Working with Large Code Bases: A Cognitive Apprenticeship
Approach to Teaching Software Engineering

Anshul Shah*
ayshah@ucsd.edu
University of California, San Diego
USA

Thanh Tong
ttong@ucsd.edu
University of California, San Diego
USA

ABSTRACT

Prior work has highlighted the gap between industry expectations
for recent university graduates and the abilities those recent gradu-
ates possess. These works have even specifically recommended that
students be given the opportunity to work on large, pre-existing
code bases in their undergraduate career. This paper presents our
experience teaching a newly-created course called Working with
Large Code Bases. Guided by a Cognitive Apprenticeship approach
to provide an authentic classroom experience that emphasizes the
implicit processes and techniques involved in real-world software
engineering, the course serves as a practical introduction to the
skills and workflow involved in navigating and understanding a
large code base. The goal of this experience report is to provide
the motivation for key course design decisions, an overview of the
course content, and a detailed description of key course compo-
nents. We present student feedback indicating improved confidence
in navigating a large code base and course outcomes related to spe-
cific tools and techniques students used in the course. Finally, we
provide the full set of course materials we used and actionable
recommendations for instructors to administer this course at their
own institution, even with limited TA support.

CCS CONCEPTS

« Social and professional topics — Software engineering edu-
cation.

KEYWORDS

large code bases, Cognitive Apprenticeship, program comprehen-
sion, project-based learning

ACM Reference Format:

Anshul Shah*, Jerry Yu*, Thanh Tong, and Adalbert Gerald Soosai Raj. 2024.
Working with Large Code Bases: A Cognitive Apprenticeship Approach to
Teaching Software Engineering. In Proceedings of the 55th ACM Technical

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0423-9/24/03.
https://doi.org/10.1145/3626252.3630755

Jerry Yu®
jiy066@ucsd.edu
University of California, San Diego
USA

Adalbert Gerald Soosai Raj
asoosairaj@ucsd.edu
University of California, San Diego
USA

Symposium on Computer Science Education V. 1 (SIGCSE 2024), March 20—
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3626252.3630755

1 INTRODUCTION

Traditional computer science and programming courses typically
involve students writing their own programs from scratch, with
fairly minimal starter code supplied. Consequently, these courses
do not offer students the experience of working with an existing
code base that has been built upon by many different engineers,
and many students finish their undergraduate computer science
curriculum without any exposure to techniques involved in working
with large code bases. In fact, over 15 years ago, recommendations
provided by Begel and Simon, after an observational study of new
CS graduates, implored universities to provide students with the
opportunity to work on a large, pre-existing code base before they
join the workforce [5].

Motivated by these concerns, we designed a course called Work-
ing with Large Code Bases—a software engineering course that pro-
vides an authentic industry-like learning environment for students.
We specified 7 learning objectives that were shared with students
on the first day of class:

By the end of the course, students should be able to:

(1) Setup a development environment to build and work on
software tools from source.

(2) Effectively navigate through a large code base.

(3) Read, understand, and modify parts of a large code base.

(4) Test and debug issues in a large code base.

(5) Understand the workflow to contribute to a large code base.

(6) Effectively communicate how a code base works to others.

(7) Use documentation and online resources to learn just-in-
time.

This paper details the design of our course and the rationale
behind some of the key design decisions. We share a summary of
our students’ learning outcomes, as well as specific recommenda-
tions for instructors who wish to teach this course but may have
limited TA support or instructional resources. We have made all
the course materials for this course publicly available at https:
//cse190largecodebases.github.io/ .

“These authors contributed equally to this work

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3626252.3630755
https://doi.org/10.1145/3626252.3630755
https://doi.org/10.1145/3626252.3630755
https://cse190largecodebases.github.io/
https://cse190largecodebases.github.io/

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

2 THEORETICAL FRAMING: COGNITIVE
APPRENTICESHIP

The motivation to teach this course derives from the theory of
Cognitive Apprenticeship presented by Collins et al. [6]. Cognitive
Apprenticeship aims to bring the traditional apprenticeship model
that is used to teach observation-based tasks, such as cabinetry
and blacksmithing, into the classroom to teach reasoning-based
processes, such as reading comprehension or essay-writing [6].
Specifically, Collins et al. list two specific things instructors must
do to teach students with a Cognitive Apprenticeship framework:

(1) Experts must “identify the processes of the task and make
them visible to students.”

(2) Experts must “situate abstract tasks in authentic contexts so
that students understand the relevance of the work.”

