
Published in Transactions on Machine Learning Research (11/2023)

Towards Stability of Autoregressive Neural Operators

Michael McCabe∗ michael.mccabe@colorado.edu

Department of Computer Science

University of Colorado Boulder

Peter Harrington† pharrington@lbl.gov

Lawrence Berkeley National Laboratory

Shashank Subramanian† shashanksubramanian@lbl.gov

Lawrence Berkeley National Laboratory

Jed Brown jed@jedbrown.org

Department of Computer Science

University of Colorado Boulder

Reviewed on OpenReview: https: // openreview. net/ forum? id= RFfUUtKYOG

Abstract

Neural operators have proven to be a promising approach for modeling spatiotemporal sys-
tems in the physical sciences. However, training these models for large systems can be quite
challenging as they incur significant computational and memory expense—these systems are
often forced to rely on autoregressive time-stepping of the neural network to predict future
temporal states. While this is effective in managing costs, it can lead to uncontrolled error
growth over time and eventual instability. We analyze the sources of this autoregressive er-
ror growth using prototypical neural operator models for physical systems and explore ways
to mitigate it. We introduce architectural and application-specific improvements that allow
for careful control of instability-inducing operations within these models without inflating
the compute/memory expense. We present results on several scientific systems that include
Navier-Stokes fluid flow, rotating shallow water, and a high-resolution global weather fore-
casting system. We demonstrate that applying our design principles to neural operators
leads to significantly lower errors for long-term forecasts as well as longer time horizons
without qualitative signs of divergence compared to the original models for these systems.
We open-source our code for reproducibility.

1 Introduction

There is an increasing interest in using neural networks to simulate scientific systems described by partial
differential equations (PDEs), with a specific focus on neural operators. These are neural network models
that learn the mapping between two function spaces that represent the inputs and solutions to a PDE through
training using a finite collection of input-solution pairs of data. (Li et al., 2021b; Lu et al., 2021, and references
therein). These models have demonstrated great success in simulating PDE systems across a broad range of
scientific disciplines. With the success of large neural network models such as foundation models (Bommasani
et al., 2021; Devlin et al., 2018) in natural language processing (NLP) and computer vision (CV), recent
efforts have attempted to scale these neural operators for grand challenge problems in scientific computing,
particularly in geophysical systems like weather and climate. These methods have demonstrated impressive
performance in predicting crucial physical variables and are comparable to traditional numerical methods over
short time horizons under certain metrics, while enjoying orders of magnitude improvement in computational

∗This work was conducted in part while author was intern at Lawrence Berkeley National Laboratory.
†Equal contribution.

1

Published in Transactions on Machine Learning Research (11/2023)

expense in an operational (inference) setting. For instance, in weather forecasting, many models (Pathak
et al., 2022; Bi et al., 2022; Lam et al., 2022) are able to achieve (or even beat) the deterministic accuracy
of numerical methods with 1000× faster times-to-solution.

Scaling neural operators to these domains, however, presents unique challenges. First, even at modestly high
resolutions (such as a 25 km grid over the earth for geophysical systems), a single physical state variable,
represented as an image channel, consists of more than a million grid points (pixels). This is about 20×
larger than standard CV image datasets such as ImageNet (Deng et al., 2009). For some systems, there may
be hundreds of such state variables represented at each grid point (e.g., Hersbach et al., 2020). The high
dimensionality places strict limitations on architectures that scale poorly with resolution and/or channel
dimensions.

To account for scaling difficulties while making spatiotemporal predictions, most models predict temporal
sequences of physical states in an autoregressive manner. Prior efforts across a wide set of spatiotemporal
forecasting problems have observed an inherent trade-off in autoregressive forecasting: smaller time-steps
typically result in an easier one-step task, but total error grows with an increasing number of steps even over
a fixed time window (Bi et al., 2022; Tran et al., 2023; Li et al., 2021a; Stachenfeld et al., 2022; Krishnapriyan
et al., 2022). Methods to reduce this autoregressive error growth to enable either longer forecasts or smaller
step sizes have included using multiple models trained at different timescales to reduce the total number of
steps (Bi et al., 2022), learned step sizes (Tran et al., 2023), dissipative priors (Li et al., 2021a), spectral
disretization in time (Li et al., 2021b), noise injection (Stachenfeld et al., 2022), and multi-step rollouts
during training (Lam et al., 2022; Pathak et al., 2022). These approaches have shown promise but many
drastically increase training cost (multi-step, multi-model, spectral-in-time), add additional hyperparameters
that must be tuned (noise injection), or are only applicable in certain cases (dissipative priors).

In this paper, we critically analyze sources of this autoregressive error growth. We highlight geophysical
applications as earth systems are both large in scale and often demand long-range forecasts of physical
state variables—for example, forecasts of the atmospheric state (wind, temperature, precipitation, etc.) are
commonly run for several years to understand the atmosphere’s global behavior, particularly with a changing
climate. Autoregressive error corruption renders such forecasts inadequate for any scientific analyses and it is
critical to develop methods to mitigate this. We focus on models derived from prototypical neural operators
such as variants of the Fourier Neural Operator (FNO) (Li et al., 2021b) which have demonstrated promising
results on various scientific applications that include earth systems (Pathak et al., 2022). These models utilize
spectral transformations to implement global operations in a compute-efficient manner—for example, the
FNO implements global convolutions through fast Fourier transforms (FFTs). We suggest novel changes
to their model architectures by borrowing ideas from classical numerical methods such as pseudospectral
schemes for solving nonlinear time-dependent PDEs as well as application-specific modifications that address
instabilities that arise due to the structure of the problem.

Specifically, our contributions are as follows:

1. Connecting sources of instability and numerical analysis. We draw parallels between insta-
bilities that arise in autoregressive spatiotemporal forecasting of physical state fields and standard
numerical analysis through the lens of pseudospectral numerical schemes and demonstrate that au-
toregressive spatiotemporal models show signs of aliasing and numerical instability, contributing to
nonlinear error growth and divergence (much like in pseudospectral numerical methods).

2. Controlling error growth through model and application-specific innovations. We intro-
duce several modifications to our architectures to control the above error growth without inflating
our computational/memory expense. These include (1) frequency-domain spectral normalization to
control the sensitivity of spectral convolutions, (2) depthwise-separable spectral convolutions for ef-
ficient parameter usage, (3) adapting the classical Double Fourier Sphere (DFS) method to represent
functions defined on a spherical geometry as a torus for geophysical applications, and (4) data-driven
spectral convolution.

3. Boosting long-range autoregressive performance. We demonstrate the efficacy of our pro-
posals by applying them in off-the-shelf fashion to standard neural operators such as the FNO and
its variants. Our experiments across multiple physical systems including Navier-Stokes benchmark

2

Published in Transactions on Machine Learning Research (11/2023)

fluid simulations, shallow water equations on rotating sphere, and weather forecasting demonstrate
improved stability and long-term accuracy. The last system is an especially challenging problem
that models the high resolution spatiotemporal patterns of atmospheric variables on a planetary
scale with broad scientific and societal implications. In this setting, even for particularly volatile
fields such as surface wind, we show that our improvements enable up to 800% longer instability-free
forecasts, paving the way for long-range predictions using neural operators. Models for smoother
problems like shallow water using our modifications show no signs of instability at any point in our
experiments.

Outline. We first provide some background on the connection between pseudospectral methods and our
observed sources of instability in neural operator models in §2. We then explore these sources of error in the
context of neural operators in §3, introduce our innovations to overcome these in §4, and finally demonstrate
the impact of our innovations across different physical systems in §5.

2 Background

2.1 Fourier Pseudospectral Method

The standard approach for introducing neural operators explores the connection between neural operator
methods and integral methods for the solution of linear PDEs (Li et al., 2021b). However, these methods also
have a strong mechanistic similarity to pseudospectral methods used for solving time-dependent nonlinear
PDEs (Orszag, 1970; Eliasen et al., 1970)—we use this alternative perspective to motivate their construction
as the connection exposes sources of numerical instability in these models.

