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Abstract

We study a new and stronger notion of fault-tolerant graph structures whose size bounds depend
on the degree of the failing edge set, rather than the total number of faults. For a subset of faulty
edges F ⊆ G, the faulty-degree deg(F ) is the largest number of faults in F incident to any given
vertex. For example, a matching F has deg(F ) = 1 while |F | might be as large as n/2.

We design new fault-tolerant structures with size comparable to previous constructions, but
which tolerate every fault set of small faulty-degree deg(F ), rather than only fault sets of small size
|F |. Thus, for example, our structures can tolerate a linear number of edge faults with almost the
same size bounds currently known for handling a single edge failure, provided that the edge faults
are arranged in a matching. Our main results are:

• New FT-Certificates: For every n-vertex graph G and degree threshold f , one can compute
a connectivity certificate H ⊆ G with |E(H)| = Õ(fn) edges that has the following guarantee:
for any edge set F with faulty-degree deg(F ) ≤ f and every vertex pair u, v, it holds that u
and v are connected in H \F iff they are connected in G \F . This bound on |E(H)| is nearly
tight. Since our certificates handle some fault sets of size up to |F | = O(fn), prior work did
not imply any nontrivial upper bound for this problem, even when f = 1.

• New FT-Spanners: We show that every n-vertex graph G admits a (2k−1)-spannerH with
|E(H)| = Ok(f

1−1/kn1+1/k) edges, which tolerates any fault set F of faulty-degree at most f .
This bound on |E(H)| optimal up to its hidden dependence on k, and it is close to the bound
of Ok(|F |1/2n1+1/k + |F |n) that is known for the case where the total number of faults is |F |
[Bodwin, Dinitz, Robelle SODA ’22]. Our proof of this theorem is non-constructive, but by
following a proof strategy of Dinitz and Robelle [PODC ’20], we show that the runtime can
be made polynomial by paying an additional polylog n factor in spanner size.

Our techniques are based on an adaptation of the blocking set method used in previous work
on fault tolerant spanners, as well as a new expander-based toolkit which translates the quality
guarantees for expander routing into fault tolerance guarantees.
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1 Introduction

A basic problem in theoretical computer science and graph theory is to compress distance or connec-
tivity information from an input graph G into much smaller space than G itself. In its most basic
form, this corresponds to computation of a sparse spanning subgraph (which captures connectivity
information), or to computation of a sparse spanner (which captures approximate distances). How-
ever, in some domains such as distributed computing and network design, it is common for a few
nodes or edges of the input graph G to temporarily fail and be unusable while they await repair. This
motivates a more constrained problem, in which the goal is to find a sparse subgraph H that still
captures connectivity/distance information of G even after any “‘reasonable” failure event that might
occur. This paper concerns the design of subgraphs of this kind.

1.1 Connectivity Certificates

Let us begin our discussion in the setting of connectivity. A common formalization of connectivity
preservation under failures is known as fault-tolerant connectivity certificates:

Definition 1.1 (EFT Connectivity Certificates [NI92]). Given a graph G, an edge-subgraph H is
called an f -edge fault tolerant (EFT) connectivity certificate if, for any nodes u, v and for any set F
of |F | ≤ f edges, there is a u v path in G \ F iff there is a u v path in H \ F .

This definition encodes a design choice: the idea of a “reasonable” failure event is formalized simply
by choosing a size parameter f , and letting F be any edge set of size |F | ≤ f . We will refer to this
as global fault tolerance, since it is counts faults equally no matter where they occur in the graph.
Global fault tolerance is the dominant model studied in prior work. The tradeoff between certificate
size and level of global fault tolerance for was resolved in a classic work of Nagamochi and Ibaraki
[NI92]:

Theorem 1.2 ([NI92]). For any positive integers n, f , every n-node graph G has an f -EFT connec-
tivity certificate H on |E(H)| = O(fn) edges, and this bound is best possible.

The main new ideas in Nagamochi and Ibaraki’s work lie on the upper bound side. The lower
bound, that |E(H)| = Ω(fn) edges are sometimes necessary, is simple. It is achieved by letting G
be any (f + 1)-regular graph. Consider an edge (u, v) ∈ E(G), and let the failure set F be the f
additional edges incident to u besides (u, v). Then (u, v) is the only edge still incident to u in G \ F ,
which implies that we must keep the edge (u, v) in the connectivity certificate H. Since this holds
for an arbitrary edge, it follows that the only f -EFT connectivity certificate of G is G itself, which
contains Θ(fn) edges.

u v
×
××
F

Figure 1: By failing all edges incident to u except for (u, v), we see that any connectivity certificate
must keep the edge (u, v).

The (f + 1)-regular graph lower bound is simple and optimal, but in a way it might also feel
unsatisfying: is it really a “reasonable” failure event to see all f edge failures incident to the same
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node u? Although mass failures adjacent to u are certainly possible – failures can be correlated, and
perhaps they all result from a common systemic problem with u – it is less reasonable to think that
the rest of the graph would meanwhile remain completely failure-free. Failures in different parts of
the graph tend to be independent or positively correlated, and so when u suffers failures, we may still
expect to see at least the usual number of failures occurring elsewhere in the graph at the same time.

This motivates a much stronger kind of connectivity certificate, which can tolerate edge failures
that occur elsewhere in the graph alongside the f failing edges incident to u. We will consider a new
local model of fault tolerance, which only limits failures-per-node rather than total number of failures:

Definition 1.3 (Faulty-Degree Connectivity Certificates (New)). Given a graph G, an edge-subgraph
H is called an f -faulty-degree (FD) connectivity certificate if, for any nodes u, v and for any set of
edges F such that degF (x) ≤ f for all nodes x, there is a u  v path in G \ F iff there is a u  v
path in H \ F .

An f -FD connectivity certificate is stronger than an f -EFT connectivity certificate, in the sense
that every f -EFT connectivity certificate is also an f -FD connectivity certificate, but the converse is
far from true. Indeed, since an f -FD connectivity certificate must tolerate some failure sets of size
up to |F | = Θ(fn), the previous upper bounds for f -EFT connectivity certificates do not imply any
nontrivial (subquadratic) upper bounds for f -FD connectivity certificates. Despite the stronger model,
the (f + 1)-regular graph still only provides the same lower bound of Ω(fn) for f -FD connectivity
certificates. Our main result is that this is not an accident: there is actually a nearly-matching upper
bound.

Theorem 1.4 (First Main Result). For all positive integers f, n, every n-node graph has an f -FD
connectivity certificate on Õ(fn) edges.

This theorem is constructive, i.e., we also provide an algorithm to compute the certificate in
polynomial time. The theorem proved in the paper gives a somewhat stronger guarantee; one can
recover not just connectivity, but also shortest path distances up to a polylog n factor. Finally, we
complement this theorem with a lower bound: although the hidden polylog n factors in this upper
bound might be improvable, they cannot be removed entirely. This stands in contrast to the standard
f -FT connectivity certificates of Theorem 1.2. Hence the cost of handling a faulty set with degree f
(with possibly Θ(fn) edges) is at least logarithmic and at most polylogarithmic, compared to handling
a total of f faults.

Theorem 1.5. There are n-node graphs for which any f -FD connectivity certificate has Ω(fn · lognlog f )
edges.

Our lower bound construction is still relatively simple: when f = 1, the certificate size lower bound
is Ω(n log n), and this is achieved by analyzing the hypercube graph. For general f the construction
is essentially the extension of the hypercube graph to an alphabet of size f .

1.2 Fault-Tolerant Spanners

A spanner is a subgraph that preserves approximate pairwise distances, rather than just connectivity.
Spanners and their variants have many applications in algorithms and network design; see survey
[ABS+20]. In this discussion, graphs can have arbitrary positive edge weights.

Definition 1.6 (Spanners [PS89]). For an input graph G, an edge-subgraph H is called a t-spanner
of G if it satisfies distH(u, v) ≤ t · distG(u, v) for all nodes u, v.

The parameter t of the spanner is often called its stretch. The existentially optimal size-stretch
tradeoff was settled in a classic paper by Althöfer, Das, Dobkin, Joseph, and Soares:
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Theorem 1.7 ([ADD+93]). For all positive integers n, k, every n-node graph G has a (2k−1)-spanner
on O(n1+1/k) edges.

This upper bound is unconditional, and there is a matching lower bound assuming the girth con-
jecture [Erd64], i.e., this tradeoff is best possible up to the hidden constant. Much like connectivity
certificates, spanners are often applied in settings with edge faults, in which case a notion of fault toler-
ance is needed. This was first considered in the special case of Euclidean input graphs by Levcopoulos,
Narasimhan, and Smid [LNS98] and has since been studied intensively in this setting, and also in the
more general setting of doubling metrics [CZ04, Luk99, NS07, Sol14, CLN15, CLNS15, LST23]. For
general input graphs, the first results on fault-tolerant spanners were obtained by Chechik, Langberg,
Peleg, and Roditty [CLPR10], in the following global model of fault-tolerance identical to the one used
for connectivity certificates.

Definition 1.8 (Fault-Tolerant Spanners [CLPR10]). Given a graph G, an edge-subgraph H is an
f -edge fault-tolerant (f -EFT) t-spanner if for any set F of |F | ≤ f edges and any nodes u, v, we have
distH\F (u, v) ≤ t · distG\F (u, v).

We recap the considerable prior work on EFT spanners in Table 1. For now, we note that the
lower bound graphs from [BDPW18], which we describe in Section 7.1, partially share the same locality
property as the lower bounds for connectivity certificates. In particular, we can consider the following
model of local fault tolerance for spanners:

Definition 1.9 (Faulty-Degree Spanners (New)). Given a graph G, an edge-subgraph H is called an
f -faulty-degree (FD) t-spanner if, for any nodes u, v and for any set of edges F such that degF (x) ≤ f
for all nodes x, we have distH\F (u, v) ≤ t · distG\F (u, v).

Once again, every f -EFT spanner is necessarily also an f -FD spanner, but the converse is far from
true, as f -FD spanners must handle some fault sets of size up to Θ(fn). The graph constructions
from [BDPW18] imply a lower bound of Ω(f1−1/kn1+1/k) for f -FD spanners. Our next main result is
to show that this bound is essentially tight.

Theorem 1.10 (Second Main Result). For all positive integers f, n, k, every n-node graph has an
f -FD (2k − 1) spanner on f1−1/k · n1+1/k · O(k)k edges. Assuming the girth conjecture [Erd64], this
tradeoff is best possible when k is a constant. Additionally, one can compute the spanner in polynomial
time by paying an additional polylog n factor in the spanner size.

We obtain the result by analyzing a certain exponential-time greedy algorithm, analogous to the
one used repeatedly in previous work on EFT spanners [BDPW18, BDR22]. In order to speed it up
to polynomial time, we follow an approach of Dinitz and Robelle [DR20] to replace a key step in the
greedy construction with an approximation algorithm. Thus costs roughly the approximation factor
in spanner size. We overview the technical aspects of this approximation algorithm more in Section
2.2.2.

Although our results focus on spanners and connectivity certificates, we wish to emphasize here
that the local (FD) model of fault tolerance is sensible for many other problems, e.g., distance oracles,
flows, etc. It will also be interseted to provide analog local FD results for vertex faults. The conceptual
message behind Theorems 1.4 and 1.10 is that, despite being considerably stronger, one can still prove
meaningful upper bound results in the local model. A natural open question is therefore to investigate
whether upper bounds can be achieved when considering these other problems in the local fault tolerant
model, which have previously been considered only in the global fault tolerant setting.
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Stretch Size Polytime? Citation

Global Fault Tolerance (f -EFT spanners)

2k − 1 O
(
f · n1+1/k

)
X [CLPR10]

2k − 1 Ok

(
f1−1/k · n1+1/k

)
[BDPW18]

2k − 1 O
(
f1−1/k · n1+1/k

)
[BP19]

2k − 1 Ok

(
f1−1/k · n1+1/k

)
X [DR20]

2k − 1 O
(
f1−1/k · n1+1/k

)
X [BDR21]

2k − 1, k even Ok

(
f1/2 · n1+1/k + fn

)
X [BDR22]

2k − 1, k odd Ok

(
f1/2−1/(2k) · n1+1/k + fn

)
X [BDR22]

3 Ω
(
f1/2 · n3/2

)
lower bound [BDPW18]

2k − 1, k > 2 Ω
(
f1/2−1/(2k) · n1+1/k + fn

)
lower bound∗ [BDPW18]

Local Fault Tolerance (f -FD spanners)

polylog n Õ(f · n) X this paper

2k − 1 Õk

(
f1−1/k · n1+1/k

)
X this paper

2k − 1 Ok

(
f1−1/k · n1+1/k

)
this paper

2k − 1 Ω
(
f1−1/k · n1+1/k

)
lower bound∗ [BDPW18]

∞ (connectivity) Ω
(

f
log f · n log n

)
lower bound this paper

Table 1: Prior work on upper and lower bounds for edge fault-tolerant spanners, both in the global
model (f -EFT spanners) and the local model (f -FD spanners). The lower bound entries marked
with an asterisk (∗) are conditional on the girth conjecture [Erd64]. We also show constructions of
FD-spanners via expander decomposition methods, not listed in this table.

1.3 Expanders and Rigid vs. Competitive Fault Tolerance

An important theme in the literature on fault-tolerant graph structures is the distinction between
rigid and competitive fault tolerance [CLPR10]. All of the previous discussion concerns the competi-
tive notion of fault tolerance, because we compare distances or connectivity between the post-failure
subgraph H \ F and the post-failure subgraph G \ F . The rigid notion of fault tolerance is defined
similarly, but we would compare distances or connectivity between H \F and the pre-failure subgraph
G.

Rigid fault tolerance is a stronger notion than competitive fault tolerance, and hence it is preferable
when it can be achieved. However, rigid fault tolerance is not available for all graphs. For example,
when G is a tree, a single edge failure can disconnect the graph. Thus there is no 1-rigid-fault-
tolerant subgraph of G, not even G itself. Despite this, rigid fault tolerance is available for certain
restricted graph classes, e.g., Euclidean [LNS98]. An additional contribution of this work is a refined
understanding of when rigid fault tolerance is available.
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Rigid Fault Tolerance for Connectivity. A key technical ingredient in our construction of con-
nectivity certificates is a new structural lemma, showing that every expander of high enough minimum
degree admits a notion of rigid fault tolerance for connectivity (and, in fact, also for expansion).

