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Abstract

Realism of the predicted or forecasted orbital state covariance are crucial for several aspects of space

traffic management and space domain awareness including sensor tasking, probability of collision es-

timation, track association, and maneuver detection. In this paper, we focus on reliably modeling the

uncertainties in atmospheric drag parameters for forecast purposes and investigating the relationship

between the dynamical uncertainties and orbital state uncertainty. Two sources of space weather un-

certainty - thermosphere driver uncertainty and thermosphere model uncertainty - are considered in

this work. First, we present a new probabilistic modeling approach for the solar driver inputs of ther-

mosphere density models and evaluate the performance against operational forecast models. Next, we

evaluate methods for propagating the driver uncertainty through the stochastic HASDM-ML model for

thermosphere mass density. Finally, we perform orbital case studies to highlight the relative contribu-

tion of the two sources of uncertainty on predicted orbital state covariance.

1 Introduction

Forecasting of atmospheric or orbital drag is the largest source of uncertainty and a challenge for the

owner/operator (O/O) communities critically affecting probability of collision (PoC) calculation and de-

cision making. The acceleration due to the atmospheric drag force, adrag,

adrag = −
1

2

ρ CD A

m
v2

rel with B =
CDA

m
(1)

is coupled to variations in neutral density, caused by the direct heating of the thermosphere through

solar EUV absorption and indirect heating through high latitude heating caused by geomagnetic storm.

Other terms in the drag model are the drag coefficient, CD, cross sectional area, A, object’s mass, m,

the velocity relative to the atmosphere, vrel. The typically used ballistic coefficient, B, allows for satel-

lite specific parameters to be grouped into a single term. Here, we focus on the uncertainties in ρ

caused primarily by inaccurate forecasts of the density model drivers (solar and geomagnetic), hence-

forth referred to as driver uncertainty, and the inaccurate parameterization of the energy deposition

and physical processes driving the density changes, henceforth referred to as model uncertainty.

We propose to establish a new framework (seen in Figure 1) that couples the sources of uncertainty

(driver and model) with the predicted orbital state. Current operations do not robustly and rigor-

ously account for these uncertainty sources and therefore result in unrealistic covariances. We present

progress towards development of this framework.
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Figure 1. The proposed framework links both sources of uncertainty together to provide improved overall

uncertainty estimates for use in orbital state determination.

2 Probabilistic thermospheric density modeling

We started developing the framework with significant efforts to advance the field and develop first-of-

its-kind probabilistic density models. Most existing models of thermosphere density can be classified

as either empirical or physics-based. Significant efforts over the last two decades have reduced the

mean global error of empirical models (e.g. JB2008 and HASDM) to sub-10% level during solar active

conditions, however the errors during geomagnetically active or storm conditions can be upwards of

25%. Physics-based models can model the storm conditions with higher fidelity and potentially more

accuracy but are computationally expensive and can be biased. None of the existing models are truly

probabilistic (cannot provide a probabilistic output given a deterministic input).

To date, we have developed four probabilistic density models: HASDM-ML, CHAMP-ML, MSIS-UQ, and

TIE-GCM ROPE. The High Accuracy Satellite DragModel - Machine Learned (HASDM-ML) was trained on

20 years of HASDM validation outputs [1, 2, 3]. The full three-dimensional density grids were reduced to

10 spatiotemporal coefficients through principal component analysis (PCA). The original implementa-

tion of HASDM-ML used Monte-Carlo dropout to achieve stochasticity. The model was trained with the

negative logarithm of predictive density (NLPD) loss function to achieve meaningful predicted distribu-

tions of density. This was later improved with a direct prediction of the probability distribution (DPPD),

improving the computational efficiency of themodel [4]. An example of the probabilistic density output

provided by HASDM-ML in response to a geomagnetic storm is seen in Figure 2.

CHAllenging Mini-satellite Payload - Machine Learned (CHAMP-ML) used in-situ density estimates from

the CHAMP satellite to predict local density distributions [4]. This approach providedmillions of samples

for training and evaluation, but it had added complexity since location was an added input. CHAMP-

ML also utilized NLPD for training and a DPPD approach, and it has a high spatiotemporal resolution

because of the data it was trained on.

Mass Spectrometer and Incoherent Scatter radar with Uncertainty Quantification (MSIS-UQ) is different

from the previous two models, because it is an exospheric temperature model [6]. It was trained on

exospheric temperature estimates fromamulti-satellite dataset [7] that –when combinedwithMSIS 2.0

[8] – predicts densitywith high accuracy and resolution. MSIS-UQpredicts local exospheric temperature

distributions (through a combination of NLPD in training and DPPD), then samples are fed intoMSIS 2.0

to get a corresponding density distribution.

