A Review of Cognitive Apprenticeship Methods in Computing
Education Research

Anshul Shah
ayshah@ucsd.edu
University of California, San Diego
USA

ABSTRACT

Cognitive Apprenticeship (CA) is an instructional model that out-
lines how experts can transfer their skills and knowledge to a
learner for reasoning-based tasks, such as reading comprehension
or mathematical problem solving. Specifically, CA includes 6 teach-
ing methods—modeling, scaffolding, coaching, reflection, articula-
tion, and exploration—that facilitate learners’ observation, acquisi-
tion, and externalization of implicit processes and techniques for
completing a task. In this paper, we present a systematic literature
review of 143 conference papers across ACM and IEEE venues about
CA in computer science education literature. Specifically, we aim
to understand which teaching methods are typically referenced,
the theory level (i.e., depth of CA theory discussion) present in the
literature, and the key findings related to CA-based teaching ap-
proaches. Our review reveals that CA has been cited in computing
education research as a guiding theory for various course designs,
though there is a clear emphasis on papers related to modeling,
scaffolding, and coaching whereas reflection, articulation, and ex-
ploration are under-explored. We found that CA methods have been
effective in improving students’ enthusiasm towards computing,
improving pass-rates in courses, and improving instructors’ capac-
ity to accommodate more students by reducing instructor workload.
However, a key challenge of CA approaches that emerged from our
review is the difficulty in scaling the approach in settings with a
high student to instructor ratio. Through this literature review, we
aim to highlight effective CA approaches and how future initiatives
can leverage CA to improve student learning.

CCS CONCEPTS

« Social and professional topics — Model curricula.

KEYWORDS

Cognitive Apprenticeship, teaching methods, active learning, learn-
ing environments, managing enrollment growth

ACM Reference Format:

Anshul Shah and Adalbert Gerald Soosai Raj. 2024. A Review of Cognitive
Apprenticeship Methods in Computing Education Research. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630769

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630769

Adalbert Gerald Soosai Raj

asoosairaj@ucsd.edu
University of California, San Diego
USA

1 INTRODUCTION

Apprenticeship is one of the oldest forms of knowledge transfer in
human history. Dating back thousands of years, experts in certain
domains, such as metallurgy and blacksmithing, would teach their
craft to an apprentice through observation and guided practice.
This approach was and is an effective way for learners to develop
vocational skills. Today, however, this apprenticeship model has
largely been replaced by the modern schooling system that aims to
prepare students for a number of potential careers. As a result, the
Cognitive Apprenticeship (CA) model was proposed in an effort
to bring the traditional apprenticeship model into the classroom
[7]. Introduced in 1991, CA provides a model for how experts in
a complex craft can impart their expertise to learners, such as
their domain knowledge, problem-solving techniques, and learning
strategies, by making their thinking visible to the learner [7].

Though CA was introduced in the context of K-12 reading, writ-
ing, and math education, CA approaches have been applied in a
range of disciplines and at varying education levels [11]. Decades of
research suggests that the CA model is an accurate representation
of how learning generally occurs [11]. Therefore, the goal of this
paper is to understand the current state of research surrounding CA
teaching methods as it relates to teaching and learning computing.
Specifically, we aim to understand the extent to which CA methods
are used in computing education research literature and the empir-
ical impacts of CA approaches. Given previous recommendations
to employ theory as a guide for educational initiatives [2, 11], this
systematic literature review sheds light on how CA has been used
in computing education literature and reveals avenues for future
work to explore and implement effective CA approaches.

2 BACKGROUND AND RELATED WORK

Cognitive Apprenticeship is an educational theory proposed by
Collins et al. in 1991 that encompasses four dimensions—Content,
Methods, Sequencing, and Sociology [7]. These dimensions are in-
terconnected and vital for a learning environment that facilitates
the transfer of expertise from expert to learner [7]. The framework
directs instructors to create well-designed tasks (i.e., Sequencing)
and to use effective teaching strategies (i.e., Methods) to help learn-
ers gain control of heuristic, learning, and control strategies (i.e.,
Content). By allowing students to collaborate with peers in a com-
munity of practice (i.e., Sociology), experts can situate students’
learning in an authentic environment [7].

CA is a broad theory. Each dimension alone can be the subject of
dozens of research studies (e.g. “community of practice”—part of the
Sociology dimension—has almost 7,000 results in the ACM Digital
Library after filtering for SIGCSE-sponsored venues). Therefore,
we limit the scope of this literature review to the ways that CA

https://doi.org/10.1145/3626252.3630769
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630769

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

methods have been used in computing education literature. Each of
the following teaching methods accomplishes a specific phase in
the transfer of expertise from expert to learner:

(1) Modeling involves an instructor demonstrating the process
of completing a task while verbalizing their approach.

(2) Scaffolding involves an instructor providing tasks of appro-
priate difficulty and scope for learners to practice their skills.
Part of the scaffolding method involves fading, in which
an instructor slowly reduces the scaffolds for learners to
complete tasks independently.

(3) Coaching involves an instructor providing feedback as learn-
ers complete tasks.

(4) Reflection involves the learner thinking about the effective-
ness of their techniques, comparing their process to the
instructor, or using other self-evaluation practices.

(5) Articulation involves the learners verbalizing their reasoning,
justifying their approach, or explaining their knowledge as
they complete tasks.

(6) Explorationinvolves the learner conducting open-ended tasks
with minimal to no involvement from the instructor. The
exploration method can be achieved through the fading of
instructor scaffolds.

