is in Ei. Let x1, . . . , xℓ−1 ∈ R be real
numbers such that the ith edge of π has the corresponding vector (1, xi) ∈ Ci for i ∈ [1, ℓ− 1]. Now observe
that since π and πs,t are both s t-paths, it follows that

ℓ−1∑

i=1

x̂i =

ℓ−1∑

i=1

xi.

Additionally, by our construction of πs,t, it follows that

|x̂i − x| ≤ |xi − x|
for all i ∈ [1, ℓ− 1]. In particular, since π 6= πs,t, there must be some j ∈ [1, ℓ− 1] such that x̂j 6= xj , and so
by Proposition 1, |x̂j − x| < |xj − x| with probability 1. Then by Proposition 3,

w(πs,t) =
∑

e∈πs,t

w(e) =
ℓ−1∑

i=1

x̂2i <
ℓ−1∑

i=1

x2i =
∑

e∈π

w(e) = w(π).

Path πs,t is a unique shortest s t-path in G, as desired.

12

4.5 Critical Paths Intersection Properties

Before finishing our proof of Lemma 1, we will need to establish several properties of the critical paths in Π.

Proposition 4. Let π1, π2 ∈ Π be two critical paths with the same corresponding direction vector ~d ∈ D.
Then π1 ∩ π2 = ∅.

Proof. Let vji ∈ Li denote the ith node of πj , where j ∈ {1, 2}. Note that since π1 and π2 share the same

direction vector ~d, the edges (v1i , v
1
i+1) and (v2i , v

2
i+1) have the same corresponding vector ~ui ∈ Ci for all

i ∈ [1, ℓ − 1] by Proposition 2. By our construction of Π, for each node in the first layer v ∈ L1, v belongs

to at most one path π ∈ Π with direction vector ~d, so v11 6= v21 . Then for all i ∈ [1, ℓ],

v1i = v11 +

i−1∑

i=1

~ui 6= v21 +

i−1∑

i=1

~ui = v2i .

Let π1, π2 ∈ Π be two critical paths, and let v ∈ V be a node in G. We say that paths π1 and π2 split at
v if v ∈ π1 ∩ π2 and the node following v in π1 is distinct from the node following v in π2, and we simply
say that π1 and π2 split if there exists some v ∈ V such that they split at v. Note that since π1, π2 ∈ Π are
unique shortest paths in G, paths π1 and π2 can split at most once.

Lemma 3. Fix a node v ∈ Li, where i ∈ [1, ℓ− 1], and let π1, π2 ∈ Π be critical paths with direction vectors
(1, d1), (1, d2) ∈ D such that v ∈ π1 and v ∈ π2. Then paths π1 and π2 split at v with probability at least
min {|d1 − d2|, 1}.5

Proof. By Proposition 4, d1 6= d2, and assume wlog that d1 < d2. Let F be the event that the random
variable εi+1 was sampled so that

(Z + εi+1 + 1/2) ∩ (d1, d2) 6= ∅,

(where (d1, d2) ⊆ R is the open interval with endpoints d1 and d2). Our proof strategy is to show that F
implies that π1, π2 split at v, and then to show that F occurs with the claimed probability.

F implies that π1, π2 split at v. Assume that F occurs. By construction there is a nonnegative integer
c ∈ Z such that c + εi+1 + 1/2 is in the interval (d1, d2). Since (d1, d2) ⊆

(
1, n

4ℓ2

)
, it follows that vectors

(1, c+ εi+1), (1, c+ εi+1 + 1) ∈ R
2 are in Ci, because 0 ≤ c ≤ n

4ℓ2 − 1. More generally, by our choice of sets
C and D there are vectors (1, c1), (1, c2) ∈ Ci such that

c1 ≤ d1 ≤ c1 + 1 and c2 ≤ d2 ≤ c2 + 1.

Now we claim that
argmin(1,x)∈Ci

|x− d1| 6= argmin(1,x)∈Ci
|x− d2|.

To see this, suppose for the sake of contradiction that there is a vector (1, y) ∈ Ci such that

(1, y) = argmin(1,x)∈Ci
|x− d1| = argmin(1,x)∈Ci

|x− d2|.

Then using our assumption that d1 < c+ εi+1 + 1/2 < d2, we obtain

y − d1 ≤ |y − d1| ≤ min{|c1 − d1|, |(c1 + 1) − d1|} ≤ 1/2 < (c+ εi+1 + 1) − d1

and
d2 − y ≤ |y − d2| ≤ min{|c2 − d2|, |(c2 + 1) − d2|} ≤ 1/2 < d2 − (c+ εi+1).

5For the sake of completeness, let us be more precise here about the probability claim being made in this lemma. Consider
any two paths π1, π2, indexed by two start nodes and two direction vectors, and consider a node v ∈ Li. The event that
we generate π1, π2 in such a way that v ∈ π1 ∩ π2 depends only on the random choices of ε1, . . . , εi. If v ∈ π1 ∩ π2, then
the event that π1, π2 split at v depends only on the random choice of εi+1. The claim is: conditional on the event that
{ε1, . . . , εi} are selected in such a way that v ∈ π1 ∩ π2, the probability that εi+1 is selected such that π1, π2 split at v is at
least min {|d1 − d2|, 1}.

13

Together, these two sequences of inequalities imply that c + εi+1 < y < c + εi+1 + 1. But this contradicts
our assumption that (1, y) ∈ Ci, so we conclude that

argmin(1,x)∈Ci
|x− d1| 6= argmin(1,x)∈Ci

|x− d2|.

By Proposition 2, {~ue | e ∈ Ev
i } = Ci, so we have also shown that

argmin{~ue|e∈Ev
i }
|ue − d1| 6= argmin{~ue|e∈Ev

i }
|ue − d2|.

Then π1 and π2 must split at v by our construction of the critical paths in Π.

F happens with good probability. Since εi+1 is sampled uniformly at random from the interval (0, 1),
it follows that (Z + εi+1 + 1/2) ∩ (d1, d2) 6= ∅ with probability at least min{d2 − d1, 1}.

We will use Lemma 3 to prove the following two lemmas, which capture the key properties of our graph
G.

Lemma 4 (Low path overlap). Let π1, π2 ∈ Π be critical paths with distinct associated direction vectors
(1, d1), (1, d2) ∈ D. Then:

• If |d1 − d2| < 1, then with probability at least 1 − n−8, we have6 |π1 ∩ π2| ≤ 8 logn
|d1−d2|

.

• If |d1 − d2| ≥ 1, then |π1 ∩ π2| ≤ 1 (deterministically).