Thermosphere-Ionosphere ElectrodynamicsGeneral CirculationModel ReducedOrder Probabilistic Em-
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Figure 2. HASDM, HASDM-ML mean, and JB2008 orbit-averaged density for CHAMP’s orbit for the 2003

Halloween geomagnetic storm. The shaded region represents the 95% prediction interval for HASDM-ML and

storm-time disturbance index is shown on the right axis [5].

ulator (TIE-GCMROPE) operates on a reduced representation of TIE-GCMmass density, similar toHASDM-

ML [9]. Since TIE-GCM is a dynamic physics-based model, we opted to use Long Short-Term Memory

neural networks (LSTMs) to make density forecasts. The dynamic nature of these models caused previ-

ous UQ approaches to become ineffective for the task at hand. We instead chose to use an ensemble

approach to get density distributions from the individual global density models.

3 Probabilistic solar driver modeling

The JB2008 model is used to provide a density nowcast to HASDM-ML, which is corrected by a set

of calibration satellites. The JB2008 empirical thermosphere density model relies on in part, a set of

solar and geomagnetic drivers F10.7, S10.7, M10.7, and Y10.7, which map energy from solar irradiance to

major thermosphere layers and are highly correlated with thermosphere heating [10]. All solar drivers

are scaled to solar flux units (SFU), where 1 SFU = 10−22 W
Hzm2 .

The current operational method for forecasting solar drivers uses a linear auto-regressive algorithm,

known as "TS_FCAST" in the interactive data language (IDL). These forecasts are short-term (6-days)

and are used by HASDMand HASDM-ML to provide deterministic and probabilistic density forecasts, re-

spectively [11]. Forecasting ofF10.7, has been investigated thoroughly with both deterministic and prob-

abilistic approaches. Work by [12] showed promising results using machine learning (ML) approaches,

specifically neural network ensembles to provide short term probabilistic forecasts. Long short term

memory (LSTM) models with a variety of architectures, lookbacks, and weight initializations provide a

diverse set of solar driver predictive models, which are combined to produce a probabilistic forecast.

The ML ensemble methods outperformed the current operational methods and provide uncertainty

estimates, seen in Figure 3.

The other three solar drivers have only been measured since 1997 [10] and have not yet had proba-

bilistic methods applied. A similar neural network ensemble method can enhance forecasts for all solar

drivers required by JB2008, including S10.7, M10.7, and Y10.7. This ensemble approach involves apply-

ing ensemblemethods to providemultivariate forecasts of the other solar drivers, resulting in improved

performance, and provides well calibrated uncertainty estimates for all drivers. Using such ML meth-

ods to forecast solar drivers, probabilistic inputs (and their uncertainty estimates) can be coupled with

probabilistic thermosphere density models to provide more robust and reliable uncertainty estimates
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Figure 3. Left: Probabilistic F10.7 LSTM ensemble model by [12] outperforms both the operational method and a

persistence baseline, especially at high solar activity levels. Right: A test set calibration curve for probabilistic

forecast indicates a well calibrated probabilistic model, with the dotted line at 45o indicating perfect model

calibration.

for density used in orbit propagation and orbital state uncertainty.

4 Coupling of density model uncertainty with orbit propagation

The next step for the framework requires probabilistic densitymodels to be pairedwith orbital propaga-

tion techniques. The work by [13] investigated such evolution of orbit error distribution in the presence

of atmospheric density uncertainties, which are modeled using probabilistic machine learning tech-

niques. This work only considered the uncertainty associated with density models and did not consider

the driver uncertainties. The authors developed several modified Monte Carlo (MC) methods to per-

form orbit uncertainty propagation and developed other methods which were computationally more

efficient than traditional MC. The authors also introduced an ensemble approach which combines the

epistemic uncertainties predicted by HASDM-ML, CHAMP-ML, andMSIS-UQ, to characterize the uncer-

tainty in orbital states of a space object.

It was determined by [13], that the high sampling frequency in traditional MC, led to a partial "cancella-

tion" in drag perturbations and led to unrealistically small errors. To combat this, the authors introduced

a modified MC scheme, which relies on the sampling of so-called "bias" factor κ. The bias factor is de-

sired to have a Gaussian distribution. If κi is a sampled value of the bias factor at any point during the

Monte Carlo run, then the corresponding density sample is,

ρi = µρi
+ κiσρi

(2)

where the mean density µρi
and the standard deviation σρi

are obtained from one of the probabilistic

density models.