Spectral methods approximate a function u(x, t) defined over space and time by a linear combination of

K basis functions u|K(x, t) =
∑K

k=0 Uk(t)φk(x) where φk is the kth element of the set of basis functions
and Uk(t) is the corresponding time dependent coefficient. Bases are chosen to allow for efficient numerical
algorithms while offering rapidly decreasing truncation error T|K [u]2(t) =

∑∞
k=K U2

k (t) as K increases. A
function that can be represented with no truncation error for finite K is called bandlimited. In this work,
unless explicitly stated otherwise, we will be referring to the Fourier basis φk(x) = ei2πkx. We note that this
choice of basis implicitly assumes periodic boundary conditions which will be discussed later in the context of
earth systems. Pseudospectral methods differ from pure spectral methods in that they augment the spectral
representation with a representation in the spatial domain sampled at N points {x1, . . . , xN } (Fornberg,
1996) such that now both our spectral and spatial representations consist of discrete sets of elements. This
property, along with the existence of fast spectral transforms, enables efficient computation of nonlinear
terms.

Relying on discrete transforms introduces complications that must be accounted for in pseudospectral meth-
ods. Instead of computing true basis coefficients Uk(t) =

∫
Ω

u(x, t)φk(x) dx, we instead compute the finite

approximation ûk(t) =
∑N

n=1 φk(xn)un(t). Different basis functions may be indistinguishable when sampled
at a finite number of points and so the estimated coefficients become the sum of the true coefficients of
these indistinguishable basis functions. This phenomenon is called aliasing and the unresolvable modes are
called aliases. For the Discrete Fourier Transform (DFT), modes above the Nyquist frequency of N/2 are
aliases of lower frequency modes (Smith, 2007). The discrete aliasing error for the DFT can be defined

as A|K [u(t)]2 =
∑K

k=−K(
∑

j 6=0 Uk+jN (t))2. Aliasing is often introduced by the application of nonlinear
transformations applied in the spatial domain through a process described below.

To explore this, we examine the following one-dimensional nonlinear advection equation applied to a time-
varying scalar field u ∈ L2(T) defined on the periodic domain x ∈ [0, 1]:

∂u(x, t)

∂t
= −u(x, t)

∂u(x, t)

∂x
(1)

Assuming that u has bandlimit K = N
2 , we can exactly represent u by the Fourier basis coeffiecients ûk

computed by the DFT. In frequency space, applying linear differential operators can be done via element-
wise multiplication and applying 1 amounts to reducing the equation to a system of ODEs defined by the

3

Published in Transactions on Machine Learning Research (11/2023)

convolution:

∂ûk(t)

∂t
=

(
û(k, t) ∗

∂̂u

∂x
(k, t)

)
[k], ∀k ∈ {−2K, . . . 2K}. (2)

Computing these derivatives is where the pseudospectral method has a significant advantage over spectral
methods. The direct convolution in the frequency domain has a cost of O(N2), but by the dual of the
Convolution Theorem (Smith, 2007), we could also compute this by transforming back into the spatial domain
(O(N log N)) and subsequently performing elementwise multiplication (O(N)). Once the time derivatives
are computed, one can use any off-the-shelf ODE integrator to march the equation forward via the method
of lines (Boyd, 2013).

While the transform approach is significantly more efficient, computing the nonlinear term in the spatial
domain introduces aliasing. The bandlimit of the newly computed time derivative is up to twice that of
the original function (for the full derivation, see Appendix A.1). Without increasing the spatial sampling
rate, these newly generated modes will alias back onto modes below the Nyquist limit. This is true not
only for polynomials as seen here, but also many commonly used nonlinear functions in deep learning, which
can be seen informally through the Weirstrass Approximation Theorem since our continuous nonlinearities
can be arbitrarily closely approximately by infinite series of polynomials over a finite interval (Hunter &
Nachtergaele, 2001). Aliasing is a major contributor to instability for pseudospectral methods and, as we
will see in later sections, in the use of autoregressive neural operators as well.

2.2 Connection to Fourier Neural Operators

The pseudospectral method can be summarized as using fast transforms to alternate between the spectral
domain, where we can quickly compute high-accuracy spatial derivatives via convolution, and the spatial
domain where we can compute nonlinearities with similar efficiency. The resulting value is then added back
to the original state according to an ODE integration rule. We note a similar pattern in Fourier Neural
Operators (FNO).

Consider one FNO block applied to a problem with one spatial dimension. Let v(ℓ) ∈ RN×D(ℓ)

denote the
hidden state at layer ℓ ∈ {0, . . . , L} at each discretization point such that v(0) = u. We use N, K, D to
denote the sizes of the spatial, frequency, and channel dimensions respectively. The block is parameterized

by W (ℓ) ∈ RD(ℓ+1)×D(ℓ)

and R(ℓ) ∈ CK×D(ℓ+1)×D(ℓ)

and computed as:

v
(ℓ+1)
ic = h

(D(ℓ)∑

c′=1

W
(ℓ)
cc′ v

(ℓ)
ic′ +

[
F−1KF NO(Fv(ℓ))

]
ic

)
(3)

KF NO(Fv(ℓ))kc =

D(ℓ)∑

c′=1

R
(ℓ)
kcc′ [Fv(ℓ)]kc′ (4)

where F denotes the Discrete Fourier Transform and h denotes an arbitary nonlinear activation function.
Note that we use i, k to index the spatial/frequency domains respectively. In subsequent sections we will
refer to the first term inside the nonlinearity of Equation 3 as a pointwise linear operation (or equivalently
1x1 convolution) and the second term, which is expanded in Equation 4, as the spectral convolution.

For the purposes of our later discussion on aliasing mitigation, the key connection between the FNO and
pseudospectral methods is the fact that both methods repeatedly alternate between the spectral domain
where they compute large-kernel convolutions and the spatial domain where they apply nonlinearities. In
both cases, the nonlinearity in the spatial domain potentially introduces aliasing while the spectral trans-
formation offers opportunities for efficiently mitigating this aliasing. This connection allows us to explore
solutions from the pseudospectral literature for stability problems faced by the FNO. Deeper connections in
terms of functional form are derived for interested readers in Appendix A.2.

Section 3.1 empirically explores the consequences of this shared aliasing behavior while Section 4.2 proposes
mitigation strategies.

4

Published in Transactions on Machine Learning Research (11/2023)

2.3 Related Work

Aliasing in Deep Learning. While aliasing in deep neural networks has previously been studied in
classification and generative models Zhang (2019); Zou et al. (2020); Vasconcelos et al. (2021); Ribeiro &
Schön (2021); Karras et al. (2021), there has been a surprisingly small amount of exploration in the context of
spatiotemporal forecasting. Zhang (2019) previously showed that aliasing allows convolutional architectures
to learn non-shift equivariant features. Zou et al. (2020), Ribeiro & Schön (2021), and Vasconcelos et al.
(2021) demonstrate in multiple settings that while low-pass filtering is valuable to improving model accuracy,
CNNs typically do not allocate capacity to do so via normal training procedures. In the generative space,
Karras et al. (2021) observed significant improvements to consistency in GAN-generated data by employing
anti-aliasing measures. Within the context of neural operators, Fanaskov & Oseledets (2022) showed that
aliasing caused by ReLU nonlinearities can lead to significant error. Their fully spectral solution avoids
aliasing, but scales poorly due to O(K2D) complexity in frequency mode mixing.

Fourier Neural Operators. Fourier neural operators and their variants (Li et al., 2021b) have been a
popular and successful class of neural networks used for solving PDEs. They have been shown to be efficient
universal approximators for the solution of PDE systems (Kovachki et al., 2021; De Ryck & Mishra, 2022) and
have been successfully applied to scientific computing problems in a variety of challenging domains (Pathak
et al., 2022; Wen et al., 2022; Li et al., 2022; Guibas et al., 2021; Guan et al., 2021; Yin et al., 2022; Witte
et al., 2022; Li et al., 2021a; Tran et al., 2023; Fanaskov & Oseledets, 2022), particularly those related to
fluid dynamics and earth systems. Our focus in this paper is on stabilizing and improving the autoregressive
use of neural operators for spatiotemporal problems (also referred to as Markov Neural Operators in Li
et al., 2021a), which is a necessity for applying these methods to large-scale systems. The Markov Neural
Operator of Li et al. (2021a) is shown to reproduce statistical properties of the attractor in dissipative chaotic
dynamical systems, allowing long-term autoregressive forecasting via use of Sobolev losses and dissipative
data augmentation. Here, we also aim to achieve stable trajectories with autoregressive FNOs, but target
systems with external, non-constant forcings and focus on architecture-specific sources of error. While we
showcase the FNO architecture and its variants due to their connection with pseudospectral PDE methods,
many of our contributions can be applied to any neural network used for autoregressive temporal forecasting.

