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Cognitive diagnostic assessment aims to measure specific knowledge
structures in students. To model data arising from such assessments, cogni-
tive diagnostic models with discrete latent variables have gained popularity in
educational and behavioral sciences. In a learning context, the latent variables
often denote sequentially acquired skill attributes, which is often modeled by
the so-called attribute hierarchy method. One drawback of the traditional at-
tribute hierarchy method is that its parameter complexity varies substantially
with the hierarchy’s graph structure, lacking statistical parsimony. Addition-
ally, arrows among the attributes do not carry an interpretation of statistical
dependence. Motivated by these, we propose a new family of latent conjunc-

tive Bayesian networks (LCBNs), which rigorously unify the attribute hier-
archy method for sequential skill mastery and the Bayesian network model
in statistical machine learning. In an LCBN, the latent graph not only retains
the hard constraints on skill prerequisites as an attribute hierarchy, but also
encodes nice conditional independence interpretation as a Bayesian network.
LCBNs are identifiable, interpretable, and parsimonious statistical tools to
diagnose students’ cognitive abilities from assessment data. We propose an
efficient two-step EM algorithm for structure learning and parameter estima-
tion in LCBNs, and establish the consistency of this procedure. Application
of our method to an international educational assessment dataset gives inter-
pretable findings of cognitive diagnosis.

1. Introduction. Cognitive diagnostic assessment aims to measure specific knowledge
structures and processing skills in students (Leighton and Gierl, 2007). To model data arising
from such assessments, cognitive diagnostic models (CDMs) with discrete latent variables
(also called diagnostic classification models; see Rupp et al., 2010; von Davier and Lee,
2019) have recently gained great popularity in educational, psychological, and behavioral ap-
plications. CDMs adopt a set of discrete latent attributes with substantive meaning to explain
a subject’s multivariate responses to a set of items. “Attribute” here is a generic term that can
represent unobserved psychological constructs including skills, knowledge states, conceptual
understandings, cognitive processes, and rules (Wang, 2021). In educational settings, each at-
tribute often represents the mastery/deficiency of a specific latent skill. Adopting CDMs in
educational assessment can generate fine-grained diagnoses about students’ multiple latent
skills, and hence provide detailed feedback about their weaknesses and strengths.

A typical CDM consists of a structural model for the latent attributes and a measurement

model describing the dependence of the observed variables (i.e., item responses in educa-
tional assessments) on the latent attributes. The measurement model is accompanied by a
so-called Q-matrix (Tatsuoka, 1983), summarizing which subset of the attributes each ob-
served variable measures or requires. The Q-matrix is often pre-specified by domain experts.
Various measurement models have been proposed for different diagnostic purposes. For ex-
ample, the popular and fundamental Deterministic Input Noisy Output “AND” gate (DINA;
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Junker and Sijtsma, 2001) model adopts the conjunctive assumption by specifying that a stu-
dent needs to master all attributes required by an item to be capable of it. The generalized
DINA (GDINA; de la Torre, 2011) model generalizes this by incorporating main effects and
interaction effects of required attributes into the measurement model. Other popular CDMs
include the Deterministic Input Noisy Output “OR” gate (DINO; Templin and Henson, 2006)
model, the log-linear CDM (LCDM; Henson et al., 2009), the additive CDM (ACDM; de la
Torre, 2011), and general diagnostic models (GDM; von Davier, 2008).

As for the structural model for the latent attributes in a CDM, the attribute hierar-

chy method that models sequential skill mastery has recently attracted increasing attention
(Leighton et al., 2004; Gierl et al., 2007; Wang and Gierl, 2011; Templin and Bradshaw,
2014; Gu and Xu, 2019; Wang and Lu, 2021). Students’ learning is not instantaneous and
often proceeds in a sequential and dependent manner. In a learning context, possessing lower
level skills are often believed to be the prerequisite for possessing higher level skills (Simon
and Tzur, 2012; Briggs and Alonzo, 2012). Leighton et al. (2004) first proposed the attribute
hierarchy method, and Templin and Bradshaw (2014) integrated the attribute hierarchy with
a flexible measurement model in a statistical framework to define the family of hierarchical
cognitive diagnostic models.

Most existing studies on attribute hierarchy followed Templin and Bradshaw (2014) to
adopt unstructured proportion parameters, which characterizes how much proportion of the
student population possess this skill pattern. One limitation of this popular approach is that its
parameter complexity varies substantially with the graph structure of the hierarchy, lacking
statistical parsimony. For instance, with K binary attributes, a chain graph hierarchy requires
K free parameters for the latent distribution, whereas a graph with one attribute serving as a
common parent to all the other attributes requires 2K−1 parameters. This lack of parsimony
especially creates computational and statistical challenges when there are a large number of
attributes and a limited sample size. In addition, the unstructured model for attribute hierarchy
does not endow the hierarchy graph with any probabilistic interpretation. Specifically, the
hierarchy among the latent attributes is merely treated as a machinery for inducing hard
constraints on which latent attribute patterns are permissible (those respecting the hierarchy)
and which are forbidden (those violating the hierarchy). As a result, the arrows in such an
attribute hierarchy graph do not carry clear interpretation of direct statistical dependence, nor
does the lack of arrows indicate conditional independence.

Motivated by the above issues, we propose a new family of latent conjunctive Bayesian

networks (LCBNs) for cognitive diagnosis. LCBNs are a parsimonious and interpretable class
of probabilistic graphical models that rigorously unify attribute hierarchy and Bayesian net-
work. A Bayesian network (Pearl, 1988) is a directed graphical model of random variables,
in which directed arrows indicate statistical dependence and the lack of arrows indicate con-
ditional independence. In our LCBN, the directed acyclic graph among the latent attributes
not only respects the hard constraints on which attribute patterns are permissible/forbidden
as under a usual attribute hierarchy, but also encodes the nice conditional independence in-
terpretation as in a usual Bayesian network. Therefore, LCBNs enjoy the best of both worlds.
Moveover, LCBNs are parsimonious statistical models with a fixed parameter complexity in
the latent part – it always only requires K parameters for specifying the joint distribution of
K binary latent attributes, regardless of the graph structure of the hierarchy.

In terms of model identifiability, we prove that the attribute hierarchy graph and all the
continuous parameters in an LCBN are fully identifiable from the observed data distribu-
tion. Our identifiability conditions are transparent requirements on the discrete structure in
the model. Identifiability lays the foundation for valid statistical estimation and inference.
In terms of estimation, we propose an efficient two-step EM algorithm to perform structure
learning and parameter estimation in LCBNs. In the first step, we leverage a penalized EM
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algorithm for selecting significant latent patterns (Gu and Xu, 2019) to estimate the discrete
structure – the attribute hierarchy graph. In the second step, we fix the attribute hierarchy and
propose another EM algorithm to estimate the continuous parameters in the LCBN. Simu-
lation studies demonstrate the estimation accuracy of this procedure. We apply our method
to analyze a dataset extracted from an international educational assessment, the Trends in
Mathematics and Science Study (TIMSS). The real data analysis gives interpretable finds of
cognitive diagnosis and demonstrates the wide applicability of our method.

The remainder of this paper is organized as follows. Section 2 introduces the background
of cognitive diagostic modeling, proposes the general framework of LCBNs, and discusses
some related work. Section 3 provides identifiability conditions of LCBNs. Section 4 pro-
poses a two-step EM algorithm to estimate the attribute hierarchy graph and model param-
eters in LCBNs. Section 5 presents simulation studies to empirically assess the proposed
method. Section 6 applies the new method to analyze an international educational assess-
ment dataset. Finally, Section 7 provides concluding remarks and discusses future directions.
We provide the proofs of the theorems, additional identifiability results, and additional simu-
lation studies in the Supplementary Material.

2. Latent Conjunctive Bayesian Network.

2.1. Cognitive Diagnostic Modeling with an attribute hierarchy. We first introduce the
basic setup of a CDM. Consider a CDM for modeling a cognitive diagnostic assessment.
A student’s observed variables are his or her correct/wrong responses to a set of J items
in the assessment, denoted by R = (R1, . . . ,RJ) ∈ {0,1}J , in which Rj = 1 indicates the
student’s response to the jth item is correct and Rj = 0 otherwise. A student’s latent vari-
ables are his or her profile of presence/absence of a set of K skill attributes, denoted by
α= (α1, . . . , αK) ∈ {0,1}K , in which αk = 1 indicates the student masters the kth skill and
αk = 0 otherwise. Typically, a CDM consists of two parts: a structural model for the latent
attributes, and a measurement model to describe the distribution of the observed responses
given the latent. In a learning context, the skill attributes are often sequentially acquired and
form a hierarchy with prerequisite relations among attributes. In a CDM with attribute hierar-
chy, the key elements of the structural and measurement modeling parts are captured by two
discrete graph structures: a directed acyclic graph among the latent attributes, and a bipar-
tite directed graph pointing from the latent attributes to the observed responses. These two
graphical structures are illustrated in Figure 1. For clarity of presentation, we next describe
the measurement part and the structural part of a CDM separately in subsequent paragraphs.

