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Are there graphs whose shortest path structure requires large

edge weights?

Aaron Bernstein∗ Greg Bodwin† Nicole Wein‡

Abstract

The aspect ratio of a (positively) weighted graph G is the ratio of its maximum edge weight
to its minimum edge weight. Aspect ratio commonly arises as a complexity measure in graph
algorithms, especially related to the computation of shortest paths. Popular paradigms are
to interpolate between the settings of weighted and unweighted input graphs by incurring a
dependence on aspect ratio, or by simply restricting attention to input graphs of low aspect
ratio.

This paper studies the effects of these paradigms, investigating whether graphs of low aspect
ratio have more structured shortest paths than graphs in general. In particular, we raise the
question of whether one can generally take a graph of large aspect ratio and reweight its edges,
to obtain a graph with bounded aspect ratio while preserving the structure of its shortest paths.
Our findings are:

• Every weighted DAG on n nodes has a shortest-paths preserving graph of aspect ratio
O(n). A simple lower bound shows that this is tight.

• The previous result does not extend to general directed or undirected graphs; in fact, the
answer turns out to be exponential in these settings. In particular, we construct directed
and undirected n-node graphs for which any shortest-paths preserving graph has aspect
ratio 2Ω(n).

We also consider the approximate version of this problem, where the goal is for shortest
paths in H to correspond to approximate shortest paths in G. We show that our exponential
lower bounds extend even to this setting. We also show that in a closely related model, where
approximate shortest paths in H must also correspond to approximate shortest paths in G, even
DAGs require exponential aspect ratio.
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1 Introduction

In modern graph algorithms, a popular strategy is to simplify graphs in preprocessing before
proceeding to the main part of the algorithm. Given an input graph G, the high-level goal is
to reduce to solving the problem on a different graph H that faithfully encodes the important
structural properties of G (and hence solving the problem over H instead of G yields a good
solution), but where H has improved complexity measures relative to G in whatever sense is
important for the runtime of the algorithm to follow. Some successful examples of this method
in the literature include:

• Edge Sparsifiers, where the goal is for H to have substantially fewer edges than G.
Well-studied examples of edge sparsifiers include spanners [PU89b, PU89a], preservers
[CE06, AB18], flow/cut/spectral sparsifiers [ST11, BK96], etc.

• Vertex Sparsifiers, where the goal is for H to have substantially fewer vertices than
G. Well-studied examples of vertex sparsifiers include mimicking networks [CDK+21,
HKNR98], terminal minor sparsifiers [KNZ14], etc.

• Hopsets and Shortcut Sets, in which H has smaller hop-diameter than G while preserv-
ing its shortest path distances or reachabilities. Hop-diameter is an important complexity
measure in parallel or distributed contexts [Tho92, UY91].

• Expander Decomposition, which reduces to solving problems on graphs with a favorable
expansion parameter [KVV04, ST11].

This paper introduces a new paradigm for graph simplification, in which the goal is to
minimize the complexity measure of aspect ratio. The aspect ratio of a graph is the multiplicative
spread among its edge weights:

Definition 1.1 (Aspect Ratio). Let G = (V,E,w) be a graph with positive edge weights. Then

its aspect ratio is the quantity maxe w(e)
mine w(e) .

Aspect ratio often enters the picture for graph algorithms where the state-of-the-art solu-
tions for unweighted graphs substantially outperform the solutions for weighted graphs. For
these problems, one can sometimes extend the unweighted solution to graphs that are “close to
unweighted.” Specifically, this could mean either (1) that the algorithm extends to the setting of
weighted input graphs, but that the runtime or solution quality suffers a dependence on aspect
ratio (say polylog r, for an input graph of aspect ratio r), or (2) more simply, that the algorithm
only extends to the setting of weighted input graphs of bounded aspect ratio (say poly(n), for
n-node input graphs). These paradigms are especially common for problems related to compu-
tation of shortest paths or distances, for several reasons: when aspect ratio is bounded one can
use bucketing methods to group shortest paths by length, and algebraic techniques based on
fast matrix multiplication only give speedups when the associated matrix has bounded entries.
Some concrete examples of shortest-path-related problems that have incurred a dependence
on aspect ratio for these reasons include (1 + ε)-hopsets [BW23, KP22], roundtrip spanners
[RTZ08, ZL18, CDG20], the All-Pairs Shortest Paths (APSP) problem [Zwi02, SZ99], dynamic
shortest paths (e.g. [HKN14, BGW20, CZ23]), distributed shorted paths (e.g. [FN18, CFR21]),
and many others. In light of this, we believe that the following two questions are natural:

Main Questions (Informal):

• Is it generally possible to decrease the aspect ratio of a graph without changing the structure
of its shortest paths?

• Do graphs of bounded aspect ratio have more structured shortest paths than general graphs?

A positive resolution to either question would shed light on aspect-ratio-sensitive graph
algorithms. In fact, as we point out next, some kind of structure is guaranteed: exactly one of
the two questions must be answerable in the affirmative. To explain this point, let us formalize
our model:

1



Definition 1.2 (Shortest-Paths Preserving Graph – See Figure 1). Given a graph G = (V,E,w),
a reweighted graph on the same vertex and edge set H = (V,E,wH) is shortest-paths preserving
if, for every shortest path π in H , the sequence of nodes and edges along π is also a shortest
path in G. 1
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Figure 1: Here H has the same shortest paths as G, but its aspect ratio is improved from
100 to 4.

For an example of a potential use case for shortest-paths preservers, we would get a valid
solution to APSP on a graph G if we instead computed APSP over a shortest-paths preserving
graph H , and then used the output as a solution for G (and we could imagine leveraging the
improved aspect ratio of H to improve the computation). We can restate our main questions
formally using this definition:

Main Questions (Formal):

• Does every n-node graph G admit a shortest-paths preserving graph H with aspect ratio
poly(n)?

• Are there n-node graphs G whose shortest-paths system2 cannot be realized by any graph
of aspect ratio poly(n)?

We can now formally point out that these questions are complements: a graph G that resists
a low aspect ratio shortest-paths preserver is precisely one that cannot be realized by a low
aspect ratio graph. Hence, such graphs (if they exist) imply that restricting to the setting of
low aspect ratio confers additional structure on the shortest path systems to be analyzed. Our
choice to focus on aspect ratio poly(n) comes from the fact that, for many problems, the specific
dependence on aspect ratio W is polylogW (e.g. [BW23, KP22, RTZ08, ZL18, CDG20, CFR21,
FN18, HKN14, CZ23]), and so this translates to a polylog(n) dependence.

In addition to the potential algorithmic insights surveyed above, this paper fits into a recent
line on the combinatorics of shortest path structures [AW20, AW23, CL22, CL23, Bod19]; it
can be viewed as an investigation of the extremal shortest path systems that can only be
induced by high aspect ratio graphs. From this standpoint, an upper bound on aspect ratio
would represent a new fact about the combinatorics of shortest path systems. Meanwhile, lower
bounds would imply that low-aspect-ratio shortest path systems are fundamentally different
objects than general shortest path systems, meaning their combinatorial properties could be

1If G has several tied-for-shortest s t paths, one could consider two different models: that at least one shortest
s  t path in G must be shortest in H (which is Definition 1.2), or that all shortest s  t paths in G must be
shortest in H . All of our upper and lower bounds work for both of these definitions, so we somewhat arbitrarily use
the first one.