Proof. We begin with the first point; suppose |d1 − d2| < 1. Suppose we iteratively generate π1, π2 one layer
at a time. Each time we choose a node v that lies in both π1 and π2, by Lemma 3, π1 and π2 split at v
with probability at least |d1 − d2| (over the random choice of εi+1). Moreover, since π1 and π2 are unique
shortest paths in G and G is acyclic, it follows that π1 ∩ π2 is a contiguous subpath of π1 and π2; thus, once
they split, they can no longer intersect in later layers. The number of nodes in the intersection |π1 ∩ π2| is
1 more than the number of consecutive nodes at which π1, π2 intersect but do not split. So by the above
discussion, we have

Pr

[
|π1 ∩ π2| >

8 logn

|d1 − d2|

]
≤ (1 − |d1 − d2|)

8 log n
|d1−d2|

≤ e
−|d1−d2|·

8 log n
|d1−d2|

≤ e−8 logn

= n−8

For the second point of the lemma: if |d1, d2| ≥ 1, then by Lemma 3, if there is a node v ∈ π1 ∩ π2, then
π1 and π2 split at v with probability 1, and then they can no longer intersect in later layers. So we have
|π1 ∩ π2| ≤ 1.

Since |Π| = p ≤ n2, we can argue by a union bound that Lemma 4 holds for all π1, π2 ∈ Π simultaneously
with probability at least 1−n−4. From now on, we will assume that this property holds for our constructed
graph G.

Once we specify our construction parameters ℓ and q, the following lemma will immediately imply the
third property of G as stated in Lemma 1.

Lemma 5. Let x, y ∈ V be distinct nodes in G, and let z = hopdistG(x, y). Let

Π′ := {π ∈ Π | x, y ∈ π}.

Then |Π′| ≤ max
{

16q log n
z , 1

}
.

6Formally, we consider any two paths π1, π2 indexed by two start nodes and direction vectors. When we iteratively generate
these paths, the number of nodes in their intersection (possibly 0) depends only on the random choices of ε1, . . . , εℓ. The
probability claim in this lemma is with respect to these random choices.

14

Proof. Let Π′ = {π1, . . . , πk} and let (1, di) ∈ D be the direction vector associated with πi for i ∈ [1, k].
Since the paths in Π′ all intersect, by Proposition 4 we must have di 6= dj for i 6= j. Let a = mini∈[1,k] di
and let b = maxi∈[1,k] di. Then

db − da ≥ k − 1

q
,

since |di − dj | ≥ 1/q for all (1, di), (1, dj) ∈ D such that i 6= j. Thus, by Lemma 4 we must have k−1
q < 1,

since we have at least two nodes x, y ∈ πa ∩ πb. So by Lemma 4,

|πa ∩ πb| ≤
8 logn

db − da
≤ 8q logn

k − 1
.

Since x, y ∈ πa ∩ πb and πa and πb are unique shortest paths in G, it follows that they coincide on
their subpaths πa[x, y] = πb[x, y]. Moreover, since the hopdistance from x to y in G is z, it follows that
|πa[x, y]| = |πb[x, y]| = z + 1. Then taken together we have

z ≤ |πa ∩ πb| ≤
8q logn

k − 1
.

Rearranging, we get

k ≤ 8q log n

z
+ 1.

If 8q logn
z ≥ 1, then this implies k ≤ 16q logn

z . Otherwise, if 8q log n
z < 1, then this implies that k ≤ 1 since

k ∈ Z.

4.6 Finishing the proof of Lemma 1

We note that Theorem 7 is trivial in the parameter regime p = Ω(n2/ logn), since its lower bound on
hopbound is Ω(1). So we will assume p = O(n2/ logn) in the following, with as small of an implicit constant
as needed. Let

ℓ =
n

210p1/2 log1/2 n
and q =

ℓ

210 logn
.

We now quickly verify that graph G and associated critical paths Π satisfy the properties of Lemma 1:

• By construction, G has ℓ = Θ
(

n
p1/2 log1/2 n

)
layers, and each path in Π travels from the first layer to

the last layer.

• Each path π ∈ Π is a unique shortest path between its endpoints in G by Lemma 2.

• Since 16q logn ≤ ℓ and hopdistG(u, v) ≤ ℓ, Lemma 5 immediately implies that for all u, v ∈ V , there
are at most

max

{
16q logn

hopdistG(u, v)
, 1

}
≤ ℓ

hopdistG(u, v)

paths in Π that contain both u and v.

• For all critical pairs (s, t) ∈ P , the hopdistance from s to t in G is ℓ− 1 ≫ 16q logn. Then by Lemma
5, each of the |Π| paths constructed in Section 4.3 have distinct endpoints and thus are distinct. Then

|Π| = |S||D| ≥ n

2ℓ
· nq

8ℓ2
≥ n2q

16ℓ3
≥ p.

We have shown that our directed graph G satisfies the properties of Lemma 1 in the regime of p ∈ [n, n2].
Moreover, our construction still goes through even in the extended regime of p ∈ [n/c, n2] for any constant
c > 0. All that remains is to extend our construction to the entire regime of p ∈ [1, n] and make G undirected.

15

Extending the construction to p ∈ [1, n]. We can extend our construction to the regime of p ∈ [1, n]
with a simple modification to G that was previously used in the prior work of [29]. We will sketch the
modification here and defer the proof of correctness to Lemma 6 in Appendix A.

Let G(n, p) denote an instance of our originally constructed graph G with input parameters n and
p ∈ [n, n2]. Let n be a sufficiently large integer and let p ∈ [1, n]. Let G1 := G(p1, p) where p1 = Θ(p) and
p1 divides n. Now for each node v in G1, replace v with a directed path πv = (uv1, . . . , u

v
k) with k = n/p1

nodes. For all v ∈ V , assign weight 0 to all edges in πv. For each edge (v1, v2) originally in G1, add edge
(uv1k , u

v2
1) to the graph. Let G2 be the resulting graph, and let Π2 be the updated set of critical paths. This

completes the modification.

Lemma 6. The n-node graph G2 and the set Π2 of |Π2| ≥ p paths satisfy the properties of Lemma 1.

Proof. We defer the proof to Appendix A, as it largely follows our earlier analysis.

Making G undirected. To make G undirected, we use the following standard simple blackbox reduction.
Let W be the sum of all edge weights in G, i.e., W =

∑
e∈E w(e). For every edge e ∈ E, add +W to the

weight w(e) of e, and treat e as an undirected edge. Call the resulting graph G′.
We now argue correctness: in particular, we need to argue that for all s, t ∈ V such that t is reachable

from s in G, π is a shortest weighted (directed) s t-path in G if and only if π is a shortest weighted
(undirected) s t-path in G′.

• First, note that for all s t-paths π′ in G′, the number of nodes in π′ satisfies |π′| ≥ |π| by the
construction of G and G′.

• Moreover, if |π′| > |π|, then π′ has one more edge than π. Thus, its weighted length in G′ satisfies

w(π′) > (|π| + 1) ·W
= W |π| +

∑

e∈E(G)

w(e)

> w(π)

and so π′ is not a shortest path. We conclude that if π′ is a shortest s t-path in G′, then |π′| = |π|.

• Any s t-path π′ in G′ with |π| edges must use exactly one node in each layer, and thus it respects
the original edge directions in G. We conclude that π′ is a shortest weighted s t-path in G′ if and
only if π′ is a shortest weighted (directed) s t-path in G.

Lemma 1 is immediate from the above discussion.

5 Shortcut Sets

In this section we will prove the following theorem.