Modeling, scaffolding, and coaching are described as the “core”
of CA, as they also exist in traditional apprenticeship [7]. These
three methods are essential for a learner to acquire skills via obser-
vation and guided practice [7]. By contrast, the next three methods
are added to the traditional apprenticeship model to facilitate the
transfer of expertise for reasoning-based tasks—the key difference
between a traditional and a cognitive apprenticeship. In fact, Collins
et al. note that the reflection and articulation methods are neces-
sary for students to “gain conscious access to and control of” their
problem solving process while exploration helps develop learner au-
tonomy in applying the expert skills and processes they’ve learned
[7]. Therefore, all six CA methods are vital for facilitating the trans-
fer of domain knowledge, heuristic strategies, learning strategies,
and control strategies to learners.

As a result, a guiding motivation in our work is to synthesize
the research surrounding the CA methods in computing education.
To do this, we adopt a similar motivation and approach as Minshew
et al., who conducted a literature review of CA in graduate STEM
education to understand which CA dimensions (methods, content,
sequencing, sociology) were emphasized in graduate STEM educa-
tion and common ways CA is implemented in graduate programs
[25]. In their review, Minshew et al. found that the literature sur-
rounding graduate STEM education focused far more on scaffolding
and coaching rather than articulation and reflection [25]. The find-
ings also revealed a lack of work on the Sequencing dimension
compared to the Methods and Content dimensions [25]. Though
we have a more narrow focus in this paper (we focus only on the
CA methods while Minshew et al. focus on all 4 dimensions), we
employ a similar search and analysis approach to Minshew et al..

In 2008, Dennen and Burner conducted an extensive review of
CA in educational practice. The review showed that CA approaches
have been used in fields such as teacher education, doctoral pro-
grams, nursing, and engineering with empirical success [11, 25].
The review identified approaches such as mentoring, scaffolding,
and situated learning across disciplines at various educational levels

Anshul Shah and Adalbert Gerald Soosai Raj

and concluded that CA is an accurate representation of the learning
process [11]. However, one of the final recommendations by Den-
nen and Burner was for a more systematic program of studies aimed
at developing guidelines for effective implementations of CA in
teaching and learning [11]. To our knowledge, no work has aimed
to synthesize the studies regarding CA in computing education.
Therefore, a contribution of our present work is to synthesize the
literature surrounding CA methods specifically within computing
education so that our community can understand the impacts of
these methods and design effective CA approaches.

3 RESEARCH QUESTIONS

(1) Which Cognitive Apprenticeship Methods are emphasized
in peer-reviewed studies in computing education research?

(2) To what degree (i.e., theory level) is Cognitive Apprentice-
ship discussed in such studies?

(3) What benefits and challenges are present in literature that
tests a Cognitive Apprenticeship approach to teaching pro-
gramming?

4 METHODS
4.1 Search Methods

We followed an extremely similar search method as previous theory-
related literature reviews, such as a prior review of research related
to metacognition by Loksa et al. [23] and a review of CA in STEM
education by Minshew et al. [25]. Because our literature review
aims to understand the use of CA within computing education, we
searched the ACM Digital Library (DL) and the IEEE Xplore archive
for papers that related to CA.

4.1.1 ACM Digital Library Search. Within the ACM DL, we con-
ducted an advanced search for the phrase “cognitive apprenticeship”
within the full paper text. We chose to search the full paper text
rather than only the abstract or title because we wanted to under-
stand the theory level (i.e., depth of theory discussion) of the papers
that refer to Cognitive Apprenticeship. Therefore, we did not want
to limit our corpus to papers that only mention CA in the title or
abstract since this criteria would exclude papers that mention CA
in the related work or discussion sections.

Unlike searching for a topic with multiple variations (such as
“metacognitive”, “metacognition”, “self-regulatory”, “self-regulation”,
etc.), we felt that cognitive apprenticeship is a straight-forward term
and theory to include without needing other variations. From a
quick manual inspection, broadening the search to only “apprentice”
or “apprenticeship” included many papers that mention the terms
colloquially rather than as a reference to the Cognitive Appren-
ticeship theory. Therefore, we proceeded with only searching for
“cognitive apprenticeship”.

We then applied a filter for SIGCSE-sponsored venues, which
returned all papers at the SIGCSE Technical Symposia, ITiCSE, ACE,
and ICER. In total, 63 papers were returned from this search criteria.
However, we noted that the Koli Calling and TOCE venues were
not included in the SIGCSE-sponsored venues, so we altered the
filters to include the Koli Colling conference under “Proceedings
Series” and the TOCE under “Journal/Magazine Names.” With these
additional filters, we found 9 papers from Koli Calling and 13 from

A Review of Cognitive Apprenticeship Methods in Computing Education Research

TOCE, bringing our total papers from the ACM DL search to 85.
The most recent time this ACM DL Search was run and confirmed
was on August 16, 2023.

4.1.2 IEEE Xplore Search. Similar to the ACM DL search, we con-
ducted an advanced search on the IEEE Xplore Archive for the
phrase “cognitive apprenticeship” within the full paper text. We
applied the following three filters to our advanced search: “com-
puter science education”, “Journals”, and “Conferences”. Notably,
the “computer science education” filter was necessary because of
the prevalence of papers that mention CA outside of a computing
education context. This filter does not eliminate papers based on
whether the venue is within the “computer science education” do-
main but rather if the content of the paper is related to “computer
science education.” In total, we found 76 papers from this search
on IEEE Xplore. The most recent time this IEEE Xplore Search was
run and confirmed was on August 16, 2023.

4.2 Analysis Methods

In total, we had 161 papers to analyze—85 from the ACM DL search
and 76 from the IEEE Xplore search. The first author checked each
paper against our exclusion criteria and reviewed the content ac-
cording to our data collection categories. Given our limitation that
only one author analyzed the corpus, we designed our exclusion
and categorization criteria to be sufficiently clear and well-defined
such that subjectivity in the analysis was minimized. Therefore,
the theory level and CA methods of the papers are based on the ex-
plicit mention of specific keywords located in the paper. To further
mitigate this concern, the first author independently reviewed the
corpus twice without referring to the first round of categorizations.