R1 R2 R3 · · · · · · RJ

α1 α2 · · · αK

QJ×K

E = {α1→ α2, . . . , αK−1→ αK}

Fig 1: Graphical model representation of a cognitive diagnostic model with a linear attribute
hierarchy. White nodes are latent attributes, and grey nodes are observed responses. Dotted ar-
rows denote the prerequisite relationship among the latent attributes, and solid arrows denote
the conditional dependence structure of the observed responses given the latent attributes.

For the measurement part of a CDM, educational experts who designed the assessment
usually provide information about which subset of the K skills each test item measures. All
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such information are summarized in a so-called Q-matrix (Tatsuoka, 1983). The Q-matrix
Q= (qj,k) ∈ {0,1}J×K is a J×K matrix with binary entries, with rows indexed by observed
items and columns by latent attributes. Each entry qj,k = 1 or 0 indicates whether or not the
jth test item requires/measures the kth latent skill. Consequently, the jth row vector of Q,
denoted by qj = (qj,1, . . . , qj,K), is the attribute requirement profile of item j. For example,
in Figure 1 we have q1 = (1,0,0,0) since the first item only requires the first attribute.

Statistically, a student’s responses to the J items are assumed to be conditionally inde-
pendent given his or her latent attribute profile α. Such a local independence assumption is
widely adopted in various models for item response data. We collect all the conditional cor-
rect response probabilities in a J × 2K item parameter matrix Θ = (θj,α)J×2K , with rows
indexed by the J test items and columns by the 2K binary pattern configurations in {0,1}K .
For any j ∈ [J ] and α ∈ {0,1}K , the entry θj,α = P(Rj = 1 | α) defines the conditional
probability of giving a correct response to item j given that one has a latent skill profile α.
For two vectors a = (a1, . . . , aK) and b = (b1, . . . , bK) of the same length, we write a � b

if ak ≥ bk for all k ∈ [K] and write a� b otherwise. Importantly, since qj describes which
subset of attributes item j measures, the correct response probability θj,α only depends on
those attributes αk that are measured by item j (that is, those αk with qj,k = 1). Therefore,

θj,α = θj,α′ for any α,α′ � qj .(1)

Another common feature shared by many measurement models is that item parameters ex-
hibit monotonicity (Xu and Shang, 2018; Gu and Xu, 2019; Balamuta and Culpepper, 2022):

(2) θj,α > θj,α′ for any α� qj and α′ � qj .

The above inequality can be interpreted as: if a student possesses all the attributes required by
item j (that is, α� qj), then this student has a higher probability to give a correct response
to this item compared to other subjects who lack some required attribute.

We next review some popular and widely used CDM measurement models.

EXAMPLE 1 (DINA model). The Deterministic Input Noisy output “And” gate (DINA;

Junker and Sijtsma, 2001) model is a very popular and fundamental CDM, with the ad-

vantages of parsimony and interpretability. For each item j, DINA uses exactly two distinct

parameters to describe the correct response probability θj,α. Specifically, if a student has

a latent profile α � qj , then he/she is considered capable of this item but still has a small

probability sj to make a careless mistake; on the other hand, if the student lacks some of the

required attributes with α � qj , then he/she is incapable of this item but still has a small

probability gj to have a lucky guess. The correct response probability can be written as

(3) θj,α = P(Rj = 1 |α) =

{
1− sj , if α� qj ;

gj , if α� qj .

sj and gj are called slipping parameter and guessing parameter, respectively. The mono-

tonicity inequality in (2) now boils down to 1− sj > gj for all j.

EXAMPLE 2 (All-effect CDMs). All-effect CDMs generalize the DINA model by consid-

ering both the main effects and all the interaction effects of the required attributes. The item

parameter θj,α can be written as

(4)

θj,α = f(δj,0 +

K∑

k=1

δj,kqj,kαk +
∑

1≤k<k′≤K

δj,kk′(qj,kαk)(qj,k′αk′) + · · ·+ δj,1···K

K∏

k=1

(qj,kαk)),
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where δj,k is the main effect of the required attribute αk, and δj,kk′ is the interaction effect

between two required attributes αk and αk′ , etc. When the link function f is the identity, (4)
gives the Generalized DINA model (GDINA; de la Torre, 2011); when f is the inverse logit,

(4) gives the Log-linear CDM (LCDM; Henson et al., 2009); also see the General Diagnostic

Model (GDM) framework in von Davier (2008).

We now describe the structural part of a CDM with an attribute hierarchy. The hierarchy
is a collection of prerequisite relations between the K latent attributes, in which possessing
more basic skills are assumed to be the prerequisite for possessing more advanced ones. For
any 1 ≤ k 6= ` ≤K , we say that attribute k is a prerequisite for attribute ` (and denote this
by αk → α` or simply k→ `) if any latent skill pattern α ∈ {0,1}K with αk = 0 and α` = 1
does not exist in the student population and is not “permissible”. In other words, for any
student that masters the higher level advanced skill α`, he/she must have mastered the lower
level basic skill αk. Denote the collection of all the prerequisite relationships by

E = {k→ ` : the kth skill attribute is a prerequisite for the `th skill attribute}.

Any attribute hierarchy E can be visualized as a directed acyclic graph among K nodes,
each node representing a latent attribute. For example, Figure 1 illustrates a linear hierarchy
among the skills with E = {α1 → α2, α2 → α3, . . . , αK−1 → αK}.

For a CDM with an attribute hierarchy, most existing studies followed Templin and Brad-
shaw (2014) to adopt an unstructured statistical model for the hierarchy. Specifically, such a
model is based on the observation that any nonempty E induces a sparsity structure on the
2K–dimensional proportion parameters p= (pα :α ∈ {0,1}K). For example, if k→ `, then
as aforementioned, any pattern α with αk = 0 but α` = 1 does not exist in the population
and hence its population proportion pα = 0. In this way, we can define the set of permissible
latent skill patterns under a hierarchy E as follows:

(5) A(E) = {α ∈ {0,1}K : α is permissible under E}= {α ∈ {0,1}K : pα > 0 under E}.

Note that A(E) is fully determined by the attribute hierarchy E .
Since the hierarchy E is a directed acyclic graph among K attributes, it can also be equiv-

alently represented by a K ×K reachability matrix G(E) (also denoted by G for short) in
the graph theory terminology. The (k, `)th entry of G is a binary indicator of whether the
kth skill is the prerequisite for the `th skill, that is, Gk,` = 1(k → `). Here we assume the
diagonal entries of G are all zero.

EXAMPLE 3. Consider an example with K = 4 skill attributes and a hierarchy E = {1→
3, 1→ 4, 2→ 3, 2→ 4}. This hierarchy means that the first two skills are the basic ones

that serve as the prerequisites for the last two advanced skills. This E is visualized in the left

panel of Figure 2. There are seven permissible attribute patterns under E:

(6) A(E) = {0000, 1000, 0100, 1100, 1110, 1101, 1111}.

The patterns in A(E) can also be viewed as forming a distributive lattice, a concept in com-

binatorics (Gratzer, 2009), as shown in the middle panel of Figure 2. The corresponding

reachability matrix G under E is shown in the rightmost panel of Figure 2.

It is worth emphasizing the distinction between a directed acyclic graph (DAG) in the usual
attribute hierarchy method and that in a conventional Bayesian network model (Pearl, 1988,
or equivalently, a probabilistic directed graphical model). Specifically, the arrows in the DAG
among the latent attributes (as shown in Figure 2) generally cannot be interpreted as encoding
direct statistical dependence, nor does the lack of arrows indicate conditional independence.
Rather, such a DAG merely encodes certain hard constraints on what attribute patterns are



6

α1 α2

α3 α4

=⇒

0000

1000 0100

1100

1110 1101

1111

G=





0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0



 .

Fig 2: An example with K = 4 skill attributes. Left: attribute hierarchy graph E . Middle: all
the allowable attribute patterns in A(E). Right: K ×K reachability matrix G.

permissible (those α ∈ A(E)) and which are forbidden (those α ∈ {0,1}K \ A(E)). In con-
trast, the DAG in a Bayesian network has arrows capturing the statistical dependence between
the random variables, and generally does not forbid any configurations.