Theorem 1.11 (Expanders are Rigid to Bounded-Degree Faults). Let G be an n-vertex φ-expander
with minimum degree f ′ ≥ 2f/φ. Then for every f -degree faulty-set F , the graph G \ F remains
connected. (In fact, G \ F is itself a φ/2-expander.)

For general graphs G, this implies a strategy to design FD connectivity certificates. Suppose that
we compute an expander decomposition of G (or rather, a slight variant of expander decomposition
that also enforces a high enough minimum degree of each expander). We then sparsify each expander
in the decomposition, while maintaining its expansion properties and its minimum degree. Theorem
1.11 promises that every edge with both endpoints in the same expander is automatically protected
from faults: these edge failures simply cannot disconnect the graph, so they can be ignored. Indeed,
the only bad edges are the ones whose endpoints lie in two different expanders in the decomposition.
These bad edges can be handled recursively, until very few of them remain, and the remaining edges
can simply be added to the certificate. We overview this strategy in more detail in Section 2.1.1.

Rigid Fault Tolerance for Distances. Theorem 1.11 actually provides a notion of rigid fault
tolerance for distances, rather than just connectivity. Since the post-failure graph G \ F remains an
expander, its distances can be changed only by a factor of O(log n) by the fault set F – in other words,
G \ F is an O(log n) spanner of G. Plugging this fact into the recursive expander decomposition
framework outlined above, this ultimately implies that the FD connectivity certificate is in fact an FD
spanner with stretch polylog n.

It is natural to ask whether this O(log n) factor in rigid fault tolerance for distance can be improved.
We show that it can, by instead considering the recently-introduced class of length-constrained (LC)
expanders [HRG22]. We will review these objects formally in Section 2.1.2, but briefly, an (h, s)-length
expander is a graph where any h-length unit demand can be routed by a multi-commodity flow with
congestion Õ(1/φ) and over paths of length at most hs. The following theorem shows that they provide
an improved notion of rigid fault tolerance for distances:

Theorem 1.12 (Length-Constrained Expanders are Rigid to Bounded-Degree Faults). Let G be an
n-vertex (h, s)-length φ-expander with minimum degree Ω̃(f ·nǫ/φ). Then for every f -degree faulty-set
F , the graph G \ F is a (hs)O(1/ε)-spanner of G.

The analogous construction now works for FD spanners: one can take a LC expander decompo-
sition (again enforcing high minimum degree), and then sparsify each expander while maintaining its
expansion properties and its minimum degree. The precise arguments are more delicate in this setting
and in particular, our sparsification does not provide an LC-expander but rather a sparse subgraph
that has similar routing properties as those provided by LC expanders. But the effect is again that
edge faults whose endpoints lie in the same expander can essentially be ignored, since Theorem 1.12
implies that these faults simply cannot change the pairwise distances by too much. The only bad
edges are the ones whose endpoints lie in different expanders, which are again handled recursively,
until only a few bad edges remain which can be taken into the spanner. Analyzing this construction
leads to the following result:

Theorem 1.13 (Second Main Result, Part 2). For all positive integers f, n, k, every n-node unweighted
graph has an f -FD kO(k)-spanner H ⊆ G with |E(H)| = Õ(f · n1+1/k) edges.

Although the size-stretch tradeoff of the FD-spanner in Theorem 1.13 is worse than the one in The-
orem 1.10 (which is achieved using an unrelated non-expander-based toolkit), we include it because we
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think that the new connections between expanders, expander decomposition, and rigid fault tolerance
illustrated by this theorem are worthwhile to explore, and could have applications in followup work,
especially where computational aspects of the construction are emphasized. Additionally, the non-
tightness of the size-stretch tradeoff in this theorem is mostly due to a lack of understanding of the
distance rigidity properties of expanders, rather than a weakness in the expander-based construction
framework itself. The following result states that the size-stretch tradeoff in this construction could
improve from exponential to linear – hence tight, up to a constant factor in the stretch and a sublinear
factor in the faulty-degree – if the distance rigidity bounds from Theorem 1.12 can be improved.

Theorem 1.14 (Informal). Suppose that the distance rigidity bound in Theorem 1.12 can be improved
from O(hs)O(1/ε) to ℓ, for some parameter ℓ. Then our construction yields an f -FD O(ℓ · poly(s))-
spanner H ⊆ G with |E(H)| = Õ(f · n1+O(1/s)) edges.

We think it is an interesting open problem to improve the distance rigidity bound ℓ in this theorem,
both in its own right and to improve this particular application to FD spanners. We refer to Section
2.1.2 for more technical details on the construction and this possible extension.

Related Work on Spanners and Expanders. In a very recent work, Haeupler, Hershkowitz and
Tan [HHT23b] provided a new implementation of the well-known greedy (non-FT) spanner algorithm
of [ADD+93]. In particular, they show that one can add at a time a collection of matching edges M
provided that each individual edge in M does not close a short cycle in the current spanner. On a
high-level, their size analysis approach is based on exploiting the routing properties of the recently
introduced notion of length-constrained expanders [HRG22]. While their paper does not address fault-
tolerance aspects, their use of expanders and more specifically, expander routing, in the context of
(standard) spanners highly inspired our expander-based constructions of FD spanners.

2 Technical Overview

2.1 Expander-Based Constructions

Our expander-based constructions use a two-step approach. We first show that, when the input graph
is an expander, one can provide rigid fault-tolerant guarantees for connectivity and distances. By
employing the expander-decomposition technique, we then translate the rigid fault-tolerant guarantees
for expanders into competitive fault-tolerant guarantees for general input graphs. To the best of
our knowledge, these tools have not been employed before in the context of fault-tolerant graph
sparsification.

On a conceptual level, our expander-based sparsification approach allows us to pinpoint a critical
set of edges in the input graph G that prevent one from providing rigid fault-tolerant guarantees for G.
Our proof shows that the only problematic edges for rigid fault-tolerance are the inter-expander edges,
that connect different expander subgraphs in the output of the expander decomposition procedure.
Those edges can be handled recursively until their number becomes bounded by Õ(f · n). This set
of small number of edges are the problematic edges for obtaining rigid fault-tolerance, and by adding
them to the output subgraph, we provide competitive fault-tolerance for G.

2.1.1 Sparse Certificates

We first discuss our use of expanders for sparse connectivity certificates. Our starting observation is
that any φ-expander with minimum degree Θ(f) can tolerate the removal of any faulty-set F with
degree f , and maintain its expansion properties, up to a small loss in the conductance parameter. As
formulated in Theorem 1.11.
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To illustrate our ideas, assume for simplicity that the minimum degree of the input graph G is
Ω̃(f). Our algorithm first employs an expander-decomposition procedure on G which partitions G
into vertex-disjoint φ-expanders G1, . . . , Gk for φ = 1/ log n, and an additional set H0 ⊆ G of at most
m/2 inter-expander edges. In the second step, the algorithm sparsifies each expander Gi into a Θ(φ)-
expander Hi ⊆ Gi with only Õ(f · |V (Gi)|) edges. The final subgraph is then given by H =

⋃k
i=0Hi.

Formally, our expander sparsification lemma can be stated as follows:

Lemma 2.1 (Expander Sparsification). Given a φ-expander n-vertex G with minimum degree Ω̃(f/φ),
one can compute a subgraph H ⊆ G such that (i) |H| = Õ(f · n/φ2), (ii) H is an n-vertex Ω̃(φ2)-
expander (and V (H) = V (G)), and (iii) the minimum-degree of H is Ω(f).

At a high level, the sparsification is based on the useful notion of graph embedding (see e.g., Section
3.16 in [LR99]). An embedding σ of a graph Ĝ = (V, Ê) into a graph G = (V,E) is a function that
maps each edge e′ in Ĝ to a path σ(e′) in G. We say that congestion of the embedding is at most c if
each G-edge e appears on at most c paths in P = {σ(e′) | e′ ∈ Ê}. The dilation of the embedding is
the length of the longest path in P.

We then show that one can embed an f -regular φ-expander Ĝ = (V, Ê) into any given φ-expander
G = (V,E) with minimum degree f . The congestion and the dilation of the embedding are bounded
by Õ(1/φ). The output subgraph H is taken as the union of the paths that embed Ĝ into G.

Finally, we explain the intuition for the correctness of our algorithm. Fix a f -degree subset F and
an edge (u, v) /∈ F . We show that distH\F (u, v) = Õ(1). The interesting case is when (u, v) /∈ H,
and hence (u, v) is in some φ = 1/ log n expander Gi, obtained by the expander-decomposition. Since
Hi = (V (Gi), Ei) is a Ω̃(φ2)-expander with minimum degree Ω(f), by Theorem 1.11, Hi \ F is also a
Ω̃(φ2)-expander, hence of diameter Õ(1), which provides the desired stretch guarantees.

2.1.2 Sparse Spanners

Warmup: FD 3-Spanners As a warm-up, we show a simple construction of ∆-FD 3-spanners
that can be obtained by a mild adaptation of the classic Baswana-Sen spanner algorithm [BS07]. The
following proof assumes familiarity with the Baswana-Sen algorithm, and proceeds quickly over some
details used in this algorithm. We have:

Lemma 2.2. For any graph G = (V,E), one can compute a f -FD 3-spanner H ⊆ G with |E(H)| =
Õ(fn3/2).

Proof. Initially set H = ∅ and add to H all edges incident to vertices with degree at most f
√
n. We

will call these low-degree vertices, and the others are high-degree vertices. Let S be a random sample
of O(

√
n log n) vertices, which we call cluster centers. With high probability we sample at least f + 1

cluster centers adjacent to each high-degree vertex. Connect each high-degree vertex to an arbitrary
set of (f + 1) of its neighboring sampled centers in S. Finally, for each high-degree vertex v and each
cluster center c ∈ S, we choose 3f arbitrary vertices that are neighbors of both v and c, and we add
the edge connecting v to these vertices. (If there are fewer than 3f vertices that are neighbors of both
v and c, add them all.) Overall, this procedure adds Õ(fn3/2) edges, as desired.

To prove correctness, it suffices to consider an edge (u, v) /∈ F where both u, v are high-degree,
where F is an arbitrary f -degree set of edge faults. Since u is adjacent to at least f+1 cluster centers,
there exists a center c(u) ∈ S such that the edge (c(u), u) survives in G \ F . If (u, v) /∈ H, then we
have added ≥ 3f edges to H connecting v to neighbors in the cluster of c(u). As c(u), v are incident
to at most 2f edges in F , there exists at least one such vertex x such that (x, c(u)), (x, v) /∈ F . Thus
the path (u, c(u), x, v) survives in G \ F , and so we have distH\F (u, v) ≤ 3.
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FD-Spanners with Constant Stretch. Unfortunately, directly extending the (FT) Baswana-Sen
approach to the FD-setting, as in [Par22], seems to be quite nontrivial. The reason is that FT
Baswana-Sen is based on f edge-disjoint clustering which can handle a total of f faults but cannot
handle a f -degree subsets F of f · n failed edges.

Our approach is based on replacing the low-depth edge-disjoint trees that form the clustering in
the FT Baswana-Sen algorithm by length-constrained expanders [HRG22] with a sufficiently large
minimum degree. Our approach of connecting spanners to length-constrained expanders is inspired
by the very recent work of [HHT23b]. They use expanders to provide an alternative, matching-based,
implementation of the well-known greedy algorithm for (non fault-tolerant) spanners.

Step (I): From Expander Routing to Rigid Fault-Tolerant Properties. Our approach is
based on translating the routing quality of LC-expanders into rigid FT properties against bounded-
degree faults. Our starting observation is the following. Consider an (h, s)-length φ-expander with
minimum degree Ω̃(f · nǫ/φ). We use the fact that length-constrained expanders are good routers for
h-hop pairs. Specifically, given an f -degree set F , one can route d = Ω̃(nǫ/φ) units of flow over each
edge (u, v) ∈ F along paths of length O(h · s) and with congestion1 of c = O(log n/φ).

We use these dilation and congestion bounds to deduce that G \ F is an (hs)O(1/ǫ) spanner of G,
as follows: The solution to the routing instance consists of d many u-v paths of length at most hs
for every (u, v) ∈ F . Since these paths might intersect F , we cannot provide an immediate guarantee
on the u-v distance in G \ F for any (u, v) ∈ F . However, by using an averaging argument, one can
claim that for at least (1− c/d) fraction of the edges in F , their distance (between their endpoints) in
G \ F is at most hs. We then apply an iterative re-routing procedure that allows us to translate the
original routing paths into those that provide at least one fault-free path (among the d many paths)
for any (u, v) ∈ F . This re-routing procedure has logc/d n = Θ(1/ǫ) iterations. In each iteration i, we

can provide fault-free paths of length (hs)i for (1 − c/d) fraction of the remaining pairs in F . This
provides the intuition for Thm. 1.12.

Step (II): From Rigid-FT in Expanders into Competitive-FT in General Graphs. For
simplicity, we present the high-level ideas when using the existential bounds of LC expander decom-
position. Our actual algorithms can be implemented in polynomial time, and thus use expander
decomposition with somewhat weaker bounds.

To translate the rigid-FT properties of Thm. 1.12 into a construction of FD spanners, we again
employ the following two steps: expander decomposition and expander sparsification. Due to the
nature of length-restricted expanders, the sparsification arguments are slightly more delicate. The
output of the LC expander-decomposition provides us with a (h, s) LC-expander2 G′ with minimum
degree Ω̃(f · nO(1/s)) and a set of cut edges C = G \G′ with Õ(f · n1+1/s) edges.

Our goal is then to sparsify G′ into a subgraph H ′ ⊆ G with a total number of Õ(f · n1+O(1/s))
edges, such that H ′ has approximately the same routing properties as G′ in a way that allows us to
apply the robustness lemma of Thm. 1.12 on H ′. The sparsification is based on embedding a collection
of virtual expanders Ĝ1, . . . , Ĝℓ into G′. The output H ′ is taken as the union of the embedding paths
in G′. Each virtual graph Ĝi is defined based on a subset Vi ⊆ V (G) of pairwise distances at most h
in G′. These subsets are obtained by using the well-known tool of neighborhood-cover of [ABCP98].