Collins et al. argue that when domain knowledge is learned
“in isolation from realistic problem contexts and expert problem-
solving practices,” then it is often not applied in the situations it
is more useful for [6]. By “making their thinking visible,” experts
can facilitate the transfer of expertise to the learner [6]. Because
the purpose of our course is to teach students the techniques and
tools for working on a large code base—an authentic real-world
application of students’ programming knowledge—we used the
Cognitive Apprenticeship approach when designing our course.

3 RELATED WORK

Our learning objectives were developed based on literature on the
academia-industry gap [5, 15]. Specifically, Radermacher and Walia
conducted an extensive literature review that showed gaps between
industry expectations and students’ abilities in technical areas such
as testing, use of tools, and design and interpersonal skills such
as communication and teamwork [15]. Similarly, Begel and Simon
specifically recommended that students have the chance to work
on a large, pre-existing code base in university curricula [5].

Many previous works describe advanced, project-based software
engineering courses [1, 3, 4, 13, 16-18]. In many such works, the
projects require students to design and build their own system
throughout a term [3, 4, 13, 16, 18]. The motivation for these courses,
justifiably, is for students to build a more complex project than the
shorter, well-defined programming assignments they completed
in introductory courses. The students learn to adapt to changes
in project requirements, work in teams, and use soft skills as they
create a project [4, 18]. These courses, while certainly relevant to
students’ career readiness, typically involve students creating their
own project rather than contributing to an existing large code base
with potentially millions of lines of code, which is what is really
expected of software engineers in industry [17].

We found two similar experience reports on courses where stu-
dents work on large code bases. First, Shepherd et al. introduced
“project-sized scaffolding” for an advanced software engineering
course in which students work on an existing code base to make
simple bug fixes or feature additions with hints and documentation
to help students if they get stuck [17]. Second, Tafliovich et al. de-
signed a project-based software engineering course based on the
free open-source package matplotlib [21]. This course is perhaps
the most similar experience report to ours that we found. In their
report, the authors describe the team-based project which lasts the

Anshul Shah*, Jerry Yu*, Thanh Tong, and Adalbert Gerald Soosai Raj

whole term, where students learn about important principles such
as software modeling, verification, project planning, and technical
writing [21]. The goal of the class is for students to work in a team
to create a minor feature or bug fix that can meaningfully contribute
to the open-source software [21].

Our course adopts a similar approach to Tafliovich et al. by
providing an experience for students to work with open source soft-
ware (though not with the developers of the OSS) and to complete
authentic industry tasks. However, we note two key differences of
our course that may contribute to the broader set of works regard-
ing project-based, authentic software engineering courses. First,
due to budget constraints, our course included only two teaching
assistants (TAs) for course of 50 students. Some of the previously-
mentioned works have a lower student-TA ratio (Tafliovich et al.:
5-6 students per TA) or leverage industry connections ([3, 13]). Sec-
ond, to our knowledge, the courses described in these prior works
did not (or even, could not) encourage students to use recently-
popularized large language models such as ChatGPT and Github
CoPilot. Therefore, we aim to provide two key contributions to the
work surrounding software engineering courses:

(1) All course materials (including lecture recordings, project
descriptions, code, etc.) for a course that teaches students
relevant techniques and tools to work with a pre-existing,
large code base. These materials can be found at https://
csel90largecodebases.github.io/.

(2) Specific recommendations for how instructors can teach this
course with less TA support, including our experience with
encouraging students to use large language models.

4 COURSE DESIGN

A key goal of the instructional staff, based on the Cognitive Appren-
ticeship theory, was to an create authentic experience of working
on a large code base for students. In this section, we discuss how
the different course components contributed to this environment.

4.1 Selecting the IDLE (CPython) Code Base

A substantial amount of early effort during the creation of the
course was spent on finding the right code base for the course
that would be the subject of demonstrations in lectures and all
project works. We ultimately selected the Python IDLE (Integrated
Development and Learning Environment) code base [8]. IDLE is
a lightweight code editor included in every CPython build (i.e.,
is included in each Python download by default) and is written
entirely in Python. We present the criteria we used to select the
IDLE code base:

(1) Students should be able to focus on understanding the
code base, rather than the programming language it-
self. Given the short time frame of only 10 weeks, we wanted
to minimize the time needed to teach students the language
of the code base and instead focus our attention on under-
standing and navigating the code base as a whole. Given the
pooled experience of the course staff, we prioritized finding
a code base in either Java or Python.