Spherical Architectures. One motivation for addressing stability in a scalable manner is to apply these
tools to earth systems. In these settings, we must also account for spherical geometry. We address this in a
lightweight manner in FNO via use of the DFS method, but other neural architectures designed for spherical
geometry (Cohen et al., 2018; Esteves et al., 2017; Defferrard et al., 2020) are relevant to our discussions,
and we directly compare our model against some of these in Section 5.1. We note that in order to to make
the cost of handling spherical geometry minimal, our DFS approach does not seek to obtain exact SO(3)
equivariance as found in the SO(3) or spherical convolutions of of Cohen et al. (2018) or Esteves et al. (2017).

3 Where Autoregressive Neural Operators Fail

3.1 Aliasing and Unbounded Out-of-Distribution Error Growth

We begin by demonstrating experimentally where this autoregressive growth occurs in the spectrum. For
this, we use a simplified version of the Navier-Stokes problem with Kolmogorov forcing from Kochkov et al.
(2021) — this system is regularly used for testing neural operator models. Usually, the objective is to predict
a single timestep significantly larger than the timestep of the integrator used to generate the data. The large
timestep is the key to the speed-up offered by neural operator methods over conventional numerical methods.
However, our goal in using this system is to demonstrate the growth of autoregressive error on a nontrivial
task in which prior work has established the feasibility of approximating dynamics over the given interval,
so we instead predict the result of a 300× smaller step to produce what should be an even easier problem
than the original test case. Architectural and training details for figures related to this experiment can be
found in Appendix C.1.

Figure 1 shows that the vanilla FNO must sacrifice resolution for stability. While the gap is marginal, for
the initial steps, the FNO with no spectral truncation outperforms its truncated relatives, but the FNO
without spectral-in-time discretization diverges even on this relatively simple task within a small number of

5

Published in Transactions on Machine Learning Research (11/2023)

where R(ℓ) ∈ CK×D(ℓ+1)×D(ℓ)

. We can define a depthwise separable convolution in the spectral domain by

instead parameterizing the convolution with a decoupled channel mixing matrix V ∈ Rd(ℓ+1)×d(ℓ)

and spectral

filter r(ℓ) ∈ CK×d(ℓ)

and computing:

KDS(Fv(ℓ))kc =
d(ℓ)∑

c′=1

V
(ℓ)

cc′ r
(ℓ)
kc′ [Fv(ℓ)]kc′ . (7)

Note that the channel mixing parameterized by V can be performed in the spatial domain for a small
efficiency savings. This reparameterization reduces the parameter growth rate from N × Din × Dout to
(N × Din) + (Din × Dout) which in modern architectures can reduce parameter counts by hundreds or
close to a thousand times. It is possible to reduce this even further for larger problems through the use
of meta-networks similar to those used for continuous position embeddings (Liu et al., 2022a) to generate
convolutional filter weights, though at the cost of additional operations.

Spectral Normalization. In Figure 1, we see that once the data becomes sufficiently corrupted, error
growth becomes exponential. This behavior may be partly explained by examining the distribution of
singular values in weight matrices. Empirically, we find that singular values can be very large, up to 50
for some layers. This sensitivity concern is a well-known issue (Liu et al., 2020; Van Amersfoort et al.,
2020; Rosca et al., 2021) in other tasks, particularly uncertainty quantification. One mitigation approach
is spectral normalization (Miyato et al., 2018), which ensures that behavior both in and out-of-distribution
during training is bounded by rescaling weights by the spectral norm (or equivalently the maximum singular
value) of the weight matrix. This ensures that the largest singular value of the weight matrix is less than
one.

Circulant matrices, which represent discrete circular convolution in the spatial domain, are well known to
be diagonalized by the Discrete Fourier Transform with eigenvalues equal to the Fourier coefficients of the
convolutional filter (Smith, 2007). In the case of spectral convolution, the filter is already parameterized
in frequency space, so we can adapt the spectral normalization constraint exactly and differentiably by
applying a squashing function to the polar parameterization of the filter coefficients. Representing the filter

coefficients r
(ℓ)
k in polar form r(a, θ) = ae2πiθ, it is sufficient to constrain |a| ≤ 1 which can be achieved by

constructing the spectral filter coefficients as:

r(a, θ) = σ(a)eiθ (8)

where σ is the sigmoid nonlinearity. This ensures that the spectral norm of the convolution operator is
bounded from above by one. We use this procedure for spectral domain spatial convolution and traditional
spectral normalization for pointwise linear operations.

4.2 Aliasing and Learning to Filter

One of the most prevalent approaches for eliminating aliasing in pseudospectral methods is oversampling
in the spatial domain or, equivalently, filtering a fixed number of the highest frequencies in the Fourier
domain (Orszag, 1971). The polynomial nonlinearities frequently encountered in nonlinear PDEs produce
new Fourier modes in a predictable manner, so it is often possible to define explicit oversampling or low-pass
filtering strategies which exactly eliminate aliasing depending on the order of the polynomial. These schemes
can significantly increase the cost of the simulation, but are often necessary for accurate, stable computation.

The frequency-domain behavior of the non-polynomial nonlinear functions used in deep learning is signif-
icantly more complicated and can vary depending on input values — for analytic functions, this can be
directly observed through analysis of the Taylor expansion around different points. In these cases, a fixed
truncation strategy may be either computationally wasteful and overly diminish frequency-domain resolu-
tion or may be insufficient depending on the problem. The spectral convolution of the FNO can learn
problem-specific truncation strategies by setting filter coefficients at or very close to zero; however, this is
not enough to perform low-pass filtering in the conventional FNO block. As we can see in panel (a) of Figure

8

Published in Transactions on Machine Learning Research (11/2023)

Pointwise

Linear

Spectral

Convolution

Pointwise

Linear

NL Spectral

Convolution

Pointwise

Linear

a) FNO b) Post-Filtered
FFT

LayerNorm

PW Linear

PW Linear

IFFT

c) NL Spectral

 Convolution

Figure 3: a) In the FNO, the aliasing-inducing nonlinearity (h) is applied to both paths, including the path
that skips the spectral convolution. This makes it difficult for the model to learn to deal with these newly
generated high frequency modes as there is always a path that is unfiltered. b) By ensuring that all data
passing through the nonlinearity also passes through the spectral convolution, we allow the network the
opportunity to learn to filter any new frequency modes. c) Since the aliasing patterns of non-polynomial
nonlinearities are data dependent, we further augment this approach with a nonlinear spectral convolution
which learns data-dependent offsets (|x|,∠x) for learned filter coefficient components (a, θ) via mode-wise
MLP.

3, the standard FNO structure includes pointwise linear operations which bypass the convolution but still
pass through the nonlinearity. Due to this, learning a simple low-pass filter would actually require exact
cancellation of modes by the fixed nonlinearity.

We propose to restructure the FNO block so that nonlinearities are always followed by learnable filters
capable of directly filtering newly generated high frequencies. Furthermore, since the aliasing behavior of
the nonlinearities used in deep learning can vary depending on the input, we additionally replace the static
convolutional filter of the FNO with one which is a dynamic function of the input data. This proposed block
is presented in panels (b) and (c) of Figure 3. Dynamically generated filters would be infeasible in the dense
convolution case where we would need to predict D2 weights for each mode, but in depthwise separable
spectral convolution, the convolutional filter r has the same dimensionality as the input data, allowing us to
generate filters by a simple mode-wise MLP in the frequency domain. These dynamic filters are implemented
as data-driven offsets to learned biases in both the phase (θ) and magnitude (a) components of the filter.
The data-driven and learned components are then combined and the magnitude component is squashed by
a sigmoid activation as described in Section 4.1. We note that while we are now using a nonlinear function
to generate the filters, the application of the filters remains a linear operation and does not produce new
modes.

4.3 Improved Domain Representation

One simple approach which can correct the artificial discontinuity induced by the 2D FFT while requiring
almost no architectural modifications is the Double Fourier Sphere (DFS) method (Merilees, 1973; Orszag,
1974). Given an equirectangular grid defined by uniform spacing in spherical coordinates λ ∈ [0, 2π], θ ∈ [0, π]
(longitude, colatitude), DFS converts the original zonally periodic domain into a new domain defined on a
torus. This is done by concatenating the original data with its half-phase glide reflection (Martin, 1996), a
transformation consisting of a reflection followed by a translation of that reflection such that a column in
the north-south direction of the concatenated representation follows a line of longitude around the sphere.