2Formally, the “shortest-paths system" associated to a graph G is the set of all vertex sequences that form shortest
paths in G [CL22, CL23, Bod19].
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independently investigated. We discuss this perspective in more depth in Section 1.4. More
generally, there is virtually no current understanding of the interaction between shortest paths
structure and aspect ratio, and the goal of this paper is to initiate this line of study.

1.1 Exact Shortest Path Preservers

A priori, our main questions can be asked independently in different graph classes: e.g., we
could envision settling the dichotomy differently for directed graphs, undirected graphs, DAGs,
etc. Our findings are that this is in fact the case: the answer does in fact change between these
three graph classes.

Let us begin our discussion in the setting of DAGs. As a warmup observation, there is a
simple way to construct n-node graphs that require aspect ratio Ω(n) for any shortest-paths
preserving graph (see Figure 2). The lower bound is a path of n nodes and n−1 edges of weight
1, plus an additional long edge of weight n that jumps from the start to the end of the path.
Since the path of unit-weight edges is a shortest path, in reweighting, one cannot reduce the
weight of the long edge below n− 1 times the minimum edge weight on the path. This implies
that any shortest-paths preserving graph has aspect ratio Ω(n).

1 1 1
· · ·

1 1 1

n

Figure 2: Any shortest-paths preserving reweighting of this graph has aspect ratio Ω(n).

Our first result is that this simple lower bound is actually tight, over the class of DAGs:

Theorem 1.3 (Linear upper bound for DAGs). Every n-node DAG has a shortest-paths pre-
serving graph of aspect ratio O(n).

The fact that nontrivial aspect ratio upper bounds are possible might give hope that they
generalize to an upper bound of O(n), or perhaps poly(n), for all directed graphs. However, our
next result refutes this possibility: DAGs are special, and in general exponential aspect ratio is
sometimes necessary. That is, despite the fact that only n2 shortest paths need to be preserved,
we discover that the interactions between these paths can compound on one another to force
a chain reaction of edges with multiplicatively larger and larger weights. The consequence is a
graph with “inherently” exponential aspect ratio.

Theorem 1.4 (Exponential lower bound for directed graphs). There are n-node directed graphs
G such that any shortest-paths preserving graph H has aspect ratio 2Ω(n).

Next, we consider the undirected setting. The undirected setting is at least as easy as
the directed setting: there is a black-box reduction showing that, if every directed graph has
a shortest-paths preserver of aspect ratio at most α(n), then the same is true for undirected
graphs [Bod19].3 Nonetheless, we extend our lower bound to show that exponential aspect ratio
is necessary for general undirected graphs as well.

Theorem 1.5 (Exponential lower bound for undirected graphs). There are n-node undirected
graphs G such that any shortest-paths preserving graph H has aspect ratio 2Ω(n).

3To sketch the reduction: given an undirected graph G, convert it to a directed graph G′ by replacing each
undirected edge {u, v} with both directed edges (u, v), (v, u). Let H ′ be a shortest-paths preserving graph of G′ with
aspect ratio α(n). Convert H ′ to an undirected graph H by recombining edges (u, v), (v, u) into a single undirected
edge {u, v} of weight wH′(u, v) +wH′(v, u). One can calculate that this recombination step does not increase aspect
ratio, and it preserves shortest paths.
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1.2 Shortest Path Preservers with Stretch

Given our hardness results for general graphs, it is next natural to investigate whether they can
be overcome by allowing an approximation factor. We will consider the following model:

Definition 1.6 (α-stretch shortest-paths preservering graph). Given a graph G = (V,E,wG),
a reweighted graph H = (V,E,wH) is α-stretch shortest-paths preserving if every shortest path
in H is also an α-approximate shortest path in G. That is, if π is an s t shortest path in H ,
then wG(π) ≤ α · distG(s, t).

This definition is generally weaker than the (exact) shortest-paths preserving graphs dis-
cussed previously, which is the special case of stretch 1. It represents a natural attempt to
bypass the lower bounds in Theorems 1.4 and 1.5: can we reduce aspect ratio to poly(n) in a
more forgiving model, where we allow a stretch factor α in the shortest paths of G?

We describe modifications of our lower bounds that are robust even to this approximate
version of the problem. In the directed setting, we construct graphs that force exponential
aspect ratio for any finite α (even depending on n):

Theorem 1.7 (Exponential lower bound for approximation in directed graphs). For any α,
there are n-node directed graphs G such that any α-stretch shortest-paths preserving graph H
has aspect ratio 2Ω(n).

For undirected graphs, we are able to modify our construction to obtain an exponential lower
bound for the (1 + ε)-approximate version:

Theorem 1.8 (Exponential lower bound for approximation in undirected graphs). For any
ε ≤ 13/12, there are n-node undirected graphs G such that any (1 + ε)-stretch shortest-paths
preserving graph H has aspect ratio 2Ω(n).

We have not attempted to optimize the constant 13/12 in this theorem: it is almost certainly
improvable, but only to a point (e.g. our methods will likely not be able to rule out shortest-paths
preserving graphs with poly(n) aspect ratio and stretch 2). It is an interesting open question
whether one can obtain poly(n) aspect ratio and O(1) stretch in the undirected setting.

1.3 Shortest Path Preservers with Two-Sided Stretch

In the previous settings, we imagine computing exact shortest paths over H , and then mapping
them to exact or approximate shortest paths in G. One might also imagine computing approxi-
mate shortest paths in H , and designing H such that these map to approximate shortest paths
in G. The following definition captures the property that H would need to have to enable this
method.

Definition 1.9 ((αH → αG)-stretch shortest-paths preservering graph). Given a graph G =
(V,E,w), a reweighted graph H = (V,E,wH) is said to be (αH → αG)-stretch shortest-paths
preserving if every αH -approximate shortest path in H is also an αG-approximate shortest path
in G.

Thus, an α-stretch preserver in the previous sense is the same as a (1 → α)-stretch preserver
under this definition. We note that the problem is easier (more likely to admit an upper bound)
as αG increases, but harder as αH increases. Thus, the previous lower bounds for directed and
undirected graphs from Theorems 1.7 and 1.8 apply also to (αH → α)-stretch preservers, for
any αH ≥ 1. However, the two-sided stretch version is generally incomparable in difficulty to
the original (exact shortest paths) version of the problem.4 Thus, we can study this two-sided

4On one hand, the exact version is harder because an exact shortest path in G must be an exact shortest path in
H , whereas in the two-sided stretch version, an exact shortest path in G only needs to be an approximate shortest
path in H . On the other hand, the two-sided stretch version is harder because every approximate shortest path in
H must also be an approximate shortest path in G, whereas in the exact version there are no constraints on the
approximate-but-not-exact shortest paths of H .
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stretch question for DAGs: Do DAGs have (αH → αG)-stretch preservers with polynomial
aspect ratio, for αH , αG > 1? Our final result is an answer to this question in the negative:

Theorem 1.10 (Exponential lower bound for two-sided approximation in DAGs). For any
αH , αG > 1, there is an n-node DAG G such that any (αH → αG)-stretch shortest-paths pre-
serving graph H has aspect ratio (αH)Ω(

√
n).