Theorem 8. For any parameter p ∈ [1, n5/4], there exists an n-node unweighted directed graph G = (V,E)
such that for any shortcut set H of size |H | ≤ p, the graph G ∪H must have diameter D, where

D =





Ω
(

n
p3/4 logn

)
for p ∈ [1, n/(α logn)], where α > 0 is a sufficiently large constant

Ω
(

n5/4

p log9/4 n

)
for p ∈ [n/(α logn), n5/4].

In particular, when p = O(n), G ∪H must have diameter D = Ω
(

n1/4

log9/4 n

)
.

We will prove this via a construction of the following type:

Lemma 7. For any p ∈ [1, n/(α logn)], where α > 0 is a sufficiently large constant, there is an infinite
family of n-node directed unweighted graphs G = (V,E,w) and sets Π of |Π| = p paths in G with the following
properties:

16

• G has ℓ = Θ
(

n
p3/4 logn

)
layers. Each path in Π starts in the first layer, ends in the last layer, and

contains exactly one node in each layer.

• Each path in Π is the unique path between its endpoints in G.

• For any two nodes u, v ∈ V , there are at most ℓ
hopdistG(u,v) paths in Π that contain both u and v.

We quickly verify that Lemma 7 implies Theorem 8.

Proof of Theorem 8 using Lemma 7. Fix an n and p ∈ [1, n/(α logn)]. Let G = (V,E,w) be the graph in
Lemma 7 with associated set Π of |Π| = 2p paths in G. Let H be a shortcut set of size |H | ≤ p. Let
P ⊆ V × V be the set of node pairs that are the endpoints of paths in Π. Since all paths in Π are unique
paths between their endpoints in G, it follows that

diameter(G ∪H) ≥ max
(s,t)∈P

distG∪H(s, t) = max
(s,t)∈P

hopdistG∪H(s, t).

Then when p ∈ [1, n/(α logn)], we can achieve the bounds in Theorem 8 using the same potential function
argument as in Section 4.1.

In order to extend our shortcut set lower bound to p ∈ [n/(α logn), n5/4], we will appeal to a more
general property of the extremal functions of exact hopsets and shortcut sets, which we defer to Lemma 13
in Appendix B.

5.1 Constructing the strongly convex vector set W (q)

In our construction of the graph G, we will implicitly use the following lemma from [3, 8] that establishes
the existence of a dense set of vectors that each extend the farthest in their own direction.7

Lemma 8 (Theorem 1 of [3]; Lemma 7 of [8]). For sufficiently large r ∈ Z≥0, there exists a strongly convex
set of integer vectors W (r) ⊆ Z

2 of size |W (r)| = Θ(r2/3), such that

• for all ~w ∈W (r), ‖~w‖ ≤ r,

• every ~w ∈W (r) lies in the first quadrant, i.e., both coordinates are positive, and

• for all distinct ~w1, ~w2 ∈ W (r), 〈~w1, ~w2〉 < 〈~w1, ~w1〉.

In our construction of G, we will use a vector set W from this lemma to help generate edge and direction
vectors. We will make use of the following technical property of the vectors in W :

Proposition 5. Let W = {~w1, . . . , ~wq} be a set of vectors as described in Lemma 8, with its vectors ordered
counterclockwise. For all ~wi, ~wj , ~wk ∈W with i < j < k, the following inequalities hold:

〈~wi, ~wk〉 < 〈~wj , ~wk〉 < 〈~wk, ~wk〉 and 〈~wi, ~wk〉 < 〈~wi, ~wj〉 < 〈~wi, ~wi〉 .

Proof. We will only prove here that 〈~wi, ~wk〉 < 〈~wj , ~wk〉 < 〈~wk, ~wk〉; the other set of inequalities follows from
an identical argument. By Lemma 8 we already have 〈~wj , ~wk〉 < 〈~wk, ~wk〉, so it remains only to show that
〈~wi, ~wk〉 < 〈~wj , ~wk〉.

Let ψ1 be the inner angle between ~wi and ~wj and let ψ2 be the inner angle between ~wj and ~wk; thus the
inner angle between ~wi and ~wk is ψ1 + ψ2. We first establish a useful inequality:

〈~wi, ~wj〉 < 〈~wj , ~wj〉 by Lemma 8

‖~wi‖‖~wj‖ cosψ1 < ‖~wj‖2 cosine formula

‖~wi‖‖~wk‖ cosψ1 cosψ2 < ‖~wj‖‖~wk‖ cosψ2. follows algebraically from previous line

7This is a slightly stronger property than convexity, and hence is sometimes referred to as “strong convexity” in the area.

17

We will next use the trigonometric identity

cosψ1 cosψ2 = sinψ1 sinψ2 + cos(ψ1 + ψ2)

> cos(ψ1 + ψ2) since ψ1, ψ2 ∈ (0, π/2) by Lemma 8.

We are now ready to show:

〈~wi, ~wk〉 = ‖~wi‖‖~wk‖ cos(ψ1 + ψ2) cosine formula

< ‖~wi‖‖~wk‖ cosψ1 cosψ2 second inequality

< ‖~wj‖‖~wk‖ cosψ2 first inequality

< 〈~wj , ~wk〉. cosine formula

5.2 Constructing G

We next construct the graph that will be used for Lemma 7. Let n be a sufficiently large positive integer,
and let p = n/(α0 logn) for a sufficiently large constant α0 > 0 to be chosen later (we will extend our
construction to other choices of p ∈ [1, n5/4] later). For simplicity of presentation, we will frequently ignore
issues related to non-integrality of expressions that arise in our construction; these issues affect our bounds
only by lower-order terms. All edges (u, v) in G will be directed from u to v.

Vertex Set V .

• Let r be a positive integer construction parameter to be specified later. Our graph G will have ℓ := n1/3

r2/3

layers L1, . . . , Lℓ, and each layer will have n/ℓ = n2/3r2/3 nodes.

• We will label each node in layer Li, i ∈ [1, ℓ], with a distinct triple in {i}×
[
1, n1/3r1/3

]
×
[
1, n1/3r1/3

]
.

We will interpret the node in Li labeled (i, j, k) as an integer point (i, j, k) ∈ Z
3.

• These n nodes arranged in ℓ layers will compose our node set

V = [1, ℓ] × [1, n1/3r1/3] × [1, n1/3r1/3] ⊆ Z
3

of graph G. In a slight abuse of notation, we will treat v ∈ V as either a node in G or a point in Z
3,

depending on the context.

Edge Set E.

• All the edges in E will be between consecutive layers Li, Li+1 of G. We will let Ei denote the set of
edges in G between layers Li and Li+1.

• Just as our nodes in V correspond to points in R
3, we can interpret the edges E in G as vectors in R

3.
In particular, for every edge e = (v1, v2) ∈ E, we identify e with the corresponding vector ~ue := v2−v1.
Note that since all edges in E are between adjacent layers Li and Li+1, the first coordinate of ~ue is 1
for all e ∈ E. We will use uie to denote the ith coordinate of ~ue for i ∈ {2, 3} (i.e. for all e ∈ E, we
write ~ue = (1, u2e, u

3
e)).

• We begin our construction of E by defining the set of vectors W := W (r3) ⊆ Z
2, where W (r3) is

the strongly convex set of vectors defined in Lemma 8. Let W = {~w1, . . . , ~wq}, where vectors ~wi are
ordered counterclockwise and q := |W | = Θ(r2). We may assume wlog that q ≤ r2 (e.g. by removing
vectors from W until this is true).