9

Published in Transactions on Machine Learning Research (11/2023)

6 Discussion and Conclusion

We showed that we can extend the forecast horizon for autoregressive neural operators significantly at min-
imal additional cost. For sufficiently smooth fields, like those in the shallow water system and Kolmogorov-
forced Navier-Stokes, our design principals allow us to take spectral neural operators that were previously
unstable and extend their forecast horizons indefinitely. For more complex and large-scale systems like ERA5,
we are still able to demonstrate an 800% improvement in forecast horizon, demonstrating a notable advance
towards one of the goals of deep learning-based weather forecast—the ability to extend weather-scale models
to seasonal or even climate-length prediction.

Limitations. The ERA5 example demonstrates some of the challenges that still exist in fully extending to
climate modeling. The imperfect spectral matching in the multi-resolution architecture implies that work
remains to fully understand that particular pathology and rectify it. Further, ERA5 has sharp discontinuities
along coasts and mountain ranges and we find that with one-step-ahead training, our current methods still
fail to learn sufficiently diffusive dynamics to avoid energy accumulation in these areas indefinitely without
significant spectral truncation despite significant improvements on those fronts.

Societal Impact. Given the difficulty of evaluating long-run behavior, one of the key risks inherent to the
development of data-driven models is that their success on short-term metrics could be used by bad actors to
discount first-principles projections despite the fact that these models behave unpredictably away from the
training manifold. Our work is concerned with reducing that risk by identifying and addressing the issues
that cause current models to fail.

While work remains, these results represent a significant improvement in our understanding of autoregressive
neural operators for spatiotemporal forecasting. We provided analyses detailing where these models fail and
identified principled, low cost architectural changes that can mitigate these failure points. Our experiments
reinforced these analyses and demonstrated the success of our innovations, while simultaneously supporting
the argument that the failure modes identified apply to more families of nonlinear forecasting models than
specifically studied here.

References

Kendall Atkinson and Weimin Han. Spherical harmonics and approximations on the unit sphere: an intro-
duction, volume 2044. Springer Science & Business Media, 2012.

Kaifeng Bi, Lingxi Xie, Hengheng Zhang, Xin Chen, Xiaotao Gu, and Qi Tian. Pangu-Weather: A 3D
High-Resolution Model for Fast and Accurate Global Weather Forecast, 2022. URL https://arxiv.org/

abs/2211.02556.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx, Michael S
Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities and risks of
foundation models. arXiv preprint arXiv:2108.07258, 2021.

J.P. Boyd. Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Books on Mathe-
matics. Dover Publications, 2013. ISBN 9780486141923. URL https://books.google.com/books?id=

b4TCAgAAQBAJ.

Keaton J. Burns, Geoffrey M. Vasil, Jeffrey S. Oishi, Daniel Lecoanet, and Benjamin P. Brown. Dedalus:
A flexible framework for numerical simulations with spectral methods. Physical Review Research, 2(2):
023068, April 2020. doi: 10.1103/PhysRevResearch.2.02306810.48550/arXiv.1905.10388.

Hyeong-Bin Cheong. Double Fourier Series on a Sphere: Applications to Elliptic and Vorticity Equations.
Journal of Computational Physics, 157(1):327–349, 2000. ISSN 0021-9991. doi: https://doi.org/10.1006/
jcph.1999.6385. URL https://www.sciencedirect.com/science/article/pii/S0021999199963854.

François Chollet. Xception: Deep Learning with Depthwise Separable Convolutions. In 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 1800–1807, 2017. doi: 10.1109/CVPR.
2017.195.

14

Published in Transactions on Machine Learning Research (11/2023)

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In International Conference
on Learning Representations, 2018. URL https://openreview.net/forum?id=Hkbd5xZRb.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated con-
volutional networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 933–941.
PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/dauphin17a.html.

Tim De Ryck and Siddhartha Mishra. Generic bounds on the approximation error for physics-informed
(and) operator learning. arXiv preprint arXiv:2205.11393, 2022.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by D-adaptation. arXiv preprint
arXiv:2301.07733, 2023.

Michaël Defferrard, Martino Milani, Frédérick Gusset, and Nathanaël Perraudin. DeepSphere: a graph-
based spherical CNN. In International Conference on Learning Representations (ICLR), 2020. URL
https://openreview.net/forum?id=B1e3OlStPB.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255,
2009. doi: 10.1109/CVPR.2009.5206848.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

J.R. Driscoll and D.M. Healy. Computing Fourier Transforms and Convolutions on the 2-Sphere. Advances in
Applied Mathematics, 15(2):202–250, 1994. ISSN 0196-8858. doi: https://doi.org/10.1006/aama.1994.1008.
URL https://www.sciencedirect.com/science/article/pii/S0196885884710086.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network function
approximation in reinforcement learning, 2017.

Erik Eliasen, Bennert Machenhauer, and Erik Rasmussen. On a numerical method for integration of the
hydrodynamical equations with a spectral representation of the horizontal fields. Kobenhavns Universitet,
Institut for Teoretisk Meteorologi, 1970.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning SO(3) Equiv-
ariant Representations With Spherical Cnns. CoRR, 2017. URL http://arxiv.org/abs/1711.06721.

V. Fanaskov and I. Oseledets. Spectral neural operators, 2022. URL https://arxiv.org/abs/2205.10573.

Bengt Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge Monographs on Applied and
Computational Mathematics. Cambridge University Press, 1996. doi: 10.1017/CBO9780511626357.

Bengt Fornberg. A Pseudospectral Approach for Polar and Spherical Geometries.
https://doi.org/10.1137/0916061, 16:1071–1081, 7 2006. ISSN 1064-8275. doi: 10.1137/0916061.
URL https://epubs.siam.org/doi/10.1137/0916061.

Steven Guan, Ko-Tsung Hsu, and Parag V Chitnis. Fourier neural operator networks: A fast and general
solver for the photoacoustic wave equation. arXiv preprint arXiv:2108.09374, 2021.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro. Effi-
cient Token Mixing for Transformers via Adaptive Fourier Neural Operators. In International Conference
on Learning Representations, 2021.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquín Muñoz-Sabater, Julien
Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, Adrian Simmons, Cornel Soci, Saleh Abdalla,
Xavier Abellan, Gianpaolo Balsamo, Peter Bechtold, Gionata Biavati, Jean Bidlot, Massimo Bonavita,
Giovanna De Chiara, Per Dahlgren, Dick Dee, Michail Diamantakis, Rossana Dragani, Johannes Flem-
ming, Richard Forbes, Manuel Fuentes, Alan Geer, Leo Haimberger, Sean Healy, Robin J. Hogan, Elías

15

Published in Transactions on Machine Learning Research (11/2023)

Hólm, Marta Janisková, Sarah Keeley, Patrick Laloyaux, Philippe Lopez, Cristina Lupu, Gabor Radnoti,
Patricia de Rosnay, Iryna Rozum, Freja Vamborg, Sebastien Villaume, and Jean-Noël Thépaut. The ERA5
global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020. ISSN
1477-870X.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
Applications, 2017. URL https://arxiv.org/abs/1704.04861.

J.K. Hunter and B. Nachtergaele. Applied Analysis. World Scientific, 2001. ISBN 9789810241919. URL
https://books.google.com/books?id=oOYQVeHmNk4C.

Eugenia Kalnay. Atmospheric modeling, data assimilation and predictability. Cambridge University Press,
2003.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila.
Alias-Free Generative Adversarial Networks. In Proc. NeurIPS, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy of
Sciences, 118(21):e2101784118, 2021. doi: 10.1073/pnas.2101784118. URL https://www.pnas.org/doi/

abs/10.1073/pnas.2101784118.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds
for Fourier Neural Operators. Journal of Machine Learning Research, 22:Art–No, 2021.

Aditi S. Krishnapriyan, Alejandro F. Queiruga, N. Benjamin Erichson, and Michael W. Mahoney. Learning
continuous models for continuous physics, 2022.

Remi Lam, Alvaro Sanchez-Gonzalez, Matthew Willson, Peter Wirnsberger, Meire Fortunato, Alexander
Pritzel, Suman Ravuri, Timo Ewalds, Ferran Alet, Zach Eaton-Rosen, Weihua Hu, Alexander Merose,
Stephan Hoyer, George Holland, Jacklynn Stott, Oriol Vinyals, Shakir Mohamed, and Peter Battaglia.
GraphCast: Learning skillful medium-range global weather forecasting, 2022. URL https://arxiv.org/

abs/2212.12794.

