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Abstract

Given an input graph G = (V,E), an additive emulator H = (V,E′, w) is a sparse weighted
graph that preserves all distances in G with small additive error. A recent line of inquiry has
sought to determine the best additive error achievable in the sparsest setting, when H has a
linear number of edges. In particular, the work of [Kogan and Parter, ICALP 2023], following
[Pettie, ICALP 2007], constructed linear size emulators with +O(n0.222) additive error. It is
known that the worst-case additive error must be at least +Ω(n2/29) due to [Lu, Vassilevska
Williams, Wein, and Xu, SODA 2022].

We present a simple linear-size emulator construction that achieves additive error +O(n0.191).
Our approach extends the path-buying framework developed by [Baswana, Kavitha, Mehlhorn,
and Pettie, SODA 2005] and [Vassilevska Williams and Bodwin, SODA 2016] to the setting of
sparse additive emulators.

1 Introduction

Spanners and emulators are well-studied graph objects which aim to approximately preserve dis-
tances in the input graph metric G, while reducing the number of edges in the graph representation.
In particular, a spanner H of an input graph G is a sparse subgraph that approximately preserves
distances in G. Emulators are a natural generalization of spanners that allow H to be any weighted
graph on the same vertex set as G. Spanners and emulators have applications in many areas of
computer science, including fast graph algorithms [8, 11], circuit design [9, 10], and distributed
algorithms [4, 6].

There are several ways to formalize the manner in which a spanner or emulator approximately
preserves distances in G, such as multiplicative spanners [3] or sublinear additive emulators [18].
Perhaps the most optimistic formalization requires that distances in G are preserved up to a small
purely additive error term. Emulators with purely additive error are called additive emulators, and
they will be the focus of this paper.

Definition 1. For a graph G = (V,E), a graph H = (V,E′, w) is a +k additive emulator of G if,
for all vertices s, t, we have distG(s, t) ≤ distH(s, t) ≤ distG(s, t) + k.

Additive spanners were introduced in [2], where it was proved that every n-vertex graph admits
a +2 additive spanner of size O(n3/2). Later it was shown in [12] that +4 emulators of size O(n4/3)
can be obtained. Unfortunately, the existence of polynomially sparser emulators with constant
additive error was ruled out by [1], which proved that in general, emulators with O(n4/3−ϵ) edges
suffered +nΩ(1) additive error.

∗This work was supported by NSF:AF 2153680.
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Consequently, sparse emulators must suffer polynomial additive error. However, it has remained
open precisely what polynomial additive error is achievable for emulators of size O(n4/3−ϵ). A par-
ticularly interesting setting is when the emulator H is as sparse as possible, i.e., H is of linear size.
The first linear-size additive emulator was given implicitly in [16] with additive error +Õ(n1/4).
More recently, the existence of linear-size emulators with +O(n0.222−o(1)) additive error was es-
tablished in [14]. We present a new linear-size emulator construction that achieves additive error
roughly +O(n0.191).

Theorem 1. For any ϵ > 0, every n-vertex graph has a +O(n
1

3+
√

5
+ϵ
) additive emulator on Oϵ(n)

edges.

Lower bounds on the additive error of linear-size emulators were initiated in [13], which estab-
lished that +Ω(n1/18) additive error is necessary in general. This was subsequently improved to
+Ω(n2/29) in [15]. However, a significant gap remains between the best known upper and lower
bounds on the additive error of linear-size emulators.

2 Technical Overview

The prior linear-size emulator construction with +O(n0.222−o(1)) additive error of [14] made use
of a clever discretization of a weighted-variant of Thorup-Zwick emulators. Since Thorup-Zwick
emulators require superlinear space, the construction in [14] inserted the modified TZ emulator
over a subsampled net of the input graph. We diverge from this approach, instead returning to the
clustering and path-buying strategies used to construct additive spanner upper bounds in [5, 7, 17].

Our emulator construction begins with a graph clustering decomposition of [7] that is standard
in the area. This clustering decomposes the input graph G into a collection of clusters C1, . . . , Ck,
each of radius ≤ r, with certain ‘nice’ covering properties. (See Lemma 1 for details.) We will
construct a linear-size emulator H of G with additive error +r, where r > 0 is an integer parameter
to be optimized in our construction.

