Real-time Task Scheduling for Digital Twin Edge
Network

Cheonyong Kim!, Mahdi Chehimi2, Minchae Jung!, and Walid Saad?3
! Department of Electronics and Information Engineering, Sejong University, Seoul, Republic of Korea
Emails: {cykim0807, mcjung} @sejong.ac.kr
2Wireless@VT, Bradley Department of Electrical and Computer Engineering, Virginia Tech, VA, USA
Emails: {mahdic, walids} @vt.edu
3Cyber Security Systems and Applied Al Research Center, Lebanese American University, Lebanon

Abstract—The deployment of digital twins (DTs) at the edge of
a wireless network can facilitate low-latency and high-throughput
DT autonomous and real-time Internet of everything (IoE)
applications. In such DT edge networks (DTENs), each DT
has two types of real-time tasks that require timely processing:
DT update tasks and DT inference tasks. However, the joint
scheduling of these two types of tasks has been overlooked in
prior works. In this paper, the first joint real-time scheduling
scheme for DT update and inference tasks in a DTEN is
proposed. Moreover, a novel performance metric called freshness
is introduced to capture the effectiveness and synchronization
performance of scheduling. Also, a new scheduling scheme is
proposed to efficiently solve a freshness maximization problem
for DTENs. Simulation results show that the performance of the
proposed scheme is within 4% of the upper bound for DTENs
with 20 physical objects, and within 12% of the upper bound
in worst cases for DTENs with more than 30 physical objects.
The results also show that the proposed approach reduces the
maximum de-synchronization time by 63% compared to existing
real-time scheduling algorithms.

Index Terms—Digital twin, edge network, IoE, real-time task
scheduling.

I. INTRODUCTION

Digital twins (DTs) are a transformative technology that
teleports physical objects and their operations to the virtual
world to optimize operational efficiency. DTs go beyond a
simple replica of the physical reality, as they enable mon-
itoring and controlling the performance of physical twins
(PTs) through instantaneous real-time feedback [1]. Recently,
DTs have gained significant interest from diverse industries
as well as academic researchers due to their potential to
replace conventional testing and simulation mechanisms that
are resource-intensive and time-consuming [2].

Despite their great potential, DT implementation faces sig-
nificant challenges. One key challenge is ensuring that DTs
accurately represent the dynamic behavior of their PTs in real-
time. This requires meeting strict requirements in terms of
computation and communication latency. For instance, using
a centralized cloud computing infrastructure for DT implemen-
tation may result in high communication delays. To address

This work was supported in part by Institute of Information & Com-
munications Technology Planning & Evaluation (IITP) under the metaverse
support program to nurture the best talents (II'TP-2023-RS-2023-00254529)
grant funded by the Korea government(MSIT) and by the U.S. National
Science Foundation under Grant CNS-1814477.

these issues and improve the performance and efficiency of
DTs, a decentralized architecture using edge servers (ESs)
can be used to deploy the DTs. Such an architecture forms
a DT edge network (DTEN) and enables DT services with low
computation and communication delay [3]. By integrating DT's
with an intelligent edge backbone in a DTEN, a high-quality
representation of dynamic DTs can be ensured, facilitating the
deployment of DTs in non-stationary real-world scenarios for
autonomous Internet of everything (IoE) applications.

In general, a DT application entails two types of DT tasks
that must be concurrently fulfilled by the ES. This includes the
update task for updating the DT model using the collected data
from its PT, and the inference task for obtaining an inference
or making predictions from a DT without interrupting its PT.
Moreover, an update task should be processed as soon as possi-
ble for synchronizing the DT with its PT whereas an inference
task has a deadline for real-time response. Considering both
types of DT tasks and scheduling their processing in real-time
in a DTEN is a challenging problem that was overlooked in
most prior works [3]-[6].