A natural and interesting question is – can we introduce a new family of models that rig-
orously unify the above two models and inherit the advantages of both? This question is
particularly relevant considering the drawbacks of the existing attribute hierarchy method,
including not only the lack of interpretability, but also the lack of statistical parsimony. To
see this, consider an attribute hierarchy E = {1→ 2, 1→ 3, . . . , 1→K} where the first at-
tribute serves as a common prerequisite for all the K−1 remaining attributes. This E implies
A(E) = {01×K , (1,α′) for α′ ∈ {0,1}K−1} with 2K−1 + 1 permissible patterns. To model
this E , a conventional attribute hierarchy method would require 2K−1 free parameters in the
latent distribution. Such a lack of parsimony especially creates statistical and computational
challenges when there are a large number of attributes but a limited sample size, as would be
the case in fine-grained cognitive diagnosis of many skills in small classroom settings.

2.2. Latent Conjunctive Bayesian Networks. This subsection introduces a new family
of models for attribute hierarchy in cognitive diagnosis: the Latent Conjunctive Bayesian
Networks (LCBNs). LCBNs rigorously unify the attribute hierarchy method in educational
measurement and the Bayesian network model in statistical machine learning, and inherit
the advantages of both. Our proposal of LCBNs is inspired by another seemingly remote
research area – graphical modeling of genetic mutations in bioinformatics. Specifically, the
conjunctive Bayesian network (CBN) proposed by Beerenwinkel et al. (2005) and analyzed
by Beerenwinkel et al. (2007), models a set of observed binary genetic mutations by a partial
order, and assign zero probabilities to genotypes (analogue of our skill attribute patterns) that
are not compatible with this partial order (analogue of our attribute hierarchy). An important
difference is that, genetic mutations are often assumed to be entirely observed without any la-
tent variables (Beerenwinkel et al., 2005, 2006, 2007). In contrast, in our cognitive diagnostic
modeling of educational assessment data, the skill attributes are latent constructs that are not
directly observable, but rather indirectly measured by item responses. We will further discuss
the differences between the proposed LCBN and the CBN in Section 2.3, after elaborating
on their common conjunctive modeling framework for multiple binary random variables.

We formally define the latent conjunctive Bayesian network for the attribute hierarchy.
Introduce K Bernoulli parameters t = (t1, ..., tK)> ∈ (0,1)K . For any k ∈ [K], denote the
set of “parent” attributes of αk in the attribute hierarchy graph by pa(k). The parent attribute
of αk here has the identical definition as the prerequisite attribute of αk. For example, for the
attribute hierarchy shown in Figure 2, pa(1) = pa(2) = ∅ and pa(3) = pa(4) = {α1, α2}.
Now define the probability mass function of the attribute pattern as follows:

∀α ∈ {0,1}K , pα = P(α | t) =

K∏

k=1

P(αk | pa(k)), where(7)
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P(αk | pa(k)) = tk
αk

∏
K
`=1

α
Gl,k

` (1− tk)
(1−αk)

∏
K
`=1

α
Gl,k

`

=





tk, if αk = 1 and
∏

`→k α` = 1;

1− tk, if αk = 0 and
∏

`→k α` = 1;

0, if αk = 1 and
∏

`→k α` = 0;

1, if αk = 0 and
∏

`→k α` = 0.

(8)

Eq. (7) follows the conventional definition of a Bayesian network (i.e., a probabilistic directed
graphical model), where the joint distribution of random variables factorizes into the product
of conditional distributions of each variable given its parents (Bishop, 2006). The conjunctive
Bayesian network defined above has an intuitive and natural interpretation. This model states
that a student can only master attribute αk if he/she has already mastered every prerequisite
attribute for αk; in this case, the mastery of αk happens with probability

tk = P(αk = 1 | α` = 1 for all ` ∈ [K] such that `→ k);

and 1 − tk represents the probability of failing to master αk given the student has already
mastered all of its prerequisite attributes. The last line in (8) states that, if a student lacks
some of αk’s prerequisite skills, then the probability of mastering αk is zero. Therefore,
this model respects the usual constraints on permissible/forbidden patterns as a conventional
attribute hierarchy method. One can readily show that the model in (7)-(8) defines a valid joint
distribution of attributes:

∑
α∈{0,1}K pα =

∑
α∈A(E) pα = 1 for any t. The next example

illustrates how the proportion parameters p= (pα) are parameterized by CBN parameters t.

EXAMPLE 4 (Example 3 continued). We revisit the attribute hierarchy in Example 3

and give it an LCBN parametrization. By (7), the proportion parameters for the permissible

attribute patterns in A(E) in (6) can be written as

p0000 = (1− t1)(1− t2), p1000 = t1(1− t2), p0100 = (1− t1)t2,

p1100 = t1t2(1− t3)(1− t4), p1110 = t1t2t3(1− t4),

p1101 = t1t2(1− t3)t4, p1111 = t1t2t3t4.

For any α 6∈ A(E), pα = 0 is naturally guaranteed by following the CBN definition. Note

that if without the CBN assumption, the proportion parameters pα would be only subject

to the sparsity constraint pα = 0 for α 6∈ A(E); in this case, six free parameters would be

needed to specify the latent distribution. In contrast, under the CBN, α can be modeled using

four Bernoulli parameters: t1, t2, t3, t4. In addition to such statistical parsimony, the LCBN

model provides intuitive conditional independence statements about the skill attributes. In the

current toy example, LCBN asserts that given a student’s latent states of the first two basic

skills, their mastery of the third and fourth skills are conditionally independent.

Under our LCBN-based cognitive diagnostic model, the marginal distribution of the ob-
served item response vector of the ith student takes the form:
(9)

P(Ri = r |Θ, t,E) =
∑

α∈{0,1}K

tk
αk

∏
K
`=1

α
G`,k

` (1− tk)
(1−αk)

∏
K
`=1

α
G`,k

`

︸ ︷︷ ︸
pα

J∏

j=1

θ
rj
j,α(1−θj,α)

1−rj ,

for any r ∈ {0,1}J . The hierarchy E implicitly appears above through the reachability matrix
entries G`,k. The item parameters θj,α in (9) are subject to the constraints imposed by the Q-
matrix and can follow various measurement models described in Examples 1–2.
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2.3. Comparison of LCBNs and existing models. We now discuss the difference between
our LCBN-based cognitive diagnostic model and the CBN model for genetic mutations pro-
posed by Beerenwinkel et al. (2005). In a CBN, each binary variable αk = 1 or 0 represents
a genetic event of whether an amino acid in the genome has mutated or not. There is a partial
order (i.e., E in our notation) defined on the genetic events such that certain mutations are the
prerequisite for others. Any patient’s genetic mutation profile is fully observed as a binary
vector Xi = (Xi1, . . . ,XiK), and the probability mass function of Xi is

P(Xi =α | t,E) = tk
αk

∏
K
`=1

α
G`,k

` (1− tk)
(1−αk)

∏
K
`=1

α
G`,k

` , ∀α ∈ {0,1}K .

In this fully observed CBN model, the hierarchy graph E can be directly read off from the
set of all the observed binary patterns (genotypes) of the patients. In addition, Beerenwinkel
et al. (2007) showed that the maximum likelihood estimator of parameters t in a CBN ac-
tually has a closed-form solution. In contrast, in our LCBN, students’ J -dimensional item
response vectors Ri in (9) do not readily reveal the attribute hierarchy graph E among the
K latent attributes; furthermore, the LCBN parameters t only enter the likelihood through
those mixture proportion parameters pα in (9) rather than directly. Therefore, the identifia-
bility issue of LCBNs is nontrivial, and the estimation of the attribute hierarchy and model
parameters in LCBNs is not straightforward.

In terms of modeling the binary latent variables, LCBNs have the advantages of inter-
pretability and statistical parsimony over conventional attribute hierarchy methods and con-
ventional Bayesian networks. Comparing these two conventional models, the usual attribute
hierarchy method has fewer parameters when the hierarchy graph E is dense with many ar-
rows, whereas a Bayesian network without the conjunctive assumption (employed by Hu and
Templin (2020) for cognitive diagnosis) has fewer parameters when the graph E is sparse. As
concrete examples, consider the three different hierarchies in Figure 3 among K = 7 binary
attributes. The numbers of free parameters needed to specify the distribution for the latent α
are shown in Table 1, from which it is clear that neither a conventional attribute hierarchy
method nor a conventional Bayesian network is universally parsimonious. On the other hand,
the number of parameters in LCBNs is K for all hierarchies and is universally parsimonious.

α1

α2 α3

α4 α5 α6 α7

α1 α2 α3 α4

α5 α6

α7

α1 α2

α3 α4 α5

α6 α7

Fig 3: Different attribute hierarchies with K = 7 attributes. Divergent (left), convergent (mid-
dle), three-layer fully connected (right).