To determine the effectiveness of the modified MC approach, we simulate a 3-day orbit propagation

(details of initial conditions are described in [13]) to examine along-track position error between the

mean orbit and the MC runs. Figure 4 shows the comparison between a modified MC scheme and tra-

ditional MC. Figures 4(a) and 4(c) show density values for the first 3 hours of the propagation. The black

curve is the mean density and the colored curves indicate five separate MC runs. Figures 4(b) and 4(d)

show the normal PDF for the along-track error at the end of propagation. We see that the modifiedMC
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approach yields more realistic density values as opposed to the near discontinuous changes seen from

traditional MC. Due to the high computational expense of MC, coupled with the need for propagation

thousands of catalog objects, [13] also investigated a consider covariance sigma point (CCSP) filter ap-

proach, which is based of the work by [14]. The authors found that CCSP could be used in place of MC,

providing similar error propagation results, even at solar maximum/storm conditions; with the benefit

that CCSP is much quicker than MC.

Figure 4. Comparison of traditional and chosen modified Monte Carlo technique. Traditional MC approach is

shown in (a),(b) and modified MC is shown in (c),(d) [13].

There is no evidence that any single atmospheric density model is always more accurate than others

under all space weather conditions [15]. Drawing conclusions about orbital state uncertainty from a

single model is not recommended, so [13] considered the use of a multi-model ensemble approach

to combine orbital state PDFs of HASDM-ML, CHAMP-ML, and MSIS-UQ. The ensemble approach can

combine probabilistic density forecasts using any number of models, and produce a combined orbital

error PDF,

p(X ; µ1, P1, ..., µi, Pi) =
1

N

N∑

i=1

N (X ; µi, Pi) (3)

whereN (µi, Pi) represents themultivariate normal distributionwithmeanµi and covariancePi, which

are associated with N individual probabilistic density models.

We investigate the evolution of orbital state uncertainty using the probabilistic ensemble approach (Eq.

3) for a geomagnetic storm during solar maximum (September 07, 2002). A 3-day orbit uncertainty

propagation is performed (details regarding simulation configuration can be seen in [13]). It is seen in

Figure 5 that models have varied fidelity and provide different forecasts for the storm case, and that

a combination of several model types using the CCSP approach can provide an overall higher fidelity

probabilistic forecast. It is clear that the individual models produce fairly different normal distributions,

but can be combined to produce a more complex distribution, which cannot be produced by a single

probabilistic density model.

We see thatmachine learning-based probabilistic densitymodels can be used to investigate the effect of

atmospheric density uncertainty on the evolution of orbit state uncertainty. The ensemble approach can

be used for predicting orbit state PDF that combines the uncertainty predicted by various probabilistic

density models. With a critical source of overall uncertainty linked to orbit propagation and orbit state

uncertainty, we must now discuss a how uncertainty in drivers of density model can be evaluated and

linked to uncertainty in probabilistic density models; which contribute to the overall uncertainty in the

framework.
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Figure 5. Orbit state PDF for the along-track direction using the ensemble approach. The black curve represents

the combined result, known as "super ensemble". The red curve corresponds to HASDM-ML, the blue curve

corresponds to CHAMP-ML, and the green curve corresponds to MSIS-UQ [13].

5 Coupling driver uncertainty with density modeling

In the previous section, we showed the effectiveness of coupling model uncertainty to orbital state

uncertainty. However, probabilistic models like HASDM-ML do not adequately consider driver uncer-

tainty. In this work, we seek to demonstrate the ability of a coupling method that will consider the

effects of driver uncertainty on probabilistic density models. We show the technique by incorporating

probabilistic forecasting of F10.7 with HASDM-ML.

Building off of the previous work by [13] and due to the limitations of traditional MC, an alternate ap-

proach is considered. The Unscented Kalman Filter (UKF) [16] is useful for non-linear systems, as it does

not make any linear approximations and is computationally less expensive than MC. The UKF approach

uses the Unscented Transform (UT), which accurately captures the mean and covariance from a set of

data points that behaves as a Gaussian distribution by selecting carefully sample points known as sigma

points. This method helps in capturing the most relevant information needed with only a small number

of sample points and can be used to realistically link driver uncertainty to probabilistic density models.

This coupling method uses the framework from [16] by selecting the sigma points and a set of weights

from the mean and variance of F10.7. Then, sigma points are propagated through HASDM-ML to obtain

a density distribution, and a new mean and variance are calculated. A comparison between the MC

approach and the UT approach is necessary. To observe the advantage of UT, we sampled 10000 cases

for MC to obtain the mean and variance. From the UT approach, a set of 3 sigma points were used. We

can see in Figure 6, that the effects of uncertainty in F10.7 are captured effectively when using UT, and

provide a similar distribution of the atmospheric density when compared to the MC case.