We believe that our approach for translating rigid-FT properties in expander into competitive-FT
in general graphs might be also useful for other graph properties (beyond connectivity and distances)
and under a wide collection of fault models. The high-level recipe is given some desired graph property

1The congestion of a path collection P is at most c if each edge e appears in at most c paths in P .
2Unlike standard expanders, LC expanders are not required to be connected, hence the output of the expander

decomposition is a possibly disconnected LC expander.
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Π and a faulty model M and has the following flow: (i) showing that any expander G′ approximates
Π under any failing event F (where F is determined by the faulty model M). (ii) showing that
one can sparsify the expander into H ′ ⊆ G′ such that H ′ is an expander that satisfies (i), and (iii)
apply expander-decomposition (possibly recursively) accompanied with expander sparsification. At the
point where the number of inter-expander edges is sufficiently small, add them to the desired output
subgraph H. We also note that while we focus here on connectivity and distances, as a byproduct
of our approach, we also get that our output subgraphs (e.g., FD certificates) also approximate the
dilation and congestion bounds of routing instances in G.

2.2 Blocking Set-Based Constructions

2.2.1 The FD Greedy Algorithm and Analysis

The near-optimal size/stretch tradeoff for FD spanners in Theorem 1.10 is proved by analyzing the
natural FD adaptation of the greedy spanner algorithm [ADD+93], also analogous to the EFT greedy
algorithm studied in prior work [BDPW18, BDR22]. We state this algorithm formally in Section 6.1,
but to quickly overview: the spanner H is initially empty, we consider the edges (u, v) of the input
graph one at a time in order of increasing weight, and we add each edge (u, v) to the spanner iff there
exists a possible fault set F (of max degree ≤ f) under which distH\F (u, v) > (2k − 1) · w(u, v).

The proof of correctness, i.e., that the algorithm returns a correct f -FD (2k − 1)-spanner of the
input graph G, is standard. The challenging part of the proof is to show that the output spanner H
does not contain too many edges.

The Blocking Set Method. The analysis of the non-fault-tolerant greedy spanner algorithm
[ADD+93] uses crucially that the output spanner has high girth; that is, one can prove that all
cycles in H have > 2k edges. It is not still true that the output spanner H from the FD greedy
spanner algorithm must have high girth. Still: since the FD greedy algorithm is similar in spirit to the
non-fault-tolerant greedy algorithm, it is intuitive to think that its output spanner might be “close to
high girth” in some structural sense.

A blocking set formalizes the idea of a graph being structurally close to high girth, by asserting
that its short cycles admit a particularly small or simple kind of hitting set. The following definition
of blocking set is the relevant one for this work:

Definition 2.3 (FD Blocking Sets). Let H = (V,E) be a graph equipped with a total ordering of its
edge set E. A f -fault-degree (FD) k-blocking set B for H is a set of pairs of the form (e, Fe), such
that:

• Each edge e is the first edge of exactly one pair (e, Fe), each Fe is a set of edges from E(H) of
degree deg(Fe) ≤ f , and each edge in Fe strictly precedes e in the edge-ordering of H.

• For each cycle C in H on |C| ≤ k edges, letting e be the latest edge in C in the edge-ordering of
H, we have that Fe ∩ C is nonempty.

It is fairly easy to prove that the output spanner H of the FD-greedy algorithm, with its edges
ordered by their arrival in the algorithm, has a f -FD blocking set. The focus of the proof then shifts
from bounding the number of edges in the particular output spanner from the FD-greedy algorithm
to bounding the number of edges in any graph that admits a f -FD blocking set.

Path-Counting Methods. In order to explain how we limit the size of a graph with a f -FD
blocking set, it may be helpful to first recall the proof of the Moore bounds, which are used to bound
the maximum possible number of edges in an n-vertex graph H of girth > 2k. The Moore bounds are
proved using a counting argument over the edge-simple k-paths of H. They include two steps:
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• A dispersion lemma, which shows that no two edge-simple k-paths in H can share endpoints (or
else they would form a short cycle), and

• A counting lemma which shows a lower bound on the number of edge-simple k-paths in H, where
this lower bound is increasing with the number of edges |E(H)|.

By comparing the upper and lower bounds on the number of edge-simple k-paths that respectively
arise from the dispersion and counting lemmas, and rearranging terms, one gets an upper bound on
|E(H)|. The interested reader can refer to [Bod23], Section 2, for a recap of this proof of the Moore
bounds in full detail.

Since a graph with a blocking set is conceptually interpreted as a graph that is “close to high girth,”
it stands to reason that our upper bound on the size of a graph with a blocking set should follow the
same basic strategy as the Moore bounds. Indeed, our strategy is to prove analogous dispersion and
counting lemmas, and our final bound on |E(H)| follows by comparing these bounds to each other and
rearranging terms. However, in our arguments we do not consider any edge-simple k-paths in these
lemmas: a graph with a f -FD-blocking set can unfortunately have an unbounded number of edge-
simple k-paths that share endpoints, and so the dispersion lemma would be impossible. Instead, we
restrict our attention to a subset of edge-simple k-paths satisfying a very particular set of properties,
which are restrictive enough to enable a version of the dispersion lemma but not so restrictive as
to break the counting lemma. We call these MUCk paths. This is an acronym, and the technical
properties encoded by this acronym and their role in the proof are discussed more in Section 6.2).

2.2.2 Speeding Up the Greedy Algorithm

The main downside of the FD greedy algorithm is that, in a naive implementation, it takes exponential
time. The part that takes exponential time is that in each round, we need to check whether or not
there exists a bounded-degree fault set F for which distH\F (u, v) ≤ (2k−1) ·w(u, v). There are exp(n)
many fault sets to consider, and it is not clear how to avoid checking each of these potential fault
sets by hand. In fact, there is some evidence that no substantial improvement on this brute force
approach will be possible. For the EFT greedy algorithm (which is identical except that it searches
only over fault sets of size |F | ≤ f), the search for a valid fault set encodes an NP-hard problem called
Length-Bounded Cut (LBC) [BEH+06]:

Length-Bounded Cut (LBC): Given a graph G = (V,E), vertices s, t, and an integer k, find
the least integer f for which there exists an edge set F of size |F | ≤ f with distG\F (s, t) > k.

A nice paper by Dinitz and Robelle [DR20] provides a method to escape this NP-hardness barrier
for the EFT greedy algorithm. Dinitz and Robelle essentially show an O(k)-approximation algorithm
for LBC in unweighted graphs. Using this approximation algorithm for the edge-test step of the greedy
algorithm ultimately costs a factor of O(k) in the size of the blocking set for the output spanner, which
translates to an O(k) factor in spanner size as the price to pay for polynomial runtime. The other
important observation in [DR20] is that it suffices to solve LBC in an unweighted graph, even when
the goal is to build a spanner of a weighted input graph.

It is natural to attempt the same method to improve the runtime of the FD greedy algorithm. The
same high-level proof strategy works, but the catch is that we need to solve the following variant:

Min Max LBC: Given a graph G = (V,E), vertices s, t, and an integer k, find the least integer
f for which there exists an edge set F of degree deg(F ) ≤ f with distG\F (s, t) > k.
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As it happens, so-called “min max” cut problems of this type have been studied before through
an independent motivating framework, in the research area of correlation clustering. Correlation
clustering was introduced by Bansal, Blum, and Chawla [BBC04], and it concerns the following model.
We are given a (possibly weighted) graph G, with some edges labeled (+) and others labeled (−). We
cluster the vertices of G, and a (+) edge is considered to be satisfied if its endpoints lie in the same
cluster, while a (−) edge is considered to be satisfied if its edges lie in different clusters. The general
goal is to minimize the total weight of unsatisfied edges, although several different objective functions
have been studied [Wir10]. Correlation clustering simultaneously generalizes several fundamental
graph problems, including Min s-t Cut.

More recently, researchers have considered local objective functions, which encode goals such as
minimizing the maximum disagreement weight on any given vertex. This framework was first studied
by Charikar, Gupta, and Schwarz [CGS17], who obtained a O(

√
n) approximation algorithm for the

problem of local correlation clustering. They also pointed out that, in the same way that correlation
clustering captures Max s-t Cut, their algorithm implies a O(

√
n) approximation algorithm for Min

Max s-t Cut in undirected graphs. This algorithm has been substantially extended in followup work
[KMZ19, JKMM21].

A central message of the work of Charikar et al. [CGS17] is that graph problems of these type
are fundamental, and warrant further study. We fully agree with this message, and indeed, this
paper provides a concrete application for this direction of study. Our contribution is the following
approximation algorithm, which when plugged into the framework of Dinitz and Robelle [DR20],
implies our near-optimal FD spanners in polynomial time from Theorem 1.10.

Theorem 2.4. The problem Min Max LBC on an n-vertex input graph with length parameter k has
a O(k log n) approximation algorithm.

3 Preliminaries

Throughout, we denote by n the number of vertices in the graph input graph. As usual the notions
Õ(·) and Ω̃(·) hide poly-logarithmic factors in n.

Vertex Weightings. A vertex weighting W : V 7→ Z≥0 assigns each vertex v a positive integer
weight W (v). For a multi-set of undirected edges E′ (potentially with (multiple) self-loops a vertices)
the vertex weighting WE′ assigns each vertex v the number of edges adjacent to v in E′. In this way
any (multi-)graph G = (V,E) comes with the so-called degree weighting degG = WG = WE which
assigns each vertex v the weight W (v) = degG(v).

Our algorithms use the notion of vertex weighting only in the context of length-constrained ex-
panders, nevertheless to make the framework general we provide all definitions based on a given vertex
weighting W . If no W is provided then W (u) = degG(u) for every u.

Conductance, Volume, and Expanders. Consider a graph G = (V,E). For a vertex subset
S ⊆ V and vertex weighting W , let VolW (S) =

∑
v∈S W (v). We sometimes write VolG as a shorthand

for VoldegG . Let ∂G(S) = E(S, V \ S) be the set of edges in G with one endpoint in S and the other
endpoint in V \ S. The conductance of a cut S 6= ∅ with respect to vertex weighting W is defined by

ΦG(S,W ) =
|∂G(S)|

min{VolW (S), VolW (V \ S)} .

For S = ∅, let Φ(S,W ) = 0. The conductance of a graphG is given by Φ(G,W ) = minS⊂V,S 6=∅ΦG,W (S) .
That is, Φ(G,W ) is the minimum value of ΦG,W (S) over all non-trivial cuts S ⊆ V .
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If no vertex-weighting is specified W is assumed to be degG, i.e., the volume VolG(S) counts edges
in ∂G(S) as one, edges induced by S as two, and all other edges as zero and ΦG(S) is the conductance
with respect to this volume.

Definition 3.1 (φ-expander (for W )). [LS21] Let G = (V,E) be a graph, W be a vertex weighting for
V , and φ ≥ 0. G is a φ-expander for W if Φ(G,W ) ≥ φ. We also say W is φ-expanding in G. If G
is φ-expanding for W = degG we simply say G is a φ-expander (leaving the ”for degG” implied).

Demands, Routings, Congestion and Dilation. A demandD : V ×V → R≥0 assigns each pair of
vertices u, v a positive amountD(u, v). A demand is integral if it only assigns integer amounts and sym-
metric if D(u, v) = D(v, u) for all u, v ∈ V . All demands in this paper are symmetric and integral. The
load of a vertex v ∈ V in demand D is defined as load(v,D) = max{∑w∈V D(v,w),

∑
w∈V D(w, v)}.

Let (max) load of a demand is defined as load(D) = maxv load(v,D). We call a demand W -respecting
(orW -unit) if load(v,D) ≤W (v) and we say a demandD is a unit demand in G if it is degG-respecting.
We say that a demand D is supported on V ′ ⊆ V , it D(u, v) = 0 for any pair 〈u, v〉 /∈ V ′ × V ′.

Any multi-set of edges E′ has an associated integral symmetric demand DE′ with DE′(u, v) equal
to the number of edges between u and v in E′. Similarly any integral symmetric demand maps to a
multi-set of edges or a set of edges ED = {(u, v) | D(u, v) > 0}.

Definition 3.2 (Dilation, Congestion of a Path Collection). A routing is a collection of paths P =
{P1, . . . , Pk}, the dilation of P is the maximum length of the paths in P. The congestion of P is equal
to maxe∈G |{P ∈ P | e ∈ P}|, i.e., the maximum number of times any edge appears in the total over
all paths. The quality of P is defined as congestion(P) + dilation(P). The demand DP sets D(u, v)
to be the number of pathes from u to v in P. (Iff D = DP we say ”P routes D or P is a routing for
D.)

We say a demand D is routable with congestion c and dilation ℓ in G if there exists a routing P
for D in G with congestion congestion c and dilation ℓ. Similarly we say a graph H = (V ′, E′) with
V ′ ⊆ V or a set of edges F ⊆ V × V is d-routable with congestion c and dilation ℓ in G if d ·DH or
d ·DF are routable. A routing for a graph H in G is also called an embedding (of H into G).

We show in appendix that if a good routing or embedding exists than such a routing can also be
found efficiently in polymomial time, up to a constant factor loss in congestion. This allows us to
provide polynomial time implementation for our expander-based algorithms.

Lemma 3.3 (Length-Constrained Multi-Commodity Flow Routing [HHS23]). There exists a random-
ized algorithm which given an n-vertex graph G = (V,E) and a demand D which is routable with
congestion c = ω(log n) and dilation ℓ in G outputs a routing for D with congestion at most 1.1c and
dilation ℓ in polynomial time, with high probability.

The next well-known lemma summarizes the routing properties of φ-expanders.

Lemma 3.4. If a graph G is a φ-expander, then any unit demand in G can be routed with congestion
O( lognφ ) and dilation O( lognφ ).

For a graph G = (V,E) and a vertex subset U ⊆ V , let G[U ] be the graph G induced on U . The
graph G(U) consists of all edges of G[U ] and in addition, it includes (potentially multiple) self-loops
on each vertex u ∈ U , such that degG(U)(u) = degG(u). I.e., for each edge (u, v) ∈ U × (V \ U), the
graph G(U) includes a self-loop on u.

