Sample Complexity of Forecast Aggregation

Tao Lin Yiling Chen
Harvard University Harvard University
Cambridge, MA 02138 Cambridge, MA 02138
tlin@g.harvard.edu yiling@seas.harvard.edu
Abstract

We consider a Bayesian forecast aggregation model where n experts, after observ-
ing private signals about an unknown binary event, report their posterior beliefs
about the event to a principal, who then aggregates the reports into a single predic-
tion for the event. The signals of the experts and the outcome of the event follow
a joint distribution that is unknown to the principal, but the principal has access
to i.i.d. “samples” from the distribution, where each sample is a tuple of the ex-
perts’ reports (not signals) and the realization of the event. Using these samples,
the principal aims to find an e-approximately optimal aggregator, where optimal-
ity is measured in terms of the expected squared distance between the aggregated
prediction and the realization of the event. We show that the sample complexity
of this problem is at least Q(m™ 2 /¢) for arbitrary discrete distributions, where
m is the size of each expert’s signal space. This sample complexity grows expo-
nentially in the number of experts n. But, if the experts’ signals are independent
conditioned on the realization of the event, then the sample complexity is signif-
icantly reduced, to O(1/e2), which does not depend on n. Our results can be
generalized to non-binary events. The proof of our results uses a reduction from
the distribution learning problem and reveals the fact that forecast aggregation is
almost as difficult as distribution learning.

1 Introduction

Suppose you want to know whether it will rain tomorrow. A Google search on “weather” returns
40% probability of raining. The weather forecasting app on your phone shows 85%. And one of
your friends, who is an expert in meteorology, predicts 65%. How do you aggregate these different
predictions into a single, accurate prediction? This problem is called forecast aggregation or forecast
combination [7, 16, 45]. It has innumerable applications in fields ranging from economics, statistics,
operations research, to machine learning, decision theory, and of course, climate science.

A straightforward solution to forecast aggregation is to take the (unweighted) average of all experts’
forecasts. Simple as it is, unweighted average performs surprisingly well in practice, as observed
by many forecast aggregation works from 1960s to 2020s (e.g., [7, 38, 35, 30, 16, 45, 34]). Natu-
rally, when past data of expert forecasts and event outcomes (e.g., historical weather forecasts and
outcomes) are available, one may hope to leverage on such data to learn more accurate aggregators.
While adjusting the weights of experts in averaging according to their individual historical accuracy
has led to improved accuracy for the aggregated prediction [49], interestingly, more sophisticated
data-driven methods [23, 35, 49] were often outperformed by the unweighted average. The dom-
inance of simple aggregators over more sophisticated data-driven methods is observed so often in
empirical applications that it is termed “the forecast combination puzzle” [44, p.428].

There are many potential explanations for the forecast combination puzzle [43, 23, 15]. In some
scenarios, the past events are different from the future events in fundamental ways (e.g., geopolitical
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forecasting) and hence past data may not be informative in predicting the future. Another widely
accepted conjecture is that the amount of past data is not large enough for a data-intensive method
to perform well. Indeed, the sample sizes in many empirical forecast aggregation works are small
under today’s “big-data” standard (24 in [27], 69 in [42], 87 in [6], 100 in [30]). However, there are
aggregation settings where future events are arguably similar to past events and we do have abundant
data — for instance, the forecasting of weather, stock prices [21], and some forecasting competitions
on Kaggle!. Such settings are well-suited for data-driven methods. It is hence tempting to ask how
many data are needed for data-driven aggregators to achieve high accuracy in these settings.

In this paper, we initiate the study of sample complexity of forecast aggregation, building upon
a standard Bayesian forecasting model [37, 48, 24]. In this model, there are n experts who ob-
serve private signals about an unknown binary event and make posterior predictions about the event.
The experts’ signals and the event are jointly distributed according to some underlying unknown
distribution (information structure) P, which determines the optimal way to aggregate the experts’
predictions. With sample access to the unknown distribution P, we ask the following question:

How many samples do we need to approximately learn the optimal aggregator?

Our model favors the use of data-driven aggregation methods because historical tasks are i.i.d. as
future tasks. We show that however, even in this benign model, optimal aggregation in general needs
exponentially many samples. One may thus expect that data-driven methods can hardly perform well
in more realistic and non-i.i.d. scenarios. Nevertheless, for some special, yet interesting, families of
information structures, the sample complexity of forecast aggregation is significantly lower.

Main results (1) If P can be an arbitrary discrete distribution, then at least Q(m”~2/c) samples
are needed, and O(m" /€?) samples are sufficient, to learn an e-optimal aggregator with high proba-
bility, where m is the number of signals an expert can possibly observe.? (2) If the experts’ signals
are conditionally independent, then the sample complexity is exponentially reduced and surprisingly
does not depend on the number of experts or the number of signals: O(l /&%) samples are sufficient,
and fl(l /€) samples are necessary, to learn an e-optimal aggregator with high probability.

Main techniques The main technical part of our paper is to prove the Q(m"~2/¢) lower bound
on the sample complexity of forecast aggregation for the general case, via a reduction from the
distribution learning problem. It is known that learning a discrete distribution with support size
|S| in total variation distance ¢ requires €2(|S|/e?) samples. By reducing distribution learning to
forecast aggregation, we obtain the lower bound on the sample complexity of the latter problem. This
reduction is highly nontrivial. To do this reduction we define a new distribution learning problem
that is different from the one in the literature, which is of independent interest. This reduction also
reveals an interesting fact: learning to aggregate optimally on some distribution is almost as difficult
as learning the distribution itself. This is a little surprising because one might initially think that
aggregation should be easier than distribution learning — we show that this is not the case.

Structure of the paper We discuss related works in Section 1.1. Section 2 introduces our model.
Section 3 includes some preliminaries, including the distribution learning problem, which we will
use in the proof. Section 4 studies the sample complexity for general distributions. Section 5 focuses
on the conditional independence case. Section 6 summarizes how our results can be generalized to
non-binary (multi-outcome) events. Section 7 concludes and discusses future directions.

1.1 Related Works

Data-driven aggregation Data-driven approaches to forecast aggregation date back to perhaps
the first paper on forecast aggregation [7] and have been a standard practice in the literature (see,
e.g., surveys [16, 45] and more recent works [51, 42, 4, 47, 22, 40]). Many of these works focus
on specific weighted average aggregators like linear pooling (weighted arithmetic mean) [51] and
logarithmic pooling (normalized weighted geometric mean) [42, 40], and the goal is to estimate the
optimal weights from data. However, those weighted average aggregators are not necessarily the
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*The O(-) and Q(-) notations omit logarithmic factors.
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optimal (Bayesian) aggregator unless the underlying information structure satisfies some strict con-
ditions (e.g., experts’ forecasts are equal to the true probability of the event plus normally distributed
noises [48]). Our work aims to understand the sample complexity of Bayesian aggregation, namely
how many samples are needed to approximate the Bayesian aggregator.

Our work is closely related to a recent work [4] on Bayesian aggregation via online learning. For the
case of conditionally independent experts, [4] shows that the Bayesian aggregator can be approxi-

mated with e = O(%) regret. By an online-to-batch conversion, this implies a T’ = O(Z—;) sample
complexity upper bound for the batch learning setting. Our paper studies the batch learning setting.
For the conditional independence case, we obtain an improved bound of O(E%)

Robust forecast aggregation Recent works on “robust forecast aggregation” [2, 39, 18, 3] also
study information aggregation problems where the principal does not know the underlying informa-
tion structure. They take a worst-case approach, assuming that the information structure is chosen
adversarially. This often leads to negative results: e.g., a bad approximation ratio [2, 39] or a de-
generate maximin aggregator that solely relies on a random expert’s opinion [18, 3]. In contrast, we
assume sample access to the unknown information structure. Our sample complexity approach is
orthogonal and complementary to the robust forecast aggregation approach.

Sample complexity of mechanism design Our work may remind the reader of a long line of
research on the sample complexity of revenue maximization in mechanism design (e.g., [17, 20, 36,
19, 5, 11, 29, 10, 25, 50, 28]). In particular, [28] gives a general framework to bound the sample
complexity for mechanism design problems that satisfy a “strong monotonicity” property, but this
property is not satisfied by our forecast aggregation problem. A key observation from this line of
works is that the number of samples needed to learn an e-optimal auction for n > 1 independent
bidders is increasing in n, because when there are more bidders, although we can obtain higher
revenue, the optimal auction benchmark is also improved. We see a similar phenomenon that the
sample complexity of forecast aggregation increases with the number of experts in the general case,
but not in the case where experts are conditionally independent.