Indeed, several prior works [3]-[6] studied DT implemen-
tations over DTENs while considering the two types of DT
tasks, separately. For instance, the work in [4] investigated
the service congestion issue caused by stochastic DT ser-
vice requests and proposed a long-term congestion control
scheme. However, this prior work [4] takes into account only
the inference task without considering the update task. On
the other hand, the works in [3], [5] and [6] considered
the update task without considering the inference task. For
instance, the work in [3] investigated the update task of DTs
in DTENs to ensure reliability and overcome non-stationary
effects. The authors in [5] formulated a DT-edge association
problem to reduce the system latency and enhance the user
utility. The work in [6] designed a blockchain-empowered
federated learning framework for building a global model of
distributed DTs. However, no prior work considered the joint
scheduling of both update and inference tasks in DTENS,
which remains an open problem. Furthermore, the works in
[4] and [5] limit the number of DTs that an ES can maintain
considering one type of DT task, which results in difficulty in
accommodating the other one. Since an improperly designed

DT models
> LS
DT1 DT k DT K
N7
- T Scheduler "< -
M
. G) .
/
,’, Edgc server \\\

Inference — .

\
,,,,,,,,,,, T {Upme]
............ T {iterencs]

,

o T /
i i /
H ’
i ’
: .
P
.
%9 PTK -7
-——

Fig. 1. Illustrative system model of a DTEN consisting of multiple
PTs and an ES.

DT task scheduler may cause delayed DT synchronizations or
violations of deadlines for inference requests, there is a need
to carefully design real-time scheduling schemes that jointly
consider update and inference tasks in DTENS.

The main contribution of this work is a novel approach for
jointly scheduling real-time DT update and inference tasks in
DTENSs. Toward achieving this overarching goal, we make the
following key contributions:

o We perform the first thorough analysis of a DTEN
environment that captures both update and inference
DT tasks, which is fundamental for areas like smart
factories, autonomous vehicles, and personalized health
care. The considered scenario jointly encompasses PT-
generated real-time data for updating DTs, along with
users’ requests for real-time responses for predictions and
inferences from the updated DTs in the DTEN.

o We propose a novel performance metric named freshness
for estimating real-time DT task scheduling performance.
We also formulate a freshness maximization problem to
enhance DT effectiveness and synchronization perfor-
mance. Moreover, we introduce an efficient scheduling
scheme to solve the proposed problem by transforming it
into an iterative integer programming problem.

o Simulation results show that the proposed scheme maxi-
mizes the freshness, and achieves a near-optimal perfor-
mance, i.e., within 4% of the upper limit with 20 PTs,
and within 12% of the upper limit in the worst cases
of > 30 PTs. In addition, the proposed scheme reduces
the maximum de-synchronization time by up to 63%
compared to existing real-time scheduling algorithms.

II. SYSTEM MODEL

We consider a DTEN that incorporates an ES connected
to a set £ of K PTs each of which is the requester of
update and inference tasks, as shown in Fig. 1. The ES
maintains K DTs each of which is implemented using a
deep neural network (DNN) model. Since a DT has to reflect
the current status of its PT, we adopt a continual learning
approach [3] instead of using a trained model. Therefore, a PT
periodically generates update tasks including the data collected

Mo Myy My

0 teq = Sk t,‘}i""’ tRy Sk2 t,‘(isad Trnd

Fig. 2. An example of the arrivals of DT tasks within a round.

from sensors. On the other hand, a DT can be used for
testing or simulating the reaction of the PT without disturbing
the PT’s operation. With this purpose, a PT also generates
inference tasks for obtaining insights from the updated DT.
The considered system undergoes sequential episodes each of
which consists of several rounds. This scenario models several
practical use cases and applications such as manufacturing
[7] and healthcare [8]. For example, in a smart factory, a
specific product is manufactured within a given round and the
system resources are episodically reconfigured when beginning
to manufacture another type of product.