Theorem 3.5 ([LS21]). For any any parameter φ > 0, there is a randomized algorithm ExpDecomp

that given an n-vertex graph G = (V,E) partitions V into clusters U = (U1, . . . , Uk), such that w.h.p.
the following holds:
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•

∑
i |E(Ui, V \ Ui)| = O(φm · loga n) for some constant a ≥ 2, and

• Every G(Ui) is a φ-expander.

The running time of the algorithm is Õ(|E(G)|/φ2).

Length-Constrained Expanders. Length-constrained expanders are generalizations of expanders
that give more and separate control over the length of routing paths. We say a demand is h-length if
D(u, v) > 0 implies that distG(u, v) ≤ h. The following description of length-constrained expanders
follows the summary in [HHG22]: The general notion of (h, s)-length φ-expanders where h is called
length, s is called length slack, and φ is called conductance is defined in terms of so-called “moving
cuts” and can be found in [HRG22]. The exact details of their definition will not be important for us
here.

All we will need is that up to a constant length factor and a poly-logarithmic congestion factor,
(h, s)-hop φ-expanders for unit-demands are equivalent to the notion of routing any h-length unit-
demand via (s · h)-length paths with congestion roughly 1

φ . This is made precise by the following
theorem which is the equivalent of Lemma 3.4:

Theorem 3.6 (Flow Characterization of Length-Constrained Expanders (Lemma 3.16 of [HRG22])).
For any h ≥ 1, φ < 1, (vertex weighting W ), and s ≥ 1 we have that:

1. If G is an (h, s)-length φ-expander (for W ), then every h-hop (W -)unit-demand can be routed
in G along (s · h) long paths with congestion O(log(n)/φ).

2. If G is not an (h, s)-hop φ-expander (for W ), then some h-hop (W -)unit demand cannot be
routed in G along ( s2 · h) long paths with congestion 1/2φ.

Theorem 3.7 ([HRG22, HHG22]). For any graph G = (V,E), conductance φ > 0, length bound
h, length slack s > 2 and vertex weighting W there exists a set of edges C ⊂ E of size at most
O(hφ|W |ns−0.1

log n) such that G \ C is an (h, s)-length Ω̃(φ)-expander with respect to W .

Our use of LC-expanders w.r.t weighting W is mainly for the purpose of using the above mentioned
properties of expander decomposition. That is, we enjoy the fact that |C| depends on |W |, rather than
on |E(G)|, to provide a cleaner algorithmic description in Sec. 5.3.

There also exists a randomized algorithm to compute the expander decomposition guaranteed by
Theorem 3.5 with high probability and in polynomial time [HRG22, HHG22, HHT23a].

Neighborhood Cover. For a graph G = (V,E) and a positive integer r, the r-neighborhood of a
vertex v is defined by Nr,G(u) = {v | distG(u, v) ≤ r}. Given a graph G and parameters β, r, an
(r, β)-neighborhood cover is a collection of subgraphs G1, . . . , Gk with the following properties: (i) the
diameter of each Gi is O(β · r), (ii) for every v ∈ V (G), there is a subgraph Gi that contains the entire
r-neighborhood of v, i.e., Nr,G(u) ⊆ Gi and (iii) each vertex appears in at most β · n1/β subgraphs.

Lemma 3.8 ([ABCP98]). Given a graph G and parameters r, β, there is an polynomial time algorithm
NeighborhoodCover that computes the (r, β)-neighborhood cover of G.

Roadmap. In Section 4, we provide the construction of FD certificates. In Section 5, we provide
constructions of FD O(1)-spanners that are based on LC-expanders. Then, in Section 6, we provide
polynomial time algorithms for computing FD t-spanners with nearly optimal density (conditioned on
the girth congestion). Finally, lower bounds arguments are provided in Section 7.
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4 Sparse Connectivity Certificates against Bounded-Degree Faults

In this section we provide an algorithm for computing sparse FD-certificates and establish Theorem
1.4. In fact, our construction will provide an FD Õ(1)-spanners. The structure of this section is
as follows. First, we show that expanders are rigid to bounded-degree faults. Then we present an
algorithm for computing rigid FD certificates for expander graphs, and finally we present an algorithm
for computing competitive FD certificates for general graphs.

Rigidity of Expanders to Bounded Degree Faults. We show that φ-expanders with minimum
degree Ω̃(f/φ) remain good expanders under the failing on any f -degree edge set.

Proof of Theorem 1.11. Fix a cut (S, V \ S) in G and let VolG(S) ≤ VolG(V \ S). Then, by the
definition of expanders we have |∂G(S)| ≥ φ · |S| · f ′. Since each vertex in S is incident to at most f
edges in F , we have that |∂G\F (S)| ≥ |∂G(S)|−|S|f ≥ (φ·|S|·f ′)/2 .Moreover, VolG(V

′) ≥ VolG\F (V
′)

for any subset V ′ ⊆ V . We therefore have that:

ΦG\F (S) =
|∂G\F (S)|

min{VolG\F (S), VolG\F (V \ S)}
≥ |∂G(S)| − |S|f

min{VolG(S), VolG(V \ S)}

=
|∂G(S)|

min{VolG(S), VolG(V \ S)}
− |S|f

min{VolG(S), VolG(V \ S)}

≥ ΦG(S)−
|S|f ′ · φ

2min{VolG(S), VolG(V \ S)}
≥ ΦG(S)−

|S|f ′ · φ
2|S|f ′

= ΦG(S)− φ/2 ≥ φ/2 .

In Appendix A, we prove a more delicate robustness argument which holds for any graph G (even
not expanders) provided that G admits non-trivial routing solutions for f -degree subsets of edges F ,
i.e., in which the output flow uses edges not in F .

Lemma 4.1. [From Low-Congestion Routing to Fault-Tolerance] Consider an n-vertex graph G with
minimum degree f ′ and let F be a f -degree subset of edges such that F is d-routable in G for d = f ′/f
with congestion of c < d. Then, G \ F is connected.

Expander Sparsfication. Our certificate computation is based on our ability to sparsify a possibly
dense expanders while preserving their fault-tolerant properties w.r.t. their minimum degree. The
following lemma summarizes the properties of our sparsification procedure:

Theorem 4.2 (Expander Sparsification). For any φ ∈ [0, 1] and f ′ ∈ [Ω(log n), n], there is an algo-
rithm Sparsify that given an n-vertex φ-expander G with min-degree f ′ outputs a subgraph H ⊆ G such
that:

• H is an Ω̃(φ2)-expander.

• |E(H)| = O(f ′ · n · log n/φ), and

• the minimum degree of H is Ω̃(f ′ · φ).

We need the following auxiliary claim. We say that a graph H ⊆ G is a minimal graph that
embeds a graph Ĝ into G if H is the union of the G-paths that embeds Ĝ into G. The proof of the
next lemma is provided in appendix.
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Lemma 4.3. Let H = (V,EH) ⊆ G be a minimal graph that embeds a f -regular (1/ log n)-expander
Ĝ = (V (H), Ê) into G, such that the collection of embedded paths have congestion and dilation of
Õ(1/φ). Then H is a Ω̃(φ2)-expander.

We are now ready to provide the proof of Thm. 4.2.

Proof of Thm. 4.2. Let Ĝ = (V (G), Ê) be an f ′-regular (1/ log n)-expander. We define a demand DÊ

where D
Ê
((u, v)) = 1 for every (u, v) ∈ Ê and D

Ê
(u, v) = 0, otherwise.

Since Ĝ is f ′-regular, D is unit-demand in G, and can therefore can be solved in G with congestion
and dilation of O(log n/φ) by Lemma 3.4. Moreover, the collection of routing paths P can be computed
in polynomial time using Lemma 3.3. The output subgraphH consists of the union of all paths P ∈ P.

We next show that H satisfies the desired properties. Since H is a minimal graph for embedding
Ĝ into G, by Lemma 4.3, we have that H is a Ω̃(φ2)-expander. By construction, we also have that
|E(H)| = O(f ′ · n · log n/φ), as H consist of f ′n paths, each of length at most O(log n/φ). It remains
to bound the minimum degree in H. Consider a vertex u and its collection of f neighbors in Ĝ. Since
the congestion of the paths in P is O(log n/φ), we get that u is incident to at least f = Ω̃(f ′ · φ)
distinct edges on the output u-v paths of the routing instance, which implies that u is incident to at
least f neighbors in H.

The Algorithm for f -Faulty-Degree Certificates. We use the following procedure MinDegree

that given a graph G and integer f ′, outputs a subgraph G′ ⊆ G with minimum degree f ′ such that
|G \G′| = O(f ′n).

Lemma 4.4. Given an n-vertex graph G and integer f ′, there is an algorithm MinDegree that computes
a subgraph G′ ⊆ G with minimum degree f ′ and such that |G \G′| = O(f ′n).

Proof. Letting G′ = G, the algorithm iteratively omits a vertex with degree at most f ′ in the remaining
graph G′ until no such vertex exists. The algorithm omits at most f ′n edges from G which proves the
desired bound.

We are now ready to present Algorithm FDCertificate which computes the desired f -FD certificate
H with Õ(f · n) edges. The algorithm has ℓ = O(log n) iterations. In each iteration i, the algorithm
gets as input a subgraph Gi ⊆ G with Ω(f ′n) edges, where initially G1 = G. The output of the
iteration is given by a subgraph Hi and a subgraph Gi+1 ⊆ Gi to be provided as input to the next
iteration i+ 1. The final output subgraph H is then defined by H =

⋃ℓ
i=1 Hi.

We now focus on iteration i ≥ 1. The algorithm starts by applying ProcedureMinDegree of Lemma
4.4 on Gi with degree threshold f ′ = Õ(f). Let G′

i be the output subgraph of this procedure. Next, the
algorithm applies expander decomposition on G′

i which partitions G into vertex-disjoint φ-expanders
Gi,1, . . . , Gi,ki for φ = 1/(log n)a+1 and a collection of at most m/2 inter-expander edges, where a is
the constant in Theorem 3.5.

On each sufficiently dense φ-expander Gi,j (i.e., (with |Gi,j| ≥ 2f ′ · |V (Gi,j |)), the algorithm applies

Procedure Sparsify of Thm. 4.2 to obtain a Ω̃(φ2)-expander Hi,j ⊆ Gi,j . The output of the ith phase

is given by a subgraph Hi =
⋃ki

i=1Hi,j and the next graph Gi+1 is the defined by the union of all
inter-expander edges. As |Gi+1| ≤ |Gi|/2 the process terminates within ℓ iterations. See a detailed
description below.

Algorithm FDCertificate

Input: A graph G, integer f .
Output: An f -FD certificate H ⊆ G with Õ(f · n) edges.
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• G1 ← G and φ = 1/ loga+1 n (see Theorem 3.5).

• f ′ ← ⌈f/φ5⌉ and f ′′ ← ⌊f ′ · φ⌋.

• For i = {1, . . . , ℓ = 2 log n} do:

1. G′
i = MinDegree(Gi, f

′).

2. (Ui,1, . . . , Ui,ki) = ExpDecomp(G′
i, φ).

3. For every j ∈ {1, . . . , ki} do:
– Let Gi,j = G′

i[Ui,j].

– If |Gi,j | ≤ 2f ′ · |Ui,j |: Hi,j ← Gi,j.

– Otherwise: Hi,j ← Sparsify(Gi,j , f
′′).

4. Gi+1 ←
⋃

i G \
⋃ki

j=1Gi,j.

5. Hi ← (Gi \G′
i) ∪

⋃ki
j=1Hi,j.

6. If |Gi+1| ≤ f ′n, set Hi+1 = Gi+1, ℓ = (i+ 1) and QUIT.

• H =
⋃ℓ

i=1 Hi.

Lemma 4.5. H is an f -FD Õ(1)-spanner (and hence also an f -FD certificate) with |E(H)| = Õ(f ·n).
Proof. We start with the size bound by showing that |Hi| = Õ(f · n). By Lemma 4.4, we have
|Gi \G′

i| = Õ(fn). By Thm. 4.2, |Hi,j| = Õ(f · |V (Ui,j)|). The size bounds follows that Hi,1, . . . ,Hi,ki

are vertex-disjoint. We next claim that the algorithm quits within 2 log n iterations. This holds as by
the stopping criteria, and by the fact that |Gi+1| ≤ |Gi|/2 (as guaranteed by Thm. 4.2).

Min-Degrees. We next claim that the minimum-degree of any φ-expander Gi,j = G′
i[Ui,j ] is at least

f ′′. By the properties of expander-decomposition, we have that the graph G̃ = G′
i(Ui,j) is also a

φ-expander. Recall that the graph G̃ consists of all edges of Gi,j , and in addition, each vertex v has
a self-loop for every edge (u, v) ∈ G′

i \ Gi,j. By adding these self-loops, we have that the degree of
v in G̃ is the same as its degree in G′

i. Since the minimum degree of G′
i is at least f ′, we have that

min{VolG̃({v}), VolG̃(V \ {v})} ≥ f ′ for every v ∈ Ui,j. By the expansion of G̃, for every v ∈ Ui,j, it
then holds that degGi,j

(v) ≥ φ · f ′ ≥ f ′′.

Stretch. Fix an f -degree set F and (u, v) ∈ E \ F . The interesting case is when (u, v) /∈ H, and
therefore in such a case there exist indices i, j such that (u, v) ∈ Gi,j \Hi,j. By Theorem 4.2, Hi,j is a

Ω̃(φ2)-expander with minimum degree f̃ = Ω̃(f ′′ ·φ) = Ω̃(f ′ ·φ2). Since f̃ = Ω̃(f/φ3), by Theorem 1.11,
we have that Hi,j \F is also Ω̃(φ2) expander. Concluding that distHi,j\F (u, v) = Õ(1/φ2) = Õ(1).

5 Sparse Spanners against Bounded-Degree Faults

5.1 Robustness of Length-Constrained Expanders against Bounded Degree Faults

In this section, we show that dense LC-expanders G are robust to bounded-degree faults F , in the
sense that G \ F is a O(1)-spanner for G. We show the following (a generalization of Thm. 1.12):

Theorem 5.1. Consider an (h, s)-length φ-expander G for vertex weighting W where W (u) = Ω̃(f ·
nǫ/φ), for every u ∈ V (G). Then, for every f -degree subset of edges F , it holds that distG\F (u, v) ≤
(h · s)O(1/ǫ) for every (u, v) ∈ F .