6 Model and driver uncertainty impacts on predicted orbital state covariance

We previously studied the impact of driver and model uncertainties on the future position of satel-

lites in LEO. We considered a single satellite over a three-day window for four different space weather

conditions: low, moderate, elevated, and high solar activity. For each condition, we used driver fore-

casts provided by Space Environment Technologies (SET). This source of uncertainty analysis does not

consider probabilistic models or coupling presented in this work, but instead illustrates the need for im-

proved probabilistic modeling considering both sources of uncertainty. Using historical error statistics

and Monte Carlo approaches, we obtained probabilistic samples of solar drivers, keeping geomagnetic

drivers deterministic. For driver uncertainty cases (DUQ), probabilistic solar drivers were passed to
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Figure 6. Comparison of the Monte Carlo approach and the Unscented Transform Technique from HASDM-ML

Output. The blue curve displays the distribution of Monte Carlo, and the orange curve represents the

distribution from the Unscented Transform.

HASDM-ML, CHAMP-ML, MSIS-UQ, and TIE-GCM ROPE, and the mean model densities were used. For

model uncertainty cases (MUQ), all deterministic drivers were passed to the models, but the models’

density distributions were sampled via MC to yield probabilistic density. Figure 7 shows the along-track

standard deviation of the satellite position over the course of the three-day periods.

Figure 7. In-track position standard deviation as a function for time for the four solar activity conditions. The

markers refer to the time where the dominant uncertainty takes over for a particular model [17].

In Figure 7, it is clear that over three days, driver uncertainty is the dominant source of uncertainty.

Granted, this is impacted by the method for obtaining the uncertainty in the drivers themselves. In

the first 8–30 hours, however, model uncertainty is dominant, and it is on the same order as driver

uncertainty even after 36 hours. When using a deterministic density model, driver uncertainty can be

considered but not model uncertainty, leaving out a crucial component and causes an underestimation

in the overall uncertainty of a satellite’s state.
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7 Integration of driver and model uncertainties for orbit propagation

Considering the uncertainties in orbit state propagation, density modeling, and solar driver forecasting

has led to significant improvements in understanding each aspect individually. Now, we aim to integrate

these various methods into a cohesive approach. The coupling of density modeling with orbit propa-

gation has already been established in previous work. With the introduction of the UT approach, we

can further integrate probabilistic driver modeling with probabilistic density modeling and orbit propa-

gation. This implementation will enable us to account for driver and model uncertainties and combine

them with probabilistic density modeling when implementing orbit propagation to provide better pre-

dicted orbital state covariance.

8 Conclusions and future work

In this work, we presented a framework which is capable of coupling the two major sources of un-

certainty in thermosphere density modeling, driver and modeling uncertainties. Typically, these two

sources of uncertainty have been overly simplified or ignored. The framework presented allows for a

consideration of both sources of uncertainty simultaneously for use in orbit propagation and orbital

state uncertainty estimation, which could be provided to space traffic management operators.

We showed results and discussed each piece of the proposed framework. Four probabilistic density

models, HASDM-ML, CHAMP-ML, MSIS-UQ, and TIE-GCM, have been developed to provide uncertainty

estimates for modeled mass density. The inherent uncertainties in deterministic density models were

evaluated. When using deterministic density models, driver uncertainty can be considered, but model

uncertainty cannot. It is critical to consider both simultaneously, so as a first step, probabilistic density

models were introduced.

Work was also done to develop probabilistic forecasting models for the inputs to HASDM-ML. The neu-

ral network model ensemble approach was created to provide short-term forecast for each solar driver

and provide associated uncertainty estimates. The method provided first-time probabilistic forecasts of

S10.7, M10.7, and Y10.7. These solar drivers are sampled using MC or UT and provide inputs to HASDM-

ML, coupling the driver uncertainty with a probabilistic thermosphere densitymodel. Then, when prob-

abilistic density models were considered, work was done to sample the probabilistic density using MC

and CCSP approaches, which provided a capability for coupling probabilistic density forecasts with or-

bital state uncertainty estimation. This work resulted in the coupling of model uncertainty with orbital

state uncertainty.

The effectiveness of the proposed framework has not yet been fully investigated, it is key to evaluate the

full end to end density modeling capability. It is also critical to determine the affects of both sources

of uncertainty on orbital state errors. A primary focus moving forward is to investigate the coupling

of driver uncertainty and model uncertainty with estimated orbital state. We believe it is necessary

to provide a realistic framework, so its effectiveness, robustness, and reliability needs to be further

investigated.
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