A. DT task model

We assume that the arrivals of the DT tasks at the ES
are fixed within a round but change over episodes. Dur-
ing a round, each PT generates one update task and mul-
tiple inference tasks. A task for DT k is represented by
My, = (t3%, bry, t2529) where y is the task index, 3"
is the arrival time, by, is the data size, and 3% is the
deadline. Update tasks are differentiated from inference tasks
by using the task index y. For DT k, My denotes the
update task whereas inference tasks are represented by Mj, ,,
Yy € Y = {1,...,Y;} where Y} is the total number of
inference tasks. We assume that inference tasks follow the
sporadic task model and thus, they have a minimum inter-
arrival time between two consecutive tasks [9]. The minimum
and maximum inter-arrival times are, respectively, ™" and
¢™#*, The feasible range ¢, of the interval between My, 1
and My, , is bounded, i.e., pmin < Pry < @M. Given the
duration of a round 7"29, the maximum number of inference
tasks can be obtained as Y™& = |T™d/¢min | Since My,
must be processed before the arrival of Mj, 41, The deadline
of My, is given by t%‘fyad by T o™ Yy € V. An
inference task contains one-time data whose size is d and,
thus, we have by, = 6,Yy € Vi. On the other hand, by
separately allocating communication resources to each PT, all
update tasks arrive at the beginning of a round (i.e., ti’s = 0).
In addition, all update tasks must be processed within a round
such that tgf“gd = T4 An update task contains data from
several samples, such that b, o = ad where « is the number
of samples captured during a round. Fig. 2 shows an example
of the arrivals of tasks for DT k during a round.

B. Computing model

We assume that the ES processes DT tasks sequentially ac-

cording to the scheduler output without idling the processor'.

In Fig. 2, sy, is the time that the computation of Mj, ,, begins

I'This paper focuses on the fundamental characteristics of real-time DT
task scheduling in a basic system model. Practical computing issues such as
multi-processor and preemption will be covered in our future work.

Tcomp

and is obtained

Tcomp

is the delay for processing Mj, .
bk y W
fedge

cycles/blt and f°d8° is the computational capacity of the ES
in cycles/s. Considering that PTs are involved in the same DT
application where by, = 0 and by o = ad Vk € K,Vy € Yy,
we define T°°%'P as the computation delay of an update task
and T..;"" as the computation delay of an inference task.

C. Scheduling model

The scheduler prioritizes the DT tasks by adjusting sy, ,
within the feasible range between ¢} and #3% — 5"
Given a set of all DT tasks the total number of DT tasks
Q willbe Q = K + Zk,:l Y. Therefore, a pair of k and y
can be replaced by ¢ € {1,...,Q}. Let ©(q) be the priority
of M. Then, a scheduler output ¢ € N@ can be seen as a

permutation of the DT task set and expressed as follows:

o=y =) O

where the smaller value of ((q) indicates the higher priority.
We also define ¢(p) to be the index of a certain task whose
priority is p such that ¢(p) = ¢ if p(q) = p.

Now we assess the capacity of the ES by estimating whether
the DT tasks can be processed within their deadlines without
any violations. In a round, there will be K update tasks and
the maximum number of inference tasks is K'Y ™%, Since the
deadline for update tasks is T4 the condition by which the
update tasks can be scheduled is derived as follows:

KTGiP + KY™STiw <l)

comp
T, Y

where w is the complexity of a DT task in

In the case of inference tasks, we consider the worst-case
scenario in which the ES has started processing an update
task at ¢ and K inference tasks arrived at ¢+ € simultaneously.
If € = 0, the ES should be able to process one update task
and K inference tasks within ¢mi“. Therefore, the condition
by which the inference tasks can be scheduled is obtained by

Tl(llgglp +K111C01np < ¢min. (3)

These conditions can be used to configure the system pa-
rameters of a DTEN. For instance, the operator may reduce
the number of samples « to satisfy a shorter deadline of
inference tasks or extend the relative deadline of inference
tasks to accommodate more PTs in the system. We assume
that these conditions are satisfied and focus on the DT-specific
characteristics of real-time DT task scheduling.

Given the system model, our goal is to develop a real-time
task scheduling scheme that is desirable in DT applications.
To this end, we introduce a novel performance metric by
scrutinizing the properties of DT task scheduling which differs
from general real-time task scheduling.