2 Model

2.1 Forecast Aggregation

There are n > 2 experts and one principal. The principal wants to predict the probability that a
binary event w € €2 = {0, 1} happens (w = 1), based on information provided by the experts.
For example, w may represent whether it will rain tomorrow. We present binary events to simplify
notations. All our results can be generalized to multi-outcome events with [{2] > 2 (see Section 6).
We also refer to w as “the state of the world”. Each experti = 1, ..., n observes some private signal
s; € §; that is correlated with w, where S; denotes the space of all possible signals of expert i. We
assume for now that S; is finite, with size |S;| = m. We relax this assumption in Section 5 where
we consider conditionally independent signals. Let S = &; x --- x S, be the joint signal space of
all experts; |S| = m™. Let P be a distribution over & x €, namely, a joint distribution of signals
s = (s1,...,8,) and event w. Since the space & x ) is discrete, we can use P(-) to denote the
probability: P(s,w) = Prp[s,w]. Signals of different experts can be correlated conditioned on
w. We assume that each expert ¢ knows the marginal joint distribution of their own signal s; and
w, P(s;,w). Neither any expert nor the principal knows the entire distribution P. Each expert ¢
reports to the principal a forecast (or prediction) r; for the event w, which is equal to the conditional
probability of w = 1 given their signal s;:>

_ _ _ P(w=1)P(s;|w=1)
ri=Plw=1]s)= P(w=1)P(si|w=1)+P(w=0)P(s;[w=0) ° Q)

We note that r; depends on s; and P, but not on w or other experts’ signals s_;. Let r =
(ri,...,m) € [0,1]™ denote the reports (joint report) of all experts. We sometimes use 7_; to

*One may wonder whether the experts are willing to report ; = P(w = 1|s;) truthfully. This can be
guaranteed by a proper scoring rule. For example, we can reward each expert the Brier score C' — |r; — wl|?
after seeing the realization of w [9]. Each expert maximizes its expected reward by reporting its belief truthfully.



denote the reports of all experts except ¢. The principal aggregates the experts’ reports 7 into a sin-
gle forecast f(r) using some aggregation function, or aggregator, f : [0,1]™ — [0, 1]. We measure
the performance of an aggregator by the mean squared loss:

Lp(f) =Ep[|f(r) —w|?]. )

The notation Ep[-] makes it explicit that the expectation is over the random draw of (s,w) ~ P
followed by letting r; = P(w = 1] s;). We omit P and write E[-] when it is clear from the context.

Let f* be the optimal aggregator with respect to P, which minimizes Lp(f):

f*= argmin Lp(f)= argmin Ep||f(r) —w|?]. 3)
£:10,1]7—1[0,1] £:10,1]7—1[0,1]

We have the following characterization of f* and Lp(f): f* is equal to the Bayesian aggregator,
which computes the posterior probability of w = 1 given all the reports r = (r1,...,7,). And the
difference between the loss of f and the loss of f* is equal to their expected squared difference.

Lemma 2.1. The optimal aggregator f* and any aggregator f satisfy:
o f*(r) = P(w = 1|7), for almost every r.
o Lp(f) = Lp(f*) =Ep[|f(r) — f*(r)]?].

An aggregator f is e-optimal (with respect to P) if Lp(f) < Lp(f*) + . By Lemma 2.1, this is
equivalent to Ep [| f(r) — f*(r)|?] < e. For an e-optimal f, we also say it e-approximates f*.

Definition 2.2. An aggregator f is e-optimal (with respect to P) if Ep[|f(r) — f*(r)]?] <e.

Discussion of the benchmark f* Our benchmark, the Bayesian aggregator f*, is common in
the forecast aggregation literature (e.g., [27, 26, 45]). It is stronger than the typical “best expert”
benchmark in no-regret learning (e.g., [13, 22]), but weaker than the “omniscient” aggregator that
has access to the experts’ signals: fomni(s) = P(w = 1|s). If there is a one-to-one mapping
between signals s and reports r, then f,,n; and f* are the same. Otherwise, fomn; could be much
stronger than f* and an e-approximation to fon,; using experts’ reports only is not always possible.*
In contrast, an e-approximation to f* is always achievable (in fact, achieved by f* itself). The
difference between f* and f,mn; is known as the difference between “aggregating forecasts” and
“aggregating information sets” in the literature [27, p.198-199], [26, p.168-169], [45, p.143].

2.2 Sample Complexity of Forecast Aggregation

The principal has access to 7" i.i.d. samples of forecasts and event realizations drawn from the un-
derlying unknown distribution P:

Sp = {(rM,w®), . D M} (D)~ P PP =pPw=1]s"). @

Here, we implicitly regard P as a distribution over (r,w) instead of (s,w). The principal uses
samples St to learn an aggregator f = fg,., in order to approximate f*. Our main question is:

How many samples are necessary and sufficient for finding an e-optimal aggregator f
(with probability at least 1 — § over the random draw of samples)?

The answer to the above question depends on the family of distributions we are interested in. Let P
denote a family of distributions over S x 2. It could be the set of all distributions over S x €2, or
in Section 5 we will only consider distributions where the signals are independent conditioned on w.
We define the sample complexity of forecast aggregation, with respect to P, formally:

Definition 2.3. The sample complexity of forecast aggregation (with respect to P) is the minimum
Sfunction Tp(-,-) of €,6 € (0,1), such that: if T > Tp(e,d), then for any distribution P € ‘P, with
probability at least 1 — 6 over the random draw of T samples St from P (and over the randomness
of the learning procedure if it is randomized), we can obtain an aggregator f = fsT satisfying

Ep(|f(r) — f*(r)]?] < e

“This has been noted by [2, 4, 39]. They give an XOR example where w = s; & Sy, s1 and s are
i.i.d. Uniform{0, 1} distributed. The experts always report r; = 0.5, fomni(s1, $2) = w, f*(r1,72) = 0.5, so
Lp(fomni) = 0but Lp(f*) = 0.25 > 0. No aggregator that uses experts’ reports only can do better than f*.




The principal is assumed to know the family of distributions P but not the specific distribution
P € P. There should be at least two different distributions in P. Otherwise, the principal knows
what the distribution is and there is no need for learning.

3 Preliminaries

In this section, we briefly introduce some notions that will be used in our analysis of the sample
complexity of forecast aggregation, including some definitions of distances between distributions,
the distribution learning problem, and the distinguishing distributions problem.

Distances between distributions We recall two distance metrics for discrete distributions: the
total variation distance and the (squared) Hellinger distance.

Definition 3.1. Let D1, Dy be two distributions on a discrete space X.
e The total variation distance between D and Dy is drv (D1, D2) = 3 3, cx | D1(z) — Da(z)].
e The squared Hellinger distance between Dy and Dy is dj (D1, D2) = £>° .+ (/Di(x) —

VDa(@)* = 1=, v/Di(@) Da(x).

The total variation distance has the following well-known property that upper bounds the difference
between the expected values of a function on two distributions:

Fact 3.2. For any function h : X — [0,1], |E,.p, h(x) — Ezp,h(z)| < dpyv (D1, D2).

In Appendix A we give some properties of the Hellinger distance that will be used in the proofs.

Distribution learning in total variation distance Our analysis of the sample complexity of the
forecast aggregation problem will leverage on the sample complexity of another learning problem:
learning discrete distributions in total variation distance. We review this problem below.

Let D be a family of distributions over X. The sample complexity of learning distributions in D
within total variation distance ¢ is the minimum function T3V (&, §), such that: if T > TZV (¢, d),
then for any distribution D € D, with probability at least 1 — § over the random draw of 7" samples
from D, we can obtain (from the T" samples) a distribution D such that dTV(lA)7 D) <e.

Proposition 3.3 (e.g., [12, 33]). Let Dy be the set of all distributions over X. Then, T} (¢,6) =
@( \X\H?g(l/é))

. In particular, the upper bound can be achieved by using the empirical estimate

Demp (which is the uniform distribution over the T samples). The lower bound holds regardless of
what learning algorithm is used.

Distinguishing distributions Another learning problem that we will leverage on is the problem
of distinguishing (two) distributions: given samples from a distribution randomly chosen from
{D1, D3}, we are to guess whether the samples are from D; or Dy. The sample complexity of
distinguishing distributions is characterized by the squared Hellinger distance. It is known that at
least T = Q(m log %) samples are needed to distinguish two distributions with probability

at least 1 — §. See Appendix A for a formal statement of this result.

4 Sample Complexity for General Distributions

In this section we characterize the sample complexity of forecast aggregation for general distribu-
tions P. We give an exponential (in the number of experts, n) upper bound and an exponential lower
bound on the sample complexity, as follows:

Theorem 4.1. Let Py be the set of all distributions over 8 x Q, with |S| = m™. Suppose n > 2.
The sample complexity of forecast aggregation with respect to Py is

m" mn—?
O(—H%(l/é)) > Tpau(E?é) > Q(%) (5)
This theorem is for n > 2. When there is only one expert (n = 1), there is no need to learn to

aggregate because the optimal “aggregator” f* simply outputs the forecast given by the only expert:
f*(r1) = P(w=1]|r1) = P(w = 1| s1) = r1. The sample complexity is 0 in this case.



There is a gap in the dependency on ¢ in the upper bound and the lower bound in Theorem 4.1. We
conjecture that the tight dependency on ¢ should be é (so the lower bound is tight). See Section 7
for a detailed discussion of this conjecture, where we show that the dependency on ¢ in the upper
bound can be improved to % for a large family of distributions.