This implies a dichotomy: for the exact version on DAGs the answer is O(n), while for the
two-sided approximate version, the answer suddenly jumps to exponential.

1.4 Discussion: Aspect Ratio and Theory of Shortest Paths Structure

As mentioned previously, this work can be viewed as a study of the combinatorics of shortest
path systems : we construct extremal shortest path systems that can only be expressed using
large aspect ratio, or (in the case of DAGs) we prove that no such structures exist. In this sense,
our work fits into a recent line of research in theoretical computer science and combinatorics
that centers shortest path systems as objects exhibiting remarkable combinatorial structure.
Some other work of this kind includes:

• Amiri and Wargalla [AW20] proved that, for DAGs G, it holds that every triple of nodes
lies along a shortest path iff there is a single shortest path that covers all nodes in the
graph. Extensions of this theorem to undirected and directed graphs were later established
by Akmal and Wein [AW23].

• A developing line of work, initiated by Cizma and Linial [CL22, CL23], studies the class of
geodesic graphs, which are the graphs in which every complete consistent path complex5

can be induced as shortest paths by an edge weight function. Many graphs satisfying these
condition have been discovered, as have obstructions to geodesy.

• Bodwin [Bod19] classifies the combinatorial patterns that can or can’t generally appear in
the shortest path system induced by a graph with unique shortest paths.

Other results along these lines include [Bal22, CPF+20]. All of the above results study
the combinatorial structure of shortest path systems that are induced by graphs with arbitrary
weight functions. Our results suggest a way to incorporate edge weights into the discussion. In
particular, for general directed and undirected graphs, our results show that the class of shortest
paths systems induced by low aspect-ratio weight functions is a proper subset of the class of
shortest path systems induced by any weight function. This therefore raises the open problem
of how the structural results from prior work evolve if we restrict our attention to graphs with
“simple” edge weights, in the sense of small aspect ratio. (Some other restrictions on the weight
function could be interesting as well.)

1.5 Open Problems and Future Directions

Besides the upper bound for DAGs (Theorem 1.3), the findings of this paper point towards
the message that low aspect ratio graphs have additional structure in their shortest paths. We
conclude our introduction by mentioning three places in which there is still potential to settle
our main dichotomy in the other direction. First: although we have placed focus on directed
graphs, undirected graphs, and DAGs, there are many other notable graph classes in which one
could seek upper bounds:

Open Question 1. Are there other notable graph classes that always admit shortest-paths
preserving graphs of aspect ratio poly(n), besides DAGs?

5Formally, a path system is complete if it contains one path between each node pair, and it is consistent if it is
closed under taking contiguous subpaths.
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Our second problem was mentioned previously, in the context of shortest-paths preservers
with stretch for undirected graphs. Although we have constructed graphs for which there is
no (1 + ε)-stretch preserver of aspect ratio poly(n), such a preserver of stretch O(1) is still
conceivable:

Open Question 2. Does every n-node undirected graph have a constant-stretch shortest-paths
preserving graph of aspect ratio poly(n)?

Although we focus on aspect ratio in this paper, the same basic questions apply to other
complexity measures associated to graph edge weights. Perhaps most naturally, one can re-ask
our questions for graphs of integer edge weights, parametrized by maximum edge weight:

Open Question 3. Does every n-node DAG have a shortest-paths preserving graph H with
integer edge weights in the range [1, . . . , poly(n)]? If not, does this hold if we allow stretch α?

We note that this question is harder (less likely to admit an upper bound) than the one for
aspect ratio, since any graph with integer edge weights in the range [1, . . . , poly(n)] has aspect
ratio poly(n). Thus, the answer to the question is no in the settings of general directed or
undirected graphs. But an affirmative answer for DAGs is still possible, and would for example
allow us to extend the parallel/distributed results in Corollary 1.8 and 1.9 of [RHM+23] to work
for arbitrary weighted graphs (assuming H could be computed efficiently).

Finally: this paper focuses on extremal questions, investigating the extent to which aspect
ratio can be reduced for all graphs. One could also study an instance-optimal version of the
problem, in which the goal is to compute a shortest-paths preserving graph of minimum aspect
ratio:

Open Question 4. Is there a polynomial-time algorithm that takes an input graph G on input
and computes a shortest-paths preserving graph (possibly with stretch) of minimum or near-
minimum aspect ratio? If not, does this problem admit an approximation algorithm?

1.6 Paper Organization

In Section 2 we prove our exponential lower bound for directed graphs, which serves as a warm-up
for our exponential lower bound for undirected graphs, which appears in Section 3. In Sections 2
and 3 we also include the extensions of our exponential lower bounds to the approximate α-
stretch version of the problem for directed and undirected graphs respectively. In Section 4 we
prove our O(n) upper bound for DAGs. Finally, in Section 5 we prove our exponential lower
bound for the two-sided stretch version of the problem for DAGs.

Instead of a centralized technical overview, we include a high-level overview of our approach
at the beginning of several of the individual sections.

2 Warm Up: Exponential Lower Bounds for Directed Graphs

We start by proving our lower bounds for general directed graphs, as these are simpler. We
begin with the exact version, and later move to the approximate version. In the next section,
we turn to undirected graphs. We first prove Theorem 1.4, restated below.

Theorem 1.4 (Exponential lower bound for directed graphs). There are n-node directed graphs
G such that any shortest-paths preserving graph H has aspect ratio 2Ω(n).

High-Level Approach: It is clear from the example in Fig. 2 that one can easily find graphs
where any shortest-paths preserving reweighting has aspect ratio Ω(n). This example consists
of a shortest path P of weight n, and a not-shortest path P ′ (in this case just a single edge) with
the same endpoints as P . The fact that P ′ must remain not shortest after reweighting provides
a lower bound on the sum of the weights of the edge(s) in P ′.

The key question towards getting a lower bound with larger aspect ratio is: can this approach
be iterated? That is, we would like to carry out the following procedure:

6



1. Generate a collection of edges of at least some weight w.

2. Combine these edges into a collection P of shortest paths where each path in P has ℓ edges
of weight w, for some ℓ.

3. Construct a collection P ′ of not shortest paths with the same endpoints as the shortest
paths in P , such that each of the paths in P ′ has ℓ′ < ℓ edges.

4. Now, in order for the paths in P ′ to remain not-shortest after reweighting, their edge
weights must be on average a multiplicative factor of ℓ/ℓ′ larger than the weight w of the
edges in P . Now that we have generated a collection of edges of weight multiplicatively
larger than w, we can return back to step 1 with a larger value of w.