Zhijie Li, Wenhui Peng, Zelong Yuan, and Jianchun Wang. Fourier neural operator approach to large eddy
simulation of three-dimensional turbulence. Theoretical and Applied Mechanics Letters, 12(6):100389, 2022.
ISSN 2095-0349. doi: https://doi.org/10.1016/j.taml.2022.100389. URL https://www.sciencedirect.

com/science/article/pii/S2095034922000691.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stu-
art, and Anima Anandkumar. Markov neural operators for learning chaotic systems. arXiv preprint
arXiv:2106.06898, 2021a.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential Equa-
tions. In International Conference on Learning Representations, 2021b. URL https://openreview.net/

forum?id=c8P9NQVtmnO.

Jeremiah Liu, Zi Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax Weiss, and Balaji Lakshmi-
narayanan. Simple and principled uncertainty estimation with deterministic deep learning via
distance awareness. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 7498–7512. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/

543e83748234f7cbab21aa0ade66565f-Paper.pdf.

16

Published in Transactions on Machine Learning Research (11/2023)

Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang,
Li Dong, Furu Wei, and Baining Guo. Swin transformer v2: Scaling up capacity and resolution. In
International Conference on Computer Vision and Pattern Recognition (CVPR), 2022a.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s, 2022b.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via DeepONet based on the universal approximation theorem of operators. Nature machine
intelligence, 3(3):218–229, 2021.

G.E. Martin. Transformation Geometry: An Introduction to Symmetry. Undergraduate Texts in Mathe-
matics. Springer New York, 1996. ISBN 9780387906362. URL https://books.google.com/books?id=

KW4EwONsQJgC.

Philip E. Merilees. The pseudospectral approximation applied to the shallow water equations on a
sphere. http://dx.doi.org/10.1080/00046973.1973.9648342, 11:13–20, 1973. ISSN 14809214. doi: 10.
1080/00046973.1973.9648342. URL https://www.tandfonline.com/doi/abs/10.1080/00046973.1973.

9648342.

Sophie Mildenberger and Michael Quellmalz. Approximation Properties of the Double Fourier
Sphere Method. Journal of Fourier Analysis and Applications, 28:1–30, 4 2022. ISSN 15315851.
doi: 10.1007/S00041-022-09928-4/FIGURES/4. URL https://link.springer.com/article/10.1007/

s00041-022-09928-4.

Thomas W. Mitchel, Noam Aigerman, Vladimir G. Kim, and Michael Kazhdan. Möbius Convolutions for
Spherical CNNs. In ACM SIGGRAPH 2022 Conference Proceedings, SIGGRAPH ’22, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450393379. doi: 10.1145/3528233.3530724.
URL https://doi.org/10.1145/3528233.3530724.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization for Gen-
erative Adversarial Networks. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=B1QRgziT-.

Steven A Orszag. Transform Method for the Calculation of Vector-Coupled Sums: Application to the
Spectral Form of the Vorticity Equation. Journal of Atmospheric Sciences, 27:890 – 895, 1970. doi:
10.1175/1520-0469(1970)027<0890:TMFTCO>2.0.CO;2. URL https://journals.ametsoc.org/view/

journals/atsc/27/6/1520-0469_1970_027_0890_tmftco_2_0_co_2.xml.

Steven A. Orszag. On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber
components. Journal of Atmospheric Sciences, 28(6):1074 – 1074, 1971. doi: https://doi.org/10.1175/
1520-0469(1971)028<1074:OTEOAI>2.0.CO;2. URL https://journals.ametsoc.org/view/journals/

atsc/28/6/1520-0469_1971_028_1074_oteoai_2_0_co_2.xml.

Steven A Orszag. Fourier Series on Spheres. Monthly Weather Review, 102:56 – 75, 1974. doi: 10.1175/
1520-0493(1974)102<0056:FSOS>2.0.CO;2. URL https://journals.ametsoc.org/view/journals/

mwre/102/1/1520-0493_1974_102_0056_fsos_2_0_co_2.xml.

Hoon Park, Song-You Hong, Hyeong-Bin Cheong, and Myung-Seo Koo. A Double Fourier Series (DFS)
Dynamical Core in a Global Atmospheric Model with Full Physics. Monthly Weather Review, 141(9):3052
– 3061, 2013. doi: 10.1175/MWR-D-12-00270.1. URL https://journals.ametsoc.org/view/journals/

mwre/141/9/mwr-d-12-00270.1.xml.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances

17

Published in Transactions on Machine Learning Research (11/2023)

in Neural Information Processing Systems, volume 32. Curran Associates, Inc., 2019. URL https://

proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay, Morteza
Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram Hassanzadeh, Karthik
Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-driven high-resolution weather
model using adaptive fourier neural operators. arXiv preprint arXiv:2202.11214, 2022.

Antônio H. Ribeiro and Thomas B. Schön. How Convolutional Neural Networks Deal with Aliasing.
In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2755–2759, 2021. doi: 10.1109/ICASSP39728.2021.9414627.

Oren Rippel, Jasper Snoek, and Ryan P. Adams. Spectral Representations for Convolutional Neural Net-
works, 2015. URL https://arxiv.org/abs/1506.03767.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image
Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.),
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, pp. 234–241, Cham, 2015.
Springer International Publishing. ISBN 978-3-319-24574-4.

Mihaela Rosca, Theophane Weber, Arthur Gretton, and Shakir Mohamed. A case for new neural network
smoothness constraints, 2021.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks, 2019.

Noam Shazeer. Glu variants improve transformer, 2020.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Visualising
image classification models and saliency maps, 2014.

Julius O. Smith. Mathematics of the Discrete Fourier Transform (DFT). W3K Publishing,
http://www.w3k.org/books/, 2007. ISBN 978-0-9745607-4-8.

William F. Spotz, Mark A. Taylor, and Paul N. Swarztrauber. Fast shallow-water equation solvers in
latitude-longitude coordinates. Journal of Computational Physics, 145:432–444, 9 1998. ISSN 00219991.
doi: 10.1006/JCPH.1998.6026.

Kim Stachenfeld, Drummond Buschman Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff, Jonathan
Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned simulators for
turbulence. In International Conference on Learning Representations, 2022. URL https://openreview.

net/forum?id=msRBojTz-Nh.

Alex Townsend, Heather Wilber, and Grady B. Wright. Computing with functions in spherical and polar
geometries I. The sphere, 2015. URL https://arxiv.org/abs/1510.08094.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural operators.
In The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.

net/forum?id=tmIiMPl4IPa.

Joost Van Amersfoort, Lewis Smith, Yee Whye Teh, and Yarin Gal. Uncertainty estimation using a sin-
gle deep deterministic neural network. In International conference on machine learning, pp. 9690–9700.
PMLR, 2020.

Cristina Vasconcelos, Hugo Larochelle, Vincent Dumoulin, Rob Romijnders, Nicolas Le Roux, and Ross
Goroshin. Impact of aliasing on generalization in deep convolutional networks. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 10529–10538, 2021.

18

Published in Transactions on Machine Learning Research (11/2023)

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-FNO—An
enhanced Fourier neural operator-based deep-learning model for multiphase flow. Advances in Water
Resources, 163:104180, 2022.

Jonathan A. Weyn, Dale R. Durran, and Rich Caruana. Improving Data-Driven Global Weather Pre-
diction Using Deep Convolutional Neural Networks on a Cubed Sphere. Journal of Advances in
Modeling Earth Systems, 12(9):e2020MS002109, 2020. doi: https://doi.org/10.1029/2020MS002109.
URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020MS002109. e2020MS002109
10.1029/2020MS002109.

David L. Williamson, John B. Drake, James J. Hack, Rüdiger Jakob, and Paul N. Swarztrauber. A standard
test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Com-
putational Physics, 102(1):211–224, 1992. ISSN 0021-9991. doi: https://doi.org/10.1016/S0021-9991(05)
80016-6. URL https://www.sciencedirect.com/science/article/pii/S0021999105800166.

Philipp A Witte, Russell Hewett, and Ranveer Chandra. Industry-scale CO2 Flow Simulations with Model-
Parallel Fourier Neural Operators. In NeurIPS 2022 Workshop on Tackling Climate Change with Machine
Learning, 2022. URL https://www.climatechange.ai/papers/neurips2022/78.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov momentum
algorithm for faster optimizing deep models, 2023.