4.1 Proof of the Upper Bound

In this subsection we prove the O(W) upper bound in Theorem 4.1. This is a direct
corollary of the distribution learning result introduced in Section 3.

We regard P as a distribution over r and w instead of over s and w. Then P is a discrete distribution
with support size at most 2m™ because each possible report r; € [0, 1] corresponds to some discrete

signal s; in S;. Let Pemp be the empirical distribution of reports and event realizations: Pemp =
Uniform{ (r®,w®),..., (rT) w(T))}. By Proposition 3.3, with probability at least 1 — § over

the random draw of 7" = O(M) samples, we have drv( emp,P) < €. According to
Fact 3.2, and by the definition of Lp(f), we have: for any aggregator f : [0,1]" — [0, 1],
|Lp () = Lo(D| = B, 1) = 2] = Ep[1f(r) = ]| < drv(Panp, P) < =

Therefore, if we pick the empirically optimal aggregator femp = argmin; L P (f), we get

LP(fcmp) < Lﬁemp<fcmp) +e< L[f)emp(f*) +e< LP(f*) + 287

which means that femp is a 2e-optimal aggregator for P.

4.2 Proof of the Lower Bound

In this subsection we prove the Q(%) lower bound in Theorem 4.1. The main idea is
a reduction from the distribution learning problem (deﬁned in Section 3) for a specific family D of
distributions over the joint signal space S = S; x --- X S,,. We construct a corresponding family
of distributions P = {Pp : D € D} for the forecast aggregatlon problem, such that, if we can
obtain an e-optimal aggregator f for Pp, then we can convert f into a distribution D such that
drv(D, D) < O(y/2). We then prove that learning D within total variation distance ey = O(y/2)
m"’2+210g(1/5) )

£
bound for the forecast aggregation problem for P (and hence Pay).

requires Q( =0 (W) samples. This gives the sample complexity lower

We will need a family of distributions D that satisfies the following three properties:

Definition 4.2. We say a family of distributions D satisfies

1. B-uniformly bounded, if: D(s) < 2, = Vs € §,VD € D, where B > 1 is a constant.

8] — mn,
2. same marginal across distributions, if: for any D, D" € D, any i, any s; € S;, D(s;) = D'(s;).
3. distinct marginals across signals, if> for any D € D, any i, any s; # s; € S;, D(s;) # D(s}).

How do we construct the family P? For each distribution D € D, we construct distribution Pp as
follows: the marginal distribution of w is Uniform{0, 1}, i.e., Pp(w = 0) = Pp(w = 1) = 3;
conditioning on w = 0, the joint signal s is uniformly distributed: Pp(s | w = 0) = % =

5] T me
Vs € 8; conditioning on w = 1, the joint signal is distributed according to D: Pp(s |w = 1) =
D(s),Vs € 8. The family P is {Pp : D € D}.

We show that if we can obtain e-optimal aggregators for distributions in P, then we can learn the
distributions in D within total variation distance (1 + B)2./€, and thus the sample complexity of the
former is lower bounded by the sample complexity of the latter:

Lemma 4.3. Let D be a family of distributions that satisfies the three properties in Definition 4.2.
Let P = {Pp : D € D} be defined above. Then, Tp(£,6) > T3V (1 + B)?\/z, §).



Proof sketch of Lemma 4.3. The full proof is in Appendix E.1. We give a sketch here. According to
the definition of Pp, by Bayes’ rule, we have

Pow=1]s)= %Po(slwzl) _ __D(s) 6)
b SPo(slw=0)+3 Po(slw=1) 7 +D(s)’

The “distinct marginals across signals” property in Definition 4.2 ensures that there is a one-to-one

mapping between signal s; and report r; = Pp(w = 1|s;), and hence a one-to-one mapping
between joint signal s and joint report . So, the Bayesian aggregator f* satisfies f*(r) = Pp(w =
1|7) = Pp(w=1|8) = ;2L This gi
| 7r) p(w | s) T7mm i D(s)- Lhis gives
— 1 _f(n)
D(s) = -4 5 ™)

Suppose we have obtained an e-optimal aggregator f for Pp, Ep, [\f(r) — f*(r)]?] < e, then we
convert f into D by letting D(s) = -L. (r) _ The total variation distance between D and D is:

)
drv(D,D)=3>"

~ 0)
D : 2 Z mm
seS
The “B-uniformly bounded” property in Definition 4.2 ensures D(s) = O(-1), which has two
consequences: (1) Pp(s) = (mn) (2) f*(r) = O(1), which 1mphes| f(v" _ _fr(r)

1—f(r) 1=f*(r)
O(|f(r) = f*(r)|) due to Lipschitz property of the function 12— for z = O(1). These two conse-

quences imply
drv(D,D) =0( 3 | fr) - ) (ZPD r) = f(r)])

sES seS

)
1— f(r) 1—f*(r) |’

®)

= O(B[lfr) — ) E (%E 1)~ (r)P]) = O(vA).
So, we obtain dpv (D, D) < O(v/€) = (1 4+ B)?/=.

There is a subtlety, however: In the distribution learning problem we are given samples from D,
which are signals {s®V}_,. We need to convert them into the corresponding reports {r(V}L_ as
the samples for the forecast aggregation problem. To do this we need to know Pp or D, which we
do not know. So, we make use of the “same marginal across distributions” property in Definition 4.2
here: because all the distributions D € D have the same marginal probability D(s;) = D’(s;) (but
possibly different joint probabilities D(s) # D’(s)), we are able to compute the report

1pPp (s jw=1) _ DM
1pPp (s |w=0)+1Pp (s |w=1) ~ L4+D(s!)

rft) =Pplw=1| s(t)) =

separately for each expert ¢ without knowing D, since we know what the family D is. This allows
us to reduce the distribution learning problem for D to the forecast aggregation problem for P. [

Then, we find a family of distributions D that satisfies the three properties in Definition 4.2 and
requires many samples to learn.

Proposition 4.4. There exists a family of distributions D that satisfies the three properties in Defini-
n—2
tion 4.2 (with B = e + ) and requires T3 (ev,8) = Q(%Og(lm) samples to learn.
TV

(WM)

The above sample complexity is smaller than the lower bound in Proposition 3.3

TV
because we are restricting to a smaller set of distributions than the set of all distributions over S. The
proof of Proposition 4.4 is analogous to a textbook proof of Proposition 3.3, which uses reductions
from the distinguishing distributions problem. See details in Appendix E.2.

Finishing the proof of Theorem 4.1: By Lemma 4.3 and Proposition 4.4, plugging in ey =
(14 B)*\/e with B = e + %, we obtain the lower bound on the sample complexity of forecast
aggregation for P (and hence for P,y):

n—2 n—2
Tp(e,8) = TEY ((1+ B)*VE, 0) = QM) = o(m—testia)),



S Sample Complexity for Conditionally Independent Distributions

Section 4 proved that learning e-optimal aggregators for all discrete distributions needs exponentially
many samples. As shown in the proof, this large sample complexity is because the experts’ signals
can be arbitrarily correlated conditioned on the event w. Accurate estimation of such correlation
requires many samples. So, in this section we restrict attentions to the case where the experts’ signals
are conditionally independent. It turns out that an e-optimal aggregator can be learned using only
O(Ei2 log %) samples in this case, which does not depend on n. The assumption of discrete signal
space can be relaxed here. We also investigate two special and interesting families of conditionally
independent distributions that admit an even smaller sample complexity of O(é log %)

5.1 General Conditionally Independent Distributions

Let P be a conditionally independent distributions over S x €, namely, P(s|w) =[], P(s;|w)
|w

forall s € S, forw € {0,1}. Here, S; can be a continuous space, in which case, P(- | w) represents
a density function. We introduce some additional notations. Let p = P(w = 1) be the prior
probability of w = 1. For technical convenience we assume p € (0, 1). Define

p= 1 = pe=g € (0,+00). ©)

We will be working with ratios like “+=—"" and “;Z p” a lot in this section. We will use the following
characterization of the optimal aggregator fr for conditionally independent distributions:

Lemma 5.1 ([8]). For conditionally independent distribution P, given signals s = (s;)1"_,, with
corresponding reports v = (r;)7_, where r; = P(w = 1|s;), the posterior probability of w = 1 is:

ffry=Pw=1|r)=Pw=1|8) = — L. (10)

e n  1=rTi
I+pm T,

(Define J*(r) = 0if " M TIL_, 152 = o0

Lemma 5.1 implies that one way to learn f* is to simply learn the value of p. If we can learn p with

accurac ﬁ, then we can learn with accurac ¢ and obtain an f that is e-close to f* for
Y p y

every possible input r € [0, 1]™. However, by standard concentration inequalities, learning p with

n—1

accuracy f requires O( 2) samples, which is larger than the O( ) bound we will prove. The key

is that we do not actually need f(r) to be close to f*(r) for every r € [0,1]" 't; we only need the

expectation E|| flr) = f*(r) |?] < e. This allows us to prove a smaller sample complexity bound,
using a pseudo-dimension argument.