4.2.1 Exclusion Criteria. We removed papers that:

(1) did not mention “Cognitive Apprenticeship” or any similar
variant (“cognitively apprenticed”, “apprenticeship”, “appren-
tice”, etc.).

(2) were not conference or journal papers.

(3) were deemed outside the realm of computing education.

We removed 18 papers based on this criteria. Of the 18 papers

we removed, 12 did not mention “Cognitive Apprenticeship” (all
from IEEE Xplore), 5 were not conference or journal papers (all
from the ACM DL), and 1 was about simulation apprenticeships in
industry. We were left with 143 total papers in our corpus.

4.2.2 Data Collection Categories. We categorized the papers in our
corpus on two factors based on how each paper referenced CA.

e Theory level: Adapted from Kumasi et al. [21], the theory
level represents the extent to which authors mention a theory
in a paper. We categorize a paper as one of theory dropping,
theory relating, theory application, theory testing, and theory
generating, which are each described in Table 1.

o CA methods: We note down any of the CA methods—
modeling, scaffolding, coaching, reflection, articulation, and
exploration—that are explicitly mentioned in the paper.

5 RESULTS

We analyzed and classified 143 total papers. The list of all 143
papers and their categorizations can be found at: https://bit.ly/ca-
literature. As seen in Figure 1, the number of papers mentioning

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Table 1: Theory levels considered during literature review,
from Kumasi et al. [21] and Minshew et al. [25].

Label Description
Theory Building upon or revising the Cognitive
Generating | Apprenticeship theory to create a new theory.
Theory Describing an approach based on Cognitive
Testing Apprenticeship and evaluating student outcomes.
Designing an approach based on Cognitive
Theory . o .
T Apprenticeship without evaluating the approach,
Application .
employing theory throughout the paper.
Theory Mentioning Cognitive Apprenticeship in the
Relating discussion to connect the study to theory.
Theory Mentioning Cognitive Apprenticeship only in the
Dropping related work or background and not revisited later.

Figure 1: Publication years in our corpus (n = 143).

Publications per Year

e el
ISENES

Publications

S N H O 0

1993 1998 2003 2008 2013 2018 2023
Year

CA in computing education was relatively low in the 1990s and
early 2000s. Though Collins et al. initially proposed the Cognitive
Apprenticeship theory in 1991 [7], we suspect that references to CA
theory increased after 2005 when the Cambridge Handbook of the
Learning Sciences, which includes a chapter on CA, was released

[1].

5.1 RQ1: Frequency of CA Methods

Of the 143 papers, 70 (49%) did not explicitly mention any CA
methods. In these 70 papers, we often found references to other
key tenets of CA, such as the emphasis on process-oriented skills
[24, 32, 36] or the importance of situated learning and cognition
[6, 10, 33]. Typically, these papers that did not mention any methods
also did not refer to theory much. In fact, 55 of the 70 papers (78.6%)
were theory dropping papers, meaning that CA was mentioned
briefly in the related work or background section.

On the other hand, 73 of the 143 papers (51%) explicitly men-
tioned at least one method. Table 2 shows the frequency of ex-
plicit references to each method in our corpus. Each paper can
cite multiple methods; therefore, the frequencies do not sum to
143. Scaffolding was the most commonly-mentioned method we en-
countered, followed by modeling and coaching. We noticed a clear
dichotomy between the first three methods—modeling, scaffolding,
and coaching—receiving many more references than the last three

https://bit.ly/ca-literature
https://bit.ly/ca-literature

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Table 2: CA Methods mentioned in our corpus (n=143). A sin-
gle paper can mention as few as 0 methods or all 6 methods.

Label Frequency
Modeling 42 (29.4%)
Scaffolding 61 (42.7%)
Coaching 38 (26.6%)
Reflection 22 (15.4%)
Articulation | 17 (11.9%)
Exploration 10 (7%)

Table 3: Theory levels present in corpus (n=143).

Theory Level Frequency
Theory Generating 0 (0%)
Theory Testing 17 (11.9%)
Theory Application | 21 (14.7%)
Theory Relating 30 (20.1%)
Theory Dropping 77 (53.8%)

methods—reflection, articulation, and exploration. In fact, of the 73
papers that mention any CA methods 70 (95.9%) papers refer to at
least one of the first three methods whereas only 23 (31.5%) refer
to one of the last three methods.

5.2 RQ2: Theory Levels in CA Literature

Table 3 shows the frequency of each theory level in our corpus.
Only 17 papers (11.9%) fell into the theory testing category, which
means it evaluates a pedagogical technique, course design, or tool
that was design using a CA approach on students learning, attitudes,
or some other outcome factor.

Overall, a strong majority of the papers in our corpus were theory
dropping or theory relating, which are considered minimal levels of
theory [21, 25]. In fact, over half (53.8%) of the papers were theory
dropping, meaning that CA was very briefly mentioned in an early
section of the paper without being revisited later in the methods
or discussion sections. We also found 21 papers that were theory
application, meaning that the authors presented an approach based
on CA without a meaningful evaluation of the approach. Notably,
we did not discover any theory generating papers that cited CA.