• Using W , we define our set of edge vectors C ⊆ Z
2 as:

C := {~wi+1 − ~wi | i ∈ [1, q − 1]} .

Let ~ci := ~wi+1 − ~wi denote the ith vector of C.

18

• For each layer Li, i ∈ [1, ℓ − 1], sample a random integer from [1, q − 1] and call it λi. We define the
set Ci ⊆ Z

2 as
Ci := {(0, 0),~cλi},

where ~cλi is the λith vector of C. Note that Ci contains exactly two vectors, the zero vector and
a randomly chosen vector ~cλi from C. Intuitively: for each layer Li, we are sampling two adjacent
vectors ~wλi and ~wλi+1 from C and adding −~wλi to each of them to obtain Ci. The purpose of adding
the normalizing vector −~wλi to ~wλi and ~wλi+1 is to reduce the magnitude of the vectors in Ci, as we
will formalize in Proposition 6.

• The vectors in set Ci will define the edges in Ei. Specifically, for all (i, v1, v2) ∈ Li and for all
(c1, c2) ∈ Ci such that

(i + 1, v1 + c1, v2 + c2) ∈ Li+1,

we add the edge ((i, v1, v2), (i + 1, v1 + c1, v2 + c2)) to Ei.

This completes the construction of our graph G = (V,E). We now verify that the vectors in Ci have small
magnitude in expectation.

Proposition 6. For all i ∈ [1, ℓ− 1], E[‖~cλi‖] ≤ 24r3

q = Θ(r).

Proof. Note that the vectors in C correspond to sides of a convex polygon whose vertices are the vectors in
W . Since this polygon is contained in a ball of radius r3 in R

2
>0 by Lemma 8, it follows that

∑
~c∈C ‖~c‖ ≤ 2πr3.

Note that |C| = q − 1 ≥ q/2 for sufficiently large q. Then

E[‖~cλi‖] =
∑

~c∈C

1

|C| · ‖~c‖ ≤ 2πr3

|C| ≤ 24r3

q
.

The vectors ~wi ∈ W have magnitude roughly r3, whereas the vectors in Ci have expected magnitude at
most Θ(r) by Proposition 6. Since each edge in our critical path corresponds to a vector in Ci, ensuring that
the vectors in Ci have small magnitude (at least in expectation) will be essential for guaranteeing that the
paths π ∈ Π are long.

Let us comment here on a discrepancy between this construction and the technical overview. In the
technical overview, we stated that we would use the convex vectorsW to generate the edge vectorsC. Instead,
we are using the difference between adjacent convex vectors W to generate C. This is an optimization: our
plan is to sample one edge vector from C, and use it together with the zero vector (0, 0) as the two available
vectors between pairs of adjacent layers. This is equivalent to sampling two adjacent edge vectors from W ,
as advertised in the technical overview, and then applying an appropriate translation of the next layer in
space. Our strategy lets us use vectors of length Θ(r), instead of Θ(r3), and these shorter vectors ultimately
lead to a stronger lower bound.

5.3 Direction Vectors, Critical Pairs, and Critical Paths

Our next step is to generate a set of critical pairs P ⊆ V ×V , as well as a set of critical paths Π. Specifically,
there will be one critical path πs,t ∈ Π going between each critical pair (s, t) ∈ P , and we will show that πs,t
is the unique s t path in G.

Direction Vectors D. We choose our set of direction vectors D to be D := W , where W is our strongly
convex set of q = Θ(r2) vectors. We will let D = {~d1, . . . , ~dq} be our list of direction vectors, and we will let

the ith vector ~di of D correspond to the ith vector ~wi of W , i.e. ~di := ~wi, for i ∈ [1, q]. We will simply use

the name ~di when we wish to emphasize the role of these vectors as direction vectors.
Note that since D = W , Proposition 5 also holds for D. That is, if i, j, k ∈ [1, q − 1] and i < j < k, then

〈~di, ~dk〉 < 〈~dj , ~dk〉 < 〈~dk, ~dk〉 and 〈~di, ~dk〉 < 〈~di, ~dj〉 < 〈~di, ~di〉.

19

Critical Pairs P and Critical Paths Π.

• We first define a set S ⊆ L1, containing a subset of the nodes in the first layer L1 of G:

S :=

{
(1, j, k)

∣∣ (j, k) ∈
[

1

3
n1/3r1/3,

2

3
n1/3r1/3

]
×
[

1

3
n1/3r1/3,

2

3
n1/3r1/3

]}
.

Informally, S is a middle square patch of the nodes in L1. The key property of S is that all nodes in
S are of distance at least 1

3n
1/3r2/3 from the sides of the square grid corresponding to layer L1.

We will choose our set of demand pairs P so that P ⊆ S × V . For every node s ∈ S and direction
vector ~d ∈ D, we will choose a critical pair (s, t) ∈ S × V and a corresponding critical path πs,t to add
to P and Π.

• Let v1 ∈ S, and let ~d = (1, d) ∈ D. The associated path π has start node v1. We iteratively grow π,
layer-by-layer, as follows. Suppose that currently π = (v1, . . . , vi) with each vi ∈ Li. To determine the
next node vi+1 ∈ Li+1, let Evi

i ⊆ Ei be the edges in Ei incident to vi, and let ~ui = (u1i , u
2
i) ∈ Ci be

~ui := argmax~c∈Ci
〈~c, ~d〉.

If (1, u1i , u
2
i) = ~uei for some ei ∈ Evi

i , then by definition, ei is an edge whose first node is vi; we define
vi+1 ∈ Li+1 to be the other node in ei, and we append vi+1 to π. Otherwise, if there is no such edge
ei in Evi

i , then we terminate our construction of path π (i.e. vi will be the final node in π).

This completes our construction of P and Π. We will show that the paths generated in this way have

distinct endpoints (with high probability), and therefore |P | = |S||D| ≥ n2/3r2/3q
25 , where q = Θ(r2).

An important feature for correctness of our construction is that, when we iteratively generate paths, if
we reach a point vi such that vi +Ci 6⊆ Li+1 (i.e. vi +~c 6∈ Li+1 for some ~c ∈ Ci), then we end our path at vi.
As a consequence, our critical paths in Π may not travel through all ℓ layers of G. However, with nonzero
probability, paths in Π travel through a constant fraction of layers, as we prove in the following proposition.

Proposition 7. Let ℓ̂ := ℓ · q
27r2 = Θ(ℓ). With probability at least 1/2, for all π ∈ Π, |π| ≥ ℓ̂.

Proof. Each critical path starts at a node s in S Each edge of the path corresponds to a vector (1, c1, c2) ∈ Z
3

such that (c1, c2) ∈ Ci for some i ∈ [1, ℓ− 1]. Our path ends when we reach the boundary of our vertex set

V = [1, ℓ] × [1, n1/3r1/3] × [1, n1/3r1/3] ⊆ Z
3. We must show that before any such path travels through ℓ̂

nodes before reaching the boundary. Note that ℓ̂ = ℓ · q
27r2 ≤ ℓ, since q ≤ r2.