The main result of this section is that the sample complex1ty of forecast aggregatlon with respect to
all conditionally independent distributions is between (% log 1) and O(Z; log %):

Theorem 5.2. Let P;pq be the set of all conditionally independent distributions over 8 X Q). Suppose
n > 2. The sample complexity of forecast aggregation with respect to Pinq is

O(Zlog %) > Tp,,(e,6) > Q(Llog ). (11)

We provide the main ideas of the proof of Theorem 5.2 here. The upper bound O( log 5)isa
corollary of our theorem for multi-outcome events (Theorem C.1), so we only give a sketch here We
note that, according to Lemma 5.1, the optimal aggregator has the form f*(r) =

1—r; *
n—1T[n i
1+p i=1"r;

We consider the class of aggregators F = {f : f%(r) = W} parameterized by

9 € (0,400). The class of loss functions G = {¢’ : ¢%(r,w) = [f%(r)
has pseudo-dimension Pdim(G) = O(1). By the known result (e.g., [1]) that the pseudo-dimension
gives a sample complexity upper bound on the uniform convergence of a class of functions, we
conclude that the empirically optimal aggregator in F must be O()-optimal on the true distribution
(with probability at least 1 — §), given O (25 (Pdim(G)log 2 +log 1)) = O(Z5 log Z5) samples.

We prove the Q(g log 3) lower bound by a reduction from the distinguishing distributions problem
(introduced in Section 3). We construct two conditionally independent distributions P!, P? over



the space ) x S that differ by d (P, P?) = O(e) in squared Hellinger distance. Specifically, P!
has prior P'(w = 1) = 0.5 — O(1) + O(X£) and P2 has prior P2(w = 1) = 0.5 — O(%) —
O(%); the conditional distributions of each signal, P!(s; |w) and P?(s; |w), differ by O(£) in
squared Hellinger distance; taking the product of n signals, P!(s|w) and P?(s|w) differ by O(e).
The distinguishing distributions problem asks: given T samples from either P' or P2, tell which
distribution the samples come from. We show that, if we can solve the forecast aggregation problem,

namely, e-approximate f*(r) = W then we can estimate p with accuracy O(%),
i=1"r;

and hence distinguish P and P2. But distinguishing P! and P? requires Q(W log ) =
Q(é log %) samples. This gives the lower bound we claimed. See details in Appendix F.1.

5.2 Strongly and Weakly Informative Experts

While the sample complexity of forecast aggregation for general conditionally independent distribu-
tions is O(Ei2 log %), under further assumptions this bound can be improved. In particular, we find
two special yet natural families of conditionally independent distributions that admit O(é log %)
sample complexity. In these two cases, the experts are either “very informative” or “very non-
informative”. Roughly speaking, an expert is “very informative” if the conditional distributions of
the expert’s signal under event w = 0 and w = 1 are significantly different, so the expert’s prediction
r; is away from the prior p. An expert is “very non-informative” if the opposite is true. Intuitively,
an expert being informative should help aggregation and hence reduce the sample complexity. In-
terestingly though, we show that even if the experts are non-informative the sample complexity of
forecast aggregation can also be reduced. See details in Appendix B.

6 Extension: Multi-Outcome Events

Our main results regarding the sample complexity of forecast aggregation for binary events (The-
orems 4.1 and 5.2) can be generalized to multi-outcome events with [{2| > 2. We prove that: for
~ o n—2
general distributions, the sample complexity is Q(mTz) = Q(%) < Tp(e,d) <
O<|Q\m"+120g(1/5))
[

= O( ‘QlTn ); for conditionally independent distributions, the sample complex-
ity is (1) = Q(Llogl) < Tp,,(c,6) < OB 61 4 Liogl) = O(L2). See Ap-
pendix C for details.

7 Conclusion and Discussion

In this work, we showed an exponentlal gap between the sample complexity of forecast aggregation
for general distributions, Q(T) and conditionally independent distributions, O( 5 ). This gap is
due to the need of estimating the conditional correlation between experts in the general case, which
is not needed in the conditional independence case. Notably, the bound O(a%) for conditionally
independent distributions does not depend on the number of experts.

We discuss the dependency of the sample complexity on € and other directions for future works:

The dependency on ¢ An open question left by our work is the dependency of the sample com-
plexity on the parameter €. We conjecture that the tight dependency should be é (so our lower
bounds are tight). This is supported by the following evidence:

Theorem 7.1. For the case of |Q}] = 2 and for general distributions, if the distribution P has a
minimum joint probability min s ,,ye 5x9 P(s,w) > -5 for some c > 0, then the sample complexity
of forecast aggregation is at most O( (n logm + log 5 )) o} (%)5

ce

In particular, this theorem can be applied to distributions that are close to uniform, where P(s,w) =~

Tim = 51, giving a bound of O(™2"). Notably, the set of distributions we constructed in

the proof of the Q(™— ) lower bound in Theorem 4.1 are also close to uniform. This means that

>This bound has a better dependency on ¢ but worse on 7 than the O(%y ) bound in Theorem 4.1.



f(n,m)

€
@(@) Moreover, since close-to-uniform distributions are the “most difficult” distributions to
learn in the distribution learning problem, it is likely that they are also the most difficult distributions
for the forecast aggregation problem, and therefore the tight sample complexity of forecast aggrega-

tion should be determined by the sample complexity for those distributions, which is @(@)

close-to-uniform distributions have a tight sample complexity bound of the form O( ), not

Other future directions

o The middle ground between fully correlated experts and conditionally independent experts: An
example is the partial evidence model in [4]. Applying [4]’s results, one can show that the sample

. L . . . =02 ..
complexity of forecast aggregation in the partial evidence model is at most O(’;—Q).6 Giving a
lower bound for the partial evidence model and exploring other intermediate models is open.

o Weaker benchmark: Since the Bayesian aggregator needs exponentially many samples to ap-
proximate, can we find a weaker yet meaningful benchmark with a small sample complexity?

o Samples vs experts: In reality, obtaining samples of experts’ historical forecasts can be difficult,
while recruiting experts is easy. Can we achieve better aggregation by recruiting more experts
instead of collecting more samples? How many experts do we need?

e FEliciting more information: Previous works on information elicitation and aggregation have
noticed that better aggregation can be achieved by eliciting more information than agents’ own
predictions, for example, also eliciting each agent’s prediction about other agents’ predictions
(e.g., [41, 47, 31, 14]). One can ask whether and how eliciting more information can help to
reduce the sample complexity of information aggregation.

o Continuous distributions: In our model the random variable w to be predicted is discrete. One
can study a setting where w is a continuous random variable and the experts report, e.g., the
means of their posterior beliefs about w. The results for continuous random variables might be
very different from the results in this work.

e Other loss functions: We focused on the squared loss E[|f(r) — w|?] due to its popularity
in machine learning problems and its useful property that the difference between the squared
losses of any aggregator and the optimal aggregator is equal to their expected squared differ-
ence (Lemma 2.1). Alternatively, one can consider other loss functions like the logarithmic loss
Elwlog(f(r))+(1—w)log(1— f(r))] and the absolute loss E[| f (rr) —w|]. There might be some
technical challenges in the analysis of sample complexity for those loss functions, though: e.g.,
the logarithmic loss can be unbounded [4, 40] and the absolute loss does not enjoy a property
like Lemma 2.1.
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A Additional Preliminaries

A.1 Properties of Hellinger Distance

We review some useful properties of the Hellinger distance. First, the Hellinger distance gives upper
bounds on the total variation distance:

Fact A.1 (e.g., Lemma 2.3 in [46]).
¢ dry (D1, Dy) < V2du(Dy, Dy).
e 1—d4y(Dy,Dy) > (1 —dj(Dy, DQ))Q. (This inequality implies the first one.)

Second, we will use the following lemma to upper bound the squared Hellinger distance between
two distributions that are close to each other:
Lemma A.2. Let D, and Dy be two distributions on X satisfying 1 — e < D»(2) <1l4eVred.

Di(z)
Then, dH(Dla DQ) é §

Proof. By definition,

d2(Dy, Dy) = Z (\/D1 \/Dg(ac))2 - % 3 Dl(x)<1 - gfggg)Q.

rGX reX

If1—a<D2(m)<1thenwehave( (:”))2 (1- 1—6)2§

) D1 (0) (
l+e> % Eg > 1, then we have (1 — gfggfﬁ (\/1+€—1)2§ ((1+8)—1)2:52.These
two cases together imply

1 1
2 E 2 _ 2
dH<D1,D2) S 5 Dl(l’) €T = 58 . O]

reX

Third, we will use a property of the Hellinger distance between distributions defined on a product
space. Suppose D; and D are two distributions over a product space X x ). They can be de-
composed into the marginal distribution of x € X and the conditional distribution of y € ) given
x, namely, Dy (z,y) = D1 () - Dy o (ylz) and Da(x,y) = Do () - Doy (y|z). Then, the
squared Hellinger distance between D7 and D- satisfies the following:

Lemma A.3. d} (D1, D2) < d%(D1,4, D2 y) + maxzex d%[(DLy‘m, Dy y\z). In particular, if ©
and y are independent, then d (D1, Da) < d%(D1 4, Do) + d%{(DLy, Dy ).