5.3 RQ3: Key Benefits and Challenges of CA
Approaches

In this section, we identify the key benefits and challenges found
in the 17 theory testing papers, as listed in Table 4. While each
of these studies was motivated by a CA approach, the specific
approaches vary greatly among the papers. For example, only three
papers covered all 6 methods in their course design [4, 16, 22].
Conversely, the papers that discuss Xtreme Apprenticeship—a CS1
course designed by researchers in Finland where students complete
programming activities during lecture while getting help from
instructors—only makes references to modeling, scaffolding, and
coaching [19, 37-39]. Table 5 displays only the frequencies of the
Methods mentioned in the 17 theory testing papers. Again, we notice

Anshul Shah and Adalbert Gerald Soosai Raj

Table 4: Benefits and challenges identified in theory testing
papers in our corpus.

Label Description

(12], [18], [19], [22], [34],
(35, [39]

(4], [9], [13], [19], [20],
(22], [27], [37], [38]
Benefit: Managing Enrollment | [3], [14], [27], [35], [37],
Growth [39]

Challenge: Scalability [4], [20], [37]

Benefit: Student Enthusiasm

Benefit: Pass Rates and
Performance

Table 5: CA methods among theory testing papers (n = 17).

Label Frequency
Modeling 14 (82.4%)
Scaffolding 16 (94.1%)
Coaching 13 (76.5%)
Reflection 5(29.4%)
Articulation | 4 (23.5%)
Exploration 3(17.6%)

the same trend that was present in the overall corpus—a prevalence
of papers related to modeling, scaffolding, and coaching and a lack
of papers about reflection, articulation, and exploration.

5.3.1 Benefit: Enthusiasm. One benefit that emerged from the the-
ory testing literature was improved student enthusiasm for comput-
ing after completing courses designed with CA methods [18, 19, 27,
39]. These courses typically included a “hands-on,” active learning
component, such as coding exercises completed in Xtreme Appren-
ticeship [37] or tangible robotics projects [22]. Outcomes we found
included an increase in student interest in science [22] and program-
ming [34], greater commitment to a software engineering career
[35], an increase in programming courses taken by students within
the next year [19], and an increase in “eager” teaching assistants
following an Xtreme Apprenticeship course [39].

5.3.2 Benefit: Pass-Rates and Performance. Though a relationship
likely exists between greater student enthusiasm and improved per-
formance, we identified a set of studies that demonstrate specific
improvements in course pass rates and student abilities after a CA
teaching approach. A wealth of data shows the significant impact of
Xtreme Apprenticeship on pass rates in both introductory and ad-
vanced programming courses [19, 37, 38]. Specifically, Keijonen et al.
found that even 7 to 13 months after students completed an Xtreme
Apprenticeship course, “grade distribution, pass-rate, overall credit
accumulation, and student success in staying on the desired study
path have all improved” [19]. Knobelsdorf et al. saw similar im-
provements in pass-rates in a theoretical computer science course
after including specific CA methods of modeling, scaffolding, and
coaching [20]. Finally, Jin and Corbett showed that a CA curriculum
that emphasized the problem-solving process and provided coach-
ing to students led to a 48% gain on student post-tests compared to
a non-CA approach that involved little to no coaching [18].

A Review of Cognitive Apprenticeship Methods in Computing Education Research

5.3.3 Benefit: Managing Enrollment Growth. CA approaches also
helped instructors manage larger classes by reducing students’ help
requests. For example, Murray et al. developed an online tool to
provide students with prompts and hints that faded over time and
noticed a 65% reduction in scaffold requests, which the authors
attribute to “increas[ed] self-reliance” [27]. Similarly, Upchurch
and Sims-Knight noted that students’ spent significantly more time
reviewing their own code and reported a greater tendency to create
improvement plans after being introduced to a peer code review
activity [35]. The impact of a reduction in help requests was most
clearly demonstrated by Feldgen et al., who introduced scaffolds
such as demonstration videos, peer reviews, and self-reflection
questions in their distributed systems course [14]. The authors note
that despite the class size increasing from 6 students to 20 students,
the increased enrollment “did not represent an increase in the extra
support time” due to the scaffolds that were introduced [14]. In a
similar vein, one study about Xtreme Apprenticeship showed that
the CA approach can increase the number of “eager” and capable
teaching assistants (perhaps due to improved student enthusiasm)
to help administer the course they just completed [39].

5.3.4 Challenge: Difficulty in Scaling CA Approaches. Conversely,
several studies acknowledged the difficulty in scaling a CA ap-
proach. For example, Knobelsdorf et al., who taught a CA-motivated
theoretical computer science class, share that they could not cover
all aspects of CA because of the high teacher-learner-ratio and lim-
ited number of study sessions [20]. Similarly, Armarego share their
experience of attempting to scaffold and fade instructor support
but encountered a group of students that were unhappy with the
fading and demanded more assistance [3]. Finally, though Bareiss
and Radley were able to provide an effective software engineer-
ing course covering all 6 CA methods, the authors acknowledge
the high time commitment for faculty time (some faculty reported
spending over one and a half hours for each student in the course
per week to provide effective coaching) [4].

6 DISCUSSION

6.1 Emphasis on Modeling, Scaffolding, and
Coaching

We hypothesize several reasons for the emphasis on modeling, scaf-
folding, and coaching over reflection, articulation, and exploration—
a trend that was also present in Minshew et al.’s review of CA in
graduate STEM education [25]. First, Collins et al. mention that
modeling, scaffolding, and coaching make up the “core” of CA,
which may have led to other authors disregarding the other meth-
ods as less-important, peripheral methods. In fact, we discovered
some papers that aimed to implement a CA model but only made
reference to modeling, scaffolding, and coaching without even ac-
knowledging the remaining three phases [3, 13, 18, 34], including
the line of work on Xtreme Apprenticeship [19, 37, 38]. Based on
the text of the papers, it is unclear if these interventions decided
against using these methods or were unaware of them. A second
potential reason for the lack of emphasis on reflection, articulation,
and exploration is the difficulty in using such methods for a large
class size. After their CA-motivated course redesign, Knobelsdorf

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

et al. acknowledged that while it is important for students to artic-
ulate and reflect, they could only use the modeling and scaffolding
methods because of the large class size and limited meeting times
[20]. We reason that reviewing and assessing student reflections,
open-ended articulations, or exploratory assignments can be a time-
consuming process for the instructional staff, thereby limiting the
number of papers that evaluate these methods.