Let x be the random variable defined as x :=
∑ℓ̂

i=1 ~cλi . Then by Proposition 6 and the linearity of
expectation,

E[x] ≤ ℓ̂ · 24r3

q
= ℓ · r

23
=

1

23
n1/3r1/3,

where the final equality follows from the fact that ℓ = n1/3r−2/3. Then by Markov’s inequality,

Pr

[
x ≤ 1

4
n1/3r1/3

]
≥ 1/2.

Now we claim that if x ≤ 1
4n

1/3r1/3, then for all π ∈ Π, |π| ≥ ℓ̂. Let πs,t ∈ Π be a critical path for
critical pair (s, t) ∈ P . Let s = (s1, s2, s3) ∈ Z

3 and let t = (t1, t2, t3) ∈ Z
3. By our construction of critical

paths Π, either t1 = ℓ or t+Ct1 6∈ V . In the first case, |π| = ℓ ≥ ℓ̂, since path π traveled through all ℓ layers
Li. In the second case, we must have that ‖(t2, t3) − (s2, s3)‖ ≥ 1

3n
1/3r1/3 by our choice of set S. But since

x ≤ 1
4n

1/3r1/3, we conclude that |π| ≥ ℓ̂. The claim follows.

We have shown that with nonzero probability, all our paths in Π travel through the first ℓ̂ layers of G.
However, we cannot guarantee that paths in Π travel to layers Li with i > ℓ̂. Because of this, we choose to
remove all layers Li, i > ℓ̂, from G. We replace all critical paths π ∈ Π with the truncated subpath of π
containing only the first ℓ̂ nodes of π, and we update our critical pairs P ⊆ V × V to be the set of all pairs
of endpoints of the updated paths in Π.

20

5.4 Critical paths are unique paths

We now verify that graph G and paths Π have the unique path property as stated in Lemma 7. This will
follow straightforwardly from the properties of our set of direction vectors D, particularly Proposition 5.

Lemma 9 (Unique paths). For every (s, t) ∈ P , path πs,t is a unique s t-path in G.

Proof. Fix a direction vector ~dj in D. We claim that for all i ∈ [1, ℓ − 1], there is a unique vector ~c ∈ Ci

such that maximizes 〈~c, ~dj〉. Recall that Ci ⊆ Z
2 contains exactly two vectors: the zero vector (0, 0) and the

vector ~cλi = ~wλi+1 − ~wλi .
Now assume that j ≥ λi + 1 and observe the following sequence of equivalent inequalities:

〈~wλi , ~wj〉 < 〈~wλi+1, ~wj〉 by Lemma 8 and Proposition 5

〈~0, ~wj〉 < 〈~wλi+1 − ~wλi , ~wj〉
〈~0, ~dj〉 < 〈~cλi+1, ~dj〉.

When j < λi + 1, an identical argument shows that 〈~0, ~dj〉 > 〈~cλi+1, ~dj〉. In either case, there is a unique

vector ~c ∈ Ci maximizing 〈~c, ~dj〉 for all i ∈ [1, ℓ− 1].

Now fix a critical pair (s, t) ∈ P that has ~dj ∈ D as its associated direction vector and πs,t = (v1, . . . , vk)
as its critical path (where s = v1 and t = vk). Let f : R3 7→ R

2 be the function that projects each point in R
3

onto the subspace corresponding to the last two coordinates of R3, i.e. f(x, y, z) = (y, z) for all (x, y, z) ∈ R
3.

Let π be an arbitrary s t-path, and note that |π| = |πs,t| since G is a layered directed graph. Let
π = (v′1, . . . , v

′
k), where s = v′1 and t = v′k. By our construction of path πs,t, we must have that for all

i ∈ [1, k − 1],

〈f(v′i+1 − v′i),
~dj〉 ≤ 〈f(vi+1 − vi), ~dj〉.

Now suppose for the sake of contradiction that π 6= πs,t. Then v′i+1 − v′i 6= vi+1 − vi for some i ∈ [1, k − 1].

Then 〈f(v′i+1 − v′i),
~dj 〉 < 〈f(vi+1 − vi), ~dj 〉 by the above discussion. But then since π and πs,t are both

s t-paths,

〈f(t− s), ~dj〉 =

k−1∑

i=1

〈f(v′i+1 − v′i),
~dj〉 <

k−1∑

i=1

〈f(vi+1 − vi), ~dj〉 = 〈f(t− s), ~dj〉.

This is a contradiction, so we conclude that π = πs,t. Then path πs,t is a unique s t-path in G.

5.5 Critical Paths Intersection Properties

Before finishing our proof of Lemma 7, we will need to establish several properties of the critical paths in Π.

Proposition 8. Let π1, π2 ∈ Π be two critical paths with the same corresponding direction vector ~d ∈ D.
Then π1 ∩ π2 = ∅.

Proof. Let k = min{|π1|, |π2|}. Let vji ∈ Li denote the ith node of πj , where j ∈ {1, 2} and i ∈ [1, k].

Note that since π1 and π2 share the same direction vector ~d, edges (v1i , v
1
i+1) and (v2i , v

2
i+1) have the same

corresponding vector ~ui ∈ Ci for all i ∈ [1, k − 1] by our construction of π1 and π2. Also, for each node

v ∈ L1, v belongs to at most one path π ∈ Π with direction vector ~d, so v11 6= v21 . Then for all i ∈ [1, k],

v1i = v11 +

i−1∑

i=1

~ui 6= v21 +

i−1∑

i=1

~ui = v2i .

Let π1, π2 ∈ Π be two critical paths, and let v ∈ V be a node in G. We say that paths π1 and π2 split at
v if v ∈ π1 ∩π2 and the node following v in π1 is distinct from the node following v in π2, and we simply say
that π1 and π2 split if there exists some v ∈ V such that π1 and π2 split at v. Note that since π1, π2 ∈ Π
are unique paths in G, paths π1 and π2 can split at most once.

21

Lemma 10. Fix a node v ∈ Li, where i ∈ [1, ℓ−1], and let π1, π2 ∈ Π be critical paths with direction vectors
~dj and ~dk ∈ D, j, k ∈ [1, q], such that v ∈ π1 and v ∈ π2. Then paths π1 and π2 split at v with probability at

least |j−k|
q .

Proof. Fix a node v ∈ Li, where i ∈ [1, ℓ− 1], and let π1, π2 ∈ Π be critical paths with direction vectors ~dj
and ~dk ∈ D, j, k ∈ [1, q], such that v ∈ π1 and v ∈ π2. By Proposition 8, j 6= k, and assume wlog that j < k.
Let F be the event that the random variable λi was sampled so that

j ≤ λi < k.

Our proof strategy is to show that F implies that π1, π2 split at v, and then to show that F occurs with the
claimed probability.

F implies that π1, π2 split at v. Assume that F occurs. Then j ≤ λi < λi + 1 ≤ k. Now observe the
following sequence of equivalent inequalities:

〈~wj , ~wλi〉 > 〈~wj , ~wλi+1〉 by Lemma 8 and Proposition 5

〈~wj ,~0〉 > 〈~wj , ~wλi+1 − ~wλi〉
〈~dj ,~0〉 > 〈~dj ,~cλi〉.