Proof. By definition,

di(D1,D3) = 1= > \/Di(,y)Da(x,y)

zeX yey
= 1= 3 \/D1a@)Dsa(2) 3 /D e (912) Dy (]2)
rzeX yeY
—I_Z\/Dla D2x +Z\/D1£ D2x (I_Z\/Dly\w y|$ D2y\z(y|x))
TEX yey
= d%{(Dl,za D2,z) + Z \/ Dl,m(x)DZm(‘r) : d%I(Dl,ykm D2,y|m)
zeX
< d%[(Dl,:m D2,z) + Z; \/ Dl,r(w)DZz(x) : gleaj,(dlz{(Dl,y\vaQ,yhc)
fAS

< dIQJ(Dl,vaQ,w) +1- Hlea))((d%{(Dl,ylma D2,y|m)a
where the last inequality is because Y -y \/D1.o(2)D2 o (x) = 1 — df(D1,4, D) < 1. O
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Finally, let D®7 denote the distribution of T i.i.d. samples from D, namely, the product of T" inde-
pendent D’s. We have the following lemma that relates d (DY”, DS™) with d (D1, Ds):

Lemma A4 (.., [32]). d4(DET, D§T) =1 — (1 —d4(Dy, Dy))" < T -d%(Dy, Dy).

A.2 Distinguishing Distributions

Let D1, D- be two distributions over a discrete space X'. A distribution D; is chosen uniformly at

random from {D1, Dy}. Then, we are given T samples from D, and want to guess whether the

distribution is D; or Ds. It is known that at least T = Q(m log £) samples are needed to
H )

guess correctly with probability at least 1 — d, no matter how we guess. Formally:
Lemma A.5 (e.g., [32]). Let j € {1,2} be the index of the distribution we guess based on the

samples. The probability of making a mistake when distinguishing D1 and Do using T' samples,
namely Pr[j # i) = S Pr[j #i|i = 1]+ 1 Pr[j # i|i = 2], is at least:
o Prlj #i > § —/Zdu(Dy, Da).
o Pr[j#i>1(1- d%I(Dl,Dg))QT > ie_‘le%I(Dl’D?), assuming d (D1, Ds) < 3.
The second item implies that, in order to achieve Pr[j # i < 0, we must have T >
1 1
1d%(D1,D2) log -

We provide a proof of this lemma for completeness:

Proof. Let D?T and D?T denote the distributions of 7 i.i.d. samples from D; and D, respectively.
The draw of T' samples from D; or D, is equivalent to the draw of one sample from D?T or

D?T. Given one sample from Di@T or DSZ)T, the probability of making a mistake when guessing
the distribution is at least:

Pr[j;éi]:%( rj=2|i=1]+Prfj = |i:2])
:%(1—Pr :1]+Pr[j:1|i:2])
:% 2<Pr[: |i:1]—Pr[j:1|i:2])
1
= 2~ 2 (Bppr(1(i = 1] - Epgr(1(j = 1))
by Fact 3.2 > % — %dTV(D;@T,Dg@T). (12)

We then upper bound dTv(Df@T, D?T) in two ways, which will prove the two items of the lemma,
respectively. First, according to first item of Fact A.1, we have

drv(DFT, DFT) < V2du(DPT, DFT).

By Lemma A .4,
di (DS, DST) < VTdy (D, Ds).

The above two inequalities give dry (DT, DST) < v/2Tdy(D;, D2). This proves the first item
of the lemma.

Second, according to the second item of Fact A.1 and Lemma A.4, we have
1— 3 (DT, DST) > (1— d (DY, DET))* = (1 — di(D1, D2))™"
Since 1 — d2(DYT, D) = (1 + drv(DYT, D)) (1 — drv(DET, DST)) < 2(1 —

drv(DYT, D$T)), we have

1 —drv(DYT, DST) > (1 — dj(Da, DQ))

l\D\»—l



Plugging into (12), we get

| 2T
Pr[j #i] > 1(1 — dy(Dy, Dy))
When df; (D1, D3) < 3, we use the inequality 1 — z > e~ for 0 < = < 3 to conclude that
1 1
Prlj # 1] > 1 (e (P P)*T = 2o=iTH (D10, 0

B Special Cases: Strongly and Weakly Informative Experts

In this section we investigate two special families of conditionally independent distributions that
admit O(Z log §) sample complexity, which is smaller than the O(Z log %) bound for general
conditionally independent distributions. In these two cases, the (signals of) experts are either “very
informative” or “very non-informative”.

Definition B.1. Ler v € [0, 00| be a parameter. For an expert i, we say its signal s; € S; is

e ~v-strongly informative if either ig?}i_o; >1+~vor % < 1+v holds.
o ~-weakly informative zfﬁ < §§§’IZ’ 8 <147

An expert i is y-strongly (or y-weakly) informative if all of its signals in S; are ~y-strongly (or ~y-
weakly) informative.”

A signal s; being vy-strongly (or y-weakly) informative implies that its corresponding report r; will

be “y-away from” (or “y-close to”) the prior p = P(w = 1), in the “;7- and ;2" ratio form.
Specifically, if s; is y-strongly informative, then from Equation (1) we have
r;  _ P(si|lw=1
T—r m% > (1 +7)p or < 1+wp (13)

As v gets larger, a y-strongly informative signal (expert) is more informative for predicting whether
w = 1 or 0. This would make aggregation easier. If s; is y-weakly informative, then:

P < 1 < (L+y)p. (14)

As ~y gets smaller, a y-weakly informative signal (expert) is less informative for predicting w, but in
this case their report ; will be close to the prior p, which allows us to estimate the p»~! term in the

optimal aggregator f*(r) = ﬁ better. Those are some intuitions why both strongly
P e -

T4

and weakly informative signals can reduce the sample complexity of forecast aggregation.

Formally, for ~y-strongly informative experts with not-too-small ~, we have the following result:

Theorem B.2. Ifn > 32log % and all experts are y-strongly informative with ﬁ > 84/ % log %,
then the sample complexity of forecast aggregation is < O(ﬁ log + + Llog ) = O(L log 3).
1+

We remark that the conditions of the theorem, n > 32 log g and ﬁ >84/% 2 log £, are easier to be

satisfied when the number of experts n increases, if the informativeness parameter ~ of each expert
is a constant or does not decrease with n (which we believe is a reasonable assumption given that
experts are independent of each other). Also, if ~ is fixed or increasing, then as n increases the
sample complexity decreases.

The proof of Theorem B.2 is in Appendix G.1. Roughly speaking, we divide each expert’s signal set

into two sets, S} and S?: signals that are more likely to occur under w = 1 (i.e., % >14+7)
and underw = 0 (i.e., % < 1+ ). If the realized w is 1, then one may expect to see Q( = )

more S} signals than the S? signals from the n experts, because the probabilities of these two types
of signals differ by Q(ﬁ) for each expert. If w is 0 then one may expect to see more S) signals

than the S} signals. So, by checking which type of signals are more we can tell whether w = 0 or

"We note that an expert can be neither ~-strongly informative nor -weakly informative for any ~.
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T4
lf’l“i

p < s; €8Y), where p is estimated

1. To tell whether a signal belongs to S} or SP, we compare the corresponding report

(namely, 12"”_ > (1+79)p < s; €S} and 12—1” < ﬁ

with accuracy ﬁ using O(@ log %) samples. Dealing with the case of p < ¢ separately, we

obtain the bound O (- log + + Llog ).

)

with p

For -weakly informative experts with small v, we have:

Theorem B.3. If all experts are y-weakly informative with v < 1, then the sample complexity of
forecast aggregation is < min { O(* log %), O(Ei2 log 5175)}’ which is O(% log %) ify= O(%)
The O(Ei2 log E%) term in the sample complexity follows from the result for general conditionally
independent distributions (Theorem 5.2). The O(2% log ) term is proved in Appendix G.2. We

give the rough idea here using v = % as an example. The proof relies on the observation that
]E[Hf:1 1?” | w = 0] = p". Since experts are weakly informative, each of their reports 1?”

is around p in the range [ﬁp, (14 7)p] C [H%p, (1 4+ 1)p]. Taking the product, we have

T, - € [%, ep™], which is in a bounded range. This allows us to use Chernoff bound to
1

argue that the p™ (or p"~!) term in the optimal aggregator f*(r) = "
Pt |

mated, with O(,/¢) accuracy, using only O(ﬁ log $) = O(2 log $) samples of [} 7. The

i=1 1—r;

—— can be esti-
i

T

aggregator using the estimate p" !, f(r) = = turns out to be O(e)-optimal.