To prove the theorem, we use the routing properties of LC-expanders, and in particular the fol-
lowing corollary implied by Theorem 3.6:
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Corollary 5.2 (Routing on Dense LC Expanders). Let G be an n-vertex O(h, s)-length φ-expander
for vertex weighting W where W (u) = Ω̃(f · nǫ/φ) for every u ∈ V (G). Then every f -degree subset of
edges F is Θ(nǫ/φ)-routable in G with dilation h · s and congestion O(log n/φ).

By Cor. 5.2, it is sufficient to show the following key lemma that translates routing properties
of edge sets F ⊆ G into fault-tolerant properties in G \ F . Recall that a given set of edges F is
d-routable with congestion c and dilation ℓ, if one can solve a routing instance in which d units of flow
are required to be sent over each edge e ∈ F along paths with congestion c and dilation ℓ.

Theorem 5.3. Let G be an n-vertex graph and let F ⊆ E(G) be such that F is d-routable with
congestion c ≤ d and dilation ℓ. Then, for every (u, v) ∈ F , it holds that distG\F (u, v) ≤ ℓk where
k = 2 log n/ log(d/c).

Proof. Set k = 2 logd/c n. We partition F into at most k subsets F1, . . . , Fk, such that for every
(u, v) ∈ Fi it holds that distG\F ′

i
(u, v) ≤ ℓ where F ′

1 = F and F ′
i = F \⋃j≤i−1 Fj for i ∈ {2, . . . , k}.

This is done in k iterations.
In iteration i ∈ {1, . . . , k}, we define a routing instance where the routing pairs are the edges in

F ′
i and with uniform demand D(u, v) = d for every (u, v) ∈ F ′

i and D(u, v) = 0 otherwise. By solving
this routing instance in G, we get the routing paths Pi = {P(u, v) | (u, v) ∈ F ′

i} where each P(u, v)
is a multi-set of d paths connecting u and v in G. The set Fi is then defined by:

Fi = {(u, v) ∈ F ′
i | ∃P ∈ P(u, v) such that P ∩ F ′

i = ∅}.

That is, Fi consists of all edges (u, v) ∈ F ′
i whose P(u, v) set contains at least one path that does not

intersect F ′
i . We next claim that F1, . . . , Fk is a partitioning of F .

We show that |Fi| ≥ (1− c/d)|F ′
i | for every i ∈ {1, . . . , k}, which establishes the claim. This is can

be shown by a simple averaging argument: The number of paths in Pi that intersects F ′
i is at most

c · |F ′
i |. Hence |F ′

i \ Fi| ≤ c · |F ′
i |/d. Consequently, F ′

k+1 = ∅ and
⋃k

i=1 Fi = F .
Finally, we show by induction on i ∈ {1, . . . , k} that distG\F (u, v) ≤ ℓi. The base case follows

by the definition of F1, as F ′
1 = F . Assume that the claim holds up to (i − 1) and consider i. Fix

(u, v) ∈ Fi and consider some u-v shortest path P in G \ F ′
i . By the definition of Fi, we have that

|P | ≤ ℓ. Since P ∩ F ⊆ ⋃j≤i−1 Fj , we can replace each edge (x, y) ∈ ⋃j≤i−1 Fj with a fault-free x-y

path Px,y ⊆ G \ F . By induction assumption we have that |Px,y| ≤ ℓi−1. Altogether, we get that
distG\F (u, v) ≤ |P | · ℓi−1 ≤ ℓi.

Theorem 1.12 then follows by Lemma 5.3 and Lemma 3.6.

5.2 Length-Constrained Expander Sparsification

Our goal in this section is to sparsify an expander G into H ⊂ G while maintaining the congestion
and dilation parameters of routing instances. Our key sparsification result shows:

Theorem 5.4 (Key Sparsification Lemma). Consider an n-vertex graph G = (V,E) with and a subset
V ′ ⊆ V satisfying that any demand D supported on V ′ with load(D) ≤ f ′, for some f ′ = Ω(log n), can
be routed with dilation ℓG and congestion cG. Then, there is a randomized polynomial-time procedure
LCExpanderSparsify that computes a subgraph H ⊆ G which satisfies the following properties w.h.p.:

• minv∈V ′ degH(v) = Ω(f ′/cG).

• The diameter of H is O(logf ′ n · ℓG).

• Any demand function D supported on V ′ such that load(D) ≤ Θ(f ′) is routable in H with
congestion Õ(cG) and dilation O(ℓG · logf ′ n).
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• |E(H)| ≤ f ′ · |V ′| · ℓG.

In the following we describe Algorithm LCExpanderSparsify and prove Thm. 5.4.

Algorithm LCExpanderSparsify. Algorithm LCExpanderSparsify that receives as input a graph G =
(V,E), a subset V ′ ⊆ V and an integer parameter f ′. The algorithm computes H ⊆ G that preserves
the routing quality of G on any demand D supported on V ′ with load(D) ≤ f ′.

Our approach is based on embedding a “good constant-hop expander” Ĝ on the vertex set V ′ in
the graph G, and letting H be the union of the paths that embeds Ĝ in G. Here we take Ĝ = (V ′, Ê)
to be the random graph G(n, p) with p = Θ(f ′/n) because random graphs with polynomially large
degrees are excellent routers allowing any unit demand to be routed over constant length paths with
low congestion. More precisely it is true that with high probability any unit-demand in Ĝ is be routable
with dilation ℓ

Ĝ
= O(logf ′ n) and congestion c

Ĝ
= O(log n). We prove this in Lemma B.1. Also note

by setting the constant hidden in the probability p to be small enough, w.h.p., all degrees in Ĝ are in
[f ′/a, f ′] for some constant a ≥ 1.

Next, define a routing instance in G with the following demands values: D(u, v) = 1 for every
(u, v) ∈ Ê and D(u, v) = 0, otherwise. Since D is supported on V ′ and load(D) ≤ f ′, by the
properties of G, the demand is routable in G by a collection of paths P = {P (x, y) | (x, y) ∈ Ê} with
dilation at most ℓG and congestion cG. Moreover, these paths can be computed in polynomial time
using Lemma 3.3. The output subgraph H ⊆ G is then given by H =

⋃
P∈P E(P ).

Size and Diameter. The size bound is immediate as |E(H)| ≤ f ′ · |V ′| · ℓG. We next consider the
diameter bound. The diameter of Ĝ is O(logf ′ n), and as each edge in Ĝ translates into a H-path of
length ℓG, we have that the diameter of H is O(logf ′ n · ℓG).
Minimum Degree. Since each G-edge appears on cG paths in P, and since each u is the source
vertex of Θ(f ′) paths in P, we have that u is incident to Ω(f ′/cG) edges in H. Note that some vertices
in V (H) \ V ′ might have arbitrarily small or large degrees.

Routing. Fix a demand D supported on V ′ with load(D) ≤ f ′/a and recall that the minimum degree
of Ĝ is at least f ′/a. Define IH = {〈u, v〉 | D(u, v) 6= ∅}, and as D is supported on V ′, we have that
all pairs 〈u, v〉 ∈ IH are in V ′ × V ′.

Since D is a unit-demand instance in Ĝ, it can be routable in Ĝ with dilation at most ℓĜ =

O(logf ′ n) and congestion c
Ĝ
= Õ(1). Let Q = {Q(u, v) | 〈u, v〉 ∈ IH} be the collection of output

paths in Ĝ, where Q(u, v) is a multi-set of D(u, v) paths connecting u and v in Ĝ. Since each edge
(x, y) in Ĝ translates into a path P (x, y) in H, the routing solution in Ĝ can be translated into a
routing solution in H, as follows. Letting Q = [u = x1, . . . , xk = v] ∈ Q(u, v), then let

g(Q) = P (x1, x2) ◦ . . . ◦ P (xk−1, xk) .

Then, define P ′(u, v) = {g(Q) | Q ∈ Q(u, v)} and P ′ =
⋃

〈u,v〉∈IH
P ′(u, v). We finally note that path

collection P ′ has dilation ℓG · ℓĜ and congestion is at most cĜ · cG. The lemma follows.

5.3 Expander-Based Computation of FD-Spanners

We are now ready to present Alg. FDSpanner. The algorithm computes the FD spanner H by taking
the following steps. First, it computes a subgraph G′ ⊆ G with minimum degree f ′ = Θ̃(f ·n1/t) using
Lemma 4.4. The edges in G \G′ are added to H. Then, it applies the LC-expander decomposition of
Theorem 3.7 with respect to expansion parameter φ = 1/ log n, h = O(t), s = t20 and vertex weighting
W (u) = f ·n1/(2t) for every u ∈ V . The output of this expander decomposition is a set C of cut edges
such thatG′′ = G′\C is a (h, s)-length φ-expander w.r.tW . All cut edges C are then added toH. Next,
the algorithm applies the neighborhood-cover procedure of Lemma 3.8 on G′′ with radius parameter
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r = O(t) and overlap of β = O(tn1/r). Formally, let (G1, . . . , Gℓ) = NeighborhoodCover(G′′, r = 1, β =
3t). For every j ∈ {1, . . . , ℓ}, it applies the expander-sparsification procedure of Thm. 5.4 to compute
a subgraph Hj that preserves the routing quality of G′′ with respect to pairs in V [Gj ]. Each Hj is
then added to H. This completes the description, and the pseudocode appears below.

Algorithm FDSpanner

Input: A graph G, integer f , a stretch parameter t.
Output: An f -FD tO(t)-spanner H ⊆ G with Õ(f · n1+1/t) edges.

• G′ ← MinDegree(G, f ′) for f ′ = Θ̃(f · n1/t).

• φ← 1/ log n, W (u) = f · n1/(2t) for every u ∈ V .

• C = LCExpanderExpDecomp(G′, φ, h = 3t, s = t20,W ).

• G′′ ← G′ \ C and H0 ← C.

• (G1, . . . , Gℓ) = NeighborhoodCover(G′′, r = 1, β = 5t).

• For every j ∈ {1, . . . , ℓ} do:

– Hj ← LCExpanderSparsify(G′′, V (Gj), f · n1/(2t)).

• H ← (G \G′) ∪⋃ℓ
j=0Hj.

Size Analysis. By Lemma 3.7, we have that |H0| = Õ(hφ · n · f · n1/(2t) · n1/t2) = Õ(f · n1+1/t).
By Theorem 5.4, |Hj| = Õ(f ·n1/(2t)(h·s)·|V (Gj)|). In addition, by Lemma 3.8, each vertex appears

in O(t·n1/(5t)) subgraphsGi. Therefore, as t = O(log n), we have that
∑

j |Hj| = Õ(f ·n1+1/t). Finally,

by Lemma 4.4, we have that |G \G′| = Õ(f · n1/t).

The Stretch Argument. Let F be an f -degree faulty set. It is sufficient to show that for every
(u, v) ∈ E(G) \ F , it holds that distH\F (u, v) = tO(t). Fix (u, v) ∈ E(G) \ F . The interseting case is
clearly when (u, v) /∈ H. This in particular implies that (u, v) ∈ G′′, and thus by the properties of the
neighborhood cover of Lemma 3.8, there exists j such that (u, v) ∈ Gj . Since G

′′ is a φ-expander w.r.t
W and W (u) = f · n1/(2t) for every u, we have:

Corollary 5.5. For every j ∈ {1, . . . , ℓ}, any demand D supported on V [Gj ] with load(D) ≤ f ·n1/(2t)

can be routed in G′′ along paths of dilation at most O(t21) and congestion O(log n/φ).

Our goal is to show that distH\F (x, y) ≤ tO(t) for every (x, y) ∈ F . To prove the claim, we show
that (i) Hj is a good router for the edges in Fj = F ∩ Gj for every j ∈ {1, . . . , ℓ}, and consequently
that (ii) H is a good router for F .

Corollary 5.6. Fj = F ∩ Gj is d-routable in Hj with dilation O(t22) and congestion c = O(log n/φ)
for d = n1/(3t) · c.

Proof. By Corollary 5.5 and Theorem 5.4, we have that any demand D supported on V (Gj) of load

at most k = Θ(f · n1/(2t)) is routable in Hj with congestion of Õ(1/φ) and dilation O(t22). In our
setting, the demands are D(u, v) = d for every (u, v) ∈ Fj and D(u, v) = 0, otherwise. Hence, D is

supported on V (Gj) and load(D) ≤ d · f ≤ k. Therefore, D is routable in Hj with congestion Õ(1/φ)
and dilation O(t22).
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Observation 5.7. F is d′-routable in H with dilation O(t22) and congestion c′ = Õ(n1/(5t)) for
d′ = n1/(20t) · c′.

Proof. By Corollary 5.6, each Fj is d-routable inHj with dilation O(t22) and congestion c = O(log n/φ)
for d = n1/(3t) · c.

By Lemma 3.8, each vertex appears in at most q = O(tn1/(5t)) sets of G1, . . . , Gℓ, and that⋃
j Fj = F . We therefore get that F is d-routable in H with with congestion of c′ = c · q and dilation

O(t22). The claim follows as d′ ≤ d.

By combining Cor. 5.7 with Lemma 5.3, we get that distH\F (x, y) = tO(t). Since distH(u, v) ≤
distHj

(u, v) = O(t), it holds that distH\F (u, v) = tO(t).

6 Improved Existential Upper Bounds for FD Spanners

In this section, we provide near-tight bounds for FD spanners for any fixed stretch value. In contrast
to the previous constructions, the approach provided in this section is structural and does not use
expanders.

Theorem 6.1. For all positive integers n, k, f , every n-node undirected weighted graph has a f -FD
(2k − 1)-spanner on at most f1−1/kn1+1/k ·O(k)k edges.

By the lower bound in the following section, this bound is optimal for constant k, but may be
suboptimal in its O(k)k dependence. We refer back to Section 2.2 for a technical overview of the proof
strategy used in this section, although some of it will be repeated here.

6.1 Proof Setup

We construct our spanners using the following greedy algorithm, which is the natural adaptation to
our setting of the standard greedy algorithm for non-faulty spanners [ADD+93], or more specifically,
the greedy algorithm used in previous work on fault tolerant spanners [BDPW18, BP19, BDR22].