The lack of evaluative work on the reflection, articulation, and
exploration methods may be problematic from a pedagogical per-
spective. Collins et al. point out that the last three methods are
necessary steps for learners to gain control of the strategies they
learned in the first three methods and to apply these strategies
in an open-ended setting [7]. Therefore, future work may investi-
gate lightweight interventions that engage reflection, articulation,
and exploration methods. Specifically, we hypothesize that CA ap-
proaches that focus on the last three methods may help address
the academia-industry gap, since some papers have pointed to stu-
dent struggles with communication [29] (which may be addressed
through an emphasis on articulation) and working independently
on pre-existing code bases [5] (which may be addressed through
an emphasis on exploration).

Although we discovered an under-utilization of reflection, artic-
ulation, and exploration in the CA literature, we caution that these
findings do not indicate an under-emphasis of these approaches
within the broader computing education literature. For example,
plenty of work has been conducted on reflection through a metacog-
nition lens [23], such as work on exam wrappers [8]. Nonetheless,
we encourage future work to target reflection, articulation, and
exploration through a CA lens in order to adequately evaluate the
learning theory in a computing context.

6.2 Authenticity and Active Learning in CA
Approaches

Providing an authentic learning environment to real-world situa-
tions is a core tenet of CA [7] and was a consistent theme among
theory testing papers [4, 22, 35]. Many of the CA approaches in-
cluded hands-on activities (scaffolding) and frequent feedback from
instructors (coaching), which typically involved a form of active
learning to provide an “authentic” programming or engineering
experience for students [4, 13, 20, 22, 34, 35, 38]. Examples include
students programming tasks for robots to complete [22], using
a hands-on prototyping platform to work with tangible devices
[34], and participating in the lab-centered, Xtreme Apprenticeship
approach [19, 39].

Authenticity and active learning may contribute to the benefits
that we observed in the literature. For example, we found that ap-
proaches that used an authentic learning environment in which
students collaborated and applied their knowledge generated stu-
dent enthusiasm for the course content and a increased students’
self-reported interest in pursuing a computing career [4, 22, 35].
Of course, these findings are not new for the computing education
field. For example, prior work has pointed to numerous learning
benefits of active learning techniques, including greater retention
[28]. However, our findings demonstrate how these instructional
techniques can effectively be part of a CA-motivated course design.
Therefore, we encourage future CA interventions to apply the CA

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

methods in authentic, “learning-by-doing” environments to realize
benefits such as improved pass-rates and student performance.

6.3 Using CA to Manage Enrollment Growth

The competing themes of managing enrollment growth and dif-
ficulty in scaling a CA approach were apparent in our findings.
Since a CA approach, specifically through scaffolding and fading,
aims to deliberately reduce student dependence on the instructor
by removing scaffolds over time, a successful CA approach could
reduce student help requests of the instructor. Indeed, research
from Murray et al. and Feldgen et al. empirically demonstrated
this reduction in student help requests and improvement in stu-
dents’ self-reliance [14, 27]. However, despite these benefits, we
note that there certainly exists an initial “start-up” cost to designing,
developing, and implementing such scaffolds. Fortunately, these
papers demonstrated a long-term, improved capacity for managing
more students over several years of offering the same course [14],
especially in the case of Xtreme Apprenticeship [19, 39].

On the other hand, some papers outlined the significant time
and resources needed to provide an effective coaching experience
to students, especially in upper-division courses [4, 20]. We suspect
that topics such as advanced software engineering [4] or theo-
retical computer science [20] require students to develop more
complex heuristic and control strategies, thereby relying on more
instructor guidance and feedback than in introductory courses. In-
deed, the original CA work by Collins et al. was aimed at K-12
education for skills such as reading comprehension, mathematical
problem-solving, and writing [7]. The differences between a K-12
environment and a university setting may explain the difficulty in
scaling a CA approach, as universities typically have a higher ratio
of students to instructors with less meeting times.

Our findings indicate that when scaffolding and fading are done
effectively, instructors have reported a long-term, improved capac-
ity to teach more students. The challenge for instructors seems to
be with striking a balance between sufficient help for students early
in a course and deliberately reducing the assistance they provide to
facilitate students’ independence. For example, designing an open-
ended, slightly-ambiguous task for students to complete would
leverage the exploration method, but may open the door to student
confusion and an uptick in help requests due to the ambiguity of
the assignment. Therefore, we note that targeted interventions with
the goal of improving students’ self-reliance so that less instructor
support is needed may be a viable approach to use CA to manage
enrollment growth.

Notably, a sub-theme we detected in our analysis was the use of
online tools and learning platforms to provide personalized scaf-
folding and coaching. Though we only saw two theory testing work
that presented an online tool that leveraged CA methods [18, 27],
we envision an avenue of future work that aims to scale a CA ap-
proach through intelligent tutoring systems and other personalized
tools. Though the recommendation of using computer-mediated
environments for CA is not new [11], programming in IDEs pro-
vides unique opportunities to facilitate personalized feedback for
students. For example, the idea presented by Hundhausen et al. to
integrate features in IDEs that use CA methods may be a promis-
ing way to provide programming feedback to students at scale

Anshul Shah and Adalbert Gerald Soosai Raj

while also encouraging reflection and articulation [17]. We encour-
age future computer-mediated interventions to consider ways to
incorporate CA methods—especially reflection, articulation, and
exploration—into the design.