TABLE 1
Number of free parameters needed for modeling the latent attributes in the conventional attribute hierarchy

method (AHM), Bayesian network (BN), and LCBN with K = 7 attributes.

Hierarchy \Model AHM BN LCBN
Linear (E = {1→ 2→ · · · →K}) 7 13 7
Divergent (left in Fig. 3) 25 13 7
Convergent (middle in Fig. 3) 25 16 7
3-layer fully connected (right in Fig. 3) 13 30 7
No hierarchy 127 7 7
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A related model in the applied psychological measurement literature is the sequential
higher order latent structural model for hierarchical attributes in Zhan et al. (2020). Specifi-
cally, motivated by the higher-order latent trait modeling in de la Torre and Douglas (2004)
and the attribute hierarchy method, Zhan et al. (2020) proposed a conjunctive model with a
higher-order continuous latent variable to model the attributes. It was assumed that every at-
tribute αk depends on the higher-order variable through an item response theory model. Our
current work differs from this existing work in several fundamental ways. First, we do not
assume the existence of any higher-order latent variables, which helps achieve the greatest
amount of statistical parsimony. Only in this most parsimonious possible LCBN, the lack
of arrows between the skills would encode nice conditional independence interpretation; in
Zhan et al. (2020)’s higher-order model, all the skills are always conditionally dependent due
to the higher-order latent trait. Second, we establish identifiability for the family of LCBN-
based cognitive diagnostic models (see Section 3) and propose a general two-step method
to perform both structure learning of E and parameter estimation of (Θ, t) (see Section 4).
In previous studies such as Zhan et al. (2020), identifiability issues were not examined and
estimation was performed by assuming the hierarchy E is known.

3. Identifiability of LCBNs for Cognitive Diagnosis. Identifiability is a fundamental
property of statistical models and a prerequisite for valid parameter estimation and hypoth-
esis testing. If a model is not identifiable, then there exist multiple and possibly an infinite
number of parameter sets that lead to the same observed distribution, and it is impossible to
distinguish them. In the applied context of using LCBNs for cognitive diagnosis, it is crucial
to guarantee that the model is identifiable, so that any practical interpretation made about
the cognitive structure and student diagnosis is statistically valid. In this section, we provide
transparent conditions for LCBNs to be identifiable.

Because the DINA model in Example 1 is the most popular and fundamental cognitive
diagnostic model due to its interpretability and parsimony, we next focus on the LCBN-
based DINA model and provide tight and explicit identifiability conditions for it. We remark
that LCBN-based CDMs with other measurement models (such as main-effect and all-effect
CDMs) are also identifiable under slightly stronger conditions. In light of the space con-
straint and for notational simplicity, we defer those identifiability results to Section S.1. in
the Supplementary Material.

As mentioned earlier, the identifiability of LCBN-based cognitive diagnostic models is a
nontrivial and challenging issue, unlike the fully observed CBNs. Fortunately, thanks to our
model formulation, the LCBN parameters t enter the observed distribution in (9) only through
the mixture proportion parameters pα. Therefore, we are able to leverage existing techniques
for conventional CDMs with an unstructured attribute hierarchy model in Gu and Xu (2023a)
to establish identifiability for LCBNs. Specifically, we next provide conditions that ensure the
identifiability of not only the continuous parameters (s,g, t), but also the discrete hierarchy
graph structure E in an LCBN. We first define the concept of strict identifiability of the
LCBN-based DINA model.

DEFINITION 1 (Strict identifiability for LCBN-based DINA). The parameters (E ,s,g, t)
of an LCBN-based DINA model are identifiable if for any (E ,s,g, t) and (Ē , s̄, ḡ, t̄) where

Ē induces at most |A(E)| permisible skill patterns, the following holds if and only if

(Ē , s̄, ḡ, t̄) = (E ,s,g, t) holds.

(10) P(R= r | Ē , s̄, ḡ, t̄) = P(R= r | E ,s,g, t) for all r ∈ {0,1}J .

We introduce some new notation before presenting the identifiability results. Following the
definition in Gu and Xu (2023a), we categorize the latent attributes into four different types:
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α8α7α6α5

α4

α3

α2α1

Leaf α6Ancestor α1

Intermediate α2, α3, α4, α5

Singleton α7, α8

Fig 4: Illustrating all the four types of attributes in an attribute hierarchy graph.

ancestor, intermediate, leaf, and singleton. An attribute is an “ancestor attribute” when it has a
child but no parent attribute; an “intermediate attribute” when it has both a child and a parent;
a “leaf attribute” when it has a parent but no child attribute; a “singleton attribute” when it
has no child nor parent attribute. These definitions are illustrated in Figure 4. Interestingly,
the identifiability conditions of LCBN-based DINA model can be stated in terms of different
types of the attributes in the hierarchy graph. Still following the definition in Gu and Xu
(2023a), we define a “sparsified” Q-matrix given E by setting qj,k = 0 for any j, k such that
qj,h = 1 for some child attribute αh of αk.

THEOREM 1. The LCBN-based DINA model is strictly identifiable when the Q and E
satisfy the following conditions.

A. Q contains a K ×K submatrix Q0 whose sparsified version under E is IK . Without the

loss of generality, write Q= [Q>
0 ,Q

∗>]>.

B. In the sparsified version of Q, any intermediate attribute is measured at least once, any

ancestor or leaf attribute is measured at least twice, and any singleton attribute is mea-

sured at least three times.

C . For any singleton attributes αk and α`, the kth and lth columns of Q∗ are different.

Theorem 1 is adapted from Theorem 2 in Gu and Xu (2023a) to our LCBN-based model
setting. In general, it is difficult to derive the necessary and sufficient conditions for iden-
tifiability of complicated models such as LCBN-based CDMs. Nevertheless, we next show
our sufficient identifiability conditions in Theorem 1 may not be far from being necessary
by considering a special hierarchy. The next proposition states that our conditions A,B,C in
Theorem 1 become the minimal requirement for identifiability under the linear hierarchy.

PROPOSITION 1. Suppose E is a linear hiearchy, i.e. α1 → α2 → · · · → αK . Then, the

conditions in Theorem 1 are necessary and sufficient for strict identifiability of an LCBN-

based DINA model. In particular, conditions B and C reduce exactly to be:

B?. In the sparsified version of Q, the leaf attribute and the ancestor attribute are each

measured at least twice.

The proofs of Theorem 1 and Proposition 1, and additional identifiability results (sufficient
conditions for strict and generic identifiability for LCBNs with other measurement models)
are included in Sections S.1 and S.2 in the Supplementary Material.

4. Two-step Estimation Method for LCBN-based Cognitive Diagnostic Models.

This section proposes a two-step estimation method to recover both the attribute hierar-
chy graph E and the model parameters (Θ, t). Our first step (Algorithm 1) uses a penalized
EM algorithm under a saturated attribute model to estimate the graph E , and our second step
(Algorithm 2) develops another EM algorithm to estimate the continuous LCBN parameters.
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We first write out the likelihood given the responses from a sample of N students. Denote
the response vectors for the N students by Ri = (Ri,1, . . . ,Ri,J)

>, for i = 1, . . . ,N . The
marginal likelihood under an LCBN-based cognitive diagnostic model is

L(Θ, t,E) =

N∏

i=1

[ ∑

α∈{0,1}K

tk
αk

∏
K
`=1

α
G`,k

` (1− tk)
(1−αk)

∏
K
`=1

α
G`,k

`

J∏

j=1

θ
Ri,j

j,α (1− θj,α)
1−Ri,j

]
(11)

=

N∏

i=1

[ ∑

α∈{0,1}K

pα

J∏

j=1

θ
Ri,j

j,α (1− θj,α)
1−Ri,j

]
=: L(Θ,p),

where the last line uses the equivalent parameterization of the mixture proportion parameters
p= (pα;α ∈ {0,1}K) instead of the LCBN parameters t. Write the marginal log-likelihood
as `(Θ, t,E) = logL(Θ, t,E) and `(Θ,p) = logL(Θ,p). We next describe the two steps of
the proposed estimation procedure in Sections 4.1 and 4.2, respectively.

4.1. First step: structure learning of E via a penalized EM algorithm. In the first step,
we focus on estimating the discrete graph structure in an LCBN: the attribute hierarchy E .
Estimating E amounts to performing structure learning of a directed graphical model, and
this graphical model is among the K latent skills.