Algorithm GreedyFDSpanner

Input: A graph G and a positive integer stretch parameter k.
Output: An f -FD (2k − 1)-spanner H ⊆ G with at most f1−1/k · n1+1/k ·O(k)k edges.

• Let H ← (V, ∅, w) be the initially-empty spanner

• For each edge (u, v) ∈ E in order of nondecreasing w(u, v)

– If there exists an edge set F(u,v) of max degree f such that distH\F (u, v) > (2k − 1) ·
w(u, v)

∗ Add (u, v) to H

• Return H

We note that a naive implementation of this greedy algorithm runs in exponential time, since we
would need to search over all possible choices of fault set F(u,v) in each round. We are not currently
aware of a speedup in this step. The proof of correctness, that H is indeed a f -FD (2k − 1)-spanner
of the input graph G, is entirely standard. We give this next.
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Lemma 6.2 (Correctness of the FD-Greedy Algorithm). The output graph H from Algorithm GreedyFDSpanner

is a f -FD 2k − 1 spanner of the input graph G.

Proof. Let F be any set of faulty edges of degree f , and so our goal is to show that H \ F is a
(2k − 1)-spanner of G \ F . As is well known (e.g. [ADD+93]), it suffices to prove that for each edge
(u, v) ∈ E(G \ F ), we have

distH\F (u, v) ≤ (2k − 1) · w(u, v).
Indeed, this inequality follows straightforwardly from the greedy algorithm. If the greedy algorithm
adds (u, v) to H, then we have distH\F (u, v) ≤ w(u, v). If not, then by construction we have
distH\F (u, v) ≤ (2k − 1) · w(u, v) at the moment (u, v) is considered by the greedy algorithm, and
any further edges added to H after this point can only decrease distH\F (u, v).

The goal of the rest of the proof is to control the number of edges |E(H)| in the output spanner.
This is the more involved part of the proof. Our bound on |E(H)| will use the blocking set method, as
in [BP19, BDR22, BDN23]. The relevant kind of blocking set for this problem will be the following:

Definition 6.3 (FD Blocking Sets). Let H = (V,E) be a graph equipped with a total ordering of its
edge set E. A f -fault-degree (FD) k-blocking set B for H is a set of pairs of the form (e, Fe), such
that:

• Each edge e is the first edge of exactly one pair (e, Fe), each Fe is a set of edges from E(H) of
maximum degree f , and each edge in Fe strictly precedes e in the edge-ordering of H.

• For each cycle C in H on |C| ≤ k edges, letting e be the latest edge in C in the edge-ordering of
H, we have that Fe ∩ C is nonempty.

Lemma 6.4 (Blocking Set Exists). The output graph H from the greedy algorithm, with E(H) ordered
by the order its edges were added in the greedy algorithm, has a f -FD 2k-blocking set B.

Proof Sketch. Each time we add an edge e in the greedy algorithm, we do so because of a possible
fault set Fe. (There might be many possible fault sets forcing us to add e, in which case we fix Fe to
be any one of them.) We then add (e, Fe) as a pair to the blocking set B.

Now letting B be the final blocking set at the end of the greedy algorithm, it is immediate by
construction that each edge e ∈ E(H) is the first edge of exactly one pair in B, and that each Fe has
maximum degree f . For the last property, let C ⊆ E(H) be a cycle on ≤ 2k edges, and let (u, v) be
the latest edge in C considered by the greedy algorithm. When we add (u, v), we must include at least
one edge in C in the associated fault set, since otherwise there is a u  v path through C of length
≤ (2k − 1) · w(u, v). Thus C ∩ Fe is nonempty.

The focus of the proof now shifts. Instead of controlling the number of edges in the specific output
graph H from Algorithm GreedyFDSpanner, instead we will control the number of edges in any n-node
graph that admits a f -FD 2k-blocking set. That is, our goal is now to prove the following lemma:

Lemma 6.5 (Blocking Set Size Bounds). For any positive integers n, k, f , any n-node graph H with
a f -FD 2k-blocking set B satisfies

|E(H)| ≤ f1−1/kn1+1/k ·O(k)k.

In the following arguments, H is the input graph from this lemma, which thus has a blocking set
as described.
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6.2 MUCk Paths and Dispersion Lemma

Our bound on |E(H)| will be a counting argument over a special type of path that we will call a
MUCk path, defined as follows:

Definition 6.6 (MUCk Paths). A path π in H is called a MUCk path if it satisfies the following
properties:

• (Monotonic) The edges in π occur in strictly increasing order in the edge-ordering of H.

• (Unblocked) π does not contain two edges e, f with e ∈ Ff .

• (Chain-Unblocked) For each edge (u, v) ∈ π, there are at most Cfk edges e with the property
that (u, v) ∈ Fe, and also e is incident on a node x that strictly follows (u, v) on π (in particular
x /∈ {u, v}). Here C ≥ 1 is a parameter that we will set later.

• (k-Path) π has exactly k edges. (The monotonic property implies that these edges are all distinct.)

In order to help motivate this definition, let us recall the discussion in Section 2.2. Analogizing the
Moore bounds, which limit the maximum possible number of edges in a high-girth graph, our proof
will include two steps:

• A dispersion lemma, which shows that not too many MUCk paths can share endpoints (or else
they violate the existence of the FD blocking set), and

• A counting lemma, which shows a lower bound on the number of MUCk paths in H, where the
bound scales with the number of edges in H.

Our edge bound will follow by comparing the upper and lower bounds on the number of MUCk paths
that respectively arise from the dispersion and counting lemmas, and rearranging terms.

The main challenge in this proof method is to find a precise combination of properties that are
specific enough to enable a dispersion lemma, but also general enough that many such paths are guar-
anteed to exist, so that the counting lemma applies. The MUCk definition is a cocktail of properties
from prior work that does exactly that: monotonicity appears in [Bod23], a version of the chain-
unblocked property is used in [BDN23], and the unblocked property has been used repeatedly, e.g.,
[BDR22]. Rather than saying more about the exact role played by each specific property, we will
next show them in action by stating and proving our dispersion lemma. The properties can be best
understood as outlining a maximally general class of paths over which the following dispersion lemma
proof strategy applies. The lemma shows that the MUCk paths must be “dispersed” around the graph
H, rather than having too many of them concentrated on the same pair of endpoints.

Lemma 6.7 (Dispersion Lemma). For any two nodes s, t, H has at most O (Cfk)k−1 MUCk paths
with endpoints (s, t).

Proof. For the sake of an inductive proof, we will prove the following stronger claim: for each integer
1 ≤ j ≤ k, H has at most O (Cfk)j−1 MUC j-paths with endpoints (s, t). The induction is on j, and
the base case j = 1 holds since H has at most one 1-path (edge) between s and t.

For the inductive step, suppose j ≥ 2, and let A be the set of edges that are used as the last
edge of at least one MUC j-path with endpoints (s, t) (in particular, all edges in A are incident on t).
If we have |A| ≤ O(Cfk), then the rest of the proof is a straightforward counting argument: every
MUC j-path can be expressed by choosing an edge a ∈ A and a MUC j − 1 path from s to the non-t
endpoint of a, and so by applying the inductive hypothesis, the number of such paths is bounded by

|A| ·O (Cfk)j−2 ≤ O (Cfk)j−1 .
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s t

a1

a2

a3

O(Cfk)
j−2

O(Cfk)j−2

O(Cfk) j−2

MUC (j − 1)-paths edges from A

So now it only remains to prove that |A| ≤ O (Cfk). Assume for contradiction that |A| ≥ 6Cfk,
let Alate ⊆ A be the latest 4Cfk edges of A in the ordering, and let Aearly ⊆ A be the earliest 2Cfk
edges of A in the ordering. For each edge a ∈ Alate, by the fault-degree constraint there are at most
f edges in Fa incident to t, and therefore there are at most f edges in Fa ∩ Aearly. Thus (somewhat
conservatively) there are at least Cfk edges in Aearly that are not also in Fa. We can therefore count
that there exists an edge a′ ∈ Aearly with the property that there are more than Cfk edges a ∈ Alate

with a′ /∈ Fa.
Let us analyze this particular edge a′. Let π′ be a MUC j-path with endpoints (s, t) that uses a′

as its last edge. Let a ∈ Alate be one of the edges described above with a′ /∈ Fa, and let πa be a MUC
j-path with endpoints (s, t) that uses a as its last edge. Notice that π′ ∪ πa contains a cycle C on
|C| ≤ 2k edges, and by monotonicity, the latest edge in C is a. Thus, by definition of FD blocking
sets, there exists an edge e ∈ C ∩ Fa.

Let us now consider the placement of e in the paths π′ ∪ πa. We know that e /∈ πa, since πa is
unblocked. We know that e is not the last edge of π′, since the last edge of π′ is a′ and we have been
careful to consider an edge a′ /∈ Fa. Thus the only remaining possibility is that e is one of the first
j − 1 edges in π′. That means that, for the edge e ∈ π′, the edge a counts towards the chain-blocked
property: a is incident on a node (t) that strictly follows e along π′, and we have e ∈ Fa. Since we
require that π′ is chain-unblocked, there can be at most Cfk edges a with this property. However, we
have shown that our analysis applies to at least > Cfk different edges a ∈ Alate. This completes the
contradiction and the proof.

6.3 Counting Lemma

Our next step is to prove lower bounds on the number of MUCk paths in H. Our strategy is to
first count the number of monotonic k-paths, and then separately count the number of blocked and
chain-blocked k-paths, and argue that most monotonic k-paths must in fact be MUCk paths (in the
relevant parameter regime).

We start with the monotone counting lemma. Only the “full” monotone counting lemma in the
following sequence is ultimately used; the previous two lemmas are used to help bootstrap the proof.

Lemma 6.8 (Weak Monotone Counting Lemma). If |E(H)| ≥ kn/2, then H contains a monotonic
k-path.

Proof. This follows from a folklore theorem in graph theory sometimes called the “hiker lemma” (see
[Bod23] for context). We generate n different monotonic paths by the following process. Start by
placing a hiker at each node of H. Then, consider the edges in H in increasing order. Each time we
consider an edge (u, v), we ask the two hikers who currently stand at u, v to walk across the edge,
switching places with each other.
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Once all edges have been considered, our n hikers have traversed 2|E(H)| ≥ kn edges in total.
Additionally, the path walked by each individual hiker is monotonic. Thus, there exists a hiker who
walked a monotonic path of length ≥ k.

Lemma 6.9 (Medium Monotone Counting Lemma). If |E(H)| ≥ kn, then H contains at least kn/2
monotonic k-paths.

Proof. By the weak counting lemma, we would need to delete at least kn/2 edges from H in order
to destroy all monotonic k-paths. This implies that H has at least kn/2 monotonic k-paths to begin
with, since otherwise we could easily delete any one edge per path to destroy them all.

Lemma 6.10 (Full Monotone Counting Lemma). Let d be the average degree in H. If d ≥ 2k, then
H contains at least kn · Ω(d/k)k monotonic k-paths.

Proof. LetH ′ be a random edge-subgraph ofH on exactly kn edges. Let x be the number of monotonic
k-paths in H, and let x′ be the number of monotonic k-paths that survive in H ′. On one hand, by
the medium counting lemma, we have x′ ≥ kn/2 (deterministically). On the other hand, for any
monotonic k-path π in H, the probability that π survives in H ′ is:

(
kn

|E(H)|

)(
kn− 1

|E(H)| − 1

)
. . .

(
kn− (k − 1)

|E(H)| − (k − 1)

)

≤
(

kn

|E(H)|

)k

= Θ

(
k

d

)k

.

Thus we have

kn

2
≤ E[x′] ≤ x ·Θ

(
k

d

)k

.

Rearranging terms, we get our desired inequality of

x ≥ kn ·Θ
(
d

k

)k

.

Finally, we count the number of blocked or chain-blocked k-paths in H, with the plan to argue
that these are much fewer than the number of monotonic k-paths. The following arguments require a
stronger assumption that themax degree is bounded; in the next part we will show how this assumption
can be justified.

Lemma 6.11 (Chain-Blocked Path Upper Bound). Let d be a parameter and suppose that the maxi-
mum node degree in H is O(d). Then H has at most kn · O(d)k/C k-paths that are edge-simple and
chain-blocked.

Proof. We can overcount our chain-blocked paths as follows:

• First, choose its ending node vk (n choices).

• Then, choose an index 1 ≤ i ≤ k (k choices) such that the ith edge causes π to be chain-blocked.
That is, we commit to selecting the ith edge ei ∈ π in such a way that there exist > Cfk edges
e incident to nodes in π that strictly follow ei, with ei ∈ Fe.
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• Now build π iteratively. If currently we have determined a suffix (vj , . . . , vk) of π, then we choose
the previous node vj−1 as follows.

– If j − 1 6= i, then we choose any of the O(d) neighbors of vj besides vj+1 to serve as vj−1.

– If j − 1 = i, then our choice is restricted, since we need this edge to cause π to be chain-
blocked. Let us count the number of neighbors of vj that we may choose in this step. There
are O(dk) edges e incident to any of the previously-selected nodes (vj+1, . . . , vk). By the
fault-degree constraint, each of these edges has at most f edges incident to vj in its set Fe.
We thus count that there are O(d/C) edges incident to vj that are in > Cfk such sets Fe.
We must choose one such edge in order for this edge to be chain-blocked, and so there are
O(d/C) choices of edge at this step.

Putting it together, we have n · k · O(d)k−1 · O(d/C) = kn · O(d)k/C edge-simple chain-blocked k-
paths.

Lemma 6.12 (Blocked Path Upper Bound). Let d be a parameter and suppose that the maximum
node degree in H is O(d). Then H has at most k2n · O(d)k−1 · f k-paths that are edge-simple and
blocked.

Proof. Recall that a k-path π is blocked if it contains edges e, e′ ∈ π with e′ ∈ Fe. We may overcount
our blocked k-paths as follows:

• Choose distinct indices 1 ≤ i, i′ ≤ k where e, e′ will occur (O(k2) choices). In the following we
will assume w.l.o.g. that i < i′; the case where i > i′ is symmetric, but we build π from its last
node towards the beginning instead of from its first node towards the end.

• Choose the first node v1 of π (n choices).

• Now we build π iteratively. If currently we have determined a prefix (v1, . . . , vj), then we choose
the following node vj+1 as follows.