(2) The code base should be thoroughly documented for
students to rely on as they complete their projects.
Throughout the course, students and staff members may

https://cse190largecodebases.github.io/
https://cse190largecodebases.github.io/

Working with Large Code Bases: A Cognitive Apprenticeship Approach to Teaching Software Engineering

encounter issues that are difficult to tackle just through read-
ing the code itself. Therefore, we wanted a well-documented
code base maintained by a large community of open-source
developers. For example, we felt the Images-to-PDF code
base was not well-documented enough [20].

(3) The code base should be able to be built within a few
minutes without requiring extensive configuration.
While learning about build systems is a part of our course,
we wanted to avoid subjecting students to a complex build
process that might cause problems due to the potentially
limited performance and heterogeneous nature of students’
personal devices. For example, we felt the Eclipse code base
was too large and complicated to build [12].

(4) The size of the code base should be large enough to
warrant code navigation techniques but small enough
for students to reasonably understand within one term.
This criteria was somewhat challenging to fulfill. For exam-
ple, we thought the Jarvis code base [19] was not complex
enough for code navigation techniques but was a reasonable
size, written in Python, and sufficiently documented.

4.2 Lectures

The key topics covered in lectures include code comprehension,
unit testing, git workflow (including code reviews), and project
management. Table 1 depicts the content within each unit. Each
item listed in the description section (Code Navigation on VSCode,
Using a Debugger, etc.) roughly maps to one lecture. We also invited
three guest lecturers from the software engineering industry to
speak with students about aspects of their job, such as code reviews,
project management, and documentation.

Table 1: Lecture topics throughout the course.

Concept Lecture Topics

Code Navigation on VSCode, Using a
Debugger, Diagramming, Using Online
Sources (ChatGPT, Google, Documentation),
Reading Test Cases, and Making
Experimental Code Changes.

Designing Unit Tests, Understanding Unit
Tests, Test Coverage.

Git Branching, Merge Conflicts, Code
Reviews, Continuous Deployment.

Code
Comprehension

Unit Testing

Git Workflow

Introducing Open Source Software (OSS),
Project Management Tools, Guest Lecture
on Navigating Code Base via Commandline,
Guest Lecture on Code Reviews

Miscellaneous

In line with the theory of Cognitive Apprenticeship, the lectures
in the course aimed to demonstrate an expert’s approach to real-
istic and relevant tasks for software engineers. Subsequently, we
prepared a similar task for students to complete on their own or
in pairs. For example, in the lecture regarding how to use a de-
bugger, an instructor showed students how to use the debugger
to identify the line of code where the IDLE Pyshell prompt was
set in order to change the prompt from “>>>” to a custom prompt

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

and verbalized their thought process as they demonstrated their
approach. Following the demonstration, the students completed
a short task that asked them to use the debugger to investigate
a different part of the code base. During the 10-15 minutes while
students worked on the task, the course staff—one professor and
two teaching assistants—walked around the room, offered guidance
to students who were stuck, and gave feedback to students who
were already done with the activity. Following the activity, the
instructors asked for student volunteers to share their approach
and demonstrated a correct approach to the activity.

4.3 Projects

All projects revolved around the IDLE code base. For the first half
of the term, the students worked on three individual projects where
they built, modified, and added to the code base. In the second half
of the term, they proposed their own project in teams of three.

4.3.1 Course Policies Regarding Projects. All projects were admin-
istered via GitHub Classroom, where each student had their own
Git repository that instructors could monitor. Each student used the
same repository for all individual projects. For each project, they
were required to make regular, descriptive commits and made their
project submissions via a pull request. We found GitHub Classroom
to be an effective tool to administer this course.

From the start of the course, we encouraged students to use
online resources, including large language models such as ChatGPT
and Github Copilot. We explicitly demonstrated using resources
like Stack Overflow, Google searches, ChatGPT, and Github Copilot
during lecture demonstrations as the instructors were solving tasks
in front of students. For example, one teaching assistant showed a
Stack Overflow post they had made previously when working to
understand the code base. We expand on the value of this course
policy in Section 7.

4.3.2 Individual Project 1: Building a Code Base. Before asking stu-
dents to read and modify the code base, we first tasked students
with configuring and building the development environment. For
this project, students had to download the CPython repository and
compile the code according to the setup instructors provided by
the CPython developers [9]. We purposely provided very brief in-
structions to students that directed them to official documentation
instead of showing them the step-by-step build process. After this
first project, all students should have a working version of Python
IDLE on their devices, and a way to view, edit, and run the source
code. One issue we encountered in this assignment was the dif-
ficulty in installing dependencies on Windows computers, so we
recommended students to use Windows Subsystem for Linux (WSL
2), which allows users to run a Linux environment [11].