Ziyi Yin, Ali Siahkoohi, Mathias Louboutin, and Felix J Herrmann. Learned coupled inversion for carbon
sequestration monitoring and forecasting with fourier neural operators. arXiv preprint arXiv:2203.14396,
2022.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song,
James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep learning: Training
bert in 76 minutes, 2020.

Richard Zhang. Making Convolutional Networks Shift-Invariant Again. In ICML, 2019.

Xueyan Zou, Fanyi Xiao, Zhiding Yu, and Yong Jae Lee. Delving Deeper into Anti-aliasing in ConvNets. In
BMVC, 2020.

A Extended Details

A.1 Pseudospectral Method

Here we perform a step-by-step derivation of the pseudospectral equations from Section 2.1. Recall that
we are exploring the nonlinear advection problem for scalar field u ∈ L2(T) defined on the periodic domain
x ∈ [0, 1]:

∂u(x, t)

∂t
= −u(x, t)

∂u(x, t)

∂x
(11)

Pseudospectral methods compute a solution to the differential equation at a set of N spatial locations
{x1, . . . , xN } through the use of derivatives computed to high accuracy in the spectral domain (Fornberg,
1996). Assuming that u has bandlimit K where K = N

2 , we can exactly represent u at the nth collocation
point as the discrete Fourier expansion:

un(t) =

K∑

k=−K

ûk(t)ek̃xn (12)

19

Published in Transactions on Machine Learning Research (11/2023)

where k̃ = 2πik and ûk(t) = 1√
N

∑N

n=1 un(t)ek̃xn . In frequency space, computing the exact derivative

amounts to elementwise multiplication which by the Convolution Theorem (Smith, 2007) is equivalent to a
convolution in the spatial domain, so plugging 12 into 11, we get:

∂un(t)

∂t
= −

(K∑

ℓ=−K

ûℓ(t)e
ℓ̃xn

)(K∑

m=−K

m̃ûm(t)em̃xn

)
. (13)

Expanding the product of summations reveals modes with wave number up to 2K. In frequency space, we
can represent the equation as a system of independent ODEs at each wave number k = −2K, . . . , 2K:

∂ûk(t)

∂t
= −

2K∑

ℓ=−2K

(k̃ − ℓ̃)ûk−ℓ(t)ûℓ(t) (14)

=

(
û ∗

̂∂u(x, t)

∂x

)
[k] (15)

which now requires performing convolution in frequency space as well. Naive computation of this convolution
is quadratic in the original bandlimit, but this cost can be avoided with fast transform methods like the FFT.
Through the dual of the Convolution Theorem, we have that û∗û = F(F−1û·F−1û) and so for pseudospectral
methods, we can perform the convolution as elementwise multiplication in the spatial domain with the
limiting cost being that of the transform – O(N log N) in the case of the FFT. Once the time derivatives
are computed, one can use any off-the-shelf ODE integrator to march the equation forward via the method
of lines (Boyd, 2013).

However, this introduces a complication as the bandlimit of the RHS of Equation 13 is twice that of the
original function. For K ≥ N

4 , the bandwidth of the time derivative is now greater than the Nyquist limit.
Without increasing the spatial sampling rate, these newly generated modes will alias back onto modes below
the Nyquist limit introducing a new source of error.

A.2 Parameterizing the FNO as a Pseudospectral Method

We begin with the form of an FNO block. Recall that our input is v(ℓ) ∈ RN×D(ℓ)

for layer ℓ ∈ {0, . . . , L} at
each discretization point such that v(0) = u. N, K, D denote the sizes of the spatial, frequency, and channel

dimensions respectively. The block is parameterized by W (ℓ) ∈ RD(ℓ+1)×D(ℓ)

, and R(ℓ) ∈ CK×D(ℓ+1)×D(ℓ)

and
computed as:

v
(ℓ+1)
ic = h

(D(ℓ)∑

c′=1

W
(ℓ)
cc′ v

(ℓ)
ic′ +

[
F−1KF NO(Fv(ℓ))

]
ic

)
(16)

KF NO(Fv(ℓ))kc =

D(ℓ)∑

c′=1

R
(ℓ)
kcc′ [Fv(ℓ)]kc′ (17)

We aim to show how this block can be parameterized in such a way that it is equivalent to:

v
(t+1)
ic = v

(t)
ic + η

∂v
(t)
ic

∂t
(18)

∂v
(t)
ic

∂t
= v

(t)
ic ⊙ [F −1KP S(Fv(t))]ic (19)

KP S(Fv(t))kc = −i2πk[Fv(t)]kc (20)

where we can assume η = 1 without loss of generality as it can be absorbed into any multiplicative term.
Converting between the two requires one structural adjustment and then explicitly setting our parameters

20

Published in Transactions on Machine Learning Research (11/2023)

and activations. For the first step, we move the first term (channel mixing by W) outside of the nonlinear
activation. We then set W to be the identity matrix giving us:

v
(ℓ+1)
ic = v

(ℓ)
ic + h

([
F−1KF NO(Fv(ℓ))

]
ic

)
(21)

Now for R, we assume Din = 1 and Dout = 2. The reason for this will become apparent below. We then set
R to be:

R∗
kcc′ =





−i2πk c = c′ = 1

1 c = 2, c = 1

0 else

(22)

otherwise. This gives two channels - the first applies the spectral differentiation operation (20). The second is
an identity. We can then define h as a GLU activation (Dauphin et al., 2017; Shazeer, 2020) which splits the
channels and performs elementwise multiplication. This completes the mapping by giving us the FNO-like
update:

v
(ℓ+1)
ic = v

(ℓ)
ic′ + GLU

([
F−1K∗(Fv(ℓ))

]
ic

)
(23)

K∗(Fv(ℓ))kc =

D(ℓ)∑

c′=1

R∗
kcc′ [Fv(ℓ)]kc′ (24)

A.3 Aliasing and Nonlinearity

Aliasing in discretized settings is the result of individual modes being indistinguishable at the given sampling
points. For the Fourier basis, we know from the Shannon-Nyquist Sampling Theorem (Smith, 2007) that
for a set of N evenly spaced points, we are able to exactly recover signals with bandlimit up to N/2 via
the Discrete Fourier Transformation (DFT). However, in cases where the signal is not bandlimited, the
coefficients returned by the DFT are incorrect as higher modes alias onto lower modes. In this case, if we
denote by Uk the true Fourier coefficients that we would obtain in the infinitely sampled regime, the DFT
returns coefficients:

ûk =

∞∑

j=−∞

N∑

n=0

ei2π(k+jN)xnun (25)

= Uk +
∑

j 6=0

Uk+jN (26)

If we denote by Uk the true Fourier coefficients one would obtain in the continuous regime, we can observe
that aliasing error, the distance between the true truncated function and the function returned by the DFT
is defined as:

A2
|K [u] =

K∑

k=−K

(Uk − ûk)2 =
K∑

k=−K

(
∑

j 6=0

Uk+jN)2 (27)

In many deep learning settings, addressing aliasing has led to improvements in accuracy and generalizability
(Vasconcelos et al., 2021; Ribeiro & Schön, 2021; Zhang, 2019; Karras et al., 2021), but these findings are
often neglected in the design of new architectures. However, in the autoregressive forecasting setting, these
types of issues become a significantly larger obstacle.

In Equation 13, we saw that the nonlinearity in the true nonlinear advection equation results in a bandlimit
expansion. This is in fact true of any arbitrary nonlinearity, though the results are less predictable in

21

Published in Transactions on Machine Learning Research (11/2023)

the activation functions flattens the spectrum. The right panel indicates this effect is diminished, though it
doesn’t appear to be eliminated, by explicit anti-aliasing. An interesting aspect is that applying activations
to oversampled versions of the flattened spectrums now leads to spikes at the Nyquist frequencies for each
resolution. This is a drastic contrast with the anti-aliased spectrum which has no spikes. This experiment
shows that while exactly characterizing the impact of aliasing is difficult to analytically model, it does seem
to contribute toward the issues we observe in real training scenarios.

A.4 Comparing Spatial and Spectral Convolution

Spatial and spectral convolution are connected through the Convolution Theorem. Given N uniformly-spaced
samples from signals f, g, the circular discrete convolution is defined:

(f ∗ g)[n] =

N−1∑

m=0

f [m]g[n − m] (28)

Equivalently by the convolution theorem, we could define this as:

(f ∗ g)[n] = F−1(Ff ⊙ Fg) (29)

where F is the discrete Fourier transform and ⊙ denotes elementwise multiplication. For large kernels,
spectral domain convolution is significantly faster as the limiting factor is the N log N transform compared
to the N2 of the spatial implementation. However, for the small kernel convolutions generally used in spatial
CNNs, methods like im2col enable linear scaling for the spatial convolution. In practice using PyTorch, we’ve
found the kernel size where the execution times equalize to be surprisingly small, though in many cases the
local response is desirable and spectrally-parameterized convolutions must carry a much larger number of
parameters to represent the same filter.