Each cluster Ci in our clustering is categorized as either being small if Ci contains fewer than
|Ci| ≤ O(r2) vertices or large otherwise. We will handle each cluster Ci based on its classification:

• If cluster Ci is small, then we will exactly preserve paths passing through the cluster in our
emulator H using a simple sampling scheme.

• If cluster Ci is large, then we will approximately preserve paths passing through the cluster
in our emulator H by recursively inserting a linear-size emulator of Ci into H.

The key technical development that allows us to apply the path-buying method successfully is
our sampling scheme for handling small clusters. After adding a small number of edges to H, we
are roughly able to assume that all balls of radius r in G contain Ω(r2) vertices. This property has
previously been called quadratic expansion in the context of (1+ ε, β) spanners [16]. The sampling
scheme that handles small clusters is based on the following observation.

Observation 1. Let G be an n-vertex graph such that every subgraph of G of radius ≤ r contains
at most O(r2) vertices. Then G admits an additive emulator with Õ(n) edges and error +Õ(r).

Proof sketch. Let G = (V,E). Add a linear-size · log n multiplicative spanner to our emulator H
of G. Sample each vertex v ∈ V into set V ′ independently with probability Θ(log n/r). For all
s, t ∈ V ′ such that distG(s, t) ≤ r, add the emulator edge (s, t) with weight distG(s, t) to H. This
completes the construction.
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Size bound: each vertex v ∈ V ′ has at most O(r2) vertices within radius r, so at most O(r log n)
edges incident to v are added to H in expectation. Then the total number of edges added to H is
|V ′| ·O(r log n) = Õ(n) in expectation.

Error bound: fix a pair of vertices s, t ∈ V and an s ⇝ t-path π. For each subpath π′ of π of
length at least r/3, set V ′ hits path π′ with high probability (i.e., π′ ∩ V ′ ̸= ∅). Now let v1, . . . , vk
be the vertices in π ∩V ′, listed in the order they appear in path π. Then edge (vi, vi+1) is in H for
all i, with high probability. This implies that distH(v1, vk) = distG(v1, vk). We conclude:

distH(s, t) ≤ distH(s, v1) + distH(v1, vk) + distH(vk, t) ≤ distG(v1, vk) + Õ(r).

Finally, the remaining edges are added to our emulator in a greedy fashion similar to the path-
buying strategies of [5, 7] used in prior additive spanner constructions. While there exists a pair
of vertices s, t ∈ V that do not satisfy the additive emulator condition in H (e.g., distH(s, t) >
distG(s, t)+ r), we will add an emulator edge to H to ensure that the additive emulator condition
becomes satisfied between s and t. We will then use a simple counting argument to argue that at
most O(n) emulator edges are added to H in this way.

3 Preliminaries

For the remainder of this paper, we use Ô(·) to hide nO(ϵ) factors and Oϵ(·) to hide constant factors
dependent on ϵ in our asymptotic notation. We let B(v, r) denote the set of vertices of distance at
most r from v in G.

Lemma 1 (Lemma 13 of [7]). Let r ∈ [1, n] and ϵ > 0. For every n-vertex graph G = (V,E),
there exists a set of vertices C = {v1, . . . , vk} and corresponding integers R = {r1, . . . , rk}, where
ri = Θ̂(r), satisfying the following:

• (Coverage) For each v ∈ V , v ∈ B(vi, ri) for some i ∈ [1, k].

• (Low Overlap)
∑k

i=1 |B(vi, 2ri)| = Oϵ(n).

For i ∈ [1, k], we will think of set B(vi, 2ri) as a cluster of vertices in G, and we will refer to
B(vi, ri) as the core of cluster B(vi, 2ri). Note that the coverage property of Lemma 1 states that
every vertex in V belongs to the core of some cluster in the decomposition. For every vertex v in
V , we let C(v) denote a cluster B(vi, 2ri) containing v in its core.

4 Construction

In our construction, we will recursively use old emulator upper bounds to obtain new and improved
emulator upper bounds. This is formalized in the following lemma.

Lemma 2. Suppose for every n-vertex graph G and every ϵ > 0 there exists an additive emulator
of G with Oϵ(n) edges and error +O(nα+ϵ), where α ∈ (0, 1). Then for every n-vertex graph G and
every ϵ > 0 there exists an additive emulator of G with Oϵ(n) edges and error +O(n1/(6−4α)+ϵ).