4.3.3 Individual Project 2: Modifying an Existing Feature. In the
second project, students had to improve the Go To Line feature in
IDLE. The original implementation prompted the user to enter a line
number and then moved the cursor to that line number. Unlike more
powerful editors such as VSCode, standard IDLE did not support
negative indexing and also showed a somewhat confusing prompt
that read Enter ‘big’ for end of file, which meant that the cursor
would be placed at the end of the file if the user entered a number
greater than the total number of lines in the file. Students were

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

required to modify this feature to a) support negative indexing and
b) improve the prompt message to read “Enter a number between 1
and N or -1 and -N”, where N is the number of lines in the editor.
One possible solution required students to modify two functions
in separate files (the query.py file and the pyshell.py file). However,
the main challenge students reportedly encountered was locating
the correct place in the code to make those changes.

4.3.4 Individual Project 3: Adding a New Feature. In the third project,
students were asked to add a feature to IDLE called Show Code
Outline, which would be a new menu item in the IDLE “Format”
settings. When invoked by the user, the application should display
an outline of the user-selected region (or default to the entire file)
by showing a hierarchy of all classes and functions defined in the
selected region. A particular challenge in this assignment was the
feature requirement of writing some output from the code editor
window to the accompanying shell window. The difficulty lied in
understanding how to invoke a method belonging in one class from
another, which meant understanding the rather complex relation-
ship between these two classes in the code base. However, based on
their process journals (Section 4.4), students ultimately overcame
this obstacle using either office hours, exploring similar parts of
the code base for ideas, or discussing with ChatGPT.

4.3.5 Code Walkthrough Presentations. After the first two projects
in which students built and modified the code base, students were
placed in teams of three to give an brief in-class presentation on a
small part of IDLE of their choice. In this presentation, students had
to use two techniques demonstrated in class (Debugger, Diagram-
ming, Experimental Code Changes, Code Navigation on VSCode)
to teach fellow students about a specific part of the code base. This
gave students an opportunity to enhance their technical communi-
cation skills,and introduced the class to parts of the code base that
may be useful to their group projects.

4.3.6 Group Project. In the group project, teams of 3 students
were required to implement and test a new feature in the IDLE
code base. Each team proposed two detailed feature additions along
with an estimate of how much time and work would be required to
implement each idea. The course staff reviewed each team’s ideas
and selected one of the proposal as the group’s project. We factored
project diversity into our decision-making: When multiple teams
proposed the same idea (e.g., supporting tabs), we only assigned the
project to one of them. In the rare case where both proposals by a
team were rejected, either due to scale or feasibility, we reassigned
one of the other teams’ unused proposals to that team.

Following the principle of incremental development, we required
students to submit periodic pull requests to their GitHub repository
when working on the group project so that their code changes could
be reviewed by teammates. This gave students further practice
reading and reviewing code written by other engineers. In our final
assessment of each team’s project, their history of pull requests and
the quality of these code reviews were visible on Github Classroom
and affected their overall group project grade.

At the end of the course, each team presented their final project to
the class by demonstrating their finished product, explaining their
implementation at a high level, and giving an overview of their test
coverage for the code they added. After the presentation, students

Anshul Shah*, Jerry Yu*, Thanh Tong, and Adalbert Gerald Soosai Raj

in the audience were required to ask in-depth questions about the
project. Each team’s performance during their presentation and
Q&A factored heavily into their group project grade.

4.4 Project Assessment

To assess project work, our focus was not solely on if a student’s
final product functions as intended/proposed, but also on their
process. Therefore, we manually reviewed each student’s final pull
request for each project to mimic the code reviews performed in
industry settings. In addition, we asked students to produce two
documents to be submitted alongside their code changes: a process
journal and a design document.

In the process journal, each student had to detail their approach to
the problem, including mentioning the struggles they encountered,
which tools or techniques they used to overcome these difficul-
ties, and their general thought process as they worked through the
project. The goals of requiring the process journal were twofold.
First, the process journal elucidated how the class in general ap-
proached each project so that course staff could evaluate whether
students actually utilized the skills introduced during lecture. Sec-
ond, the process journal allowed students to reflect on and articu-
late their own processes—two Cognitive Apprenticeship teaching
methods to help students develop metacognitive control over the
techniques used to complete tasks.