Since Ci = {~0,~cλi}, by our construction of the critical paths in Π, the above inequality 〈~dj ,~0〉 > 〈~dj ,~cλi〉
implies that path π1 takes an edge in Ei corresponding to vector ~0. An identical argument will show that
〈~dk,~0〉 < 〈~dk,~cλi〉, so path π2 takes an edge in Ei corresponding to vector ~cλi . Since paths π1 and π2 take
different edges in Ei, they must split at v.

F happens with good probability. Random variable λi is sampled uniformly from [1, q− 1]. Then the

event F occurs with probability |j−k|
q−1 ≥ |j−k|

q .

We will use Lemma 11 to prove the following two lemmas, which capture key properties of our graph G.

Lemma 11. Let π1, π2 ∈ Π be critical paths with associated direction vectors ~dj , ~dk ∈ D. Then |π1 ∩ π2| ≤
8q logn
|j−k| with probability at least 1 − n−8.

Proof. If π1 ∩ π2 = ∅, then the claim is immediate, so assume there is a node v ∈ π1 ∩ π2. Suppose v ∈ Li.

By Lemma 10, π1 and π2 split at v with probability at least |j−k|
q . Moreover, conditioning on v ∈ π1 ∩ π2,

the event that π1 and π2 split at v given that v ∈ π1 and v ∈ π2 depends only on our choice of λi and is
independent of λj for j 6= i.

Since π1 and π2 are unique paths in G, it follows that π1 ∩ π2 is a contiguous subpath of π1 and π2. The
number of nodes in the intersection |π1 ∩π2| is 1 more than the number of consecutive nodes at which π1, π2
intersect but do not split. So by the above discussion, we have

Pr

[
|π1 ∩ π2| >

8q logn

|j − k|

]
≤
(

1 − |j − k|
q

) 8q log n
|j−k|

≤ e−
|j−k|

q · 8q log n
|j−k|

≤ e−8 logn

= n−8.

Since |Π| = p ≤ n2, we can argue by a union bound that Proposition 7 holds and Lemma 4 holds for all
π1, π2 ∈ Π simultaneously with probability at least 1 − 1/2 − n−4 > 0. From now on, we will assume that
this property holds for our constructed graph G.

Once we specify our construction parameters ℓ and q, the following lemma will immediately imply the
third property of G as stated in Lemma 7.

22

Lemma 12. Let x, y ∈ V be nodes in G such that the unweighted distance from x to y in G is z, where
0 < z <∞. Let Π′ ⊆ Π be the following set of critical paths:

Π′ := {π ∈ Π | x, y ∈ π}.

Then |Π′| ≤ max
{

16q log n
z , 1

}
.

Proof. Let Π′ = {π1, . . . , πk} and let ~dσi ∈ D be the direction vector associated with πi for i ∈ [1, k]. By
Proposition 4, σi 6= σj for i 6= j. Let a = mini∈[1,k] σi and let b = maxi∈[1,k] σi. Then b − a ≥ k − 1, so by
Lemma 11,

|πa ∩ πb| ≤
8q logn

|b− a| ≤ 8q logn

k − 1
.

Additionally, since x, y ∈ πa∩πb and πa and πb are unique paths, it follows that πa[x, y] = πb[x, y]. Moreover,
since the unweighted distance from x to y in G is z, it follows that |πa ∩ πb| ≥ |πa[x, y]| = |πb[x, y]| = z + 1.
Then taken together we have

z ≤ |πa ∩ πb| ≤
8q logn

k − 1
.

Rearranging, we get that

k ≤ 8q logn

z
+ 1 ≤ max

{
16q logn

z
, 1

}
.

(We obtain the final inequality from the following observation: if 8q log n
z ≥ 1, then this implies k ≤ 16q logn

z .

Otherwise, if 8q logn
z < 1, then this implies that k ≤ 1 since k ∈ Z.)

5.6 Finishing the proof of Lemma 7

Let

r =
n1/8

26 log3/8 n
.

Now recall that q = Θ(r2), and let α1 > 0 be a constant such that α1r
2 ≤ q ≤ 2α1r

2. Then

ℓ =
n1/3

r2/3
≥ n1/4 log1/4 n, ℓ̂ =

q

27r2
· ℓ ≥ α1

27
· ℓ, and q ≤ 2α1r

2 ≤ ℓ̂

16 logn
.

We now quickly verify that graph G and associated critical paths Π satisfy the properties of Lemma 7:

• By construction, G has ℓ̂ = Θ
(
n1/4 log1/4 n

)
layers, and each path in Π travels from the first layer to

the ℓ̂th layer.

• Each path π ∈ Π is a unique path between its endpoints in G by Lemma 9.

• Since 16q logn ≤ ℓ and hopdistG(u, v) ≤ ℓ, Lemma 12 immediately implies that for all u, v ∈ V , there
are at most

max

{
16q logn

hopdistG(u, v)
, 1

}
≤ ℓ

hopdistG(u, v)

paths in Π that contain both u and v.

• For all critical pairs (s, t) ∈ P , the unweighted distance from s to t in G is ℓ − 1 ≫ 16q logn. Then
by Lemma 12, each of the |Π| paths constructed in Section 5.3 have distinct endpoints and thus are
distinct. Then

|Π| = |S||D| ≥ n2/3r2/3q

25
≥ α1n

2/3r8/3

25
≥ α1n

221 logn
.

Recall that we initially let p = n/(α0 logn), for some unspecified constant α0 > 0. Choose α0 so that
p ≤ |Π|.

We have shown that our directed graph G satisfies the properties of Lemma 7 when p = n/(α0 logn). All
that remains is to extend our construction to the regime p ∈ [1, n/(α0 logn)].

23

Extending the construction to p ∈ [1, n/(α0 logn)]. We can extend our construction to the regime of
p ∈ [1, n/(α0 logn)] using the same modification to G that we performed on our exact hopset construction
and that was previously used in the prior work of [29]. We will sketch the modification here. The proof of
correctness follows from an argument identical to the proof of Lemma 6 in Appendix A.

We use G(n, p) denote an instance of our originally constructed graph G with input parameters n and
p = n/(α0 logn). Let n be a sufficiently large integer and let p ∈ [1, n]. Let G1 := G(p1, p1/(α0 log p1))
where p = Θ(p1/ log p1) and p1 divides n. Now for each node v in G1, replace v with a directed path
πv = (uv1 , . . . , u

v
k) with k = n/p1 nodes. For all v ∈ V , assign weight 0 to all edges in πv. For each edge

(v1, v2) originally in G1, add edge (uv1k , u
v2
1) to the graph. Let G2 be the resulting graph, and let Π2 be the

updated set of critical paths. This completes the modification.

References

[1] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear additive
spanners. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 568–576. Society for Industrial and Applied Mathematics, 2017.

[2] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected shortest paths
via low hop emulators. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pages 322–335, 2020.

[3] Imre Bárány and David G Larman. The convex hull of the integer points in a large ball. Mathematische
Annalen, 312(1):167–181, 1998.