The key idea in learning E in an LCBN is to realize that, as an attribute hierarchy E
naturally defines a set of permissible binary skill patterns A = A(E), a set of permissible
patterns A also allows for reconstructing an attribute hierarchy graph E = E(A). Specifically,
one can inversely infer E by examining the sparsity structure of p. For a set of permissible
patterns A ⊆ {0,1}K , we can read that αk is a prerequisite for α` if for any permissible
pattern α= (α1, . . . , αK) ∈ A, we have α` = 1 holds only if αk = 1 holds. In this way, we
can define an attribute hierarchy graph E by collecting these prerequisite relationships:

E = E(A) = {k→ ` : if for any α= (α1, . . . , αK) ∈A, α` = 1 only if αk = 1}.(12)

EXAMPLE 5 (Example 3 continued). We revisit the attribute hierarchy E = {1→ 3, 1→
4, 2→ 3, 2→ 4} in Example 3 and show it can be recovered from the set of permissible pat-

terns A. First, we rewrite A into a |A|×K matrix denoted by C. Each row of C corresponds

to one pattern α ∈A and each column corresponds to a skill. Then we compare the column

vectors of C to obtain a partial order among the skills. For example, if C:,1 �C:,3 (the first

column of C is elementwisely greater than or equal to the third column of C), attribute α3 is

present only if attribute α1 is present; this indicates 1→ 3. In the current toy example, such

a procedure gives the following reconstruction of the hierarchy E .

C=




0 0 0 0
1 0 0 0
0 1 0 0
1 1 0 0
1 1 1 0
1 1 0 1
1 1 1 1




get a partial order between columns
=⇒

C:,1 �C:,3

C:,1 �C:,4

C:,2 �C:,3

C:,2 �C:,4

=⇒ E =





1→ 3,
1→ 4,
2→ 3,
2→ 4.





To estimate E , now the problem boils down to estimating A. To this end, we leverage
the log penalty and penalized EM algorithm proposed in Gu and Xu (2019) for selecting
significant latent patterns. Consider the truncated log function

logρN
(pα) = log(pα) · 1(pα > ρN ) + log(ρN ) · 1(pα ≤ ρN ),
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where ρN is a small threshold that avoids the singularity issue of the log function at zero.
The penalized marginal log likelihood `λ(Θ,p) is defined as

`λ(Θ,p) = `(Θ,p) + λ
∑

α∈{0,1}K

logρN
(pα),(13)

where λ < 0 is a tuning parameter controlling the sparsity of p. We maximize `λ(Θ,p) in-
stead of the original marginal log likelihood `(Θ,p) using the Penalzed EM (PEM) algorithm
in Gu and Xu (2019). We restate this algorithm in Algorithm 1. A smaller tuning parameter
λ (i.e. larger −λ= |λ|> 0) leads to a stronger penalty and encourages a sparser p.

REMARK 1. One main reason for choosing the log penalty on the proportion parame-

ters p over other popular sparsity-inducing penalties is computational convenience. Among

sparsity-inducing penalties, the L0 penalty is the most direct one that penalizes the number

of nonzero entries. Although the L0 penalty encourages sparsity and theoretically leads to

consistent selection, it is computationally inefficient due to its discontinuous and noncon-

vex nature. There exist various attempts to replace the L0 penalty with a similar but more

tractable objective. One such example is the popular L1 (Lasso, Tibshirani, 1996) penalty.

But actually, Lasso turns out to not induce any sparsity on our proportion parameters p

because
∑

α∈{0,1}K |pα|=
∑

α∈{0,1}K pα = 1 for any p.

Compared to the aforementioned penalties, the log penalty proposed by Gu and Xu (2019)

is preferable as it not only induces nice sparsity on p, but also allows for efficient and explicit

M-step updates for p in an EM algorithm. This follows from the fact that the log penalty can

be alternatively viewed as a Dirichlet prior for p, which is a conjugate prior for the complete

data log likelihood. For more discussions on the connection between the log penalty and the

Dirichlet prior in a Bayesian context, please see Remark 12 in Gu and Xu (2019).

We denote the estimator of the item parameters by Θλ and that of the mixture proportion
parameters by pλ = (pλα; α ∈ {0,1}K). Further, we define the following estimated set of ex-
isting skill patterns: Aλ = {α ∈ {0,1}K : pλα > ρN}; that is, Aλ collects those skill patterns
with estimated proportions greater than the threshold ρN . This Aλ is the key quantity that
would give an estimate of the attribute hierarchy Eλ.

We consider a sequence of values for λ and select an optimal tuning parameter λ̂ based
on the Extended Bayesian Information Criterion (EBIC, Chen and Chen, 2008), that is
λ̂= argminλ EBICλ. The exact definition of EBIC is given in Supplementary Material S.3.1.
Compared to BIC, EBIC has an additional penalty term for the number of selected param-
eters and hence favors a more parsimonious model. EBIC has been used in related existing
works (Gu and Xu, 2019; Ma et al., 2023), and it also turns out to be especially useful for
estimating E in LCBNs. In fact, our simulations suggest that the stronger penalty in EBIC
is desirable because overselecting non-existing patterns often leads to error in estimating the
graph E , whereas underselecting truly existing patterns can sometimes still suffice for cor-
rectly estimating E (see Section 5). In addition, other popular criteria for model selection
such as cross-validation is not suitable for selecting λ here, because it does not take the
model sparsity into account. In fact, in simulation studies in Supplementary Material S.4.2,
we show that cross-validation tends to select a larger λ < 0 with a smaller magnitude than

needed, hence resulting in selecting a non-sparse model. Finally, given the estimated set Aλ̂,
define our estimate of the attribute hierarchy graph E following (12):

Ê = {k→ ` : if for any α= (α1, . . . , αK) ∈Aλ̂, α` = 1 only if αk = 1}.

Next, we show that our estimator Ê is statistically consistent under suitable conditions. We
consider the conventional asymptotic setting where the sample size N goes to infinity, but
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the number of skills K and the number of items J are fixed. Following the assumption in Gu
and Xu (2019), we also assume that the convergence rate of the MLE satisfies

(14) (`(Θ̂, p̂)− `(Θ̂
E
, p̂E))/N =Op(N

−δ)

for some δ ∈ (0,1]. Here, (Θ̂, p̂) is the MLE obtained from maximizing L(Θ,p) in (11) and

(Θ̂
E
, p̂E) is the oracle MLE assuming that the true hierarchy E is known. Similar to Gu and

Xu (2019), we impose this assumption because the convergence rate of the MLE with an
unknown hierarchy (or equivalently, an unknown number of mixture components |A|) can
be slower than the usual parametric rate with δ = 1 (Ho and Nguyen, 2016). The following
theorem shows the consistency conclusion.

THEOREM 2. Consider an identifiable LCBN-based CDM with parameters (Θ, t,E).
Suppose the item parameter Θ satisfies

θj,1 − max
α�qj

θj,α ≥ c > 0, ∀j,

ρN = O(N−δ), and (14) holds. Then, for any sequence {λN} satisfying N1−δ

| logρN | . −λN .

N
| logρN | , P(Ê

λN = E)→ 1 as N →∞. Here, ÊλN is the estimated hierarchy based on AλN .

Theorem 2 also provides theoretical guidelines on choosing the tuning parameters. In par-
ticular, we choose ρN = 1

2N so that it satisfies the condition in Theorem 2 for any δ.
In addition to the above estimation consistency result for the attribute hierarchy, one could

further quantify uncertainty via formal hypothesis testing. Specifically, we can consider test-
ing the null hypothesis H0 : E = Ê using additional response data, where Ê is the estimated
attribute hierarchy. To this end, one may conduct standard goodness of fit tests such as the
likelihood ratio test with a χ2 asymptotic reference distribution. We leave the detailed devel-
opment of such hypothesis testing procedures for future research.

4.2. Second step: parameter estimation of (Θ,p) via another EM algorithm. We next
propose another EM algorithm to estimate the continuous LCBN parameters t and Θ. The
previous Algorithm 1 does not take into account the LCBN structure, but merely focuses on
estimating which skill patterns have nonzero proportions in the student population. Impor-
tantly, note that although the hierarchy graph Ê can be read off from the sparsity structure of
p̂
λ, the LCBN parameters t cannot be read off from the estimated proportion parameters p.

This is because the latter is an overparametrization of the former, and it is not guaranteed that
a freely estimated p will correspond to a K-dimensional LCBN parameters t= (t1, . . . , tK).

We next propose another EM algorithm to re-estimate the continuous parameters in
LCBN-based cognitive diagnostic models given Ê . For each individual i = 1, ...,N , denote
their latent skill profile by Ai = (Ai,1, ...,Ai,K). We maximize the likelihood in (11) with re-

spect to (t,Θ) when holding E = Ê fixed. The log likelihood for the complete data (Ai,Ri),
i= 1, . . . ,N takes the following form:

`c(Θ, t | E) =
∑

α∈{0,1}K

N∑

i=1

1(Ai =α)

K∏

k=1

[
tk

αk

∏
K
`=1

α
G`,k

` (1− tk)
(1−αk)

∏
K
`=1

α
G`,k

`

]
(15)

+
∑

α∈{0,1}K

N∑

i=1

1(Ai =α)

J∑

j=1

[
Ri,j log(θj,α) + (1−Ri,j) log(1− θj,α)

]
.
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Algorithm 1: Penalized EM to learn the attribute hierarchy graph E
(Algorithm 1 in Gu and Xu (2019))

Data: Q-matrix Q= (qj,k), response vectors (R>
1 , . . . ,R>

N )>.