– If j + 1 6= i′, then we choose any of the O(d) neighbors of vj besides vj−1 to serve as vj+1.

– If j + 1 = i′, then our choice is restricted, since we need this edge to lie in Fe (since i′ > i,
note that we have already determined the edge e). By the fault-degree constraint, there
are at most f edges incident on vj in Fe, and hence there are at most f choices of edges at
this step.

Putting it together, we have O(k2) · n ·O(d)k−1 · f blocked k-paths.

6.4 Proof Wrapup

We will first need to apply a standard “cleaning” step to H, in order to reduce to the case where the
max degree and average degree are roughly equal, so that all of the above counting lemmas may be
applied simultaneously. This step is standard and has appeared in some form in a lot of prior work
on spanners, but we will outline the proof anyways.

Lemma 6.13 (Degree-Cleaning Lemma). Let H be a graph with n nodes and a f -FD 2k-blocking set
with average degree d. Then there exists a graph H ′ with Θ(n) nodes and a f -FD 2k-blocking set in
which all nodes have degree Θ(d).

25



Proof. Let H ′ be a graph obtained from H by the following process. Fix d as the initial average degree
in H. While there exists a node of degree < d/4, delete that node and all its incident edges from H.
Then, while there exists a node of degree > d, split that node into two copies, with its edges divided
equitably between the copies. Define H ′ as the final graph at the end of this process.

It is immediate from the construction that all surviving nodes in H ′ have degree Θ(d); in particular
this means that the average degree changes by at most a constant factor from H to H ′. Additionally,
notice that we delete at most < nd/4 ≤ |E(H)|/2 edges from H to H ′, and so the number of edges
changes by at most a constant factor from H to H ′. Since the average and total degrees both change
by a constant factor, it follows that the number of nodes also changes by only a constant factor from
H to H ′. Thus H ′ has Θ(n) nodes, as desired.

The last detail is to argue that H ′ still has a f -FD 2k-blocking set. This follows from the fact
that we create H ′ from H only by the operations of deleting and splitting nodes. These operations
cannot create new 2k-cycles, and they can only reduce the fault degree of the blocking set. Thus, the
remaining part of the f -FD 2k-blocking set for H is still a valid f -FD 2k-blocking set for H ′.

Since our previous lemmas apply to any graph with a f -FD 2k-blocking set, we can apply them to
H ′. On one hand, by the dispersion lemma, H ′ has n2 ·O(Cfk)k−1 total MUCk paths. On the other
hand, by Lemmas 6.10, 6.11, and 6.12, the number of MUCk paths in H ′ is at least

(
kn · Ω

(
d

k

)k
)

︸ ︷︷ ︸
l.b. on monotone k-paths

−
(
kn ·O(d)k

C

)

︸ ︷︷ ︸
u.b. on chain-blocked k-paths

− k2nf · O(d)k−1

︸ ︷︷ ︸
u.b. on blocked k-paths

.

If we set C ≥ Ω(k)k with a large enough implicit constant, then the monotone k-paths dominate
the chain-blocked k-paths. If we have d ≥ Ω(k)k · f with a large enough implicit constant, then the
monotone k-paths dominate the blocked k-paths. So, under both these assumptions, we have

kn · Ω
(
d

k

)k

≤ (# MUCk paths) ≤ n2 ·O(Cfk)k−1

and so
d

k
≤ n1/k ·O(Cfk)(k−1)/k

and so
|E(H)| = Θ(nd) ≤ n1+1/k · f1−1/k · kO(k)

where the last step uses our setting of C. Finally, in the case where d ≤ O(k)k ·f , then we immediately
have |E(H)| = Θ(nd) ≤ nf ·O(k)k, and so the bound still holds. In either case, Theorem 6.1 is proved.

6.5 The Min Max Length-Bounded Cut Problem

Our next goal is to develop a tweak on the FD-greedy algorithm that runs in polynomial time. Before
explaining this, we will need to develop a subroutine to be used in the algorithm. We will discuss the
following problem:

Min Max Length-Bounded Cut (LBC): Given an n-node graph G = (V,E), an integer k,
and nodes u, v, find the least integer f such that there exists an edge set F of degree deg(F ) ≤ f
with distG\F (u, v) > k.
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For motivation, notice that for the FD-greedy algorithm in the setting where the input graph G
is unweighted, the test to keep or discard an edge (u, v) is precisely Min Max LBC. This problem
is likely hard: it is a tweak on the NP-hard problem Length-Bounded Cut (LBC) [BEH+06], in
which the goal is to minimize |F | subject to the same constraint. So, we will develop an approximation
algorithm. This high-level approach to speeding up the greedy algorithm was first used by Dinitz and
Robelle [DR20], although the min-max degree objective introduces some new challenges that mean
our approximation algorithm works quite differently from theirs.

Theorem 6.14. There is an O(k log n) approximation algorithm for Min Max LBC that runs in
polynomial time. Specifically, on an instance of Min Max LBC with solution f∗, the algorithm
returns a value f̂ satisfying f∗ ≤ f̂ ≤ Bf∗ · k log n, where B > 0 is some absolute constant.

We will use an LP-rounding algorithm. The following LP encodes a fractional relaxation of Min
Max LBC:

LP for Fractional Min Max LBC

Choose c ∈ R
E(G), f ∈ R

To minimize f
Subject to:

• For all nodes v,
∑

e incident to v

ce ≤ f // degree constraints

• For all simple u v paths π of length |π| ≤ k,
∑
e∈π

ce ≥ 1 // path cut constraints

• For all edges e, 0 ≤ ce ≤ 1. // cut value constraints

This LP could have exponentially many constraints – roughly nk – since it has one constraint
per short u  v path. However, we next point out that it has a separation oracle, and thus can be
efficiently solved.

Lemma 6.15. There is a polynomial-time separation oracle for the above LP.

Proof. Given a setting of c, f , it is trivial to check the degree constraints and the path cut constraints
in poly n time. To check the path constraints, let G′ be the weighted graph with the same edge set
as G and with the variables ce interpreted as edge weights. Our goal is to check whether or not there
exists a u v path π in G′ that uses |π| ≤ k hops, and which has total weight w(π) < 1.

To check this, we design an auxiliary graph G′′ by creating k+1 independent copies G′
0, G

′
1, . . . , G

′
k

of the graph G′. We interpret these as k + 1 layers, and for a node x, we write xi to mean the copy
of x in G′

i. For each edge (x, y) ∈ E(G′), for each 0 ≤ i ≤ k − 1 we add directed edges (xi, yi+1) and
(yi, xi+1) to E(G′′), both with the same weight as (x, y). Additionally, for each node x we add all
directed edges of the form (xi, xi+1) with weight 0.

We now claim that a given choice of c, f satisfies the path cut constraints iff distG′′(u0, vk) ≥ 1,
which is easy to test in polynomial time. Indeed, notice that any u0  vk path π in G′′ corresponds
to a u v path in G on ≤ k hops, and that its length w(π) is the sum of cut variables ce along π.

Now let c, fLP be an optimal solution to this LP. Notice that the IP in which each ce ∈ {0, 1}
encodes Min Max LBC exactly. Hence, letting f∗ be the true solution to the (non-relaxed) LBC
problem, we have

fLP ≤ f∗.
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We will next use the entries of c to randomly generate an edge set F (this step is equivalent to
rounding the entries of c to {0, 1}). Specifically: each edge e is included in F independently with
probability min{A · ce · k log n, 1}, where A > 0 is a large enough absolute constant that will control
the probability of correctness. In the following analysis, for each edge e we will let Xe be the Bernoulli
random variable indicating whether or not e ∈ F .

We can bound the degree of F as follows:

Lemma 6.16. With high probability, deg(F ) ≤ O (f∗ · k log n).

Proof. Fix a node v. By the degree constraints, we have

∑

e incident to v

ce ≤ fLP ≤ f∗.

It follows that
E[degF (v)] ≤

∑

e incident to v

A · ce · k log n ≤ Af∗ · k log n.

By the Chernoff bounds, we then have

Pr [degF (v) ≥ 2Af∗ · k log n] ≤ exp(−Θ(Af∗k log n)) ≤ 1

nΘ(Af∗k)
.

By a union bound over the n nodes in the graph, we thus have

Pr [deg(F ) ≤ OA (f∗ · k log n)] ≥ 1− 1

nΘ(Af∗k)−1
.

By choice of large enough constant AA, this means deg(F ) ≤ OA(f
∗ · k log n) with high probability,

completing the proof.

Then we prove correctness:

Lemma 6.17. With high probability, distG\F (u, v) > k.

Proof. Let π be a u  v path in G with |π| ≤ k edges. We will measure the probability that F
contains at least one edge in π. First, by the path cut constraints, we have

∑

e∈π

ce ≥ 1.

If any edge e ∈ π has fractional cut value ce satisfying A · ce · k log n ≥ 1, then this edge is included in
F deterministically. Otherwise, we have

E

[
∑

e∈π

Xe

]
=
∑

e∈π

A · ce · k log n ≥ A · k log n.

By Hoeffding’s Inequality, we can bound

Pr [F does not contain an edge in π] = Pr

[
∑

e∈π

Xe < 1

]
≤ exp

(
−Θ

(
A2k2 log2 n

k

))
≤ 1

nAk

where the last step follows by choice of large enough constant A. There are at most nk possible u v
paths in G with ≤ k edges. By a union bound, the probability that there is any such path that does
not intersect F is at most 1

n(A−1)k . So, with high probability, no u v path on ≤ k edges survives in
G \ F .
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6.6 Improvement to Polynomial Time

We now describe how to tweak the FD-greedy algorithm to run in polynomial time, at mild cost in
spanner size. This part very directly follows the approach of Dinitz and Robelle [DR20]. We simply
run the previous FD-greedy algorithm, but we use our approximation algorithm for Min Max LBC
to test edges:

Algorithm Approximate GreedyFDSpanner

Input: A graph G and a positive integer stretch parameter k.
Output: An f -FD (2k − 1)-spanner H ⊆ G with at most f1−1/k · n1+1/k ·O(k)k edges.

• Let H ← (V, ∅, w) be the initially-empty spanner

• For each edge (u, v) ∈ E in order of nondecreasing w(u, v)

– If ApproxMinMaxLBC(u, v, 2k − 1) ≤ Bfk log n // from Theorem 6.14

∗ Add (u, v) to H

• Return H

This algorithm now runs in polynomial time, but due to the changes we need to re-establish
its correctness and size bound. This mostly follows by rehashing our early arguments used for the
(non-approximate) GreedyFDSpanner.

Lemma 6.18. The output spanner H of the Approximate GreedyFDSpanner algorithm is a f -FD
(2k − 1)-spanner of G.

Proof. This is nearly the same argument as Lemma 6.2, with a couple minor tweaks. As before, let
F be an arbitrary set of faulty edges with deg(F ) ≤ f , and it suffices to verify the spanner stretch
inequality for an arbitrary edge (u, v) ∈ G \ F . If (u, v) is added to the spanner H by the greedy
algorithm, then we immediately have distH(u, v) = w(u, v). Otherwise, if (u, v) is discarded from H
by the algorithm, then it must be that ApproxMinMaxLBC(u, v, 2k− 1) > Bfk log n. By Theorem
6.14, this means that at the time (u, v) is considered, there is no fault set of degree deg(F ) ≤ f that
intersects all u  v paths on ≤ 2k − 1 edges. Hence at least one such path π survives in G \ F .
Since the greedy algorithm considers edges in increasing order of weight, every edge in π has weight
≤ w(u, v). We therefore have

distG\F (u, v) ≤ |π| · w(u, v) ≤ (2k − 1) · w(u, v)

and so the spanner inequality holds.

Lemma 6.19. The output spanner H of the Approximate GreedyFDSpanner algorithm has size

|E(H)| ≤ Õ
(
f1−1/kn1+1/k

)
·O(k)k.

Proof. From Theorem 6.14, the algorithm ApproxMinMaxLBC overestimates the true value of
MinMaxLBC on a given input instance. Thus, each time an edge (u, v) is added to the spanner H,
there exists a length-bounded cut F of degree deg(F ) ≤ ÕB(fk). Exactly as in Lemma 6.4, the output
spanner H therefore has a Õ(fk)-FD blocking set, and the edge bound then follows by plugging this
into Lemma 6.5.
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7 Existential Lower Bounds for FD Spanners and Connectivity Cer-

tificates

7.1 FD Spanner Lower Bounds

We first show that the upper bound in Theorem 6.1 is optimal, up to its dependence on k:

Theorem 7.1. Assuming the girth conjecture [Erd64], for all k, f , there are n-node undirected un-
weighted graphs in which every f -FD (2k − 1)-spanner has at least Ω(f1−1/kn1+1/k) edges.

The proof of this theorem is essentially from [BDPW18], where the following construction is used
for a lower bound against vertex fault tolerant spanners.

The Construction. We will analyze the following graphs:

• The girth conjecture [Erd64] states that for all positive integers k, there exist n-node graphs on
Θ(n1+1/k) edges with girth > 2k. We begin by letting Γ = (V,E) be one such graph.

• Replace each node v ∈ V with f copies, v1, . . . , vf . Each edge (u, v) ∈ V is replaced by f2 edges,
arranged in a biclique on the vertex sets {u1, . . . , uf} × {v1, . . . , vf}. Let G be the final graph
after these replacements.

The graph G has N := nf nodes, and its number of edges is

|E(G)| = Θ
(
f2 · n1+1/k

)
= Θ

(
f1−1/k ·N1+1/k

)
.

Thus, it suffices to argue that the only f -FD (2k − 1) spanner of G is G itself.

Analysis. Let H be a f -FD (2k − 1) spanner of G, and let (ui, vj) ∈ E(G) (so our goal is to argue
that (ui, vj) ∈ E(H) as well). Let F be the fault set that contains every edge connecting any copy of
u to any copy of v, except for the edge (ui, vj). That is:

F := {(ua, vb) | a 6= i or b 6= j}.
Notice that the degree of F on ui, vj is f − 1, and for each copy of u, v besides ua, vb, the degree of F
on this node is f . Thus F is a f -FD fault set, which means that by definition of f -FD spanners, we
require

distH\F (ui, vj) ≤ (2k − 1) · distG\F (ui, vj) = 2k − 1.