Several challenges arise when trying to construct a graph with these properties:
First, an edge constructed in some iteration i of this procedure has a very restricted set

of properties: it must simultaneously be in a not-shortest path with the same endpoints as a
shortest path from iteration i, and be in a shortest path in the next iteration i+1. This requires
a precise interleaving of various shortest and not-shortest paths, and it is unclear whether such
a construction should exist.

Second, it is easy to imagine that if one uses k edges of weight w in the infrastructure of
iteration i, one might only generate a smaller number, say k/2, edges of larger weight for the
next iteration. This type of situation would not yield strong bounds because it would only allow
logn iterations of the procedure, which would result in only polynomial aspect ratio. Thus,
we need to make sure there is not too much loss in the number of edges we generate in each
iteration (and in fact we achieve no loss).

We show how to construct a surprisingly simple graph that satisfies the constraints necessary
to carry out the iterated procedure, and furthermore uses only 3 edges of average weight w (plus
3 helper edges) to generate 3 more edges whose average weight is at least 2w. Because of this,
we can perform Ω(n) iterations of the procedure, which yields an aspect ratio of 2Ω(n).

Now we will provide our construction and analysis in detail.

2.1 Construction

We construct the lower-bound graph G = (V,E,w) as follows (see Figure 3)

• We assume that the number of vertices n is divisible by 3. The graph G = (V,E,w)
consists of n/3 cycles, each with exactly 3 vertices. Label the cycles C1, ...Cn/3, where
cycle Ci consists of vertices v1i , v

2
i , v

3
i .

• Each cycle is either a forward cycle or a backward cycle. If Ci is a forward cycle, then
the graph contains directed edges (v1i , v

2
i ), (v

2
i , v

3
i ) and (v3i , v

1
i ). If Ci is a backward cycle

then the graph contains directed edges (v1i , v
3
i ), (v

3
i , v

2
i ) and (v2i , v

1
i ). The cycles alternate

forward and backward. That is, Ci is forward for odd i and backward for even i.

• There are also edges between cycles, which we call cross-cycle edges. In particular, for
every i, there is an edge (v1i , v

1
i+1), as well as edges (v2i , v

2
i+1) and (v3i , v

3
i+1). Note that

edges only go from Ci to Ci+1; there are no edges from Ci to any other Cj , and in particular
there are no edges going from Ci to Ci−1. (That is, the graph is almost a DAG, except
that the Ci themselves are cycles.)

• For any edge e ∈ Ci we set w(e) = 1/3i. We set the weight of all cross-cycle edges to 06

2.2 Analysis

The analysis is broken into two parts. First, we will identify a particular set P of paths and
in Lemma 2.1 we will show that they are unique shortest paths in G under weight function w.

6If we want to keep edge-weights positive, then the same proof goes through if we set w(e) = δ for all cross-cycle
edges; for the exact lower bound (Theorem 1.4) the value of δ does not matter, but for the approximate lower bound
(Theorem 1.7) we would need to set δ to be very tiny.
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v11

v21

v31

forward cycle,

edge wts 1/3

v12

v22

v32

backward cycle,

edge wts 1/9

v13

v23

v33

forward cycle,

edge wts 1/27

· · ·

Figure 3: Our exponential aspect ratio lower bound for directed graphs (Theorem 1.4). The
graph consists of n/3 cycles of length 3. The cross-cycle edges (gray, dotted) go between
same-numbered nodes in adjacent cycles, and all have weight 0.

v1
i

v2
i

v3
i

forward cycle,

edge wts 1/3i

v1
i+1

v2
i+1

v3
i+1

backward cycle,

edge wts 1/3i+1

Figure 4: Our analysis uses the fact that the shortest path between certain node pairs in
adjacent cycles uses no edges from Ci and 2 edges from Ci+1 (the blue path – see Lemma 2.1),
rather than an alternate non-shortest path that uses 1 edge Ci and no edges from Ci+1 (the
red path). For example, in this diagram, the shortest v2i  v3i+1 path is (v2i , v

2
i+1, v

1
i+1, v

3
i+1)

(thick, blue) and not (v2i , v
3
i , v

3
i+1) (thick, red). This ultimately implies that, in any shortest-

paths preserving graph, the blue path must remain shorter than the red path and so edge
weights in Ci must be (on average) at least double of those in Ci+1 (see Lemma 2.2)

.

Then, in Lemma 2.2 we will show that any new weight function w′ on G for which all paths in
P remain shortest must have aspect ratio 2Ω(n).

Construction of P. See the blue path in Figure 4 for an example of a path in P . All paths
in P go from a vertex in Ci to a vertex in Ci+1. Consider some cycle Ci. Let vki , v

k′

i be any
two consecutive vertices in Ci: so if Ci goes forward then we have (k, k′) ∈ {(1, 2), (2, 3), (3, 1)},
while if Ci goes backward then we have (k, k′) ∈ {(1, 3), (3, 2), (2, 1)}.

For any such consecutive pair vki , v
k′

i , we add the following path from vki to vk
′

i+1 to P : the

path takes a cross-cycle edge from vki to vki+1, and then it follows Ci+1 from vki+1 to vk
′

i+1. For
example, if Ci is a forward cycle and the consecutive pair is v2i , v

3
i , then we add to P the following

3-edge path from v2i to v3i+1: (v2i , v
2
i+1) ◦ (v2i+1, v

1
i+1) ◦ (v1i+1, v

3
i+1).

Lemma 2.1. Each path in P is the shortest path between its endpoints in G.

Proof. Fix a path P ∈ P , where P is from vki to vk
′

i+1 for some consecutive pair vki , v
k′

i . It is easy
to see that w(P ) = 2/3i+1, which corresponds to two edges on Ci+1 (recall that the cross-cycle
edge has weight 0). Let P ′ be an alternate path with the same endpoints as P . We will argue
that w(P ′) > w(P ). Each edge in Ci is of weight at least 1/3i, so if P ′ uses an edge in Ci then
indeed w(P ′) ≥ 1/3i > w(P ). The only edge from vki that is not in Ci is the first edge of P :

8



(vki , v
k
i+1), so P ′ must begin with this edge. From vki+1, if P ′ uses another cross-cycle edge, it

can never return to Ci+1 since all cross-cycle edges go from some Cj to Cj+1. Therefore, the
only edges that P ′ can take from vki+1 are edges in Ci+1. Because Ci+1 is simply a directed

cycle, there is only one path to vk
′

i+1, which is precisely the path that P takes.

Lemma 2.2. Any new weight function wH on G for which all paths in P remain shortest has
aspect ratio 2Ω(n).

Proof. Let H = (V,E,wH) be a shortest-paths-preserving graph of G. We will show that the
weight of each cycle in H is double that of its successor; that is, for all i ∈ {1, . . . , n/3− 1}, we
will show that wH(Ci) > 2 · wH(Ci+1). This implies that the aspect ratio of wH is 2Ω(n).

For any consecutive pair vki , vk
′

i , we know that in H the 3-edge path in P from vki to vk
′

i+1 is

shorter than the 2-edge path (vki , v
k′

i ) ◦ (vk′

i , vk
′

i+1). (These correspond to the blue and red paths
respectively in Figure 4.) Taking the sum of this inequality for all three consecutive pairs in Ci,

we get wH(Ci) +X > 2wH(Ci+i) +X , where X =
∑3

k=1 wH(vki , v
k
i+1) is the sum (in H) of the

weights of the cross-cycle edges from Ci to Ci+1. The X cancels, so we get wH(Ci) > 2wH(Ci+i),
as desired.