1
1+pm =T,

C Extension: Multi-Outcome Events

In this section we generalize our model from binary events to multi-outcome events. The event space
now becomes Q = {1,2,...,|Q|} with || > 2. The joint distribution of event w € () and experts’
signals s = (s;)"_; € & is still denoted by P, which belongs to some class of distributions P. The
size of each expert’s signal space is still assumed to be |S;| = m < +oo for general distributions
and can be infinite for conditionally independent distributions (where s1, ..., s, are independent
conditioned on w). After observing signal s;, expert 4 reports its posterior belief of the event given
si, which is ; = (7;;);eq where r;; = P(w = j|s;). An aggregator now is a vector-valued
function f = (f;);ecq that maps the joint report = (7;)7_; = (r;;)i; to a probability distribution
f(r) over Q, where f;(r) is the aggregated predicted probability for w = j. We assume f;(r) > 0
and 3, cq f;(r) = 1. The definition of the (expected) loss of an aggregator f becomes:

112
Lp(f) =Ep| D] fi(r) - 1w =3][*]. (15)
jeQ
It is easy to see that the optimal aggregator f* = argming L p(f) in the multi-outcome case is still
the Bayesian aggregator (this is a generalization of Lemma 2.1):

I =0Fjea, filr)=Plw=j|r) (16)
and the difference between the losses of f and f* satisfies
Le(f) — Lo(f) =Ep| 3| 1i0r) = 17 ] (17)
JEQ

So, an e-optimal aggregator f is an aggregator that satisfies Ep | djealfi(r) — f;‘(r)|2} <e.

Using T = Tp(e,d) samples {(r®, w®)}]_, from P, the principal wants to find an e-optimal

aggregator f with probability at least 1 — 4, for any distribution P in a class P. We give lower
bounds and upper bounds on the sample complexity:

Theorem C.1. The sample complexity of forecast aggregation for multi-outcome events is:
* For the class P of general distributions: Q(W) < Tp(g,d) < O(WQM).
* For the class Pina of conditionally independent distributions: Q(% log %) < Tp,,(g,0) <

Q| log |2
O(7| ‘Egg‘ |log§+5%log%).
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C.1 Proof of Theorem C.1

Before proving the theorem, we note that the loss of any aggregator f satisfying f;(r) > 0 and
> jeq fi(r) = 1is bounded by [0, 2]:

0< > |f) —1w=3" <Y |fr) —1w=4] <1+Y fr) =2 (18

JEQ JjEQ jeQ

Similarly,
0< STUfm) — frm)] < 2 (19)

JEQ

C.1.1 Lower Bounds

The lower bounds directly follow from the lower bounds for the binary case (Theorem 4.1 and
Theorem 5.2) because the binary case is a special case of the multi-outcome case. Specifically, we
can regard any binary event distribution P as a multi-outcome distribution that puts probability only
on outcomes {1,2} C Q. If we can learn an e-optimal aggregator f for the multi-outcome case:

E[Y;eqlfi(r) = f;(r)|?] < e, then this aggregator satisfies

E[ > 1) -fm)] <e

je{1,2}
= E[fie) - F@P [0 - i) - - f@)] = E[2A0) - @] <e

= E[lAit)-F@] <5

So, the aggregator fl (-) is an §-optimal aggregator for the binary case.

C.1.2 Upper Bounds

General distributions: the O (W) upper bound. The proof for general distributions
in the multi-outcome case is the same as the proof for general distributions in the binary case (Sec-
tion 4.1), except for three differences: (1) P (regarded as a distribution over reports r and event w)
now is a discrete distribution with support size at most |Q2|m™; (2) the loss |f(r) — w|? € [0,1] in
the binary case is replaced by the loss ¢, | f; (1) — L{w = j]|* € [0, 2] in the multi-outcome case;
(3) the € in the binary case is replaced by 5 because the loss is now upper bounded by 2. Thus, the

bound O(%) in the binary case becomes O(W) =0 (w) in the
2

multi-outcome case.

Conditionally independent distributions: the O (Iflllsiflﬂ\ log L + % log %) upper bound. The
sample complexity upper bound for conditionally independent distributions is proved by a pseudo-
dimension argument. We first show in Lemma C.2 that the optimal aggregator f* belongs to some
parametric family of aggregators. Then, we upper bound the pseudo-dimension of the loss functions
associated with this parametric family of aggregators, which will give the desired sample complexity

upper bound.

Lemma C.2. For multi-outcome conditionally independent distribution P, given signals s =
(s;)_q, with corresponding reports v = (r;)7_ = (r;j)i; where r;; = P(w = j|s;), the pos-
terior probability of w = j satisfies:

1 n .
o= Lliz1 s

fir)=Plw=jlr)=Pw=jls) = T
2ke W [Ti= 7in

J
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Proof. By Bayes’ rule and the fact that sy, .. ., s,, are independent conditioning on w,
Plw=7)TIYL, P(s; =7
P(W*j|8) (w J)Hz:ln (8 |W .7)
Yrea Plw=Fk) L P(si |w=k)
g i Plw=5)P(si |w =)
ZkGQ 7P(w:1k)"*1 H;—l:l P(w = k)P(S,L | w = k‘)

1 n  P(w=j)P(si|w=j)
_ P(w=j)n—1 Hi:l P(s;)

Z 1 Hn P(w=k)P(s;|w=k)
ke Plo=ky—1 LLi=1 = P
1 n
Poznm=T LLiz1 i
= - - .
D ke Plo=k)"1 [z ik

Since the above expression depends only on 7;’s but not on s;’s, we have:

1 n .
Plo=j)n1 [li=1ris

, .
Yoweq Pra=iyT Lic Tik

fir)=Plw=j[r)=Pw=jls) =

(For the special binary event case,

1 n
) FomrT s i 1
frr)=Plo=1]r) = e =

Pt Ll i+ pamoper [l (=) 14 (=) T 5

This proves Lemma 5.1.) O

According to Lemma C.2, the optimal aggregator f* = (f;),eqn belongs to the following family of
aggregators, parameterized by 6 = (6;),cq € ]R‘ g

6 0 H? 1 Tij } 20
o) = @0)

(The optimal aggregator f* has parameter §; = W .) Let G be the family of loss functions

{f" (/)50

associated with F, which is also parameterized by 8 € R‘Ql,

G={g° | rw) = 3 1£20r) — 1w = I} 1)

JEQ

We recall the definition of pseudo-dimension of a family of functions:

Definition C.3 (e.g., [1]). Let H be a family of functions from input space X to real numbers R. Let
W 2D e X be dinputs. Let tV) ... t(D) € R be d “thresholds”. Let b = (b(l)7 e ,b(d)) €
{—1,+1}4 be a vector of labels. We say b can be generated by H (on inputs x(l), o,z D with
thresholds tW D) if there exists a function hy € H such that he(z®) > t@ i pld) = 1
and hy(z?) < t(l if b = —1 (namely, sign(hy(z@) — t@) = b®) for every i € {1,...,d}.
The pseudo-dimension of H, Pdim(H), is the largest integer d for which there exist d inputs and d
thresholds such that all the 2% label vectors in {—1,+1}? can be generated by H.

Pseudo-dimension gives a sample complexity upper bound for the uniform convergence of the em-
pirical means of a family of functions to their true means:

Theorem C.4 (e.g., [1]). Let H be a family of functions from X to [0, U] with Pdim(H) = d. For
any distribution D on X, with probability at least 1 — & over the random draw of

T= O( (d logg—f—log ;))

samples V) ... zT) from D, we have: for every h € H, |E$ND h(z)] — % Et 1 (x(t))‘ <e

We now upper bound the pseudo-dimension of G:
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Lemma C.5. Pdim(G) < O(|Q|log[Q]).

Proof. Suppose Pdim(G) = d. By definition, there exist d inputs (1), w™) ... (r@ (@) and
d thresholds t™V) | ... #(4) € R such that all the 2¢ label vectors b € {—1, +1}% can be generated by
some function g% € G. We will count how many label vectors can actually be generated by G.

Consider the ¢-th input (r(©), w(¥)) and threshold ¢(¥). To simplify notations we omit superscript (£),
so we have (r,w) and t. We write = () eq where x; = [[\_, r;;. For any function ¢° € G,
we have

O;x;

jeo ‘ Zkeﬂ Hkmk

:Z(ﬂ)kgﬂﬂ

1w =

2
9% (r,w) ‘

‘o ken O 2 kea Okx
1
—Q[Zw w)? 2, Y O+ (Y i) ]
(Xkeabrz)” Lics keQ keQ

By definition, the set of parameters that give input (7, w) label “+1” is {0 € lel | 9 (r,w) > t}.
By the above equation, this set is equal to the set

{06R3' > (052;)> — 26 wakak + (Zekxk) >t(§;9k;pk)2}.
ke

JEQ

We note that the above set is the solution set to the quadratic form inequality 8 " A8 > 0 for some
matrix A € RI®I*I9l Similarly, the set of parameters that give input (r,w) label “—1” is the
solution set to @7 A@ < 0. These two sets share a boundary: the solution set to 8 A8 = 0, which
is a hyper-ellipsoid in R/?l. In other words, the input (r,w) and threshold ¢ define a hyper-ellipsoid

which divides the parameter space R‘fl into two regions such that all the parameters in one region
generate the same label for that input.