7 LIMITATIONS

First, our inclusion and categorization criteria were applied by a sin-
gle reviewer. We note that several other literature reviews included
two reviewers categorizing papers and reporting an inter-rater reli-
ability score for the agreement [23, 25] or have an initial round of
deliberation between multiple reviewers and then divide the work
[15]. While we did discover reviews that included a single reviewer
only [30, 31], we were concerned that only one author applied
the criteria to all 143 papers. However, we took steps to limit this
concern by aiming to categorize the papers according to relatively
objective factors, such as the location of specific keywords. For
example, the review by Minshew et al. reported a 100% agreement
between two reviewers for deciding the theory level using the same
labelling criteria we used in our process [25].

Second, we did not include papers from sources such as Springer-
Link, Taylor & Francis, and Google Scholar. We intentionally chose
ACM DL and IEEE Xplore as the past literature reviews in comput-
ing education that only relied on these venues [26, 30]. Nonetheless,
there certainly exist papers that refer to CA in a computing educa-
tion context outside of ACM and IEEE venues.

Finally, our aims of understanding the benefits and challenges of
CA approaches is limited by the explicit connections papers make to
CA. Though some studies may have utilized approaches that align
with CA methods, the authors may not have included a discussion
of CA in the paper. For example, we believe that approaches such as
pair programming could be framed as a CA approach that leverages
the reflection method (similar to how peer code review has been
connected to reflection) and articulation (since students have to
explicate their thought process). Nonetheless, a large body of pair
programming typically does not refer to CA. As a result, readers
should note that our work only represents the course designs and
interventions that were explicitly motivated by a CA approach.

8 CONCLUSION

This work demonstrated the prevalence of papers that evaluated
modeling, scaffolding, and coaching methods but a lack of papers
that evaluated reflection, articulation, and exploration methods.
Despite this imbalance of coverage in the CA literature, we identi-
fied three benefits of CA approaches from the set of theory testing
papers: 1) improved student enthusiasm and intention to pursue a
computing career, 2) improved pass-rates and student performance,
and 3) improved capacity for managing enrollment growth. Con-
versely, an emerging challenge in implementing CA methods is
scaling the approach to accommodate more students while limiting
instructor workload. We have identified avenues of future work,
such as investigating into the latter-half of the CA methods and
approaches for scaling a CA course design to accommodate a higher
student-to-instructor ratio.

ACKNOWLEDGMENTS
This work was supported in part by NSF award 2044473.

A Review of Cognitive Apprenticeship Methods in Computing Education Research

REFERENCES

(1]
(2]
(3]

(4]

[11]

[12]

[13

[14

[15]

[16]

[19]

[20]

[21]

2005. The Cambridge Handbook of the Learning Sciences. Cambridge University
Press. https://doi.org/10.1017/CB09780511816833

2019. The Cambridge Handbook of Computing Education Research. Cambridge
University Press. https://doi.org/10.1017/9781108654555

Jocelyn Armarego. 2009. Displacing the Sage on the Stage: Student Control of
Learning. In 2009 22nd Conference on Software Engineering Education and Training.
198-201. https://doi.org/10.1109/CSEET.2009.43

Ray Bareiss and Martin Radley. 2010. Coaching via Cognitive Apprenticeship. In
Proceedings of the 41st ACM Technical Symposium on Computer Science Education
(Milwaukee, Wisconsin, USA) (SIGCSE ’10). Association for Computing Machin-
ery, New York, NY, USA, 162-166. https://doi.org/10.1145/1734263.1734319
Andrew Begel and Beth Simon. 2008. Struggles of New College Graduates in
Their First Software Development Job. SIGCSE Bull. 40, 1 (mar 2008), 226—230.
https://doi.org/10.1145/1352322.1352218

Jennifer Burg, V. Paul Pauca, et al. 2016. A STEM Incubator to Engage Students in
Hands-on, Relevant Learning: A Report from the Field. In Proceedings of the 2016
ACM Conference on Innovation and Technology in Computer Science Education
(Arequipa, Peru) (ITiCSE ’16). Association for Computing Machinery, New York,
NY, USA, 142-147. https://doi.org/10.1145/2899415.2899461

Allan Collins, John Seely Brown, Ann Holum, et al. 1991. Cognitive apprentice-
ship: Making thinking visible. American educator 15, 3 (1991), 6-11.

Michelle Craig et al. 2016. Introducing and Evaluating Exam Wrappers in CS2. In
Proceedings of the 47th ACM Technical Symposium on Computing Science Education
(Mempbhis, Tennessee, USA) (SIGCSE ’16). Association for Computing Machinery,
New York, NY, USA, 285-290. https://doi.org/10.1145/2839509.2844561
Timothy Davis, Robert Geist, Sarah Matzko, and James Westall. 2007. TEXVN:
Trial Phase for the New Curriculum. SIGCSE Bull. 39, 1 (mar 2007), 415-419.
https://doi.org/10.1145/1227504.1227455

Adrienne Decker and David Simkins. 2016. Uncovering difficulties in learning
for the intermediate programmer. In 2016 IEEE Frontiers in Education Conference
(FIE). 1-8. https://doi.org/10.1109/FIE.2016.7757446

Vanessa Dennen and Kerry Burner. 2008. The Cognitive Apprenticeship Model
in Educational Practice. Handbook of Research on Educational Communications
and Technology (01 2008).