2.3 Approximate Version

We now show that in directed graphs, some graphs require exponential aspect ratio even if we
allow arbitrary stretch. We prove Theorem 1.7, restated below:

Theorem 1.7 (Exponential lower bound for approximation in directed graphs). For any α,
there are n-node directed graphs G such that any α-stretch shortest-paths preserving graph H
has aspect ratio 2Ω(n).

Construction: the construction of G is exactly the same as for the exact version above, except
all edges in Ci have weight 1/(2 · α)i instead of 1/3i.

Analysis: we will use the same set P of paths as for the exact version. We will show in
Lemma 2.3 that each path in P is not only the shortest path between its endpoints in G, but is
also the only α-approximate shortest path between its endpoints in G. Since H is an α-stretch
shortest-path preserving graph of G, this implies that each path in P is the unique shortest path
between its endpoints in H . We have already shown in Lemma 2.2 that any new weight-function
wH on G for which all paths in P remain shortest paths has aspect ratio 2Ω(n). Thus, it only
remains to prove Lemma 2.3:

Lemma 2.3. Each path in P is the only α-approximate shortest path between its endpoints in
G.

Proof. Fix a path P ∈ P . We know that P is a path from vki to vk
′

i+1 for some consecutive

pair vki , v
k′

i . It is easy to see that w(P ) = 2
(2·α)i+1 . Let P ′ be an alternate path with the same

endpoints as P . We will argue that w(P ′) > α · w(P ).
Each edge in Ci is of weight at least:

1

(2α)i
> α · 2

(2 · α)i+1
= α · w(P ),

so if P ′ uses an edge in Ci then indeed w(P ′) > α · w(P ). The only edge from vki that is not
in Ci is the first edge of P : (vki , v

k
i+1), so P ′ must begin with this edge. From vki+1, if P ′ uses

another cross-cycle edge, it can never return to Ci+1 since all cross-cycle edges go from some
Cj to Cj+1. Therefore, the only edges that P ′ can take from vki+1 are edges in Ci+1. Because

Ci+1 is simply a directed cycle, there is only one path to vk
′

i+1, which is precisely the path that
P takes.
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3 Exponential Lower Bounds for Undirected Graphs

In this section, we prove our lower bounds for undirected graphs, which are somewhat more
complicated. We start with the exact shortest-path preservers (theorem restated below), and
turn to approximate ones in the next subsection.

Theorem 1.5 (Exponential lower bound for undirected graphs). There are n-node undirected
graphs G such that any shortest-paths preserving graph H has aspect ratio 2Ω(n).

High-Level Approach: Our construction has the same basic structure as the lower bound
for directed graphs in the previous section. The graph G will again consists of constant-length
cycles C1, .., Ck, and we will again construct the graph in such a way as to ensure that the
shortest-path-preserver H must satisfy wH(Ci) > 2 · wH(Ci+1); since the number of cycles is
Ω(n), this implies that wH has aspect ratio 2Ω(n).

At a high level, the argument in directed graphs relied on the fact that every path P ∈ P
from Ci to Ci+1 consists of 2 edges in Ci+1 (plus a cycle-crossing edge), yet is shorter than an
alternative path P ′ between the same endpoints which consists of 1 edge in Ci (plus a cycle-
crossing edge) – see Figure 4. This implies that edges in Ci must have at least double the
weights of those in Ci+1, as desired.

In order to construct an undirected graph which provides a similar guarantee, we need to
overcome three new issues with this approach that are specific to undirected graphs.

The first issue is that in directed graphs we ensured that P has fewer edges than P ′ by
alternating the direction of the cycles. But in undirected graphs, there can be no “forward"
or “backward" cycles. We overcome this issue by introducing more structure to the cross-cycle
edges, which ensures that every P ∈ P still uses two edges from Ci+1, and that there is still an
alternative path P ′ using a single edge from Ci. In particular, the cross-cycle edges no longer
simply go from each vertex in Ci to its copy in Ci+1.

The second issue is that we need our construction to control the direction that the shortest
path P will follow along the cycle. This is easily accomplished by increasing the size of each
cycle to 5, so that following the 2 edges of Ci+1 on P is shorter than following the 3 edges of
Ci+1 in the other direction.

Finally, the third issue is that in undirected graphs, there can also be paths from Ci to Ci+1

that go through multiple levels of cycles (e.g. to Ci+2) and then return back to Ci+1. (In the
directed construction, this could not happen because edges only pointed from lower to higher
numbered cycles.) Because of this, we no longer have the freedom to set the cross-cycle edges
to have weight 0. In fact, if they were weight 0 then there would be a path of weight 0 from
every vertex to every other vertex in the graph, due to the newly defined cross-cycle edges from
the first issue. Instead, we need to set the weights of the cross-cycle edges to be higher; for
the exact lower bound we can simply set the cross-cycle weights to be very large, but for the
approximate lower bound we need to balance them with the weights of the cycle edges. See the
high-level description within the approximate version section (Section 3.3) for more details on
this issue.

3.1 Construction

We construct our lower-bound graph G = (V,E,w) as follows (see Figure 5):

• We assume that the number of vertices n is divisible by 5. The graph consists of n/5
cycles, each with exactly 5 vertices. Label the cycles C1, ...Cn/5, where cycle Ci consists
of vertices v1i , v

2
i . . . , v

5
i , and edges (v1i , v

2
i ), (v

2
i , v

3
i ), (v

3
i , v

4
i ), (v

4
i , v

5
i ), and (v5i , v

1
i ).

• For all i, the cross-cycle edges are as follows: (v1i , v
1
i+1), (v

2
i , v

3
i+1), (v

3
i , v

5
i+1), (v

4
i , v

2
i+1),

and (v5i , v
4
i+1). The pattern of these edges is that as the superscript of the first vertex

increases by 1, the superscript of the second vertex increases by 2 (mod 5).

• All edges in Ci have weight 1/3i. Meanwhile, all cross-cycle edges have weight 1.
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v11
v21

v31
v41

v51

edge wts 1/3

v12
v22

v32
v42

v52

edge wts 1/9

v13
v23

v33
v43

v53

edge wts 1/27

· · ·

Figure 5: Our exponential aspect ratio lower bound in undirected graphs (Theorem 1.5).
The graph consists of n/5 cycles of length. The cross-cycle edges (gray, dotted) go between
differently-numbered nodes in adjacent cycles; the cross-cycle edges have weight 1. (The
cross-cycle edges have weight 1/3i−1 for the α-stretch lower bound.)

v1
i

v2
i

v3
i

v4
i

v51

edge wts 1/3i

v1
i+1

v2
i+1

v3
i+1

v4
i+1

v5
i+1

edge wts 1/3i+1

Figure 6: Just like in our directed lower bound, our analysis uses the fact that the blue
shortest path uses 0 edges from Ci and 2 edges from Ci+1, while the alternate non-shortest
red path uses 1 edge from Ci and 0 edges from Ci+1. For example, in this diagram, the
shortest v4i  v4i+1 path is (v4i , v

2
i+1, v

3
i+1, v

4
i+1) (thick, blue) and not (v4i , v

5
i , v

4
i+1) (thick,

red).