Enumerating all inputs (), w®), ... (#(@ (D), They define d hyper-ellipsoids in total, dividing
the parameter space lel into several regions. Within each region, all the parameters generate the
same label for each input and hence generate the same label vector. So, the number of label vectors
that can be generated by all the parameters in R‘fl is upper bounded by the number of regions.
The number of regions divided by d hyper-ellipsoids in R‘fl is in the order of O(d!®’l). Hence, to

generate all the 27 label vectors we need O(d!?l) > 2¢. This gives d < O(|Q| log |©2]). O
By Theorem C.4 and Lemma C.5, plugging in d = Pdim(G) < O(|?|log |€?]) and U = 2 (because

g% (r,w) is bounded by [0, 2] according to (18)), we obtain the following: with probability at least
1 — 4 over the random draw of

2 0| log |02 1
r—o(Y <d 1ogg+log ) ~0 M g—+—1
) g2 5

samples (1), w™) ... (rT) W) from P, we have for any ¢° € G,

‘]Ep[g W) _729 ), <t>‘

This is equivalent to for any £ € F,

T
2
ISP
JEQ =1 ico
= |re(s?) - Lﬁempu%] <,
where Pemp is the empirical distribution Uniform{( (r®, w®), . (rD, uD) ). By the same

loglc as the proof of the upper bound in Theorem 4.1 (Sectlon 4.1), the empirically optimal aggrega-
tor f* = argmin o 5 Lp, (£9) is 2¢-optimal.
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D Missing Proofs from Section 2
D.1 Proof of Lemma 2.1
To prove the first item f*(r) = P(w = 1|r), we simply note that

= arg}rcninE,, [EHf(T) —wl? | ’I"H

should minimize E[|f(r) — w|? | r| for almost every . This gives f*(r) = Elw|7] = P(w =
1|7).

To prove the second item Lp(f) — Lp(f*) = Ep[|f(r) — f*(r)|?]. we note that, by the definition
of Lp(-) and the fact that f*(r) = E[w | r] proven above,

(
Lp(f) = Lp(f*) =E[|f(r) —w|*] —E[|f*(r) —w IQ}
:E[f(r)Q] —QIE[f(fr) }— [ 2] QE[ )w]
=E[f(r)*] = 2E.[f(r)Ew|r]] —E[f*(r)’] + 2E.[f*(r)E[w|r]
=E[f(r)’] = 2E.[f(r)f*(r)] —E[f*(r)?] + 2E,[f*(r)?]
=E[f(r)” =2f(r)f*(r) + [*(r)?]
=E[[f(r) - f*(r)[].

E Missing Proofs from Section 4

E.1 Proof of Lemma 4.3

Recall that we have a family D of distributions over S = 7 X - - - X S, satisfying the three properties
in Definition 4.2 (B-uniformly bounded, same marginal across distributions, and distinct marginals
across signals). We have constructed from D the family of distributions P = {Pp : D € D} for the
forecast aggregation problem as follows:

1

Polw=0) = Pp(w=1) = 1

Po(- | w=0) = Uniform(S), namely, Pp(s |w=0) = % - b (22)
mn

Pp(-|w=1)=D, namely, Pp(s|w =1)= D(s).

We want to show that e-optimal aggregation with respect to P will imply (1 + B)?,/¢ total variation
distance learning with respect to D, and hence Tp(e,0) > TAY ((1 + B)?V/E, §).

First, we have the following observations about D and P:

Fact E.1. For a family of distributions D that satisfies the three properties in Definition 4.2:

D(si)

o000 which is the same

1. Given signal s;, expert i’s reportisr; = Pp(w =1 s;) =
for all distributions D € D.
2. For every expert i, given different signals s; # s, its reports r; # 1. So, there is a one-to-

one mapping between s; and r; for every i € {1,...,n} and also a one-to-one mapping
between the joint signal s = (s1, ..., $p) and the joint report v = (r1,...,7p).

3. For any joint signal s, with corresponding joint report r, we have D(s) = %

Proof. We prove the three items one by one:

1. By definition, the marginal distribution of joint signal, Pp(s), is

P(s) = Pp(w=0)Pn(s | w = 0) + Pp(w=1)Pp(s | w=1) = %(% +D(s)).

(23)
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Fixing s;, summing over s_; = (31, ey 8io1,8idls -+, 8n) € S_;, we get

Pp(si) = ( ) ( + D(s ))
s_,ES_;
So, given signal s;, expert ¢ reports
P,(w=1)Pp(s; |w=1) D(s;)
T b (w | s:) Po(s1) T D(s) (24)

and this is the same for all D € D since D(s;) = D'(s;) by the “same marginal across
distributions” property.
2. Given s; # s/, by the “distinct marginals across signals” property, we have D(s;) # D(s}).

: - _ _D(si)
Since r; = TD(s))

and —2— is a strictly increasing function of z, it follows that r; # r;.
=TT

m

3. According to item 2, there is a one-to-one mapping between s = (s1,...,S,) and r =
(r1,...,7y); in other words, observing signals sy, . . ., s, is equivalent to observing reports
r1,...,Tn. Therefore, by Bayes’ rule we have

PD((.L) = I)PD(S | w = 1)

Pp(s)

Fir)=Pplw=1|r) =Ppw=1|s)=

by (22) and (23) = (25)
Rearranging, we obtain D(s) = mﬂ(’i_i(;)(r)) O

Claim E.2. If we have an aggregator f that is e-optimal with respect to Pp, then we can find a
distribution D such that drv(D, D) < (1 + B)? /.

Proof Because D is B-uniformly bounded from (25) we can verify that f*(r) satisfies f*(r) <
So, we can assume f(r) < 1+B as well (if f(r) > 1fB, we can let f(r) be H%; this only

1+B 2
reduces the approximation error E[[f(r) — f*(r)|?]). Define D by letting D(s) = %’
Vs € 8, where r is the reports corresponding to s (cf., Fact E.1). Then, dTV(ﬁ, D) is

— f(r) I

drv ( D D)= 2 Z |D | -2 Z |mn(1 rf(r - m"(lf(;z(r))’
sES
— 1 fr) ()
- 2mn Z 1—f(r) 1ff*(r)"
scS

Because f(r), f*(r) < HLB and the function £ has derivative ﬁ < (14+B)*whenz < 1+B’
we have
r)‘
seS

dTV(Da D) < P} :
by 23) < (1+ B)? Y Po(s)|(r) = ()| = (1+ BY’Ep, [|f(r) - " (r)]].
seS

By Jensen’s inequality (E[X])2 < E[X2] and by the assumption that f is e-optimal, we have
r * 2 r *
(Epy [If(r) = £(r)I])” <Ep, [|f(r) — £*(r)?] <e. Thus,

drv(D, D) < (14 B)*V,
which proves the claim. O

Now, we present the reduction from learning D in total variation distance to forecast aggregation
for P. We use notations "), ..., (") € S to represent the samples from D. From V), ... (™)
we construct the samples (rM,w®), . (™), w™) for the forecast aggregation problem After

obtaining a solution f to the latter problem, we convert it into a solution D to the former. Details
are as follows:
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Input: 7 i.i.d. samples M), ... (™) from an unknown distribution D € D.
Reduction:

1. Draw T samples w™) ... w(™) ~ Uniform{0, 1}.
2. Foreacht =1,...,T, do the following:

 If w®) = 0, draw s(*) ~ Uniform(S).

o Ifw® =1,let s = g®),

, t D(s"
« For each i, compute r\"”) = %
DG

3. Feed Sy = {(rM,wW),..., (rT),wT))} to the forecast aggregation problem. Ob-
tain solution f .

CLetr® = (rgt), . ,7"7(;)).

4. Convert f into D according to Claim E.2.

Output: D.

(®)

%

We remark that, in the second step of the reduction, the report r
()

i

can be computed even if D is

unknown, because the D(s;") is the same for all D € D and hence known.

Using the above reduction, we show that the sample complexity of e-optimal forecast aggregation
for P cannot be smaller than the sample complexity of learning D within total variation distance
(1 + B)?/z, which will prove Lemma 4.3:

Proof of Lemma 4.3: First, we verify that the distribution of samples St in the above reduction
is exactly the distribution of 7" samples {(r(),w®), ... (™) w(T))} from Pp. This is because:
(1) the distribution of w(® is Uniform{0, 1}, as defined in Pp; (2) given w® = 0, the distribution
of s is Uniform(8), as defined in Pp; (3) given w® = 1, the distribution of s(*) is the same as
the distribution of £®), which is D, because the random draws of w(¥) and z®) are independent; (4)

()
according to Fact E.1, the report rl(t) = L<D|,(D877:(S§)t)) =Pplw=1] sgt)), as desired.

m

Then, by the definition of sample complexity of forecast aggregation, if we are given T' = Tp (¢, d)
samples St for the forecast aggregation problem, then with probability at least 1 — § we should be

able to find an e-optimal aggregator f with respect to Pp. According to Claim E.2, we can convert
finto a D such that
drv(D, D) < (1+ B)?Ve.