Proof. Let H denote our new emulator of G. We first give the construction of H, and then we
prove that H has our desired properties.
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Construction of H. Begin the preprocessing phase by adding a linear-sized multiplicative span-
ner with · log n distortion to H. Let r = n1/(6−4α). Sample each v ∈ V into V ′ independently with
probability Θ(r−1 log n). Now perform the clustering decomposition of Lemma 1 with parameters
r and ϵ > 0 to obtain a set of cluster centers C = {v1, . . . , vk} and corresponding cluster radii
R = {r1, . . . , rk}. By Lemma 1, there exists a universal constant c > 0 such that 4ri log n ≤ r · ncϵ

for i ∈ [1, k]. We let r̂ denote r · ncϵ.
Fix an i ∈ [1, k]. We say that B(vi, 2ri) is a small cluster if |B(vi, 2ri)| ≤ r2 log−2 n. Else

we say that B(vi, 2ri) is a large cluster. If B(vi, 2ri) is a small cluster, then for all vertices s, t
in B(vi, 2ri) ∩ V ′, add the emulator edge (s, t) with weight dG(s, t) to H. If B(vi, 2ri) is a large
cluster, then we recursively call our presupposed emulator procedure on the induced subgraph
G′ = G[B(vi, 2ri)] with parameter ϵ to obtain a emulatorH ′ with Oϵ(|B(vi, 2ri)|) edges and additive
error +O(|B(vi, 2ri)|

α+ϵ). We add the edges of H ′ to H. By repeating the previous steps for all
i ∈ [1, k] we complete the preprocessing phase.

Now we greedily add emulator edges to H to connect the remaining pairs of vertices violating
our spanner property. While there exists vertices s, t in V such that dH(s, t) > dG(s, t)+16r̂, do the
following. Let π be a shortest (s, t)-path. Let x be the vertex in π farthest from s such that for any
two vertices u,w in π(s, x), dH(u,w) ≤ dG(u,w)+ r̂. Additionally, let y be the vertex in π farthest
from t such that for any two vertices u,w in π(y, t), dH(u,w) ≤ dG(u,w) + r̂. Add emulator edge
(x, y) with weight dG(x, y) to H. This greedy phase completes the construction. Our procedure is
summarized in Figure 1.

Bounding the error of H. Fix vertices s, t ∈ V . If dH(s, t) ≤ dG(s, t) + 16r̂, then we are done.
Otherwise, vertex pair (s, t) is considered in some round of the greedy phase. Let path π and vertices
x, y be as defined in the construction. Note that since edge (x, y) is in H, dH(x, y) = dG(x, y). We
have the following:

dH(s, t) ≤ dH(s, x) + dH(x, y) + dH(y, t)

≤ (dG(s, x) + r̂) + dG(x, y) + dG(y, t) + r̂)

≤ dG(s, t) + 2r̂

Since r̂ = r · ncε for a universal constant c > 0, we may obtain our desired error by taking our
construction parameter ε > 0 to be sufficiently small.

Bounding the size of H. We begin by bounding the number of edges added to H in the
preprocessing phase. Fix an i ∈ [1, k]. If B(vi, 2ri) is a small cluster, then with high probability

|B(vi, 2ri) ∩ V ′| = Θ(|B(vi, 2ri)| · r
−1 log n).

Since we add an emulator edge between every pair of vertices in B(vi, 2ri) ∩ V ′, it follows that we
add at most

|B(vi, 2ri) ∩ V ′|2 = Θ(|B(vi, 2ri)|
2 · r−2 log2 n) = O(|B(vi, 2ri)|)

edges to H. Otherwise, if B(vi, 2ri) is a large cluster, then our recursive emulator call contributes
Oϵ(|B(vi, 2ri)|) edges to H. Then by the low overlap property of Lemma 1, we add Oϵ(n) edges to
H in the preprocessing phase.

To bound the number of edges added in the greedy phase, we use a path buying argument
reminiscent of the proof in [7]. We say that vertices s, t in V are connected in H if dH(s, t) ≤
dG(s, t) + 8r̂. Each time we add an emulator edge to H in the greedy phase, we will argue that
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Additive Emulator Procedure NewEmulator:

Input:

• An n-vertex graph G = (V,E) and a parameter ϵ > 0.

• A procedure OldEmulator, which takes as input a graph G′, and outputs an additive
emulator H ′ of G′ with Oϵ(|G

′|) edges and error +O(|G′|α+ϵ).