3.2 Analysis

Similar to the directed case, the analysis is broken into two parts. First, we will identify a
particular set P of paths and in Lemma 3.1 we will show that they are unique shortest paths in
G. Then, in Lemma 3.2 we will show that any reassignment of edge weights of G for which all
paths in P remain shortest has aspect ratio 2Ω(n).

Construction of P. See the blue path in Figure 6 for an example of a path in P . All paths
in P go from a vertex in Ci to a vertex in Ci+1. For every vertex vki add to P the following

3-edge path from vki . Take the cross-cycle edge from vki to the cycle Ci+1 and let vji+1 be the

other endpoint of the edge. Then take two cycle edges in Ci+1: first the edge to v
j+1 (mod 5)
i+1

and then the edge to v
j+2 (mod 5)
i+1 .

Lemma 3.1. Each path in P is the unique shortest path between its endpoints.

Proof. Fix a path P ∈ P . P is from vki to v
j+2 (mod 5)
i+1 . We calculate w(P ) as follows: the

first term is for the weight-1 cross-cycle edge, while the second term is the sum of the two edge
weights in Ci+1.

w(P ) = 1 + 2/3i+1.

11



Let P ′ be an alternate path with the same endpoints as P . We will argue that w(P ′) > w(P ).
Any path from Ci to Ci+1 must use a cross-cycle edge, which has weight 1. If P ′ uses another

cross-cycle edge, P ′ gains an additional weight of 1. If P ′ uses an edge in Ci, P
′ gains weight

1/3i. In either of these cases, we have

w(P ′) ≥ 1 + 1/3i > 1 + 2/3i+1 = w(P ).

Thus, the only case left is consider is when P ′ uses exactly one cross-cycle edge, and does not
use any edges from Ci.

The only edge from vki that is not in Ci is the first edge of P : (vki , v
j
i+1), so P ′ must begin

with this edge. From vji+1, the remainder of P ′ must be within Ci+1, since P ′ does not use

another cross-cycle edge. Because Ci+1 is a cycle, there are exactly two simple paths from vji+1

to v
j+2 (mod 5)
i+1 : P takes the one on 2 edges, while the other path goes in the other direction

around the 5-cycle, so it has 3 edges and is longer than P . This completes the proof.

Lemma 3.2. Any reassignment of edge weights to G such that all paths in P remain shortest
has aspect ratio 2Ω(n).

Proof. Let H = (V,E,wH) be a shortest-paths-preserving graph of G. We will show that for all
i ∈ {1, . . . , n/5 − 1}, we have wH(Ci) > 2 · wH(Ci+1). Since there are n/5 cycles, this implies
that the aspect ratio of wH is 2Ω(n).

First, we claim that for every path P ∈ P from Ci to Ci+1, there is a not-shortest 2-edge path
P ′ with the same endpoints as P , such that P ′ includes one edge in Ci and one cross-cycle edge.
(P and P ′ correspond to the blue and red paths respectively in Figure 6.) The reason for this
is by the construction of the cross-cycle edges. Recall that the cross-cycle edges are (v1i , v

1
i+1),

(v2i , v
3
i+1), (v

3
i , v

5
i+1), (v

4
i , v

2
i+1), (v

5
i , v

4
i+1), where the pattern is that as the superscript of the first

vertex increases by 1, the superscript of the second vertex increases by 2 (mod 5). Specifically,

P has vertices vki , vji+1, v
j+1 (mod 5)
i+1 , and v

j+2 (mod 5)
i+1 , while P ′ has vertices vki , v

k+1 (mod 5)
i ,

v
j+2 (mod 5)
i+1 .

Since P is the unique shortest path between its endpoints in H , we know that wH(P ) <
wH(P ′). Taking the sum of this inequality for all 5 paths in P that go from Ci to Ci+1, we get
wH(Ci)+X > 2wH(Ci+i)+X , where X is the sum of the weights of the cross-cycle edges from
Ci to Ci+1. The X cancels, so we get wH(Ci) > 2wH(Ci+i), as desired.

3.3 Approximate Version

We now show that exponential aspect ratio is required even if we allow stretch. But unlike in
the directed case, we do not have a lower bound against arbitrary stretch, only against a small
constant stretch.

Theorem 1.8 (Exponential lower bound for approximation in undirected graphs). For any
ε ≤ 13/12, there are n-node undirected graphs G such that any (1 + ε)-stretch shortest-paths
preserving graph H has aspect ratio 2Ω(n).

High-Level Description: For the approximate version, the third issue for undirected graphs
in the high-level description above becomes more troublesome: namely, that alternate paths can
go through multiple levels of cycles and then return back to the original level. For the exact
version for undirected graphs, we handled this by setting cross-cycle edges to have very high
weight relative to the cycle edges; in particular, we set all of their weights to 1. This does not
work for the approximate version for the following reason.

Just as in the directed case (Lemma 2.3), we want to ensure that each path in P is the only
α-approximate shortest path between its endpoints in G. This is no longer true for undirected
graphs if we set the cross-cycle edges to have very large weight. In particular, recall that each
path P ∈ P consist of one cross-cycle edge and two cycle edges from Ci+1, while there also exists
a corresponding not-shortest path P ′ between the same endpoints that consist of one cross-cycle
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edge and one cycle edge from Ci. The two paths both use exactly one cross-cycle edge, so if
that weight is very large then it will dominate the edge-weights on the cycle, and P ′ will be an
α-approximation to P

To address this issue, we need to set the weight of the cross-cycle edges carefully; setting
these weights either too large or too small does not work. This balancing act is the reason that
our lower-bound construction only works for a small constant α.

Construction: The construction for our lower-bound graph G = (V,E,w) as identical to the
exact version for undirected graphs, except that each cross-cycle edge e from Ci to Ci+1 is given
weight w(e) = 1/3i−1.

Analysis: We will use the same set P of paths as the exact undirected version (see Section
3.2). We will show in Lemma 3.3 that each path in P is the only 13/12-approximate shortest
path between its endpoints in G. Since α ≤ 13/12, this means that for any α-approximate
shortest-path-preserving graph H = (V,E,wH) of G, each path in P is the unique shortest path
between its endpoints in H . Combined with Lemma 3.2, this implies that H has aspect ratio
2Ω(n), as desired. Thus, it remains only to prove Lemma 3.3:

Lemma 3.3. Each path in P is the only 13/12-approximate shortest path between its endpoints
in G.

Proof. Fix a path P ∈ P . P is from vki to v
j+2 (mod 5)
i+1 (where j is such that (vki , v

j
i+1) is a

cross-cycle edge). We calculate w(P ) as follows: the first term is for the cross-cycle edge, while
the second term is the sum of the two edge weights in Ci+1:

w(P ) = 1/3i−1 + 2/3i+1.