The second document is the design document, written after the
completion of each project. This document should contain the key
design considerations for the changes, a detailed explanation of the
new code, and the effects of the code additions on other parts of the
code base. Students were required to include at least one diagram
to contextualize their code changes within the broader system.

Overall, students were graded on the completion of project re-
quirements and quality of their design documents and process
journals. However, much like a code review conducted in industry,
students were given an opportunity to address the feedback given
by TAs within 3 days of the initial code review to get points back.

4.5 Coverage of Learning Objectives

The course projects aimed to cover the 7 learning goals listed in
Section 1:

e Goal 1 of students learning to build a development environ-
ment from source was targeted by Project 1.

o Goal 2 of students navigating a large code base was targeted
by each project in which students needed to explore a new
part of a code base in each project.

¢ Goal 3 of students understanding and modifying parts of a
large code base was also targeted in each individual project
after Project 1 since students made changes to the existing
code after needing to comprehend it.

e Goal 4 of students testing and debugging issues in the code
base was emphasized in the group project since students
wrote unit tests and provided a test coverage report.

e Goal 5 of students understanding the workflow of contribut-
ing to the code base was covered in all course projects since
students used Git branching, made pull requests on Github,
and received and provided code reviews.

Working with Large Code Bases: A Cognitive Apprenticeship Approach to Teaching Software Engineering

Most Helpful Techniques Identified by Students
50

[
=]

Students
3

=
=)

Code Navigation Debugger Diagramming Unit Tests
Figure 1: Student responses (n = 46) to the question “What
were the most helpful techniques you learned to help you

better understand a code base? Choose all that apply”

e Goal 6 of students communicating how a code base works
to others was emphasized in the design document, code
walkthrough presentations, and final group presentations.

e Goal 7 of students using resources to learn “just-in-time”
was accomplished through students self-reported usage of
documentation, ChatGPT, Stack Overflow, and collaboration.

5 PARTICIPANTS

In total, 51 students filled out the pre-course survey given to stu-
dents to understand their background and experience with large
code bases. Of the 51 students, 44 (86.3%) self-reported using he/him/
his pronouns, 5 (9.8%) self-reported using she/her/hers, and 2 (3.9%)
preferred not to specify. We expand on this significant gender dis-
parity in Section 7.2. Further, 35 (68.6%) of the students were in their
senior (fourth) year of their undergraduate career and 16 (31.4%)
were in their junior (third) year.

The prerequisite for our course was a “Tools and Techniques”
course in which students learn about commandline tools, Git/Github,
and file systems. Students were also encouraged to have completed
the core software engineering course in which students build a small
application from scratch, but they were allowed to take that course
concurrently with our course. To gain a deeper understanding of
students’ computing background, we asked students about their
prior experience with Python (the language that IDLE is written
in) and working with large code bases. Only 9 (17.6%) students re-
ported to have worked with a medium to large code base in Python,
12 (23.5%) students reported using advanced Python features such
as generators and context managers, and 23 (45.1%) students had
worked with a virtual environment in Python. In terms of experi-
ence with large code bases, 18 students said they have worked only
on small projects before (few files and less than 1000 lines of code),
21 students reported that they have worked on moderately-sized
code bases (such as small open-source projects), and 12 students
reported that they have worked on a large code base (such as a
large open-source project or enterprise code bases).

6 COURSE OUTCOMES

To understand the learning outcomes of our course, we used an end-
of-course survey to ask students to reflect on the course content
and their own abilities. In total, 46 students (95.83%) filled out the
end of course survey out of 48 students who completed the course.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Most Used Tools Identified by Students

50

Students

AN @ @ & 3 o © o &
Q & ™ o L& XS & N
@0 Ae,(; (9°° 40{‘\ 0@,\‘ & &S) 00 3 QOQ
© O & e © @& ¥
() P & o) N
PR o o

Figure 2: Student responses (n = 46) to the question “What
tools and/or resources did you use to help navigate large code
bases? Choose all that apply.”