Output: An additive emulator H of G with Oϵ(n) edges and error +Ô(n1/(6−4α)).

Preprocessing Phase:

1. Add a linear-sized spanner with · log n multiplicative distortion to H.

2. Let r = n1/(6−4α). Sample each vertex v ∈ V into V ′ independently with probability
Θ(log n/r).

3. Perform the clustering decomposition of Lemma 1 with parameters r and ϵ to
obtain a set of cluster centers C = {v1, . . . , vk} and corresponding cluster radii
R = {r1, . . . , rk}. Let r̂ = r · ncϵ for a sufficiently large universal constant c.

4. For each i ∈ [1, k]:

• If |B(vi, 2ri)| ≤ r2 log−2 n, then for all vertices s, t in B(vi, 2ri) ∩ V ′, add edge
(s, t) with weight dG(s, t) to H.

• Else if |B(vi, 2ri)| > r2 log−2 n, then call OldEmulator on graph G[B(vi, 2ri)].
Add the emulator output by OldEmulator to H.

Greedy Phase:

While there exist vertices s, t in V such that dH(s, t) > dG(s, t) + 16r̂, do the following.
Let π be a shortest (s, t)-path. Let x be the vertex in π farthest from s such that for any
two vertices u,w in π(s, x), dH(u,w) ≤ dG(u,w) + r̂. Additionally, let y be the vertex in
π farthest from t such that for any two vertices u,w in π(y, t), dH(u,w) ≤ dG(u,w) + r̂.
Add edge (x, y) with weight dG(x, y) to H.

Figure 1: The recursive procedure for the improved emulator upper bounds.

Ω(n) pairs of vertices in V become connected in H for the first time. Then since there are O(n2)
pairs of vertices in V , the greedy phase adds O(n) edges to H.

Let (s, t) be a pair of vertices considered in some round of the greedy phase. Let path π and
vertices x, y be as defined in the construction. We say that paths π(s, x) and π(y, t) are the prefix
and suffix of π, respectively. We will define a set S of vertices in G near the prefix of π and a set
T of vertices in G near the suffix of π. Then we will show that after adding edge (x, y) to H, all
pairs of vertices in S × T become connected in H for the first time. Finally, we will establish that
|S × T | = Ω(n), completing the proof.

We define S and T as follows:

S := ∪v∈π(s,x)C(v) and T := ∪v∈π(y,t)C(v).

We now verify that S and T satisfy our desired properties.

5



Proposition 1. After edge (x, y) is added to H, all pairs of vertices in S×T become connected in
H for the first time.

Proof. Let v ∈ V , and suppose that v is contained in the core of a cluster C(v) with radius 2ri,
where ri ∈ R. Let u ∈ C(v). Then by our choice of r̂,

distG(v, u) ≤ 4ri ≤ r̂ · log−1 n.

Therefore, for each vertex u ∈ S, there exists a vertex v ∈ π(s, x) such that

distH(v, u) ≤ log n · distG(v, u) ≤ r̂,

where the first inequality follows from the · log n multiplicative spanner in H. By an identical
argument, for each vertex u ∈ T , there exists a vertex v ∈ π(y, t) such that

distH(v, u) ≤ log n · distG(v, u) ≤ r̂.

Now fix vertices s′ ∈ S and t′ ∈ T , and let x′ (respectively, y′) be the vertex in π(s, x) (respec-
tively, π(y, t)) that is closest to s′ (respectively, t′) in G. (See Figure 2 for a visualization of this
situation.) Note that by the above argument, distH(s′, x′) ≤ r̂ and distH(y′, t′) ≤ r̂. After edge
(x, y) is added to H, s′ and t′ are connected in H:

dH(s′, t′) ≤ dH(s′, x′) + dH(x′, y′) + dH(y′, t′)

≤ r̂ + dH(x′, y′) + r̂

≤ dH(x′, x) + dH(x, y) + dH(y, y′) + 2r̂

≤ (dG(x
′, x) + r̂) + dG(x, y) + (dG(y, y

′) + r̂) + 2r̂

≤ dG(x
′, y′) + 4r̂

≤ dG(x
′, s′) + dG(s

′, t′) + dG(t
′, y′) + 4r̂

≤ dG(s
′, t′) + 6r̂,

where the fourth inequality follows from our choice of x and y, and the fifth inequality follows from
the fact that π(x′, y′) is a shortest path in G.