This inequality clearly holds if (ui, vj) ∈ E(H) (in which case we have distH\F (ui, vj) = 1). On the
other hand, suppose for contradiction that (ui, vj) /∈ E(H). In particular this means there is no edge
connecting any copy of u to any copy of v remaining in H \ F . Thus, any ui  vj path in H \ F
corresponds to a u v path π in Γ that does not include the edge (u, v). Since Γ has girth > 2k, and
π ∪ {(u, v)} forms a cycle in Γ, there must be > 2k − 1 edges in π. So any ui  vj path in H \ F has
length > 2k − 1, violating the above spanner inequality, and completing the contradiction.

We have now proved that every edge (ui, vj) ∈ E(G) must lie in E(H) as well, which means that
G = H, i.e., G is the only f -FD (2k − 1)-spanner of itself, which completes the proof.

7.2 FD Connectivity Certificate Lower Bounds

The naive lower bound for a f -FD connectivity certificate is Ω(nf) edges, from any f -regular graph.
Here we point out that there is a minor improvement to this lower bound available:

Theorem 7.2. For all f , there are n-node undirected unweighted graphs in which every f -FD con-
nectivity certificate has Ω(fn · lognlog f ) edges.
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The Construction. Let d be a parameter of the construction. Our lower bound graph G is defined
as follows:

• The nodes of G are [f ]d, i.e., d-tuples of integers between 1 and f .

• Two nodes of G are joined by an edge iff their d-tuples are equal on all but one coordinate.

This graph has n := fd nodes, and each node has degree

(f − 1)d = (f − 1) · log n
log f

.

Thus it suffices to argue that G is the only f -FD connectivity certificate of itself.

The Analysis. Let (u, v) ∈ E(G), where the d-tuples associated to nodes u, v agree on all but the
ith coordinate. Let H be a f -FD connectivity certificate of G, and suppose for contradiction that
(u, v) /∈ E(H). Let F be the fault set that contains every edge in G that connects two nodes whose
d-tuples agree on all but the ith coordinate, except that we also omit (u, v) itself from F . Notice that
the degree of F on any node x is at most f − 1, since there are only f − 1 other nodes whose d-tuples
agree with x on all but the ith coordinate.

We have that u, v are connected in G \ F , since (u, v) ∈ E(G) \ F . However, we claim that u, v
are disconnected in H \ F . This follows by noticing that all nodes reachable from u in H \ F must
have the same ith coordinate as u, but v has a different ith coordinate from u. This completes the
contradiction.

We have shown that, for all edges (u, v) ∈ E(G), we have (u, v) ∈ E(H). Thus H = G, and so G
is the only f -FD connectivity certificate of itself, and so the theorem follows.
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A Missing Proofs

Proof of Lemma 4.1. The solution for the routing instance (F, d) provides each (u, v) ∈ F with
a multi-set of d many u-v paths P(u, v). Since c < d, it holds that P(u, v) contains at least one
u-v path P that does not contain e, for every e = (u, v) ∈ F . We use the collection of multi-paths
P = {P(u, v)}(u,v)∈F to compute a directed multi-graph D which captures the dependencies between
the edges in F . Specifically, V (D) = F and the multiplicity of a directed edge (e = (u, v), e′) equals
to the number of paths in P(u, v) that go through e′. In the final multi-graph D, we include only
edges with positive multiplicity. We refer to the digraph D as the dependency graph of the output
multicommodity solution. Note that the multiplicity of an edge is bounded by min{c, d} = c. We
start by observing the following:

Observation A.1. The output solution P = {P(u, v)}(u,v)∈F with congestion c can be transformed
into an alternative solution P0 = {P0(u, v)}(u,v)∈F with congestion c(φ) whose dependency (multi)
graph D0 is a DAG.

Proof. The procedure eliminates directed cycles in an iterative manner. Consider some directed cycle
(e1, e2) ◦ (e2, e3) ◦ . . . ◦ (eℓ−1, eℓ) ◦ (eℓ, e1) in D. Let ei = (ui, vi). Each edge (ei, ei+1) is identified with
a unique path Pi ∈ P(ui, vi) such that ei+1 ∈ Pi. We then modify the routing solution as follows:
For every i ∈ {1, . . . , ℓ}, modify P(ui, vi) by omitting Pi and adding {ei}. It is easy to see that the
congestion of each edge is preserved and moreover, all edges of the directed cycle are eliminated in the
dependency graph of the resulting modified solution. This step can then be repeated until all directed
cycles are removed.

We next claim the following lemma which shows that the routing solution P0 = {P0(u, v)}(u,v)∈F
can be further modified into P∗ = {P∗(u, v)}(u,v)∈F with an empty dependency graph, while main-
taining the same congestion bound of c(φ).

Lemma A.2. There is a routing solution P∗ = {P∗(u, v)}(u,v)∈F with congestion at most c and such
that its corresponding dependency graph is empty.

Proof. We employ an iterative procedure where in each iteration i ≥ 1, given is a routing solution
Pi−1 = {Pi−1(u, v)}(u,v)∈F that corresponds to a DAG Di−1. By Obs. A.1, this holds for i = 1.

The output of the ith iteration is a routing solution Pi = {Pi(u, v)}(u,v)∈F with congestion of c and a
dependency graph Di ⊂ Di−1. In particular, in each iteration i we eliminate one copy of some edge
in Di−1. Hence, within a finite number of steps ℓ, we get a routing solution P∗ = Pℓ with congestion
c(φ) and an empty dependency graph Dℓ.

We now describe the ith iteration. Let e′ = (u′, v′) be some sink vertex in Di−1 and let e = (u, v)
be such that (e, e′) ∈ Di−1. Our goal is to output {Pi(u, v)}(u,v)∈F with congestion c(φ) and Di =
Di−1 \ {(e, e′)}. I.e., we will reduce the multiplicity of the edge (e, e′) by exactly one in Di. Let
P ∈ Pi−1(u, v) be such that e′ ∈ P . Since (e, e′) ∈ Di−1 such a path P must exist. In addition, let
P ′ ∈ Pi−1(u

′, v′) be such that P ′ ∩ F = ∅. Since c(φ) < d and since e′ is a sink, such a path P ′ exists,
as well. We use P,P ′ to define the solution {Pi(u, v)}(u,v)∈F as follows:

• Initially, let Pi(x, y) = Pi−1(x, y) for every (x, y) ∈ F .
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• Replace P from Pi(u, v) with the path P ′′ = P [u, u′] ◦ P ′ ◦ P [v′, v].

• Replace P ′ from Pi(u′, v′) with {(u′, v′)}.

Observe that the congestion bound is preserved, hence Pi = {Pi(u, v)}(u,v)∈F has congestion of c.
Note that e′ is still a sink in Di−1. More specifically, we have that Di = Di−1 \ {(e, e′)}. Since each
iteration omits reduces the multiplicity of one edge in the dependency graph, within a finite number of
steps, ℓ, we obtain a routing solution {Pℓ(u, v)}(u,v)∈F with congestion of c and an empty dependency
graph, as required. The lemma follows.

We are now ready to complete the proof of Lemma 4.1. By Lemma A.2, there is an output solution
P∗ with congestion of c and with an empty dependency graph. Since c < d, we get that every
e = (u, v), it holds that P∗(u, v) ∈ P∗ has a u-v path P such that e = (u, v) /∈ P . Moreover, since the
dependency graph is empty, it also holds that P ∩ F = ∅. Therefore, every for every (u, v) ∈ F , we
get an alternative u-v path in G \ F , and therefore G \ F is connected.

Proof of Lemma 3.3. We use the multi-commodity (1 + ε)-approximate length-constrained flow algo-
rithm of [HHS23, Theorem A.1] together with the flow-path decomposition algorithm [HHS23, The-
orem 10.1] followed by a simple independent randomized rounding. We set ε = 1

100mnc and define
the capacity of all edges in G to be c. Since our flow size is always integral and of size at most
mnc this guarantees that the fractional flow routed by the (1 + ε)-approximation algorithm looses
at most 1/100 units of flow overall and therefore (fractionally) routes demand of every demand pair
up to an additive 1/100 (or multiplicative factor of 1.01). We do not use any batching structure of
the multi-commodity demands and simply make each demand pair its own batch, i.e., κ ≤ n2. The
running time is polynomial in ε, κ, ℓ, c and |D| and therefore polynomial overall. The algorithm
produces a fractional multi commodity flow in the form of an average of polynomially many integral
flows. We compute the flow-path decomposition for each of these integral flows using [HHS23, The-
orem 10.1]. Overall this gives for every demand pair u, v with D(u, v) > 0 an explicit distribution
Pu,v with polynomial support over flow paths between u and v of length at most ℓ. Without loss of
generality all routing paths are simple. We now independently sample exactly D(u, v) paths from Pu,v

for every u, v to obtain a routing for D with dilation at most ℓ. For any edge in G the congestion of
these sampled paths is at most 1.01c in expectation. Since every (simple) path creates at most one
unit of congestion per edge if sampled and since all paths are sampled independently a multiplicative
Chernoff bound guarantees that the probability of any fixed edge e having congestion more than 1.1c
is at most exp(−Θ(c)) = n−ω(1). Therefore, with high probability, this randomized rounding of the
fractional multi-commodity flow has congestion at most 1.1c.

Proof of Lemma 4.3. In this proof and following [HRG22], we define demand between edges for conve-
nience. For any edge e ∈ E and any demand D : E×E → R≥0, the load of D on e is the maximum be-
tween the demand sent or received by e in D. I.e., load(e,D) = max{∑e′∈E D(e, e′),

∑
e′∈E D(e, e′)}.

Let load(D) = maxe∈E load(D, e). The demand is called unit if load(D) ≤ 1. By Lemma 3.16 of
[HRG22] (Lemma 3.4 for the edge-demand setting), it is sufficient to show that any unit-demand
instance I ⊆ EH × EH is routable in H with congestion and dilation of O(log n/φ)

Consider a unit-demand edge-instance IH ⊆ EH × EH where each pair (e, e′) ∈ IH is weighted by
a demand function DH : E(H)→ R≥0. We then have that

load(e,DH ) =
∑

e′∈E(H)

max{DH(e, e′),DH(e′, e)} ≤ 1,∀e ∈ EH .

We translate IH into a unit-demand instance IĜ ⊆ Ê×Ê, as follows. Let P = {P (e) ⊆ H | e ∈ Ê}
be the collection of paths that embed Ĝ intoH. SinceH is minimal, we have that E(H) =

⋂
P∈P E(P ).
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For every e ∈ H, let M(e) = {e′ ∈ Ê | e ∈ P (e′)} be the subset of edges in Ê such that e appears on
their corresponding paths in P. By the definition of H, we have that M(e) 6= ∅ for every e ∈ EH . For
each edge e ∈ IH , we choose one such edge f(e) = e′ for some arbitrary e′ ∈M(e).

Note that each edge e′ ∈ Ĝ is associated with at most ℓ = Õ(1/φ) edges in H. Define a routing
instance IĜ = {(f(e), f(e′)) | (e, e′) ∈ IH} and let DĜ(f(e), f(e

′)) = dH(e, e′). The load of every

edge e′ ∈ Ê can be bounded by:

load(e′,D
Ĝ
) ≤

∑

e∈P (e′)

load(e,DH ) ≤ ℓ.

Let Ĝℓ = (V, Ê, c) be a capacitated graph in which each edge e′ of Ĝ has a capacity of c(e′) = ℓ.
Clearly, Ĝℓ is a (1/ log n)-expander, as well. Note also that IĜ is a unit-demand instance in Ĝℓ, and

hence it is routable in Ĝℓ with congestion and dilation Õ(1). Since each edge in Ĝℓ has capacity of ℓ,
the output path collection P ′ of this routing instance has congestion of Õ(ℓ) and dilation Õ(1). Each
path P ′ = [e1, . . . , ek] in P ′ then translates into an H-path P ′′ = P (e1) ◦ . . . ◦ P (ek) that contains a
path between the edge pair e, e′ ∈ E(H) for every (e, e′) ∈ IH such that f(e) = e1 and f(e′) = ek. The
length of these paths is bounded by Õ(1/φ) and the congestion is bounded by Õ(ℓ/φ) = Õ(1/φ2).

B G(n, p) is a good constant-hop router

Lemma B.1. For any n, p = ω( lognn ) let G be a randomly sampled G(n, p) graph. With high probabil-
ity, any unit demand D in G can be routed with dilation ℓ = O(lognp n) and congestion c = O(log n).

Proof. Define ε > 0 such that np = nε. It is well known that for any sufficiently large t = Θ(1ε ) a
t-step random walk in G(n, p) from any starting vertex suffices to polynomially close to its stationary
distribution. This means no matter what node one starts from a t-step random walk will, up to
polynomially small deviations, end at every node with probability proportional to its degree. Degrees
in G(n, p) with p = ω( lognn ) and average degree np = ω(log n) are furthermore highly concentrated.

We will show that these facts imply that, with high probability, any unit demand D in G can be
routed with dilation at most 2t and congestion at most O(log n) as claimed.

In particular, suppose each node v starts with deg(v) ·2m many pebbles and each pebble (simulta-
neously) performs a random walk for t steps. Let P be the routing (i.e., collection of paths) traced out
by these pebbles. Because of the above mixing property it is the case that, with high probability and
up to (1 + o(1))-factors, this routing P ends up again with exactly deg(v) · 2m = deg(v) · sumudeg(u)
many pebbles at node v of which deg(u) many started from node u. This means P integrally routes

exactly the demand m ·Dmix where Dmix(u, v) =
deg(v)·deg(u)

m is the so-called uniform mixing demand.
The dilation of this routing is at most t and the expected congestion of the routing is at most mt.
We can obliviously route any unit demand D in G by using P to mix and unmix. In particular, for
each u, v we construct D(u, v) many routing paths by independently sampling an intermediate node
x in G (sampling nodes proportional to their degree) and then independently sampling a path from
u to x and from x to v from P and concatenating these two paths into a routing path from u to v.
The dilation of this routing is at most 2t and the expected congestion for this routing is at most 2t
on any edge e. After making routing paths simple the multiplicative Chernoff bound guarantees that
any edge has congestion at most O(log n) with high probability.
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