III. REAL-TIME DT TASK SCHEDULING

In this section, we analyze the characteristics of DT task
scheduling and propose a new performance metric for estimat-
ing the quality of a DT task scheduler. In addition, we propose
a DT task scheduling scheme by formulating an optimization
problem to maximize the performance metric.

DT status Dy(x —2) Dp(x —1)
DT tasks My D My, I D My,
t
(x 7'1)7~md xT™d
(a)
1 1
DT status Dy(x —2) Dy(x—1)
Processing for rl | | D
DT tasks - My Mo M2 .
- XTd
(x-1 (b)

Fig. 3. Examples of the freshness; (a) the case of maximum freshness
(F(k;) = 2 = Yy) and (b) the case of compromised freshness
(F(k;p) =1 < Yk)

A. Characteristics of DT task scheduling

From the perspective of real-time task scheduling, an update
task should be processed quickly to synchronize the PT
and its DT whereas an inference task must meet a desired
deadline to ensure a real-time response. With this understand-
ing, we can consider two primitive approaches; update-first
and inference-first schedulers. The update-first approach may
violate the deadline of inference tasks whereas the inference-
first scheduler will lead to a high and possibly unacceptable de-
synchronization time, which is defined as the duration between
generation and completion of an update task. Therefore, a real-
time DT task scheduling scheme must be prudently designed
by jointly considering update and inference DT tasks.

Instead of priority, we focus on the processing of update
tasks and their impact on the status of the DT models. Fig. 3
shows two examples of different scheduler outputs. Let Dy ()
be DT k updated using the data from round z. Obviously, the
update task arriving at the beginning of round x contains the
data from round x — 1. Thus, the status of DT k changes from
Dy (z — 2) to Dy(x — 1) after processing My, o. Meanwhile,
inference tasks arriving during round x should be processed
using the latest DT model (i.e., Dy (z — 1)) as shown in Fig. 3
(a). However, some inference tasks may not be processed after
the update task has been processed for processing other tasks,
as shown in Fig. 3 (b). Therefore, given a limited computing
power of the ES, a scheduler should maximize the number of
inference tasks that are processed using the latest DT models.

Based on the above characteristics, we introduce the concept
of freshness as a novel performance metric for real-time DT
task scheduling. The freshness of a DT can be quantitatively
defined as the number of inference tasks that are processed
after the update task has been processed®. Given a scheduler
output ¢, the freshness of DT k, F(k;), can be obtained by

Zm&x(wkzi_ o) @

(k,0)
Using (4), next, we pose the DT task scheduling problem as
a freshness maximization problem.

2Freshness may be defined using the age of information concept [10]
(e.g., the elapsed time after a DT has been updated). On the other hand, our
definition focuses on the relationship between update/inference tasks and the
status of DT when inference tasks are processed.

B. Freshness maximization problem
The freshness maximization problem can be formulated as
follows:

P max@ ZFkga 5)

arr dead comp
< sy < tikead oy, (52)

Skyy + Ty w < sk/,y/,if o(k,y) < o(K',y"), (5b)
where (5a) is the feasible range of s, and (5b) denotes that
the task whose priority is higher must be processed earlier. In
(5), P is a combinatorial problem. Since the feasible solution
set cannot be directly obtained because a) inference tasks must
meet different deadlines according to (5a), and b) the objective
function ©(¢) is not linear, then P cannot be directly solved.
Although the problem in (5) can be solved by an exhaustive
search method, this approach is computationally infeasible
when the number of PTs is large.

C. Transformation into iterative integer programming

To solve P in polynomial time, we exploit two observations
on DT task scheduling. First, for maximum freshness, update
tasks should be processed as soon as possible unless they
breach inference task deadlines. In other words, the compu-
tation of inference tasks should be delayed as close to their
deadlines as possible to make room for update tasks. Second,
update tasks can be processed successively when there are
no inference tasks to be processed, while some inference
tasks should be processed without intervention if they have
similar deadlines. As a result, the scheduler performs iterative
processing of update tasks followed by inference tasks.