[4] Uri Ben-Levy and Merav Parter. New (α, β) spanners and hopsets. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1695–1714. SIAM, 2020.

[5] Piotr Berman, Sofya Raskhodnikova, and Ge Ruan. Finding sparser directed spanners. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2010.

[6] Aaron Bernstein, Maximilian Probst Gutenberg, and Christian Wulff-Nilsen. Near-optimal decremental
sssp in dense weighted digraphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 1112–1122. IEEE, 2020.

[7] Aaron Bernstein and Nicole Wein. Closing the gap between directed hopsets and shortcut sets. In
Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 163–
182. SIAM, 2023.

[8] Greg Bodwin and Gary Hoppenworth. New additive spanner lower bounds by an unlayered obstacle
product. 2022.

[9] Greg Bodwin, Gary Hoppenworth, and Ohad Trabelsi. Bridge girth: A unifying notion in network
design. arXiv preprint arXiv:2212.11944, 2022.

[10] Nairen Cao, Jeremy T Fineman, and Katina Russell. Efficient construction of directed hopsets and
parallel approximate shortest paths. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, pages 336–349, 2020.

[11] Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest paths.
Journal of the ACM (JACM), 47(1):132–166, 2000.

[12] Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers. SIAM Journal
on Discrete Mathematics, 20(2):463–501, 2006.

[13] Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths with near-additive error in
weighted graphs. arXiv preprint arXiv:1907.11422, 2019.

24

[14] Michael Elkin and Ofer Neiman. Linear-size hopsets with small hopbound, and constant-hopbound
hopsets in rnc. In The 31st ACM Symposium on Parallelism in Algorithms and Architectures, pages
333–341, 2019.

[15] Jeremy T Fineman. Nearly work-efficient parallel algorithm for digraph reachability. SIAM Journal on
Computing, 49(5):STOC18–500, 2019.

[16] Sebastian Forster and Danupon Nanongkai. A faster distributed single-source shortest paths algorithm.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 686–697.
IEEE, 2018.

[17] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental sssp in weighted digraphs:
Faster and against an adaptive adversary. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 2542–2561. SIAM, 2020.

[18] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental single-source shortest
paths on undirected graphs in near-linear total update time. In Foundations of Computer Science
(FOCS), 2014 IEEE 55th Annual Symposium on, pages 146–155. IEEE, 2014.

[19] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time decremental al-
gorithms for single-source reachability and shortest paths on directed graphs. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pages 674–683, 2014.

[20] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Improved algorithms for decremen-
tal single-source reachability on directed graphs. In Automata, Languages, and Programming: 42nd
International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I 42, pages
725–736. Springer, 2015.

[21] William Hesse. Directed graphs requiring large numbers of shortcuts. In Proceedings of the fourteenth
annual ACM-SIAM symposium on Discrete algorithms, pages 665–669. Society for Industrial and Ap-
plied Mathematics, 2003.

[22] Shang-En Huang and Seth Pettie. Lower Bounds on Sparse Spanners, Emulators, and Diameter-reducing
shortcuts. In David Eppstein, editor, 16th Scandinavian Symposium and Workshops on Algorithm
Theory (SWAT 2018), volume 101 of Leibniz International Proceedings in Informatics (LIPIcs), pages
26:1–26:12, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[23] Shang-En Huang and Seth Pettie. Thorup–zwick emulators are universally optimal hopsets. Information
Processing Letters, 142:9–13, 2019.

[24] Arun Jambulapati, Yang P Liu, and Aaron Sidford. Parallel reachability in almost linear work and square
root depth. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pages
1664–1686. IEEE, 2019.

[25] Adam Karczmarz and Piotr Sankowski. A deterministic parallel apsp algorithm and its applications.
In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 255–272.
SIAM, 2021.

[26] Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for single-source shortest
paths. Journal of Algorithms, 25(2):205–220, 1997.

[27] Shimon Kogan and Merav Parter. Beating Matrix Multiplication for n1/3-Directed Shortcuts. In Miko laj
Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium on Au-
tomata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 82:1–82:20, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik.

[28] Shimon Kogan and Merav Parter. Having hope in hops: New spanners, preservers and lower bounds for
hopsets. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
766–777. IEEE, 2022.

25

[29] Shimon Kogan and Merav Parter. New diameter-reducing shortcuts and directed hopsets: Breaking the
barrier. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1326–1341. SIAM, 2022.

[30] Kevin Lu, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Better lower bounds for shortcut
sets and additive spanners via an improved alternation product. In Proceedings of the 2022 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3311–3331. SIAM, 2022.

[31] Ofer Neiman and Idan Shabat. A unified framework for hopsets. In 30th Annual European Symposium
on Algorithms (ESA 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[32] Hanmao Shi and Thomas H Spencer. Time–work tradeoffs of the single-source shortest paths problem.
Journal of algorithms, 30(1):19–32, 1999.

[33] Mikkel Thorup. On shortcutting digraphs. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 205–211. Springer, 1992.

[34] Jeffrey D Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure algorithms. SIAM
Journal on Computing, 20(1):100–125, 1991.

A Proof of Lemma 6

Let n be a sufficiently large integer, and let p ∈ [1, n] such that p divides n. Let p1 := 230p. Recall that
to obtain G2, we first construct graph G1 := G(p1, p), where G(p1, p) denotes our initial construction of
the graph G1 in Lemma 1 on p1 nodes with an associated set Π1 of |Π1| = p paths. We let V1 denote the
nodes and E1 denote the edges of G1. Let P1 be the set of critical pairs associated with G1, and let Π1 be
the corresponding canonical paths. Let ℓ and q be the construction parameters used to construct G(p1, p1).
Then

26p ≤ |P1| ≤ 210p, ℓ =
p1

210p1/2 log1/2 p1
, and q =

p1

220p1/2 log3/2 p1
.

Note that for all π ∈ Π1, we have that |π| = ℓ. We then modified G1 by replacing each node v ∈ V1 with a
path πv = (uv1, . . . , u

v
k) with k = n/p1 nodes. If an edge (v1, v2) ∈ E1 was originally in G1, we replaced it

with an edge (uv1k , u
v2
1). This gave us our final n-node graph G2 = (V2, E2).

Let P2 := {(us1, u
t
k) | (s, t) ∈ P1}, and for all (us1, u

t
k) ∈ P2, let πus

1,u
t
k

be the path obtained by taking
πs,t ∈ Π1 and replacing each node v ∈ πs,t with the path πv. Let Π2 := {πs,t | (s, t) ∈ P2}. Then it is clear
from our construction of G2 that for all (s, t) ∈ P2, the path πs,t ∈ Π2 is a unique shortest s t-path in
G2. Additionally, for all (s, t) ∈ P2, the number of nodes in path πs,t ∈ Π2 is at least |πs,t| ≥ ℓ2, where

ℓ2 := ℓ · n
p1

=
n

210p1/2 log1/2 p1
= Θ

(
n

p1/2 log1/2 p

)
.

We now quickly verify that graph G2 and associated critical paths Π2 satisfy the properties of Lemma 1:

• By construction, G2 has ℓ2 = Θ
(

n
p1/2 log1/2 n

)
layers, and each path in Π travels from the first layer to

the last layer.