However, in some cases, there are advantages to non-sparse weights as well. If we consider a one-dimensional
kernel of size 3, the discrete Fourier transform is computed on the expanded kernel [w0, w1, 0, . . . , 0, w−1]:

ŵk =

N−1∑

n=0

wne− i2π

N
kn. (30)

While the typical interpretation of this equation is the inner product of w and the trigonometric polynomial
with frequency k, we can equivalently view it as the evaluation of the sum of trigonometric polynomials
with frequencies n evaluated at k

N
weighted by wn. Thus, the resulting frequency response is non-sparse but

has a very small number of degrees of freedom as a result of the sparsity of the spatial kernel. In domains
where the spectrum rapidly decays, the learning process might then favor using these degrees of freedom to
learn patterns relevant to the larger magnitude low frequencies and largely ignore the significantly smaller
magnitude high frequencies.

A.5 DFS transform details

Here we provide additional details of the DFS method (Merilees, 1973; Orszag, 1974). For a field f defined
on an equirectangular grid, the DFS representation of f is given by f̃ : [−π, π]2 → R:

f̃(λ, θ) :=





g(λ + π, θ), (λ, θ) ∈ [−π, 0] × [0, π]

h(λ, θ), (λ, θ) ∈ [0, π] × [0, π]

g(λ + π, −θ), (λ, θ) ∈ [0, π] × [−π, 0]

h(λ + π, −θ), (λ, θ) ∈ [−π, 0] × [−π, 0]

where g(λ, θ) = f(λ − π, θ) and h(λ, θ) = f(λ, θ). The transformed function f̃ is now periodic in both the λ
and θ directions. As demonstrated by Orszag (1974), the 2D Fourier basis is equivalent to a complex expo-
nential expansion in the zonal direction and alternating sine/cosine expansions in the meridional direction.
Subsequently, much of the recent work in the area focuses on improved basis representations for the DFS

23

Published in Transactions on Machine Learning Research (11/2023)

Table 1: Computational costs associated with changes. These are theoretically timings and do not reflect
hardware realities and relative costs of different layers in the network. Dimensions are N for the number of
points on each spatial axis (assuming H=W=N), K for the kernel size of a spatial convolution, and D for
the number of channels in the hidden dimension.

Change Parameters FLOPs
Old New Old New

Dense → DS Conv N
2
D

2
N

2
D + D

2
N

2
D

2
N

2(D + D
2)

DFS → DFS Hybrid 2N
2
D + D

2
N

2
D + D

2 + K 2N
2 log N + N

2(D + D
2) N

2 log N + N
2(D + K + D

2)
Static → Dyn Conv N

2
D + D

2 2D + N
2
D + 3D

2
N

2(D + D
2) N

2(6D + 3D
2)

method. However, we choose to use the naive function expansion as it simplifies the implementation and
allows for more natural handling of vector-valued fields in which we just flip the sign of any field directed
across the axis of reflection.

We note the DFS method provides an additional advantage of flexibility in patchified settings like that of
the AFNO used in FourCastNet (Pathak et al., 2022). In the patchified setting, the extremal north/south
“tokens” are no longer representative of the poles, but rather of large regions surrounding the poles. Efficient
spherical harmonic transforms are oblivious to this. As an example, the asymptotically optimal Driscoll-
Healy transform (Driscoll & Healy, 1994) employed by TS2KIT (Mitchel et al., 2022), which we use to
implement spherical architectures in Section 5, for instance, assigns a quadrature weight of zero to polar
samples. This amounts to discarding the information from the entire patch, which for FourCastNet contains
10,080 non-polar samples per variable. This limitation does not exist with the DFS method as we have full
control of zonal and meridional bandwidth independently and can adjust bandwidth restrictions to account
for the widest region of the patch.

B Computational Comparison

While we include timings in Table 1, we include here a table describing the FLOP/parameter comparison
on a block-wise basis as the strict timings are affected by memory movement and sequential kernel launches
and may not represent an optimized version. In practice, as seen in Table 3, switching to a DS convolution
results in a significant speedup despite the slight increase of FLOPs while the Hybrid convolution results a
larger slowdown despite the theoretically smaller increase. The practical runtimes could further change as
complex support, especially complex mixed-precision support, improves in deep learning libraries.

C Experiment Details

C.1 Navier-Stokes

C.1.1 Data

Data is generated using code provided by Tran et al. (2023) to match the settings described by Kochkov et al.
(2021). It solves the Navier-Stokes equations (nondimensionalized with Reynolds number Re = 1000) for a
system with constant Kolmogorov forcing f = 4 cos(4y)x − .1u across initial conditions. The trajectories are
generated using a pseudospectral method at 2048 × 2048 resolution and is integrated forward at ∆t = .0002
by a fourth order Carpenter-Kennedy method. 32/4/4 trajectories were generated for train/valid/test with
9764 snapshots per trajectory for a total of 410,088/39,056/39,056 examples.

For the task described in Li et al. (2021b) the sampling occurs at intervals of ∆t = 1 as this large time-step
provides a challenge for numerical integration and thus performing well at such a time-step demonstrates a
significant speed improvement for the deep learning approach. For our purposes of demonstrating autore-
gressive growth, we instead sample at ∆t = .0035. The timestep was entirely chosen due to the fact that this

24

Published in Transactions on Machine Learning Research (11/2023)

was the interval at which the generation code saved snapshots by default. For consistency with the larger
scale tasks, we also predicted u, v values as opposed to vorticity.

C.1.2 Model Configurations and Training Details

Several architectural choices were made for consistency across models. In each network, appended grid
coordinates were replaced by fully learnable position embeddings similar to those used in Pathak et al.
(2022). Furthermore, ReLU activations were replaced by the continuously differentiable alternative SiLU
(Elfwing et al., 2017). Apart from these changes, each network was generated using the four-layer variant
released by the authors of the respective comparison models with hidden dimension of 128.

The ReFNO only uses the modifications from Sections 4.1/4.2 as the domain for this problem is the 2-Torus
so modifications to account for spherical geometry are unnecessary. As this is a smaller problem, the depth-
separable implementation did not provide enough of a memory savings to increase the hidden dimension
as we do in for the Shallow Water example (see: C.2), so we instead augmented the spatial MLP with the
bottleneck structure popularized by Sandler et al. (2019) so that run-time was comparable between models.

All models were trained using identical settings. To minimize the impact of hyperparameter tuning, we
used the automated learning rate search provided by Defazio & Mishchenko (2023) code for Adan (Xie
et al., 2023). During each training step, one input snapshot was provided to the model for the purposes
of predicting the output at t = t0 + ∆t. These were optimized using mean-squared error rescaled by the
mean norm of the dataset to reduce the impact of precision issues for 20 epochs at batch size of 128 per run.
Error bars are the 95% confidence intervals produced by sampling over 7 individual training runs per model
evaluated across all initial conditions in the test set.

C.2 Rotated Shallow Water

C.2.1 Data

We generate the data from the hyperviscous, forced shallow water equations:

∂u(x, t)

∂t
= −u(x, t) · ∇xu(x, t) − g∇xh(x, t) − ν∇4

x
u(x, t) − 2Ω × u(x, t) (31)

∂h

∂t
= −H∇x · u(x, t) − ∇x · (hu) − ν∇4

x
h + F (32)

where ν is the hyperdiffusion coefficient, Ω is the Coriolis parameter, u is the velocity fields, H is the mean
height, and h denotes deviation from the mean height.