From these observations, we transform P into an iterative
integer programming problem. Specifically, we first group the
inference tasks according to their deadlines. We refer to an
inference task group as an atomic set (AS), as their processing
is conducted without intervention. Then, we formulate an
integer programming problem to schedule a suitable set of
update tasks between two consecutive ASs, with the aim of
maximizing the total freshness.

The process of building ASs consists of two phases. First,
given the arrivals of inference tasks, as shown in Fig. 4 (a),
the scheduler aligns the computations of all inference tasks
to their deadlines resulting in s, = {4 — T 3", Then,
the initial priorities of the inference tasks are assigned in
ascending order of {4 satisfying @(k,y) < @(K,y'), if
tdcad dcad , as shown in Fig. 4 (b). In the second phase, the
computatlons of all inference tasks are rearranged to be aligned
with TComp Let S be the AS of iteration 4. For S(), e
and t‘”} 5 are defined as the times when the processing of S ()
begins and terminates, respectively. We also define z(¥) and
P = [rgi), ...,r&?]T as, respectively, the maximum number
of update tasks that can be scheduled between ter}, 1,y and
tz.t(ar)t, and the indication vector for the existence of inference
tasks in S(). The rearrangement is conducted in order of
M1y, -, My(g—rc)- From i = 0 (¢35, = 0), the scheduler

compares t3t) and sy (). If [(sy(p) — 25/ Tapa | > 0, the

1
e —— '
S R Il M [[M, | --L
S]ﬁ]ﬂ.l_l_l _______ Map | 1.

1 1

! My M, Lt
(x _'1)Trnd (a) xTrnd
e - ——==L.
b | may [[M2 [).
___i_ _____ Mpy § M, L.

I Mg Mg ! ¢

1 1
(x— 1)Trnd ({J(l 1) = 1 (b) 9(22)=6 /xTr“d

IT‘foglpl 1 1 1 1 : :
SR S P ¢ et a -
S ' | IM31| Mz, L
___:_ _____ |M21' |l ______ M3, __1|__

r

| [My, [M, | I

T T T 1 T T
(x —1)T™d !521) ' g s@ | xrmd

Fig. 4. An example of building ASs; (a) initial arrivals of inference
tasks; (b) computation alignment to the deadlines; (c) building ASs
using the computation delay of update tasks.

scheduler creates SUF1) and inserts M, into SOV (e,

(H'l) = 1if My p) is an inference task for DT k). Then, the
related parameters are updated as follows:

20D = L(Sw(p) 5(>)/T§§§1pJ7
i, =T,
(2 = R, + T,
t=1+ 1L
On the other hand, if |(t§;"" — t9)/Tpq”] = 0 that

means any update tasks cannot be scheduled between S()
and S¢(p)> the scheduler inserts M¢(into S@ and updates
the termination time of S such that 1) = t519 + To™”
According to the ASs, z(") is equal to the number of
update tasks that can be scheduled between S¢—1) and S,
Therefore, we can formulate an integer programming problem

P for SO as follows:

PO . max a()x,(;), (6)
o)
K .
s.t. Zx,(;) < ,2'(")7 (6a)
k=1
BN — 2 ke K, (6b)

(@)

where o, is the value of scheduling Mj o in iteration 7,
() = [a;gz),...,x%)}T is the solution vector and ﬂgil) €

{0, 1} indicates whether M}, o has been scheduled in previous
iterations. (6a) is the number of update tasks that can be
scheduled and (6b) denotes the no-duplication constraint for

each update task. Specifically, 3@ = | §0),...,4 E?)]T is
initialized as the vector of ones. According to xkz , ,(;’) is
updated as follows:
(i) L itey) =0
Br’ = e (D) (7
0, if z;” = 1.
Using ASs, a solution matrix X = [z, ..., 2(™)] can be in-

terpreted as a scheduler output ¢ where N is the total number

of ASs. Therefore, we can calculate the sum of freshness using
X. Let ©(X) be the sum of freshness from a solution matrix
X such that ©(X) = Yr_, F(k; X)) where F(k; X) is the
freshness of DT k. Using the matrices R = [r("), ..., ()] and
B = [ﬂ(l), ...,ﬂ(N)], we can calculate F'(k; X)) as follow:
ik X) = ri x (807, (®)
where r) and [3 are the partial row vectors of R and
B, ie, r,(f) = [r,(f), .. r,(cN)] and ﬁg) = | lgl), s ,iN)],
respectively. ,8,(5) is the ones’ complement of ,8,(5).