Let P ′ be an alternate path with the same endpoints as P . We will argue that w(P ′) >
13/12 · w(P ).

Any path from Ci to Ci+1 must use a cross-cycle edge between Ci and Ci+1, which has
weight 1/3i−1. If P ′ uses another cross-cycle edge, its next cross-cycle edge is from Ci+1 to
either Ci+2 to Ci, so has weight at least 1/3i. This means that we would have:

w(P ′) ≥ 1/3i−1 + 1/3i

> 13/12 · (1/3i−1 + 2/3i+1)

= 13/12 · w(P ).

Thus, suppose P ′ uses exactly one cross-cycle edge.
Furthermore, each edge in Ci is of weight at least 1/3i, so due to exactly the same string of

inequalities, if P ′ used any edge in Ci then we would again have w(P ′) > 13/12 · w(P ). Thus,
suppose P ′ does not use any edges from Ci.

The only edge from vki that is not in Ci is the first edge of P : (vki , v
j
i+1), so P ′ must begin

with this edge. From vji+1, recall that P ′ cannot use another cross-cycle edge so the remainder
of P ′ must be within Ci+1. Because Ci+1 is a cycle, there are exactly two simple paths from

vji+1 to v
j+2 (mod 5)
i+1 : P takes the one on 2 edges and the other one goes the other way around

the 5-cycle and has 3 edges. These edges have weight 1/3i+1, so the total weight of 3 of these
edges is 1/3i. Thus, if P ′ takes the 3-edge path, exactly the same string of inequalities as above
implies w(P ′) > 13/12 · w(P ).

4 Upper Bound for DAGs

In this section, we show that in contrast to general directed graphs, any DAG G admits a
shortest-path-preserving graph with aspect ratio O(n).

Theorem 1.3 (Linear upper bound for DAGs). Every n-node DAG has a shortest-paths pre-
serving graph of aspect ratio O(n).
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Since G is a DAG, we can label the vertices v1, ..., vn according to their topolgical order;
that is, for every edge (vi, vj) ∈ E we have j > i.

Let W be the heaviest edge weight in the input graph G = (V,E,w). We now define a new
weight function wH : given any edge (vi, vj) in G, set

wH(vi, vj) = w(vi, vj) +W · (j − i)

We now argue that H = (V,E,wH) is a shortest-path-preserver of G.

Lemma 4.1. Every shortest path in H is a shortest path in G and vice versa.

Proof. This follows directly from the well-known fact that price functions do not change shortest
paths; note that wH(vi, vj) are precisely the reduced weights obtained from price function
φ(vi) = W · i. See e.g. [Joh77] for more details on price functions.

For the sake of completeness, we also prove the Lemma from scratch in Section A of the
appendix.

Lemma 4.2. The weight function wH has aspect ratio at most n+ 1.

Proof. Recall that we defined W to be the heaviest edge weight in G. For any edge (vi, vj) we
have 1 ≤ j − i < n. We can thus conclude that the maximum edge weight in H is at most
W + nW = (n + 1)W , while the minimum edge weight in H is at least W . This implies that
wH has aspect ratio at most n+ 1.

5 Lower Bound for DAGs

In this section we will prove an exponential lower bound for two-sided approximation on DAGs:

Theorem 1.10 (Exponential lower bound for two-sided approximation in DAGs). For any
αH , αG > 1, there is an n-node DAG G such that any (αH → αG)-stretch shortest-paths pre-
serving graph H has aspect ratio (αH)Ω(

√
n).

5.1 Construction

The lower-bound graph G = (V,E,w) is the
√
n × √

n grid graph where all horizontal edges
are directed to the right and all vertical edges are directed upwards (see Section 5.1). We will
refer to the vertices by their (row, column) coordinates, where the vertex in the top left corner
is (0, 0).

The edge weights are defined as follows. All horizontal edges have weight 1. The weight of
each vertical edge depends on its column. All vertical edges in column j have weight (αG ·√n)2j .

This completes the construction of G. Note that G is a DAG.

5.2 Analysis

The analysis is broken into two parts. First, in Lemmas 5.1 and 5.2 we will show that each
path from a particular collection of paths is the only αG-approximate shortest path between
its endpoints. This means that in any (αH → αG)-stretch shortest-paths preserving graph
H = (V,E,wH), each of these paths must be the only αH -approximate shortest path between
its endpoints. Then, in Lemma 5.3 we will prove by induction on the size of the grid, that the
sum of edge weights in the last row and the last column of H must be exponentially large.

Lemma 5.1. Let s = (i, j) be a vertex in G, and let t = (i − 1, k) where k > j (that is, t is
exactly one row above and at least one column to the right of s). Then, the shortest st-path
P uses one vertical edge followed by a series of horizontal edges. Furthermore, P is the only
αG-approximate st-shortest path.
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Figure 7: The graph G. The weights under each column indicate that every edge in that
column has that weight.

Proof. Since edges are only directed up and to the right, and t is exactly one row above s, the
only st-paths use a (possibly empty) series of horizontal edges, followed by a single vertical edge,
followed by a (possibly empty) series of horizontal edges. Since all horizontal edges have weight
1, the contribution of these edges to w(P ) is

√
n. Let ℓ be the column of the single vertical

edge e in P (so j ≤ ℓ ≤ k). Then, w(e) = (αG · √n)2ℓ. This quantity is minimized when ℓ is
minimizeds, so ℓ = j. This means that the shortest st-path P has its vertical edge in column j
(the column containing s). This proves the first part of the claim.

To prove that P is the only αG-approximate st-shortest path, we consider any other st-path
P ′. Let ℓ′ > j be the column of the single vertical edge in P ′. Then, w(P ′) =

√
n+(αG ·√n)2ℓ

′ ≥
(αG · √n)2(j+1). Then,

w(P ′)

w(P )
≥ (αG · √n)2(j+1)

√
n+ (αG · √n)2j

>
(αG · √n)2(j+1)

(αG · √n)2j+1

≥ αG.

We also make a symmetric claim:

Lemma 5.2. Let s = (i, j) be a vertex in G, and let t = (k, j + 1) where k < i (that is, t is
at least one row above and exactly one column to the right of s). Then, the shortest st-path P
uses a series of vertical edges followed by exactly one horizontal edge. Furthermore, P is the
only αG-approximate st-shortest path.

Proof. Since edges are only directed up and to the right, and t is exactly one column to the
right of s, the only st-paths use a (possibly empty) series of vertical edges, followed by a single
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horizontal edge, followed by a (possibly empty) series of vertical edges. The contribution of the
single horizontal edge to w(P ) is 1. The contribution of the vertical edges is as follows. Let b
be the number of vertical edges on P before the horizontal edge. Then the sum of the weights
of the vertical edges is b(αG · √n)2j + (k − i − b)(αG · √n)2(j+1). This quantity is minimized
when b is maximized, so b = k − i. This proves the first part of the claim.