The forcing F is defined:

def f ind_center (t) :
time_of_day = t / day
time_of_year = t / year
max_decl ination = . 4 # Truncated from es t imate o f ear th ’ s s o l a r d e c l i n e
lon_center = time_of_day∗2∗np . p i # Resca le s in to 0−1 then s c a l e to np . p i
l a t_cente r = np . s i n (time_of_year ∗2∗np . p i)∗ max_decl ination
lon_anti = np . p i + lon_center #2∗np . ((np . s in (−time_of_day∗2∗np . p i)+1) / 2)∗ p i
return lon_center , lat_center , lon_anti , l a t_cente r

def season_day_forcing (phi , theta , t , h_f0) :
phi_c , theta_c , phi_a , theta_a = f ind_center (t)
sigma = np . p i /2
c o e f f i c i e n t s = np . cos (phi − phi_c) ∗ np . exp(−(theta−theta_c)∗∗2 / sigma ∗∗2)
f o r c i n g = h_f0 ∗ c o e f f i c i e n t s
return f o r c i n g

25

Published in Transactions on Machine Learning Research (11/2023)

This is not designed to mimic an exact physical process, but rather to force some level of daily/annual
pattern. It consists of two Gaussian blobs centered on opposite sides of the planet that circle on a daily
basis. Each Gaussian increases/decreases h with the intensity of the forcing increasing towards the center.
The axis of rotation for these Gaussians varies over a model year which we define to be 1008 model hours.

Integration is performed forward in time using a semi-implicit RK2 integrator. Step-sizes are computed using
the CFL-checker in Dedalus. The 3/2 rule is used for de-aliasing. Background orography is taken from earth
orography and passed through mean-pooling three times (until the simulations became stable empirically).
Hyperdiffusion is matched at ℓ = 96.

Initial conditions are randomly sampled from ERA5. u, v, z are taken from the hpa 500 level with z used as
h is the shallow water set-up. We found that these conditions did not produce stable rollouts at the given
hyperdiffusion level without pre-filtering the data, so prefiltering was performed by executing ten iterations
of 50 steps followed by solving a balance BVP. This was likely more than necessary, but given the quantity
of data generated, we wanted to avoid in-depth manual inspection of the data.

As the diffusive system is decaying over time, we initialized each run with 500 burn-in hours then took the
next 3 model years of data for a total of 3024 samples per year. In total, the training set consisted of 25
trajectories of length 3024 for a total of 75,600 samples. Validation and test used an additional 2 and 3
trajectories respectively.

C.2.2 ReDFNO Architecture

The ReDFNO utilized four blocks structured as described in Figure 3. Each block is defined with embedding
dimension 192. Our frequency-domain spectral normalization is used for spectral layers with conventional
spectral normalization is used for spatial layers. Hybrid convolutions with DFS padding are used for the
spectral block. We found a slight boost to stability by using a nonlinear spectral block as used in the AFNO.
This structure is described in Figure 3. In total, this network contains approximately 17 million parameters.

We utilized time-dependent position embeddings. Position embeddings have previously been used for neural
operators in both the AFNO (Guibas et al., 2021) and FCN. However, in cases where external forcing data
is not directly available, static position embeddings are unable to fully represent seasonal behavior in earth
systems. To address this, we introduce dynamic, time-dependent position embeddings. These embeddings
are generated through the use of a shallow MLP that combines static embeddings with either sinusoidal
features representing daily and yearly periods or more informative features directly computed for a given
problem like solar declination.

C.2.3 Comparison Configurations

As our model used 17 million parameters, we tuned and augmented comparison models until the sizes were
roughly comparable when scaling laws allowed it. Otherwise for FNO based models, we used as similar
settings as possible, though the vastly different parameter scaling led to higher parameter counts. We
list model dimensions in Table 2. The S2CNN model uses filters of [20, 16, 12, 8] for interpolates, and the
DeepSphere uses kernel size 5 rather than the default 3, as we found these to achieve better results. Our UNet
baseline uses ConvNext (Liu et al., 2022b) blocks with three blocks per stage instead of the classical blocks
from Ronneberger et al. (2015) as we felt modernizing the architecture was important for fair comparison.
We found this worked considerably better in tests.

Note that persistence and climatology are two constant forecasts. Persistence uses the initial condition as
the forecast while climatology implies using the mean estimate over the dataset.

C.3 ERA5

C.3.1 ReADFNO Architecture

This network uses FourCastNet as a base. The core processing unit consists of 8 AFNO blocks using our
factorized nonlinear spectral convolutions rather than the standard complex MLP. As the AFNO architecture

26

Published in Transactions on Machine Learning Research (11/2023)

Table 2: Model dimensions for SWE experiments, along with the 1-step mean absolute error (MAE) and
100-step MAE. All MAE are reported in units of 10−2.

Model Stages Hidden dimensions #Params 1-step MAE Avg. 100-step MAE

UNet 4 [64, 128, 256, 512] 16M .57 31.4
FNO 4 64 536M 0.80 19.2
SNO 4 64 268M 0.65 26.6
ReSNO 4 192 9M 1.18 22.6
ReDFNO 4 192 17M 0.49 4.1

S2CNN 4 [64, 128, 256,512] 18M 1.63 36.0
DeepSphere 5 [64, 128, 256, 512, 1024] 38M 1.74 NaN

Table 3: Ablation path for SWE experiments evaluated on validation set. In descending order, each row
adds new feature on top of previous inclusions until we reach the full stabilized architecture. Step is one
training step (forward and backward) at batch size 16 on a NVIDIA A100 GPU. (DS=depth separable con-
volution, DFS=Double Fourier Sphere transform, SN=Spectral Normalization, Path=Reorder+Nonlinear,
Shaping=Latitude-wise spectral truncation)

Model #Params Step (s) MSE (t=1) MSE (t=20) MSE (t=40) MSE (t=80)

FNO 536M .20 8.1e-5 2.6e-4 1.0e-2 inf
+DS (x3 Width) 25M .22 1.2e-4 1.0e-2 inf inf
+DFS 27M .40 8.2e-5 inf inf inf
+SN 27M .46 8.7e-5 4.5e-4 8.0e-4 1.4e-3
+Path 27M .46 9.5e-5 3.6e-4 5.6e-4 1.0e-3
+Shaping (ReDFNO) 17M .41 8.0e-5 2.3e-4 3.7e-4 6.3e-4

is more complication and non-isotropic, we made several further changes to eliminate aliasing-inducing
operations:

1. Downsampling - Strided convolutions perform decimation which is addition in the spectral domain.
To avoid this, we downsample via Fourier interpolation/truncation in the DFS representation. Dur-
ing downsampling, channels are expanded via 3x3 spatial convolution. This occurs at 1x/2x/4x/8x
downsampling levels with the DeADFNO operations occuring at 8x downsampling as in FourCast-
Net.

2. Upsampling - We introduce a Unet-like structure here. At each intermediate resolution, the a
downsampled version of the original data is added back to the upsampling path then fed through
a single layer spatial CNN. The spatial CNN is used here as the spectral convolutions become
increasingly memory-hungry as resolution increases so we can make best use of them at the lowest
resolution.

3. LayerNorm → InstanceNorm - LayerNorm divides each pixel by a spatially varying standard devi-
ation estimate. While we’ve observed the impact to be minor, this does produce new frequencies.
We therefore replace it with InstanceNorm which computes the standard deviations over the spatial
dimensions of a channel rather than the channel dimensions of a particular pixel.

The model was trained using the Nvidia Apex implementation of LAMB (You et al., 2020) following the
schedule of FourCastNet. We found that the gradient rescaling in LAMB acted similarly to a trust region
and avoided training instability we experienced with Adam in this case. However, we were able to obtain
similar partial training performance using a version of Adam with added step size constraints, but chose to
stick with the known optimizer for this work.

27

Published in Transactions on Machine Learning Research (11/2023)

C.3.2 Comparison Configurations

FourCastNet comparisons use the pre-trained model weights provided by the paper authors. Similar to
SWE, the UNet comparison uses ConvNext blocks rather than conventional ResNet structure. The UNet
was trained using the Adam Kingma & Ba (2017) optimizer with learning rate selected by grid search over
[1e − 5, 5e − 5, 1e − 4, 5e − 4, 1e − 3]. Epochs and schedule follow settings in FourCastNet.

The smaller number of comparisons here is due to the fact that the majority of the architectures used in the
SWE experiments are incapable of scaling to the larger input sizes without seriously diminishing network
capacity.

C.3.3 Additional Results

Full field by field RMSE can be found in Figure 9. Convergence to persistence was obtained for all fields
except for Surface Pressure and sometimes Z50. In the FourCastNet training recipe, all fields (normalized)
are weighted evenly. Surface Pressure has relatively low snapshot-to-snapshot variation but has significant
outliers as it tends to be proportional to altitude. In the normalized-but-not-weighted scheme, this tends to
lead to errors in this field being undervalued. Z50, on the other hand, is a slowly varying smooth field, but
is quite distant (15KM) from the next closest pressure level recorded in this ERA5 subset. We suspect this
underperforms for this reason.

28