To make the iterative integer programming problem in (6)
equivalent to the maximization problem in (5), the value
vector o(® has to be sophisticatedly designed From (8) the
attainable freshness by scheduling M, ¢ at S s Z (n)
since Bk =1,VYn>1if x(R = 1. Therefore, we can derive
the following conditions for maximizing O(X):

o Condition I: If 7'1(;1) =1[1,...,1], O"(ﬂ)

value. , 4 4

o Condition 2: If 7",(;1) =1and 7",(;2) =0, 0,(;1) must be higher

than 0'](:2) .

must be the highest

Condition 1 can be easily derived since satisfying Condition 1
results in the maximum attainable value of Zﬁ;l r,(ﬁ) = N—i.
The validity of Condition 2 can be shown by using an example

where 2 = 1, ") = [1,0,...,0], and r{) = [0,1, ..., 1]. If
2\") = 1, the achieved freshness at @) will be N —i — 1 and

there is no more attainable freshness from scheduling My o
in the future iterations. On the other hand, if x(V= = 1, the
achieved freshness at S() will be 1 but the scheduler can
attain additional freshness whose amount is N —;—1 at S¢+1)
because U,E D will be highest value by satisfying Condition
1. Finally, the amount of total freshness by assigning 551(;1) =1
will be N — 1. Therefore, a,(f) must include not only the value
(Condition 2)
but also the freshness from 7 that is attainable in the
future iterations (Condition 1). Let v = (BT x ¢
which is the number of update tasks a) that can be scheduled
at S@ and b) whose corresponding inference task is in
S®. When v = 2z Condition 2 is enough to decide
z® (.e., :c,(f) = ,ii_l)r,g)). However, if v < 2 or
v > 2 the scheduler must consider r,(jﬂ), Vk € K. When
assigning values to r,(C H) - r,(CN)
applied. Therefore, each of r(iﬂ), e T,EN) must be assigned
an exponentlallg decreasing value in the order of ASs for
satisfying o, < ak) (ZH) when 7‘(D=1, Finally, we

() satisfying Condition 1 and Condition 2 as follows:

o — Z i),

where a is used to give the exponentially decreasing value to
(J) in order of ASs and the proper range of a is given as
O < a < 0.5. Using (9), each integer programming problem
in (6) can be easily solved by sorting o(9) = [O’%), ey O ol)]
The solution matrix X* by solving P() is optimal since it

of the currently attainable freshness from rk

(i+1)

, Conditions 2 is recursively

design o,

€))

TABLE I

DEFAULT SIMULATION SETTING
Parameters Value
Number of PTs (K) 10
Unit data size (9) 1 Mbit
Sampling frequency (o) 10/round
Computational complexity of DT tasks (w) 500 cycles/bit
Computational capability of the ES (f°98°) 30 GHz
Minimum and maximum intervals ([¢™'", 45’““’"]) [0.7,1.5]s
Duration of a round (T”‘d) 20s

attains achievable freshness by satisfying Conditions 1 and 2.
Also, the problems in (5) and (6) are equivalent since X * can
be transformed into the optimal permutation of DT tasks ¢*.

The transformation from (5) into (6) extremely reduces
the computational complexity. We can use an exhaustive
search method for solving (5). However, the complexity of
the exhaustive search will grow as O(Q!) for searching every
possible permutation of all DT tasks, which is computationally
infeasible. On the other hand, the proposed scheme consists of
two stages: building ASs and solving (6). When building ASs,
the proposed scheme requires Q? comparisons, swaps, and
arithmetic operations for sorting and searching all inference
tasks. The complexity of solving (6) includes N K arithmetic
operations for calculating o,(:) and N K? comparisons, swaps,
and arithmetic operations for sorting update tasks at each AS.
Therefore, the total complexity of the proposed scheme grows
as O(Q* + NK?).