Initialize ∆= (∆α : α ∈ {0,1}K) from the (2K − 1)-dimensional probability simplex.
while not converged do

In the (t+ 1)th iteration,

for (i,α) ∈ [N ]× {0,1}K do

ϕ
(t+1)
i,α =

δ
(t)
α · exp

{∑J
j=1

[
Ri,j log(θ

(t)
j,α) + (1−Ri,j) log(1− θ

(t)
j,α)

]}

∑
α′∈{0,1}K δ

(t)
α′
· exp

{∑J
j=1

[
Ri,j log(θ

(t)
j,α′

) + (1−Ri,j) log(1− θ
(t)
j,α′

)
]} ;

for α ∈ {0,1}K do

δ
(t+1)
α =max{c, λ+

∑N
i=1ϕ

(t+1)
i,α }; (c > 0 is a pre-specified small constant, set to

c= 0.01 throughout the experiments following the suggestion of Gu and Xu (2019));

p(t+1)← δ(t+1)/
(∑

α∈{0,1}K δ
(t+1)
α

)
;

for j ∈ [J ] do

Θ
(t+1)
j = argmaxΘj

{∑
α

∑
iϕ

(t+1)
i,α

∑
j

[
Ri,j log(θ

(t)
j,α) + (1−Ri,j) log(1− θ

(t)
j,α)

]}
;

After convergence, use Aλ,Θλ,pλ to calculate the EBIC for a sequence of λ < 0.

Select λ̂ with the minimum EBIC and recover the hierarchy structure E λ̂ from Aλ̂.
Output: Attribute hierarchy E .

Recall that the prerequisite relationships in E completely define the reachability matrix entries
G`,k = 1(`→ k) in the above expression. So the only things that vary in (15) are (Θ, t).

In the E-step, we evaluate the conditional expectation of (15) given the current parameter
values Θ(t) and t(t) from the previous iteration. It suffices to evaluate the conditional proba-
bility of 1(Ai =α), denoted by ϕi,α = P(Ai =α |Θ(t), t(t)). See the detailed formula for
ϕi,α in Algorithm 2. Then we obtain the following function of (Θ, t):

Q(Θ, t |Θ(t), t(t)) = E
[
`c(Θ, t | E)

∣∣∣ Θ(t), t(t)
]
.

Next, in the M-step, we seek the maximiziers of the above function and obtain new estimates
of the model parameters:

(16) (Θ(t+1), t(t+1)) = argmax
Θ,t

Q(Θ, t |Θ(t), t(t)).

Every parameter in (Θ, t) is continuous, so we set the partial derivative with respect to each
of them to zero to seek (Θ(t+1), t(t+1)). We present detailed derivations of Algorithm 2 and
closed form updates for item parameters in Section S.3.2 of the Supplementary Material.

Next, we show that our two-stage estimation method based on Algorithms 1 and 2 can
consistently estimate both the attribute hierarchy graph and the continuous parameters.

THEOREM 3. Consider an identifiable LCBN-based CDM with parameters (Θ, t,E),

and suppose that the conditions in Theorem 2 hold. Let Ê be the hierarchy estimated from

Algorithm 1, and let (Θ̂N , t̂N ) be the maximum likelihood estimator of (Θ, t) given Ê . Then,

entries in (Θ̂N , t̂N ) converge to corresponding entries in (Θ, t) in probability as N →∞.

4.3. Estimation under unknown Q. In the previous subsections, we have focused on es-
timating the LCBN parameters assuming a known and fixed Q-matrix. This is a common
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Algorithm 2: EM to estimate LCBN parameters.
Data: Q-matrix Q, response patterns {Ri : i= 1, . . . ,N}, attribute hierarchy E .
Initialize t= (t1, ..., tK), Θ (subject to the constraints of the Q-matrix), and G.
while not converged do

In the (t+ 1)th iteration:
for α ∈A do

p
(t+1)
α =

K∏

k=1

(
t
(t)
k

)αk

∏
` α

G`,k
`

(
1− t

(t)
k

)(1−αk)
∏

` α
G`,k
l

;

for (i,α) ∈ [N ]×A(E) do

ϕ
(t+1)
i,α =

p
(t)
α · exp

{∑J
j=1

[
Ri,j log(θ

(t)
j,α) + (1−Ri,j) log(1− θ

(t)
j,α)

]}

∑
α′∈A(E) p

(t)
α′
· exp

{∑J
j=1

[
Ri,j log(θ

(t)
j,α′

) + (1−Ri,j) log(1− θ
(t)
j,α′

)
]} ;

for k ∈ [K] do

t
(t+1)
k

=

∑
i,α αk

∏K
`=1 α

G`,k

`
ϕ
(t+1)
i,α

∑
i,α

∏K
`=1 α

G`,k

`
ϕ
(t+1)
i,α

;

for j ∈ [J ] do

Θ
(t+1)
j = argmaxΘj

{∑
α

∑
iϕ

(t+1)
i,α

∑
j

[
Ri,j log(θ

(t)
j,α) + (1−Ri,j) log(1− θ

(t)
j,α)

]}
;

After the total T iterations,
Output: Estimated parameters t,Θ.

assumption in cognitive diagnostic assessments, because domain experts and test designers
often have specified how the test items depend on the latent attributes. But sometimes it is
of interest to estimate the Q-matrix directly from data together with other model parameters.
Our two-step estimation procedure for LCBNs can be readily extended to such unknown Q-
matrix settings by leveraging existing Q-matrix estimation methods for traditional CDMs.
We next briefly describe how the exploratory estimation method in Ma et al. (2023) can be
incorporated into our LCBN estimation procedure with an unknown K , Q, and E .

We briefly sketch the method proposed by Ma et al. (2023) in Algorithm 3. This algorithm
includes an additional truncated Lasso penalty (TLP; Shen et al., 2012) term on the item
parameter matrix Θ to encourage row-wise sparsity, and consequently recover the Q-matrix.
The attribute hierarchy E is estimated by comparing the partial orders of the columns of Θ,
and assigning binary representations to these columns as attribute patterns. This Algorithm
3 can serve as our new first step in the two-step estimation procedure. Given the estimated
Q-matrix and E , we can then apply our proposed Algorithm 2 to estimate the continuous
LCBN parameters: t and Θ. We present simulation study results in Supplementary Material
S.4.3 that demonstrate the good performance of the above estimation method.

5. Simulation Studies. In this section, we conduct simulation studies under different
models and parameter settings to assess the performance of our proposed method. We con-
sider the LCBN-based DINA and GDINA models (see Examples 1 and 2 for their definition)
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Algorithm 3: Estimate K and discrete structures Q and E
(Brief sketch of Algorithms 1 and 2 in Ma et al. (2023))

Data: Responses (R>
1 , . . . ,R>

N )>.
Set an upper bound for |A|, the number of latent configurations
Step 1: Use penalized EM assuming sparsity of p and Θ to estimate Θ and |A|
Step 2: Construct the J × |A| indicator matrix Γ= 1(θj,m =maxl∈[|A|] θj,l)

Step 3: Plot a DAG based on the partial orders of the columns of Γ
Step 4: Assign binary representations bassed on this DAG and recover K and E
Step 5: Reconstruct each rows of Q based on the corresponding row of the Γ matrix
Output: Number of latent attributes K , Hierarchy structure E , Q-matrix Q

with K = 8 latent attributes and J = 24 items. The Q-matrix takes the following form:

(17) Q=



Q1

Q2

IK


 , where Q1 =




1 1 0

1
. . .

. . .
. . .

. . . 1
0 1 1




K×K

and Q2 =




1 1 0
. . .

. . .

. . . 1
0 1




K×K

.

Note that K = 8 is already a relatively large number of attributes in the educational cog-
nitive diagnosis applications. In all of our simulations, we specify the true hierarchy E
to be the diamond hierarchy defined in Figure 5. This is a complex multi-layer hierar-
chy which encodes |A(E)| = 15 permissible patterns. We set the true LCBN parameters
as t = (0.9,0.8,0.8,0.7,0.7,0.7,0.6,0.6)>. Following (7), we can obtain the mixture pro-
portion parameters for the permissible skill patterns. All the permissible patterns indexed by
α1, . . . ,α15 and their corresponding true proportion parameters are presented in Table 2.