Andrew T. Duchowski et al. 2011. TEXNH Trees: A New Course in Data Struc-
tures. In Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education (Dallas, TX, USA) (SIGCSE ’11). Association for Computing Machinery,
New York, NY, USA, 341-346. https://doi.org/10.1145/1953163.1953267
Matthias Ehlenz, Thiemo Leonhardt, et al. 2018. The Lone Wolf Dies, the
Pack Survives? Analyzing a Computer Science Learning Application on a
Multitouch-Tabletop. In Proceedings of the 18th Koli Calling International Con-
ference on Computing Education Research (Koli, Finland) (Koli Calling ’18). As-
sociation for Computing Machinery, New York, NY, USA, Article 4, 8 pages.
https://doi.org/10.1145/3279720.3279724

Maria Feldgen et al. 2012. Promoting design skills in distributed systems. In 2012
Frontiers in Education Conference Proceedings. 1-6. https://doi.org/10.1109/FIE.
2012.6462229

Gregor Grofle-Bolting, Dietrich Gerstenberger, et al. 2023. Identity in Higher
Computer Education Research: A Systematic Literature Review. ACM Trans.
Comput. Educ. (jun 2023). https://doi.org/10.1145/3606707 Just Accepted.
Shen-Tzay Huang, Yi-Pei Cho, and Yu-Jen Lin. 2006. Implementation and Eval-
uation of Teaching an Introductory Software Engineering Course Framed in
Cognitive Apprenticeship. In 2006 13th Asia Pacific Software Engineering Confer-
ence (APSEC’06). 477-484. https://doi.org/10.1109/APSEC.2006.39

C. D. Hundhausen, D. M. Olivares, and A. S. Carter. 2017. IDE-Based Learning
Analytics for Computing Education: A Process Model, Critical Review, and Re-
search Agenda. ACM Trans. Comput. Educ. 17, 3, Article 11 (aug 2017), 26 pages.
https://doi.org/10.1145/3105759

Wei Jin and Albert Corbett. 2011. Effectiveness of Cognitive Apprenticeship
Learning (CAL) and Cognitive Tutors (CT) for Problem Solving Using Fun-
damental Programming Concepts. In Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11). As-
sociation for Computing Machinery, New York, NY, USA, 305-310. https:
//doi.org/10.1145/1953163.1953254

Hansi Keijonen, Jaakko Kurhila, and Arto Vihavainen. 2013. Carry-on effect
in extreme apprenticeship. In 2013 IEEE Frontiers in Education Conference (FIE).
1150-1155. https://doi.org/10.1109/FIE.2013.6685011

Maria Knobelsdorf, Christoph Kreitz, and Sebastian Béhne. 2014. Teaching
Theoretical Computer Science Using a Cognitive Apprenticeship Approach. In
Proceedings of the 45th ACM Technical Symposium on Computer Science Education
(Atlanta, Georgia, USA) (SIGCSE ’14). Association for Computing Machinery,
New York, NY, USA, 67-72. https://doi.org/10.1145/2538862.2538944

Kafi D. Kumasi, Deborah H. Charbonneau, et al. 2013. Theory talk in the library
science scholarly literature: An exploratory analysis. Library & Information
Science Research 35, 3 (2013), 175-180. https://doi.org/10.1016/].lisr.2013.02.004

[22

[23

[24]

[25]

[26

[27

&
2

[29

[30

@
=

(32]

(33]

(35]

(36]

[37

[38

[39

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

D. Brian Larkins, J. Christopher Moore, et al. 2013. Application of the Cognitive
Apprenticeship Framework to a Middle School Robotics Camp. In Proceeding
of the 44th ACM Technical Symposium on Computer Science Education (Denver,
Colorado, USA) (SIGCSE ’13). Association for Computing Machinery, New York,
NY, USA, 89-94. https://doi.org/10.1145/2445196.2445226

Dastyni Loksa, Lauren Margulieux, Brett A. Becker, et al. 2022. Metacognition
and Self-Regulation in Programming Education: Theories and Exemplars of
Use. ACM Trans. Comput. Educ. 22, 4, Article 39 (sep 2022), 31 pages. https:
//doi.org/10.1145/3487050

Mark Mahoney. 2023. Storyteller: Guiding Students Through Code Examples. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 1131-1135. https://doi.org/10.1145/3545945.3569843

Lana M. Minshew, Amanda A. Olsen, and Jacqueline E. McLaughlin. 2021. Cog-
nitive Apprenticeship in STEM Graduate Education: A Qualitative Review of the
Literature. AERA Open 7 (2021). https://doi.org/10.1177/23328584211052044
Diba Mirza, Phillip T. Conrad, Christian Lloyd, Ziad Matni, and Arthur Gatin. 2019.
Undergraduate Teaching Assistants in Computer Science: A Systematic Literature
Review. In Proceedings of the 2019 ACM Conference on International Computing
Education Research (Toronto ON, Canada) (ICER ’19). Association for Computing
Machinery, New York, NY, USA, 31-40. https://doi.org/10.1145/3291279.3339422
S. Murray et al. 2003. A tool-mediated cognitive apprenticeship approach for a
computer engineering course. In Proceedings 3rd IEEE International Conference
on Advanced Technologies. 2—6. https://doi.org/10.1109/ICALT.2003.1215014
Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013. Halving Fail Rates Using
Peer Instruction: A Study of Four Computer Science Courses. In Proceeding of the
44th ACM Technical Symposium on Computer Science Education (Denver, Colorado,
USA) (SIGCSE ’13). Association for Computing Machinery, New York, NY, USA,
177-182. https://doi.org/10.1145/2445196.2445250

Alex Radermacher and Gursimran Walia. 2013. Gaps between Industry Expec-
tations and the Abilities of Graduates. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE
’13). Association for Computing Machinery, New York, NY, USA, 525-530.
https://doi.org/10.1145/2445196.2445351

Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live
Coding: A Review of the Literature. In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1 (Virtual Event,
Germany) (ITiCSE "21). Association for Computing Machinery, New York, NY,
USA, 164-170. https://doi.org/10.1145/3430665.3456382