IV. SIMULATION RESULTS AND ANALYSIS

Extensive simulations are conducted to analyze the perfor-
mance of our proposed scheme to solve the maximum fresh-
ness problem. Unless stated otherwise, the default simulation
parameters are the ones summarized in Table 1. Throughout
the conducted experiments, we evaluate the performance of
the proposed scheme by comparing it with a real-time task
scheduling algorithm, named earliest deadline first (EDF)
[11], which is our baseline. In EDF, the priority of inference
tasks is higher than that of update tasks due to their shorter
deadlines. Moreover, in EDF, the relative priority among
inference tasks is assigned based on a first-in-first-out manner,
whereas that among update tasks is assigned randomly. Next,
we discuss the experiments’ results.

1) Impact of Number of PTs on Total DT Freshness:
First, we analyze the impact of increasing the number of
PTs K in the DTEN and analyze its impact on the total DT
freshness, defined as the sum of the achieved freshness for
every DT in the DTEN (.e., Z,f:l F(k,p)). The achieved
total DT freshness by both algorithms is upper bounded by
the total number of inference tasks. From Fig. 5, we observe
that as K increases, the total DT freshness resulting from
EDF initially increases but it starts diverging when the number
of PTs becomes high (i.e., 25 < K < 30). In such cases,
e.g., K = 30, our proposed scheme achieves over two-fold
improvement in the total DT freshness, compared to EDF. This
is because the computations of update tasks tend to be delayed
due to their longer deadline than the inference tasks in EDF.
On the contrary, in the proposed scheme, the computations of

S 5ool | * Total DT inference tasks
= —e—Proposed scheme
—=—EDF

—=—EDF

H
a
&

xTotal DT inference tasks
115 |- | —®—Proposed scheme

=

I Proposed scheme
12| [CJEDF

3

®

>

IS

~

Maximum de-synchronization time (s)

5 10 15 20 25 30 0 10 20

Number of PTs (K)

Fig. 5. Total DT freshness as a function of
the number of PTs.

inference tasks are delayed to schedule update tasks resulting
in higher achieved total DT freshness than EDF. Moreover, the
performance of our proposed scheme is near-optimal, where
it is within 4% of the upper bound in the case of K = 20.
However, in the extreme case of K = 30, this percentage
slightly reduces to around 12%.

2) Impact of Number of Samples for Update Task on Total
DT Freshness: Next, in Fig. 6, we analyze the total DT fresh-
ness when the sampling frequency « is varied. From Fig. 6, we
observe that the total number of inference tasks remains steady
as « varies since ¢™™ and 7"*4 are fixed. We also observe
from Fig. 6 that for low sampling frequencies (o < 10), by
using our proposed scheme, an ES can accommodate more
PTs and maintain its optimal freshness level. However, we
observe that the total DT freshness achieved by the proposed
scheme decreases as « increases (for o > 10). This is due
to the increased computation delay of the update tasks as «
is increased. Similarly, the total DT freshness achieved by
EDF decreases as « increases, even for very small sampling
frequencies (o < 10). This is due to the fact that increasing
« results in a shorter duration where there are no inference
tasks to be processed. However, the proposed scheme achieves
a total DT freshness that is within around 8% of the total DT
freshness achieved by EDF.

3) Impact of Number of PTs on Maximum De-
synchronization Time: Finally, in Fig. 7, we study the impact
of K on the maximum de-synchronization time, which is
defined by the time when the computation of the last update
task is completed. Obviously, increasing K always results in
increasing the maximum de-synchronization time. We observe
from Fig. 7 that the maximum de-synchronization time ob-
tained from EDF increases exponentially while that resulting
from the proposed scheme grows linearly as K increases.
Fig. 7 demonstrates that the proposed scheme achieves a
reduction of 63% in the maximum de-synchronization time
compared to EDF when K = 30.