We vary the following three aspects in the simulation studies: (1) measurement model:
DINA and GDINA; (2) sample size N = 500,1000,2000; and (3) noise level of item pa-

rameters. In the LCBN-based DINA model, we use a noise level r to define the slipping
and guessing parameters s,g by sj = gj = r for all j = 1, . . . , J. The larger the noise level
r is, the more challenging it is to estimate the model parameters. Specifically, under DINA,
if r = 0 then there is no uncertainty in one’s responses given their latent skills, whereas if
r = 0.5 the responses are purely random noise. For the LCBN-based GDINA model, we set
θj,0K

= r and θj,1K
= 1− r, and define the remaining item parameters by setting all main

effects and interaction effects of the required attributes in (4) to be equal.
In each simulation setting, we run 100 independent simulation replications. We apply our

two-step estimation method described in Section 4. The tuning parameter λ in Algorithm 1
(PEM algorithm) is selected from a grid of ten values λ ∈ {−0.4, −0.8, . . . , −3.6, −4.0}.
We evaluate the root mean squared errors (RMSE) of the continuous parameters and also the
estimation accuracy of the permissible patterns in A (this is same as the estimation accuracy
of the hierarchy E). The RMSE of the proportion parameters p̂ is computed using the 2K–
dimensional sparse vector in the probability simplex, i.e. for C = 100 simulations,

RMSE(p̂) =

√√√√ 1

2KC

C∑

c=1

∑

α∈{0,1}K

(p̂
(c)
α − pα)2,

where p̂
(c) = (p̂

(c)
α ) denotes the estimator from the cth simulation replicate. We sum over all

α ∈ {0,1}K instead of α ∈ A in order to compute an accurate RMSE even when the esti-
mated Â is incorrect. The RMSEs for the item parameters and the LCBN parameters t are
similarly defined. The estimation accuracy of E is defined as Acc(Ê) = 1

C

∑C
c=1 1(Ê

(c) = E),
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where Ê(c) = E indicates that the entire hierarchy is exactly recovered. We also compare our
final estimated model (denoted by LCBN in the table) to the first-stage estimate (denoted
by PEM in the table) by comparing their EBIC values. The simulation results for the LCBN-
based DINA and GDINA are summarized in Tables 3 and 4, respectively. The “argmin EBIC”
column in Table 3 (or 4) records the percentage of each method (PEM or our two-step proce-
dure) that achieves the minimum EBIC value among the 100 simulation replicates. We report
additional simulation details (convergence criteria and the choice of tuning parameters) and
computation time in Supplementary Material S.4.1.

α1

α2 α3

α4 α5 α6

α7 α8

Fig 5: Diamond hierarchy.

A(E) α1 α2 α3 α4 α5 α6 α7 α8 pα
α1 0 0 0 0 0 0 0 0 0.100
α2 1 0 0 0 0 0 0 0 0.036
α3 1 0 1 0 0 0 0 0 0.144
α4 1 1 0 0 0 0 0 0 0.144
α5 1 1 1 0 0 0 0 0 0.016
α6 1 1 1 0 0 1 0 0 0.036
α7 1 1 1 0 1 0 0 0 0.036
α8 1 1 1 0 1 1 0 0 0.085
α9 1 1 1 1 0 0 0 0 0.036
α10 1 1 1 1 0 1 0 0 0.085
α11 1 1 1 1 1 0 0 0 0.085
α12 1 1 1 1 1 1 0 0 0.032
α13 1 1 1 1 1 1 0 1 0.047
α14 1 1 1 1 1 1 1 0 0.047
α15 1 1 1 1 1 1 1 1 0.071

Table 2: Permissible patterns under the diamond hierarchy

Tables 3 and 4 show that our method is effective in recovering the attribute hierarchy E .
In particular, the recovery accuracy improves as the sample size N increases and noise level
r decreases. In particular, when N is large (N = 2000), Acc(Ê) is above 0.97 in all of our
simulation settings. This observation empirically verifies the identifiability and estimation
consistency of E . The accuracy of recovering the hierarchy E in Tables 3 and 4 is close to
90% or higher in all scenarios except for the slightly lower values of 74% and 52% when
N = 500 and r = 0.2. These two lower accuracy values correspond to the smallest signal-
to-noise settings under DINA and GDINA models. Additionally, the estimation accuracy
under GDINA is lower than that under DINA, as it has more item parameters that need to be
estimated (in our settings, GDINA has 108 parameters whereas DINA has 48 parameters).

Tables 3 and 4 also show that the proposed method can accurately estimate the continuous
parameters p, Θ, and t. Similar to the estimation of Ê , the estimation error of the continuous
parameters is smaller under a smaller noise level r, and it decreases as sample size N in-
creases. This observation again corroborates our identifiability and consistency results of the
LCBN model parameters. One can also see that the RMSE of p and Θ after our second-step
algorithm is smaller than the RMSE after just the first-step. This indicates that our second-
step estimation procedure improves the overall estimation accuracy, by properly taking into
account the LCBN structure. In addition, even when the hierarchy is incorrectly estimated in
the first-step, the error for estimating the continuous parameters in the second step is still not
large. For example, for the N = 500, r = 0.1 row in Table 3, the RMSEs of Θ̂ and t̂ when
the hierarchy is incorrect are 0.031 and 0.103, respectively. These numbers are comparable
to the overall average RMSEs of 0.029 and 0.042 in the corresponding row of the table.

Finally, the model selected after the second-step tends to have a lower EBIC value com-
pared to the first-step selected model. This demonstrates that our parsimonious LCBN is
preferable to the unstructured attribute hierarchy model fitted by PEM.
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TABLE 3
Estimation accuracy of attribute hierarchy and RMSE for the estimated parameters for the DINA-based LCBN.

The “argmin EBIC” column shows the percentage of each method (PEM or proposed) having a smaller EBIC.

Model N r Method Acc(Ê) argmin EBIC RMSE(Θ̂) RMSE(p̂) RMSE(̂t)

DINA

500
0.1

PEM – 7% 0.042 0.005 –
Proposed 0.92 93% 0.029 0.004 0.042

0.2
PEM – 6% 0.053 0.008 –

Proposed 0.74 94% 0.046 0.006 0.053

1000
0.1

PEM – 2% 0.033 0.004 –
Proposed 0.98 98% 0.021 0.003 0.027

0.2
PEM – 6% 0.040 0.006 –

Proposed 0.94 94% 0.033 0.004 0.038

2000
0.1

PEM – 2% 0.021 0.002 –
Proposed 0.98 98% 0.015 0.001 0.021

0.2
PEM – 0% 0.029 0.004 –

Proposed 1.00 100% 0.021 0.002 0.022

TABLE 4
Estimation accuracy of attribute hierarchy and RMSE for the estimated parameters for the GDINA-based LCBN.

The “argmin EBIC” column shows the percentage of each method (PEM or proposed) having a smaller EBIC.

Model N r Method Acc(Ê) argmin EBIC RMSE(Θ̂) RMSE(p̂) RMSE(̂t)

GDINA

500
0.1

PEM – 0% – 0.005 –
Proposed 0.99 100% 0.109 0.003 0.039

0.2
PEM – 5% – 0.009 –

Proposed 0.52 95% 0.176 0.004 0.086

1000
0.1

PEM – 1% – 0.003 –
Proposed 0.99 99% 0.072 0.002 0.030

0.2
PEM – 0% – 0.007 –

Proposed 0.89 100% 0.121 0.003 0.055

2000
0.1

PEM – 3% – 0.002 –
Proposed 0.97 97% 0.052 0.001 0.025

0.2
PEM – 0% – 0.005 –

Proposed 0.99 100% 0.080 0.002 0.035

We report additional simulation results in the Supplementary Material to further support
our proposed method. In the Supplementary Material, Section S.4.4 includes simulations
when the proportion parameters p respect the hierarchy graph but attributes do not exhibit
the induced conditional independence asserted by LCBNs; Section S.4.5 includes sensitiv-
ity analysis for choosing the tuning parameter λ in the log penalty; Section S.4.6 provides
detailed analysis on the uncertainty of estimating the attribute hierarchy E .

6. Application to Data from the Trends in Mathematics and Science Study. In this
section, we apply the proposed method to analyze an educational assessment dataset from
the Trends in Mathematics and Science Study (TIMSS). TIMSS is a series of international
assessments of fourth and eighth graders’ mathematics and science knowledge, involving stu-
dents in over 60 countries (Mullis et al., 2012). We analyze the TIMSS 2011 Austrian fourth-
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DK NK GK

DR DA NA GR

GA NR

0.64 0.49 0.54

0.91 0.97 0.96 0.96

0.93 0.995

Fig 6: Initial hierarchy of the TIMSS 2011 dataset. The
LCBN parameters tk are displayed above each skill.