• Each path π ∈ Π is a unique shortest path between its endpoints in G2. This follows from Lemma
2 and the observation that our path replacement step cannot increase the number of paths between
pairs of nodes in G2.

• What remains is to show that for any two nodes u, v ∈ V2, there are at most ℓ2
hopdistG2

(u,v) paths in Π2

that contain both u and v. We prove this in two cases:

26

– Case 1: u, v ∈ πw for some w ∈ V1. Note that hopdistG(u, v) ≤ n/p1. By Proposition 4, the
number of paths π ∈ Π1 such that w ∈ π is at most the number of direction vectors

|D| ≤ p1q

4ℓ2
≤ p1/2

4 log1/2 p1
≤ p1/2

4 log1/2 p1
· n/p1
hopdistG2

(u, v)

≤ n

230p1/2 log1/2 p
· 1

hopdistG2
(u, v)

≤ ℓ2
hopdistG2

(u, v)
.

Then by our construction of G2, the number of paths π ∈ Π2 such that u, v ∈ π is at most
|D| ≤ ℓ2

hopdistG2
(u,v) .

– Case 2: u ∈ πw1
and v ∈ πw2

for distinct w1, w2 ∈ V1. By Lemma 5, the number of paths π ∈ Π1

such that w1, w2 ∈ π is at most

max

{
16q logn

hopdistG1
(w1, w2)

, 1

}
≤ max

{
ℓ

hopdistG1
(w1, w2)

, 1

}
≤ max

{
ℓ2

hopdistG2
(u, v)

, 1

}

≤ ℓ2
hopdistG2

(u, v)
.

(The final inequality follows from the fact that hopdistG2
(u, v) ≤ ℓ2.)

B Extending our shortcut set lower bound

To extend our shortcut set lower bound so that it holds in the regime of p > n/(α logn), we will prove a
more general statement about the behavior of the extremal function of shortcut sets. We write S(n, p) for
the smallest integer D such that every n-node graph G has a shortcut set H of size |H | ≤ p such that G∪H
has diameter at most D.

Lemma 13. For all positive integers n and x ∈ [1, n],

S (n, p/x) ≤ x · S(n, p) · 16 logn.

Lemma 13 essentially states that if we decrease the number of shortcuts allowed in our shortcut set,
the extremal function controlling the worst-case size of shortcut sets won’t increase by too much. We will

use this lemma in the opposite direction to argue that our lower bound of S(n, n/(α logn)) = Ω
(

n1/4

log1/4 n

)

(where α > 0 is a sufficiently large constant) that we obtained from our shortcut set construction in Lemma
7 implies lower bounds for shortcut sets with greater than n/(α logn) shortcuts.

Let p ∈
[

n
α logn , n

5/4
]
, and let x = p

n/(α logn) . Then by applying our lower bound from Lemma 7 to

Lemma 13 we find that

Ω

(
n1/4

log1/4 n

)
≤ S

(
n,

n

α logn

)
= S

(
n,
p

x

)
≤ x · S(n, p) · 16 logn.

Rearranging, we find that

S(n, p) = Ω

(
n5/4

p log9/4 n

)
,

as claimed in Theorem 8.

We now prove Lemma 13, which will follow from a simple path subsampling argument.

Proof of Lemma 13. Let n be a positive integer, p ∈ [1, n2], and x ∈ [1, n]. Let G = (V,E) be a graph on n
nodes. We subsample nodes of G to construct a smaller graph G1 = (V1, E1) as follows.

27

• Independently sample each node V into set V1 with probability 1
2x . Then E[|V1|] = n

2x .

• For all pairs of nodes u, v ∈ V such that distG(u, v) ≤ 8x logn, add directed edge (u, v) to E1. This
completes the construction of G1 = (V1, E1).

By Markov’s inequality, |V1| ≤ n/x with probability at least 1
2 . Assume for now that this does indeed hold,

and we have |V1| ≤ n/x. Then using the fact that S(c1n, c1p) ≤ S(c2n, c2p) if c1 ≤ c2, we find that there
exists a shortcut set H1 of size |H1| ≤ p/x such that the diameter of G1 ∪H1 is at most

diameter(G1 ∪H1) ≤ S(|V1|, |H1|) ≤ S(n/x, p/x) ≤ S(n, p).

Now we claim that this implies that diameter(G ∪ H1) ≤ x · S(n, p) · 16 logn. For every pair of nodes
u, v ∈ V such that v is reachable from u in G, fix a shortest u v-path πu,v in G. Then the following
statement holds with high probability: for all pairs of nodes u, v ∈ V such that distG(u, v) ≥ 4x logn, path
πu,v contains a node that was sampled into V2, i.e. πu,v ∩V2 6= ∅. From now on, we will assume this property
holds for our sampled set V2.

Consider a pair of nodes u, v ∈ V such that 4x logn ≤ distG(u, v) and v is reachable from u in G, and let
π be an u v-path in G. Let u′ be be the node in π∩V1 closest to u, and let v′ be the node in π∩V1 closest
to v. By our construction of G1 and the above discussion, there must be a u′ v′-path in G1. Moreover,
distG1∪H1

(u′, v′) ≤ diameter(G1 ∪H1) ≤ S(n, p). Then since distG(x, y) ≤ 8x logn for all edges (x, y) ∈ E1

in G1, it follows that

distG∪H1
(u′, v′) ≤ distG1∪H1

(u′, v′) · 8x logn ≤ S(n, p) · 8x logn.

Then putting it all together,

distG∪H1
(u, v) ≤ distG∪H1

(u, u′) + distG∪H1
(u′, v′) + distG∪H1

(v′, v)

≤ 4x logn+ distG∪H1
(u′, v′) + 4x logn

≤ distG1∪H1
(u′, v′) · 8x logn+ 8x logn

≤ S(n, p) · 8x logn+ 8x logn

≤ x · S(n, p) · 16 logn.

Finally, to conclude the analysis, we made two assumptions: (1) that |V1| ≤ n/x, which occurs with
probability 1/2, and (2) that for all u, v that are sufficiently far apart, we sampled a node on a u v
path, which happens with high probability, i.e., 1 − 1/poly(n). By an intersection bound, there is positive
probability that both events happen at the same time. So a graph G1 exists as described, completing the
proof.

28

	Introduction
	Our Results
	Other Related Work and Open Questions

	Technical Overview
	Recap of Prior Work
	Allowing Paths to Overlap
	Constructing Overlapping Paths
	Symmetry Breaking

	Preliminaries
	Exact Hopsets
	Proving Theorem 7 using Lemma 1
	Constructing G
	Direction Vectors, Critical Pairs, and Critical Paths
	Critical paths are unique shortest paths
	Critical Paths Intersection Properties
	Finishing the proof of Lemma 1

	Shortcut Sets
	Constructing the strongly convex vector set W(q)
	Constructing G
	Direction Vectors, Critical Pairs, and Critical Paths
	Critical paths are unique paths
	Critical Paths Intersection Properties
	Finishing the proof of Lemma 7

	Proof of Lemma 6
	 Extending our shortcut set lower bound