6.1 Tools and Techniques

Figure 1 summarizes students’ perceptions of the most useful tech-
niques shown in class. Code navigation, which refers to VSCode
features and shortcuts such as Go to Definition, Find All
References, etc, and the IDE-based debugger were the two most
helpful techniques identified by students. Similarly, Figure 2 shows
the tools students used the most to help navigate the IDLE code
base. Interestingly, ChatGPT was the most common selection (se-
lected by 89.1% of students) followed by VSCode (selected by 87% of
students). To gain a more complete picture of how students used the
tools and techniques, we asked students “After taking this course,
have you developed a general approach towards navigating a new
codebase?” One response reads:

“First, I would look at the file structure and read the
main classes... Then, when I want to work with a
specific feature, it would be useful to use code naviga-
tion to get a general understanding of how the files
are connected to each other and where things are lo-
cated. Finally, when I start writing code for specific
features, or when I do not understand what specific
lines of code are doing, I would use the debugger or
ask [C]hatGPT to see what exactly is going on”

Upon inspection, student answers to this question typically men-
tioned techniques such as code navigation on VSCode, the IDE-
based debugger, and using resources like Stack Overflow or Chat-
GPT. Through a Cognitive Apprenticeship lens, these tools and
techniques are precisely the implicit processes of working with a
large code base that students may not know how to use effectively
before being explicitly shown. We hypothesize that the combination
of explicit instructor demonstration (i.e., “making their thinking
visible” [6]) combined with an authentic application of such tech-
niques allowed students to see the value of the tools and techniques
we demonstrated. Indeed, one student wrote: “I frequently used
[VSCode navigation] features and they saved me a lot of time.”

6.2 Improved Student Confidence

Figure 3 shows students’ self-reported confidence levels in their
ability to navigate a large code base at weeks 3, 5, 7, and 10 of

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

the course. In Week 3, after only completing Project 1 to set up a
development environment, only 40% of students responded with a
confidence level of 4 or 5. However, by completion of the course,
nearly 80% of students reported a confidence level of 4 or 5, with
zero students reporting a confidence level below 3. This finding
is encouraging, as prior work by Akram et al. showed that im-
provements’ in students self-assessed ability correlates with greater
intentions to persist a career in computing [2].

Confidence in Navigating a Large Code Base

100 _— EE s i

2 3
g 75 35.4 o : ?
§ 50 57.8 62.8
"2 52.1
g 25 37.5 o
K . 8.3 : 20.9 |

3 5 7 10

Week in Term

Figure 3: Student responses to the question: “At this point in
the course, how confident do you feel about your ability to
navigate a large code base?”

7 REFLECTIONS
7.1 The Value of Modeling and Scaffolding

Rather than designing a broad, project-based learning class for soft-
ware engineering, which may not include experts modeling the
implicit processes for completing the project, our Cognitive Appren-
ticeship approach centered the implicit processes of working with
a large code base. Because students were given the opportunity to
practice these implicit processes in lectures, such as using VS Code
navigation or the debugger, before applying them in open-ended
situations, students may have seen the value of such processes in
a large code base. We also note that the element of authenticity
likely contributed to the effectiveness of the course. By applying
the implicit processes on authentic industry tasks, students may
have gained self-confidence in their ability to work on a large code
base going forward—a key learning outcome for our students.

7.2 The Gender Disparity

As noted in Section 5, women accounted for just 10% of our stu-
dents. However, we note that the instructor and both TAs were
male-identifying. In future iterations of the course, we resolve to
include female-identifying people on the course staff. Nonetheless,
we believe this low representation in our course is part of a sys-
temic problem of poorer retention of women compared to men
throughout an undergraduate CS program. As per US Department
of Education statistics in 2016, just 18% of CS graduates were women
[14]. Another study showed that within four years after college,
men were retained in a computing profession at double the rate
than women were [7]. This is an incredibly important problem to
address. Given the initial, optimistic findings regarding improved

Anshul Shah*, Jerry Yu*, Thanh Tong, and Adalbert Gerald Soosai Raj

self-confidence, we hope that a course such as ours can help women
persist in computing.

7.3 Teaching with Limited TA Support

In our course, an instructional staff of one instructor and two grad-
uate TAs supported 50 students. Unlike prior courses that include
only a group work component [1, 4, 18, 21], our TAs were able
to provide individual feedback for three projects per student in
addition to a final group project. We wholeheartedly agree with
the recommendations provided by Tafliovich et al. about the im-
portance of efficient TAs with strong technical familiarity with the
code base [21], and we provide two additional recommendations
for educators to teach this course with limited TA support.