Umar Shehzad, Mimi Recker, and Jody Clarke-Midura. 2023. A Literature Review
Examining Broadening Participation in Upper Elementary CS Education. In
Proceedings of the 54th ACM Technical Symposium on Computer Science Education
V. 1 (Toronto ON, Canada) (SIGCSE 2023). Association for Computing Machinery,
New York, NY, USA, 570-576. https://doi.org/10.1145/3545945.3569873

J.E. Sims-Knight and R.L. Upchurch. 1998. The acquisition of expertise in
software engineering education. In FIE '98. 28th Annual Frontiers in Educa-
tion Conference. Moving from ‘Teacher-Centered’ to "Learner-Centered’ Education.
Conference Proceedings (Cat. No.98CH36214), Vol. 3. 1302-1307 vol.3. https:
//doi.org/10.1109/FIE.1998.738679

L. Thomas, P. Waterson, and S. Trapp. 2006. Eight Years of Delivering Profes-
sional Education and Training for Software Engineering at Fraunhofer IESE: An
Experience Report. In 19th Conference on Software Engineering Education and
Training (CSEET’06). 131-140. https://doi.org/10.1109/CSEET.2006.18

Neena Thota, Gerald Estadieu, Antonio Ferrao, and Wong Kai Meng. 2015. En-
gaging School Students with Tangible Devices: Pilot Project with NET Gadgeteer.
In 2015 International Conference on Learning and Teaching in Computing and
Engineering. 112-119. https://doi.org/10.1109/LaTiCE.2015.26

R.L. Upchurch and J.E. Sims-Knight. 1997. Integrating software process in com-
puter science curriculum. In Proceedings Frontiers in Education 1997 27th Annual
Conference. Teaching and Learning in an Era of Change, Vol. 2. 867-871 vol.2.
https://doi.org/10.1109/FIE.1997.635990

R.L. Upchurch and J.E. Sims-Knight. 1998. In support of student process improve-
ment. In Proceedings 11th Conference on Software Engineering Education. 114-123.
https://doi.org/10.1109/CSEE.1998.658307

Arto Vihavainen and Matti Luukkainen. 2013. Results from a Three-Year Tran-
sition to the Extreme Apprenticeship Method. In 2013 IEEE 13th International
Conference on Advanced Learning Technologies. 336-340. https://doi.org/10.1109/
ICALT.2013.104

Arto Vihavainen, Matti Paksula, and Matti Luukkainen. 2011. Extreme Appren-
ticeship Method in Teaching Programming for Beginners. In Proceedings of the
42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA)
(SIGCSE ’11). Association for Computing Machinery, New York, NY, USA, 93-98.
https://doi.org/10.1145/1953163.1953196

Arto Vihavainen, Thomas Vikberg, and other. 2013. Massive Increase in Eager
TAs: Experiences from Extreme Apprenticeship-Based CS1. In Proceedings of the
18th ACM Conference on Innovation and Technology in Computer Science Education
(Canterbury, England, UK) (ITiCSE ’13). Association for Computing Machinery,
New York, NY, USA, 123-128. https://doi.org/10.1145/2462476.2462508

https://doi.org/10.1017/CBO9780511816833
https://doi.org/10.1017/9781108654555
https://doi.org/10.1109/CSEET.2009.43
https://doi.org/10.1145/1734263.1734319
https://doi.org/10.1145/1352322.1352218
https://doi.org/10.1145/2899415.2899461
https://doi.org/10.1145/2839509.2844561
https://doi.org/10.1145/1227504.1227455
https://doi.org/10.1109/FIE.2016.7757446
https://doi.org/10.1145/1953163.1953267
https://doi.org/10.1145/3279720.3279724
https://doi.org/10.1109/FIE.2012.6462229
https://doi.org/10.1109/FIE.2012.6462229
https://doi.org/10.1145/3606707
https://doi.org/10.1109/APSEC.2006.39
https://doi.org/10.1145/3105759
https://doi.org/10.1145/1953163.1953254
https://doi.org/10.1145/1953163.1953254
https://doi.org/10.1109/FIE.2013.6685011
https://doi.org/10.1145/2538862.2538944
https://doi.org/10.1016/j.lisr.2013.02.004
https://doi.org/10.1145/2445196.2445226
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3545945.3569843
https://doi.org/10.1177/23328584211052044
https://doi.org/10.1145/3291279.3339422
https://doi.org/10.1109/ICALT.2003.1215014
https://doi.org/10.1145/2445196.2445250
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1145/3545945.3569873
https://doi.org/10.1109/FIE.1998.738679
https://doi.org/10.1109/FIE.1998.738679
https://doi.org/10.1109/CSEET.2006.18
https://doi.org/10.1109/LaTiCE.2015.26
https://doi.org/10.1109/FIE.1997.635990
https://doi.org/10.1109/CSEE.1998.658307
https://doi.org/10.1109/ICALT.2013.104
https://doi.org/10.1109/ICALT.2013.104
https://doi.org/10.1145/1953163.1953196
https://doi.org/10.1145/2462476.2462508

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Research Questions
	4 Methods
	4.1 Search Methods
	4.2 Analysis Methods

	5 Results
	5.1 RQ1: Frequency of CA Methods
	5.2 RQ2: Theory Levels in CA Literature
	5.3 RQ3: Key Benefits and Challenges of CA Approaches

	6 Discussion
	6.1 Emphasis on Modeling, Scaffolding, and Coaching
	6.2 Authenticity and Active Learning in CA Approaches
	6.3 Using CA to Manage Enrollment Growth

	7 Limitations
	8 Conclusion
	Acknowledgments
	References