Now suppose for the sake of contradiction that s′ and t′ were connected in H before edge (x, y)
is added to H. Then we claim that pair (s, t) had low additive error in H before edge (x, y) was
added:

dH(s, t) ≤ dH(s, x′) + dH(x′, y′) + dH(y′, t)

≤ (dG(s, x
′) + r̂) + dH(x′, s′) + dH(s′, t′) + dH(t′, y′) + (dG(y

′, t) + r̂)

≤ (dG(s, x
′) + r̂) + r̂ + dH(s′, t′) + r̂ + (dG(y

′, t) + r̂)

≤ dG(s, x
′) + dH(s′, t′) + dG(y

′, t) + 4r̂

≤ dG(s, x
′) + (dG(s

′, t′) + 8r̂) + dG(y
′, t) + 4r̂

≤ dG(s, x
′) + (dG(s

′, x′) + dG(x
′, y′) + dG(y

′, t′)) + dG(y
′, t) + 12r̂

≤ dG(s, x
′) + dG(x

′, y′) + dG(y
′, t) + 14r̂

≤ dG(s, t) + 14r̂

This contradicts our assumption that pair (s, t) was considered in this round of the greedy phase.
We conclude that all pairs of vertices in S × T are connected for the first time after edge (x, y) is
added to H.
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Figure 2: The solid black line denotes path π in G. After edge (x, y) is added to H in the greedy
phase, all pairs of vertices (s′, t′) in S × T become connected in H for the first time.

What remains is to show that |S × T | = Ω(n). Specifically, we will show that |S| = Ω(n1/2),
and |T | = Ω(n1/2) will follow by a symmetric argument. Notice that the size of S is constrained
by our requirement that for any two vertices u,w in π(s, x), dH(u,w) ≤ dG(u,w) + r̂.

Proposition 2. |S × T | = Ω(n)

Proof. Instead of lower bounding |S| directly, we find it easier to lower bound a subset S′ ⊆ S. We
now explicitly construct S′. We begin the construction by initializing two sets as U := ∅ and S′ := ∅
and setting an integer counter err := 0. Starting at s, we walk through π(s, x) as follows. Let s1
be a vertex in π(s, x) ∩ V ′ such that dG(s, s1) ≤ r. Note that since we sample vertices in V into
V ′ with probability Θ(log n/r), such a vertex s1 will exist with high probability by the Chernoff
bound. Add s1 to U and add the vertices in C(s1) to S′. Now, given si, we let si+1 be a vertex
in π(si, x) ∩ V ′ such that r/2 ≤ dG(si, si+1) ≤ r. Again by the Chernoff bound, such a vertex si+1

will exist with high probability. Add vertex si+1 to U , and add the vertices in cluster C(si+1) to
S′. If C(si) is a large cluster, then we increment err by +O(|C(si)|

α+ϵ), which corresponds to the
additive error of the linear sized emulator of C(si) we inserted into H in the preprocessing phase.
We proceed in this manner until we add the first vertex sℓ such that err + O(|C(sℓ)|

α+ϵ) > r̂/2.
(This implies that err ≤ r̂/2.) Note that S′ = ∪si∈UC(si).

Now we verify that S′ ⊆ S, as desired. To prove this, it will suffice to show that π(s, sℓ)
is a subpath of π(s, x). Fix an i ∈ [1, ℓ − 1] and suppose that C(si) is a small cluster. Then
since si is in the core of cluster C(si) and dG(si, si+1) ≤ r, it follows that si+1 ∈ C(si). Note
that in this case, emulator edge (si, si+1) is added to H in the preprocessing phase, allowing us
to travel from si to si+1 without incurring any error. Specifically, dH(si, si+1) = dG(si, si+1).
Otherwise, C(si) is a large cluster. In this case, we added an emulator of G[C(si)] with additive
error +O(|C(si)|

α+ϵ) to H in the preprocessing phase. Note that since si is in the core of C(si)
and dG(si, si+1) ≤ r, it follows that any shortest (si, si+1)-path in G is contained in G[C(si)].
Consequently, dH(si, si+1) ≤ dG(si, si+1) + O(|C(si)|