Encourage independent help-seeking, especially through
use of resources such as ChatGPT, Google, and StackOver-
flow. In previous courses, students may have been discouraged, or
even forbidden, from using online tools and large language models
for academic integrity concerns. However, Al tools such as Github
Copilot and ChatGPT are increasingly used by developers and busi-
nesses [10]. Therefore, encouraging use of online resources not
only helped provide an authentic experience for students, but it
also likely reduced the instructor and TA workloads. Our course
staff believes these tools were vital for students to resolve issues
independently, thereby mitigating student help requests for TAs.
In fact, 45 (97.8%) of the 46 end-of-course survey respondents men-
tioned at least one of ChatGPT, Github Copilot, or Stack Overflow
as a tool they used to help navigate the code base.

Utilize peer code reviews. Code review proved to be the ac-
tivity on which TAs spent most of their time on, so a reduction in
workload in this area could help staff accommodate more students.
From our experience, students were providing high-quality code
reviews of pull requests in their project teams later in the course.
Therefore, an approach to address this issue is to teach the code
review process to students early in the term and assign students to
provide code reviews to peers on individual projects. Course staff
could use these peer reviews as a “starting point” for code reviews
or rely on these code reviews altogether, thereby limiting the time
TAs spend reviewing pull requests.

8 CONCLUSION

With a Cognitive Apprenticeship-inspired course design, we aimed
to provide an authentic software engineering experience that taught
the implicit techniques to work with a large code base. By the end
of the course, students reported generally high confidence in their
ability to work with a large code base. Through this experience
report, we aim to provide two contributions to the existing literature
on project-based software engineering courses. First, we provided a
course design that uniquely addresses the implicit skills of working
on a large code base in an authentic software engineering context
and second, we provided explicit recommendations for scaling such
a software engineering course to serve a broader, more diverse set
of students despite limited TA support.

ACKNOWLEDGMENTS

This work was supported in part by NSF award 2044473. We would
like to thank Bill Griswold for his feedback in the writing process.

Working with Large Code Bases: A Cognitive Apprenticeship Approach to Teaching Software Engineering

REFERENCES

(1]

Zahra Shakeri Hossein Abad, Muneera Bano, and Didar Zowghi. 2019. How Much
Authenticity Can Be Achieved in Software Engineering Project Based Courses?. In
Proceedings of the 41st International Conference on Software Engineering: Software
Engineering Education and Training (Montreal, Quebec, Canada) (ICSE-SEET ’19).
IEEE Press, 208-219. https://doi.org/10.1109/ICSE-SEET.2019.00030

Bita Akram, Susan Fisk, Spencer Yoder, Cynthia Hunt, Thomas Price, Lina Bat-
testilli, and Tiffany Barnes. 2022. Increasing Students’ Persistence in Computer
Science through a Lightweight Scalable Intervention. In Proceedings of the 27th
ACM Conference on on Innovation and Technology in Computer Science Education
Vol. 1 (Dublin, Ireland) (ITiCSE °22). Association for Computing Machinery, New
York, NY, USA, 526-532. https://doi.org/10.1145/3502718.3524815

Zakarya Alzamil. 2005. Towards an Effective Software Engineering Course
Project. In Proceedings of the 27th International Conference on Software Engineering
(St. Louis, MO, USA) (ICSE "05). Association for Computing Machinery, New York,
NY, USA, 631-632. https://doi.org/10.1145/1062455.1062575

Craig Anslow and Frank Maurer. 2015. An Experience Report at Teaching a
Group Based Agile Software Development Project Course. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education (Kansas City,
Missouri, USA) (SIGCSE ’15). Association for Computing Machinery, New York,
NY, USA, 500-505. https://doi.org/10.1145/2676723.2677284

Andrew Begel and Beth Simon. 2008. Struggles of New College Graduates in
Their First Software Development Job. In Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education (Portland, OR, USA) (SIGCSE "08).
Association for Computing Machinery, New York, NY, USA, 226-230. https:
//doi.org/10.1145/1352135.1352218

Allan Collins, John Seely Brown, Ann Holum, et al. 1991. Cognitive apprentice-
ship: Making thinking visible. American educator 15, 3 (1991), 6-11.
Christianne Corbett and Catherine Hill. 2015. Solving the Equation: The Variables
for Women’s Success in Engineering and Computing. ERIC.