To prove that P is the only αG-approximate st-shortest path, we consider any other st-path
P ′. Let b′ < k − i be the number of vertical edges on P ′ before the horizontal edge. Then,

w(P ′) = 1 + b′(αG ·
√
n)2j + (k − i− b′)(αG ·

√
n)2(j+1)

≥ (k − i− 1)(αG ·
√
n)2j + (αG ·

√
n)2(j+1) (setting b′ = k − i− 1)

≥ (αG ·
√
n)2(j+1).

We know that w(P ) = 1 + (k − i)(αG · √n)2j . Thus,

w(P ′)

w(P )
≥ (αG · √n)2(j+1)

1 + (k − i)(αG · √n)2j

≥ (αG · √n)2(j+1)

1 +
√
n(αG · √n)2j

>
(αG · √n)2(j+1)

(αG · √n)2j+1

≥ αG.

Now we will prove that in H , the sum of last column and the last row of the grid must have
exponentially large weight. We can assume without loss of generality that the minimum edge
weight in H is 1.

Lemma 5.3. Suppose that the minimum edge weight in H is 1. Then, the sum of edge weights
(in H) of the last row and last column is at least (αH)

√
n−1.

Proof. The proof is by induction on the dimension of the grid. We will show that for any L,
when H is an L × L grid, the sum of weights in the last row and the last column is at least
(αH)L−1.

Base Case. In the base case H is a 2×2 grid. Let P ′ be the path (1, 0) → (1, 1) → (0, 1); that is
wH(P ′) is the sum of weights in the last row and column. Our goal is to show that wH(P ′) ≥ αH .
Let P be the shortest path from (1, 0) to (0, 1). By Lemma 5.1, P uses one vertical edge followed
by one horizontal edge; that is, P = (1, 0) → (0, 0) → (0, 1). By Lemma 5.1, we also know that
P ′, which has the same endpoints as P , is not an αG-approximate shortest path in G, and thus
cannot be an αH approximate shortest path in H . Since the minimum edge weight in H is 1,
wH(P ) ≥ 2, so wH(P ′) ≥ 2 · αH , as desired.

Inductive Hypothesis. Suppose that when H is an L×L grid, the sum of weights in the last
row and the last column is at least (αH)L−1.

Inductive Step. We will show that when H is an (L + 1) × (L + 1) grid, the sum of edge
weights in the last row and the last column is at least (αH)L.

Let HL ⊆ H be the L × L grid that excludes the last row and last column of H . We will
apply the inductive hypothesis on HL.

We define the paths X , X ′, Y , and Y ′ as shown in Fig. 8. X is the last row of HL. X ′ is
X shifted down by one row. Y is the last column of HL. Y ′ is Y shifted to the right by one
column. That is,

• X is the horizontal path (L− 1, 0) → (L− 1, L− 1),

• X ′ is the horizontal path (L, 0) → (L,L− 1),
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(0, 0)

(L, 0)

(0, L)

(L,L)

X ′

Y ′

X

Y

Figure 8: The paths X , X ′, Y , and Y ′. The shortest path PX is the blue path from (L, 0)
to (L− 1, L− 1), while the not shortest path PX′ is the red path with the same endpoints.
The shortest path PY is the blue path from (L − 1, L − 1) to (0, L), while the not-shortest
path PY ′ is the red path with the same endpoints. The remaining grid edges are omitted
from the figure for simplicity.

• Y is the vertical path (L− 1, L− 1) → (0, L− 1), and

• Y ′ is the vertical path (L − 1, L) → (0, L).

By the inductive hypothesis we know that wH(X) + wH(Y ) > (αH)L−1.
Let PX be the shortest path in H from (L, 0) to (L−1, L−1) (see Figure 8). By Lemma 5.1,

PX takes one vertical edge followed by all of the edges in X . Consider an alternate path
PX′ with the same endpoints, which takes all of the edges in X ′ followed by the vertical edge
(L,L− 1) → (L− 1, L− 1). By Lemma 5.1, PX′ is not an αG-approximate shortest path in G,
and thus cannot be an αH approximate shortest path in H . Thus,

wH(X ′) + wH

(

(L,L− 1), (L− 1, L− 1)
)

> αH · wH(X). (1)

Now, we will derive a symmetric inequality for Y instead of X . Let PY be the shortest path
in H from (L − 1, L − 1) to (0, L). By Lemma 5.2, PY takes all of the edges in Y followed by
one horizontal edge. Consider an alternate path PY ′ with the same endpoints, which takes the
horizontal edge (L−1, L−1)→ (L−1, L) followed by all of the edges in Y ′. By Lemma 5.2, PY ′

is not an αG-approximate shortest path in G, and thus cannot be an αH approximate shortest
path in H . Thus,

wH(Y ′) + wH

(

(L − 1, L− 1), (L− 1, L)
)

> αH · wH(Y ). (2)

Taking the sum of Eqs. (1) and (2), we have

wH(X ′)+wH(Y ′)+wH

(

(L,L−1), (L−1, L−1)
)

+wH

(

(L−1, L−1), (L−1, L)
)

> αH ·(wH(X)+wH(Y ))
(3)

By Lemma 5.1, we know that (L,L − 1) → (L − 1, L − 1) → (L − 1, L) is a shortest path,
while (L,L− 1) → (L,L) → (L− 1, L) is not. Thus, the left hand side of Eq. (3) is strictly less
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than wH(X ′)+wH(Y ′)+wH

(

(L,L− 1), (L,L)
)

+wH

(

(L,L), (L− 1, L)
)

, which is precisely the
sum of the last row and last column of H . Thus, our goal is to show that the right hand side of
Eq. (3) is at least (αH)L.

By the inductive hypothesis, wH(X) + wH(Y ) > (αH)L−1, so we have

αH · (wH(X) + wH(Y )) > αH · (αH)L−1

= (αH)L.

This completes the proof.

We have just proven in Lemma 5.3 that in H the sum of edge weights in the last row and
last column is at least (αH)

√
n−1. This means that at least one of these 2

√
n edges has weight

at least (αH)
√
n−1/(2

√
n) = (αH)Ω(

√
n). This completes the proof of Theorem 1.10.
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Appendix A Proof of Lemma 4.1

Proof. Consider any paths P, P ′ between the same set of endpoints. We will show that w(P )−
w(P ′) = wH(P )− wH(P ′), which clearly implies the lemma.

Let P = vi1 , vi2 , ..., vik . We have

w(P ) =
k−1
∑

j=1

w(vij , vij+1
)

We also have

wH(P ) =

k−1
∑

j=1

[w(vij , vij+1
) +W (ij+1 − ij)] =

k−1
∑

j=1

w(vij , vij+1
) +W (ik − i1),

where the second inequality holds because the sum
∑k−1

j=1 W (ij+1 − ij) telescopes.
Combining the inequalities above yields wH(P ) = w(P ) + W (ik − i1). By an identical

argument we wH(P ′) = w(P ′) +W (ik − i1); here we use the fact that P and P ′ have the same
endpoints, namely vi1 and vik . Subtracting these two equalities, we conclude that

w(P )− wH(P ) = w(P ′)− wH(P ′) → w(P ) − w(P ′) = wH(P )− wH(P ′).
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