α+ϵ). Then by the previous observations, we
conclude that dH(si, sj) ≤ dG(si, sj) + err for all i, j ∈ [1, ℓ]. Now let u,w be vertices in π(s, sℓ)
(where u occurs before w in π(s, sℓ)), and let si, sj be the vertices in π(s, sℓ) ∩ U that are closest
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to u and closest to w, respectively. Observe that

dH(u,w) ≤ dH(u, si) + dH(si, sj) + dH(sj , w)

≤ log n · dG(u, si) + dH(si, sj) + log n · dG(sj , w)

≤ dG(u, si) + dH(si, sj) + dG(sj , w) + 2r log n

≤ dG(u, si) + (dG(si, sj) + err) + dG(sj , w) + 2r log n

≤ dG(u,w) + r̂/2 + 2r log n

≤ dG(u,w) + r̂.

Then by our choice of x, it follows that π(s, sℓ) is a subpath of π(s, x), so S′ ⊆ S.
By our construction of S′, we have the guarantee that

∑ℓ
i=1O(|C(si)|

α+ϵ) > r̂/2. Moreover, we
may assume that all clusters C(si) are large clusters, since as noted earlier we can travel through
small clusters with zero error. This implies that |C(si)| ≥ r2 log−2 n. Now we wish to lower bound
the sum

∑ℓ
i=1 |C(si)|. We may assume that α + ϵ < 1, and so by a convexity argument it can

be seen that the sum
∑ℓ

i=1 |C(si)| is minimized (while subject to our guaranteed inequality) when
each large cluster has size r2 log−2 n. Let q be the number of large clusters we pass through in
π(s, sℓ). Then our guarantee becomes

∑ℓ
i=1O(|C(si)|

α+ϵ) = q · (r2 log−2 n)α+ϵ > r̂/2. Rearranging
this inequality gives us that q > r̂ · r−2(α+ϵ). Now note that since r̂ = r · ncϵ for a sufficiently large
constant c, we may assume that r̂ ≥ r1+2ϵ log2 n by taking c > 2. Now putting it all together, we
see that

ℓ∑

i=1

|C(si)| ≥ q · r2 log−2 n ≥
r̂ · r2

r2(α+ϵ) · log2 n
≥ r3−2α = n(3−2α)/(6−4α) = Θ(n1/2),

where the second to last equality follows from our choice of r = n1/(6−4α).
Now we finish the proof by showing that |S′| = | ∪ℓ

i=1 C(si)| = Ω(
∑ℓ

i=1 |C(si)|). Recall that
dG(si, si+1) ≥ r/2. Then each vertex v ∈ V can only occur in O(1) distinct clusters C(si), where
si ∈ U , or else we contradict our assumption that π(s, x) is a shortest path in G. We conclude
that | ∪ℓ

i=1 C(si)| = Ω(
∑ℓ

i=1 |C(si)|), so |S| ≥ |S′| = Ω(n1/2). A symmetric argument shows that
|T | = Ω(n1/2), so it follows that |S × T | = Ω(n).

Each time we add an emulator edge to H in the greedy phase of the construction, |S×T | = Ω(n)
pairs of vertices in V become connected in H for the first time by Propositions 1 and 2. Then since
there are O(n2) pairs of vertices in V , the greedy phase adds O(n) edges to H. We conclude that
we add O(n) emulator edges to H in the greedy phase, so the total size of H is Oϵ(n). In our
construction we made use of the Chernoff bound only polynomially many times, so by the union
bound our construction succeeds with high probability. This completes the proof of Lemma 2.

Now we can repeatedly apply Lemma 2 to obtain a sequence of improved emulator upper
bounds. We choose our initial emulator to be a spanning tree with error +n and n − 1 edges.
Then after one application of Lemma 2, we obtain an additive emulator with Oϵ(n) edges and
error +O(n1/(6−4)+ϵ) = +O(n1/2+ϵ). More generally, after i applications of Lemma 2, we obtain
an additive emulator with Oϵ(n) edges and error +O(nai+ϵ), where ai is defined by the recurrence
relation a0 = 1, ai+1 = 1/(6− 4ai). The value of ai converges to the fixed point 1

3+
√
5
≈ 0.191.

Theorem 2. For every n-vertex graph G = (V,E) and ϵ > 0, there exists an emulator H = (V,E′)

on Oϵ(n) edges with error +O(n
1

3+
√

5
+ϵ
).

We note that the dependency on ε in the size of H is roughly O(1)1/ε due to the clustering
decomposition of [7] used in the preprocessing phase.
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