V. CONCLUSION

In this paper, we have investigated the real-time task
scheduling problem in DTENs while distinguishing between
the DT update and inference tasks. We have introduced a
novel performance metric, freshness, to capture the number of
inference tasks processed using the latest model. Moreover, to

Sampling frequency ()
Fig. 6. Total DT freshness as a function of
the number of samples for update task.

o

30 40 50 5 10 15 20 25 30

Number of PTs (K)
Fig. 7. Worst-case de-synchronization time
according to the number of PTs.

jointly fulfill the conflicting real-time requirements of those
tasks, we have formulated a novel freshness maximization
problem. We have proposed an efficient scheduling scheme
to solve the formulated problem. To validate the effectiveness
of the proposed scheme, we have conducted extensive exper-
iments. Simulation results show that the total DT freshness
achieved by the proposed scheme is within 4% of the upper
bound with 20 PTs, and within 12% of the upper bound in
worst cases of more than 30 PTs. Furthermore, simulation re-
sults have demonstrated that the proposed scheme can achieve
a reduction of up to 63% in the maximum de-synchronization
time compared to the EDF algorithm.

REFERENCES

[1] O. Hashash, C. Chaccour, W. Saad, T. Yu, K. Sakaguchi, and
M. Debbah, “The seven worlds and experiences of the wireless
metaverse: Challenges and opportunities,” arXiv, Apr. 2023. [Online].
Available: https://arxiv.org/abs/2304.10282

[2] L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-
enabled 6G: Vision, architectural trends, and future directions,” IEEE
Commun. Mag., vol. 60, no. 1, pp. 74-80, 2022.

[3] O. Hashash, C. Chaccour, and W. Saad, “Edge continual learning for
dynamic digital twins over wireless networks,” in Proc. IEEE Int.
Workshop Signal Process. Advances Wireless Commun. (SPAWC), 2022,
pp. 1-5.

[4] X. Lin, J. Wu, J. Li, W. Yang, and M. Guizani, “Stochastic digital-
twin service demand with edge response: An incentive-based congestion
control approach,” IEEE Trans. Mobile Comput., vol. 22, no. 4, pp.
2402-2416, 2023.

[5] Y. Lu, S. Maharjan, and Y. Zhang, “Adaptive edge association for
wireless digital twin networks in 6G,” IEEE Internet Things J., vol. 8,
no. 22, pp. 16219-16230, 2021.

[6] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Low-latency
federated learning and blockchain for edge association in digital twin
empowered 6G networks,” IEEE Trans. Ind. Informat., vol. 17, no. 7,
pp- 5098-5107, 2021.

[71 J. Wan, X. Li, H.-N. Dai, A. Kusiak, M. Martinez-Garcia, and D. Li,
“Artificial-intelligence-driven customized manufacturing factory: Key
technologies, applications, and challenges,” Proc. IEEE, vol. 109, no. 4,
pp- 377-398, 2021.

[8] S. D. Okegbile, J. Cai, C. Yi, and D. Niyato, “Human digital twin for
personalized healthcare: Vision, architecture and future directions,” IEEE
Network, pp. 1-7, 2022.

[9] Y. Xiang and H. Kim, “Pipelined data-parallel CPU/GPU scheduling for

multi-DNN real-time inference,” in Proc. IEEE Real-Time Syst. Symp.

(RTSS), 2019, pp. 392-405.

R. D. Yates, Y. Sun, D. R. Brown, S. K. Kaul, E. Modiano, and

S. Ulukus, “Age of information: An introduction and survey,” IEEE J.

Sel. Areas in Commun., vol. 39, no. 5, pp. 1183-1210, May 2021.

M. Kargahi and A. Movaghar, “Non-preemptive earliest-deadline-first

scheduling policy: A performance study,” in Proc. IEEE Int. Symp.

Modeling, Anal., Simulation Comput. Telecommu. Syst.,, 2005, pp. 201—

208.

[10]

(11]