DK/DA NK/NA GK/GR

DR

GA

0.61 0.38 0.55

0.91

0.95

Fig 7: Re-estimated hierarchy

grade mathematics test data, which is publicly available in the R package CDM (George
et al., 2016). The data contains the responses of N = 4668 Austrian students to J = 174 test
items. Educational experts have specified the K = 9 fine-grained skill attributes to be: (DA)
Data and Applying, (DK) Data and Knowing, (DR) Data and Reasoning, (GA) Geometry
and Applying, (GK) Geometry and Knowing, (GR) Geometry and Reasoning, (NA) Num-
bers and Applying, (NK) Numbers and Knowing, (NR) Numbers and Reasoning (George and
Robitzsch, 2015). These nine skill attributes were defined by considering the combinations
of three content skills (Data, Geometry, and Number) and three cognitive skills (Applying,
Knowing, and Reasoning). This attribute definition follows George and Robitzsch (2015),
where a corresponding Q-matrix was also specified. This Q-matrix assumes that each item
measures exactly one attribute, and it satisfies our identifiability conditions in Theorem 1.

One structure specific to large scale assessments such as TIMSS is that only a subset of all
items in the entire study is presented to each of the students (George and Robitzsch, 2015).
This results in many missing entries in the N × J data matrix. Nevertheless, these entries
are missing at random because the missingness patterns do not depend on the students’ latent
skills or model parameters. Our estimation algorithms can be easily adapted to this setting.
Specifically, in the complete data log likelihood used in our EM algorithms, we can just
replace the summation range from

∑N
i=1

∑J
j=1 to

∑
(i,j)∈Ω, where Ω is the collection of

indices (i, j) that correspond to the observed entries in the data matrix.
As a first analysis, we apply the two-step method in Section 4 to estimate the latent hier-

archy graph and the continuous parameters. Since each row in the Q-matrix has exactly one
nonzero entry, the DINA and GDINA models under this Q-matrix are equivalent. So we just
adopt the DINA model in the analysis. Algorithm 1 selected 15 attribute patterns, and Figure
6 shows the estimated attribute hierarchy with the latent CBN parameter t1, . . . , t9. Figure
6 reveals that there are three ancestor attributes, DK, NK, GK that serve as the prerequisite
attributes for each type of content skills in Data, Number, and Geometry. This implies that
among the three cognitive skills Knowing, Applying, and Reasoning, the skill Knowing is the
most basic. If a student “Knows” a certain content skill, then they possesses the prerequisite
to “Apply” or “Reason” the same content skill, sometimes with the aid of other content skills.
For instance, NR (Number and Reasoning) requires DR (Data and Reasoning) and DA (Data
and Applying) in addition to NA (Number and Applying) as prerequisites.

Recall that each tk gives the conditional probability of mastering attribute αk provided that
one has already mastered all of αk’s prerequisites. One consequence of this definition is that
tk does not capture the individual effect of mastering any specific parent on the mastery of αk.
As pointed out by a reviewer, sometimes it may also be interesting to consider such individual
effects, e.g., the skill NR in Figure 6 has three parents and one may wish to distinguish their
individual influences. One possible way to indirectly think about this could be to compare the
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values of marginal mastery probability P(αl = 1) for each parent skill l ∈ pa(k). The parent
skill αl with the smallest marginal mastery probability P(αl = 1) could be viewed as having
the largest influence on the mastery of the child skill αk = 1. Going back to the current data
example with k =NR, the skill NA has the largest influence on NR among the three parent
skills since P(NA = 1) is the smallest among those three. We also include more discussions
on potential alternative models to distinguish individual effects in Section 7.

Additionally, Figure 6 shows that many tk parameters in the second or third layer are larger
than 0.9, whereas the ancestor attributes have much smaller tk values. Specifically, consider
tDA = 0.97. Then, P(αDA = 0 | αDK = 0) = 1 and P(αDA = 0 | αDK = 1) = 0.03, whereas
P(αDA = 1 | αDK = 1) = 0.97. This implies that DA may not be a meaningful attribute, as it
does not offer additional discrimination of students compared to DK. Therefore, we conduct
a second analysis and merge those attributes whose tk > 0.95. For instance, we combine the
attributes “DA” and “DK” into one “meta” attribute. This simplification reduces the number
of attributes K from nine to five and the number of permissible attribute patterns |A| from 69
to 16. Then we fit an LCBN with this new attribute hierarchy in Figure 7, where the new Q-
matrix can be obtained by summing the corresponding columns in the original Q-matrix. The
fitted LCBN parameters are shown in Figure 7. The final result has the log likelihood equal to
−5.88× 104 and EBIC equal to 1.205× 105, which is a great improvement compared to the
values in our first analysis (previous log likelihood equal to −6.43× 104 and EBIC equal to
1.327× 105). This implies that merging the attributes and fitting an even more parsimonious
LCBN model provides better fit to data. In summary, our LCBN model is a parsimonious and
interpretable alternative to existing cognitive diagnostic models, and is especially useful to
make sense of data arising from modern large-scale educational assessments such as TIMSS.

7. Discussion. We have proposed a new family of latent variable models, the latent con-
junctive Bayesian networks, for modeling cognitive diagnostic assessment data in education.
The LCBN family rigorously unifies the attribute hierarchy method in educational cogni-
tive diagnosis and Bayesian networks in statistical machine learning. Compared to existing
modeling approaches, our model is identifiable, parsimonious, and provides nice interpreta-
tion of conditional independence. We propose a two-step method that efficiently estimates
the discrete attribute hierarchy graph and the continuous model parameters, and establish the
consistency of this procedure. We have also shown that our method can be easily extended
to more challenging settings with an unknown Q-matrix. Simulation studies and real data
analysis demonstrate that our method has good empirical performance.

Our estimation procedure is scalable and can be easily applied to analyze modern large-
scale assessment data, such as TIMSS and Program for International Student Assessment
data. Most existing studies of attribute hierarchy focused on the cases when K = 3 or 4 due
to the computational cost of estimating potentially exponentially many proportion parameters
under an unstructured attribute hierarchy model (e.g., Templin and Bradshaw, 2014; Wang
and Lu, 2021). On the contrary, our LCBN only requires a linear number of K parameters to
specify the latent attribute distribution and is much more parsimonious.

This work proposes the most parsimonious Bayesian network model, LCBN, for attribute
hierarchy. In the future, it would also be interesting to explore other Bayesian network models
in the cognitive diagnostic applications. For example, sometimes the conjunctive assumption
in LCBN may be too strong or there may exist multiple paths to master a skill. To this end,
one could consider a latent disjunctive Bayesian network:

P(αk = 1 | αpa(k)) =

{
0, if

∏
l∈pa(k)(1− αl) = 1,

tk, otherwise.
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The above model assumes that as long as a student masters one of the parent attributes of
αk, they will have a probability tk to master αk. Alternatively, we could define the following
latent additive Bayesian network model that defines the conditional mastery probability as
a linear combination of those parent attributes: P(αk = 1 | αpa(k)) =

∑
l∈pa(k) tk,lαl, where

tl,k ≥ 0 and
∑

l∈pa(k) tl,k ≤ 1. In this model, mastering each parent attribute αl increases the
mastery probability of the child attribute αk by tk,l. This model is less parsimonious than
LCBNs, but could model different paths to mastering αk with different probabilities.

An interesting future direction is to study the double-asymptotic regime where N and J
both go to infinity and aim to also consistently estimate the individual-level latent profiles
Ai’s. In this work, we study identifiability in the fixed J regime and focus on identifying and
estimating the population quantities (E ,Θ, t). On the other hand, when J goes to infinity with
increasing information provided by each student, it may be possible to consistently estimate
the individual students’ latent skills Ai in the sample (e.g., Gu and Xu, 2023b). Such sample
estimates would provide reliable personalized diagnosis. Furthermore, if individual students’
skills are consistently estimated, then the LCBN parameters can be estimated via a closed
form MLE (Beerenwinkel et al., 2006, 2007). This can be an alternative estimation method
suitable for the double-asymptotic regime without using regularization. Another interesting
future direction is to employ LCBNs in adaptive learning or reinforcement learning settings
(Chen et al., 2018; Tang et al., 2019) to help design recommendation strategies and enhance
learning. Thanks to LCBNs’ parsimony, interpretability, and identifiability, it is attractive
to incorporate LCBNs in these computationally intensive applications to help achieve more
reliable decision making and recommendations. We leave these directions for future research.
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SUPPLEMENTARY MATERIAL

The Supplementary Material includes proofs of the theorems, additional identifiability re-
sults, various additional simulation studies and details.
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