Python Developers. 2023. IDLE. https://docs.python.org/3.12/library/idle.html
Python Developers. 2023. Python Developer’s Guide: Setup and Building. https:
//devguide.python.org/getting- started/setup-building/

Thomas Dohmke, Marco Iansiti, and Greg Richards. 2023. Sea Change in Software
Development: Economic and Productivity Analysis of the AI-Powered Developer

[11

[14

[15

[16

(17

L

]
]

]

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Lifecycle. arXiv:2306.15033 [econ.GN]

Windows Subsystem for Linux. 2023. What is Windows Subsystem for Linux |
Microsoft Learn. https://learn.microsoft.com/en-us/windows/wsl/about
Eclipse Foundation. 2023. Eclipse Git repositories. https://git.eclipse.org/c/
Steven M. Hadfield and Nathan A. Jensen. 2007. Crafting a Software Engineering
Capston Project Course. J. Comput. Sci. Coll. 23, 1 (oct 2007), 190-197.

US Department of Education. 2016. https://nces.ed.gov/programs/digest/d16/
tables/dt16_322.50.asp?current=yes

Alex Radermacher and Gursimran Walia. 2013. Gaps between Industry Expec-
tations and the Abilities of Graduates. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (Denver, Colorado, USA) (SIGCSE
’13). Association for Computing Machinery, New York, NY, USA, 525-530.
https://doi.org/10.1145/2445196.2445351

André L. Santos. 2015. Collaborative Course Project for Practicing Component-
Based Software Engineering. In Proceedings of the 15th Koli Calling Conference on
Computing Education Research (Koli, Finland) (Koli Calling ’15). Association for
Computing Machinery, New York, NY, USA, 142-146. https://doi.org/10.1145/
2828959.2828972

David C. Shepherd, Felipe Fronchetti, Yu Liu, Daqing Hou, Jan DeWaters, and
Mary Margaret Small. 2022. Project-Sized Scaffolding for Software Engineering
Courses. In Proceedings of the First International Workshop on Designing and
Running Project-Based Courses in Software Engineering Education (Pittsburgh,
Pennsylvania) (DREE °22). Association for Computing Machinery, New York, NY,
USA, 27-31. https://doi.org/10.1145/3524487.3527362

Mauricio Souza, Renata Moreira, and Eduardo Figueiredo. 2019. Students Percep-
tion on the Use of Project-Based Learning in Software Engineering Education. In
Proceedings of the XXXIII Brazilian Symposium on Software Engineering (Salvador,
Brazil) (SBES '19). Association for Computing Machinery, New York, NY, USA,
537-546. https://doi.org/10.1145/3350768.3352457

sukeesh. 2023. Jarvis. https://github.com/sukeesh/Jarvis

Swati4star. 2023. Images-to-PDF. https://github.com/Swati4star/Images-to-PDF
Anya Tafliovich, Francisco Estrada, and Thomas Caswell. 2019. Teaching Software
Engineering with Free Open Source Software Development: An Experience
Report. https://doi.org/10.24251/HICSS.2019.931

https://doi.org/10.1109/ICSE-SEET.2019.00030
https://doi.org/10.1145/3502718.3524815
https://doi.org/10.1145/1062455.1062575
https://doi.org/10.1145/2676723.2677284
https://doi.org/10.1145/1352135.1352218
https://doi.org/10.1145/1352135.1352218
https://docs.python.org/3.12/library/idle.html
https://devguide.python.org/getting-started/setup-building/
https://devguide.python.org/getting-started/setup-building/
https://arxiv.org/abs/2306.15033
https://learn.microsoft.com/en-us/windows/wsl/about
https://git.eclipse.org/c/
https://nces.ed.gov/programs/digest/d16/tables/dt16_322.50.asp?current=yes
https://nces.ed.gov/programs/digest/d16/tables/dt16_322.50.asp?current=yes
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.1145/2828959.2828972
https://doi.org/10.1145/2828959.2828972
https://doi.org/10.1145/3524487.3527362
https://doi.org/10.1145/3350768.3352457
https://github.com/sukeesh/Jarvis
https://github.com/Swati4star/Images-to-PDF
https://doi.org/10.24251/HICSS.2019.931

	Abstract
	1 Introduction
	2 Theoretical Framing: Cognitive Apprenticeship
	3 Related Work
	4 Course Design
	4.1 Selecting the IDLE (CPython) Code Base
	4.2 Lectures
	4.3 Projects
	4.4 Project Assessment
	4.5 Coverage of Learning Objectives

	5 Participants
	6 Course Outcomes
	6.1 Tools and Techniques
	6.2 Improved Student Confidence

	7 Reflections
	7.1 The Value of Modeling and Scaffolding
	7.2 The Gender Disparity
	7.3 Teaching with Limited TA Support

	8 Conclusion
	Acknowledgments
	References