By the definition of sample complexity 7’5" (-, §) of distribution learning, 7" must be at least
T>Tp ((1+B)*Ve, b),

which proves the lemma.

E.2 Proof of Proposition 4.4

To prove Proposition 4.4 we will construct a family of distributions D that satisfies the three proper-
n—2
ties in Definition 4.2 and requires 75 ¥ (eTv, §) = Q(%Og(lm) samples to learn. For simplic-
TV

ity, we write € = e7vy. For technical convenience, we assume £ < %7 6 < 0.01.

E.2.1 Part 1: Constructing D

We index the distributions D, € D by z; the meaning of z will be defined later. Without loss of
generality, we assume |S;| = m to be an even integer, and denote S; = {1,...,m} =: S. We will
define D, to be a distribution over the joint signal space S = &1 x --- x S, = S™ = {1,...,m}".
In the following we will call a joint signal s € S™ simply a signal. We write a signal s € S™ as
s = (b,z,y),whereb € S""2and x,y € S. We sort all the m™ signals in S™ by the lexicographical
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order, from (1,...,1,1), (1,...,1,2), ..., to (m, ..., m,m). We number the signals from 1 to m",
using

num(s) = num(b, z,y) € {1,...,m"}.
to denote their numbers. We divide the whole signal space S™ into |S™~2| = m"~2 “buckets”, each
of size m? and denoted by By:

By ={(b,x,y) :z,y €S}, bes

We first define a “base” distribution Dy,,se, then construct the distributions D,’s by modifying the
probabilities of the base distribution within each bucket By. Let v = 1 + # The base distribution
is defined as follows:

n

num(s) m
’y num
Dhpase(8) = T W = § y <8)=§ ~.
sesn /=1

1
mn

Because 1 < 4 < ~™" < 1+ )m" < e, we have
m" < W <em™. (26)

We assign a sign 2z, € {+1,—1} to each bucket By, and let z be a vector of length m™~? that
includes the signs of all buckets:

2= (2b)pesn-2, 2b€ {+1,—1}.

We have 2™~ different 2’s in total, and hence 2m" ™ different distributions D.’sin D in total. Let
¢ = 20, so that ce < 1/2. For each z, we define D, as follows: within each bucket By, for each
element (b, z,y) € By let

+ &= ifz< T, y<

( )

(bax7y)* WE 1fx§%,y>
Drase(b,z,y) — 27 ifaz >3,y <

( )+ ife>g y>

D.(b,z,y) = 27

NIERCRINIERSIR

Claim E.3. The family of distributions D = {D,}, defined above satisfies the three properties in
Definition 4.2: B-uniformly bounded with B = e+1/2, same marginal across distributions, distinct
marginals across signals.

Proof. B-uniformly bounded: For any s, any D, by definition,

ce ,ym" . ce (2<6) e 1/2

— < — .
+ w— W W — m» mn
So, the distribution is B-uniformly bounded with B = e + 1/2.

D.(8) < Duase(s)

Same marginal across distributions: Consider each D, (s;). We want to show that D, (s;) does
not depend on z, and in fact, D, (s;) = Dpase(s;). If i € {1,...,n — 2}, namely, s; is a component
of the vector b, then we have

D.(s;) = Z D,(si,8-;) = Z ZZDz(b,x,y).
s_i€ES_; beSn—2:p;=s; z=1y=1

We notice that, fixing any b, the numbers of and in the summation

S Z;nzl D, (b, z,y) are the same. So, they cancel out, and we obtain

+zpce —ZpCE
w w

m

Dz(sz) = Z ZZDbase(bvxay) :Dbase(si)-

beSn—2:p;=s; z=1y=1

If i = n — 1, namely s; = x, then we have:

D,(s;) = Z D,(si,8-;) = Z ZDZ(b,x,y).

s_;€ES_; besSn—2y=1
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Fixing any b, the numbers of $22 and =22 in the summation 27;:1 D, (b, z,y) are the same.

So, they cancel out, and we obtain

Dz(Si) = Z ZDbase(baxay) = Dbase(si)'

besSrn—2y=1

Finally, if ¢ = n, namely s; = y, then by a similar argument as above we have

D.(si)= 3 Y Doase(b,2,y) = Dpase(s:)-

besSr—2z=1

Distinct marginals across signals: By the “same marginal across distributions” property above we
have D, (8;) = Drpase(8;). So, to prove “distinct marginals across signals” we only need to prove
Dhrase(8i) # Drpase(s}) for s; # ;. Without loss of generality assume s; < s;. By the definition

num(s)

Dyase(8) = T and the fact that num(s;, s_;) < num(sj,s_;) forany s_; € S_;, we have

Dbase(si) = Z Dbase(5i7 3—11) < Z Dbase(sgh S—i) = Dbase(sg)a
s_;ES_; s_,ES_;

80 Dhase (i) # Dpase(s})- -

E.2.2 Part2: Sample Complexity Lower Bound of Learning D

Overview We want to prove the proposition that the sample complexity of learning the family of
distributions D = {D,}, defined above is at least T2V (¢,6) = Q(W). This proof is
analogous to a textbook proof of Proposition 3.3 (the sample complexity for learning all distribu-
tions), which uses reductions from the distinguishing distributions problem. Roughly speaking, if
one can learn the unknown distribution D, well then one must be able to guess most of the com-
ponents of the sign vector z = (2p)pegn—2 correctly, meaning that one can distinguish whether the
distribution D, on bucket By is D,,—11 or D, —_;. However, since D,,—,; and D,,—_; are
“O(e)-close” to each other, distinguishing them requires Q(E%) samples. In average, there are only
O(%) samples falling into a bucket (because there are m"~2 buckets in total and the distribution

D. is close to uniform). We thus need O(—1—) = Q(%), which gives T' = Q(m"2_2

mn—2

logarithmic terms, this proves the proposition.

). Ignoring

&€

Formal argument First, we note that if we can learn D, very well, then we can guess the vector
2z correctly for a large fraction of its m™ 2 components. Formally, suppose we obtain from 7'

samples a distribution D such that dTv(ﬁ, D,) < e. We find the distribution D,, in D, w =
(wp)pesn—2 € {+1,—1}™" " thatis closest to D in total variation distance. By definition, we have
drv(Dy, D) < dpy(D,, D) < e. Hence, by triangle inequality,

drv(Dyw, D.) < drv(Dy, D) + drv(D, D,) < 2e.
Let
# = |{b € Sn—2 | Wp 7é Zb}|
be the number of different components of w and z. We claim that:

Claim E4. drv (D, D.) < 2¢ implies # < 2%,

— cm?2”

Proof. Whenever we have a different component wy, # zp, this different component contributes the
following to the total variation distance between D,, and D, :

1 1 2ce m2ce

(b,z,y)€Bp (b,z,y)€Bp

drv(Dw,D2) 2W
e = cm?” -
W

So, the number of different components of w and z is at most
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We first show the Q(M) part in the sample complexity lower bound, and then show

£2
n—2

the Q(mnj) part.  Together, they give the lower bound max{Q(logi#),Q(ma—Q)} =

€
Q(m ; +120g(1/5))

. Consider the distribution D43 € D whose index is the all “4-1” vector and
the distribution D_; € D whose index is the all “—1" vector. According to (28), the total variation

distance between D41 and D_y is dpv (D41, D—1) =m"~2- % = m;VCE because +1 and —1
have m™ 2 different components. Since W < em™ (26), we have dpv(Dy1,D—_1) > % > 2e.

Consider the distinguishing distributions problem (defined in Section 3) where we want to distin-
guish D4 and D_;. If we can learn from samples a distribution D that is e-close in total variation
distance to the unknown distribution D44 or D_1, then we can perfectly tell whether the unknown
distribution is D44 or D_; because the two distributions are more than 2¢-away from each other
in total variation distance. Lemma A.5 implies that, to distinguish D4, and D_; with probability
log(1/6) ) = Q(log(}z/f?)

m 67) This proves the

1 — ¢, the number of samples must be at least Q(
Q(logi#) part.
—2

We then prove the €( m; ) part. Suppose we first draw the vector z from {+1, fl}mn_2 uniformly
at random, then draw 7" samples from D,. We obtain the D,, as above. Let’s consider the expected

number of different components of w and z in this two-step random draw procedure:

E [#]:E[ 3 ]l{zb;éwb}]: 3 E[L{z # we}]. (29)

z, T samples
besn—2 besn—2

We consider each component E []l{zb # wb}] in the above summation. Suppose that, within the T’
samples drawn from D, T}, of them fall into the bucket By,. So, Ty, follows the Binomial(7, D(By))
distribution with

1
D(By)= Y. Dilbay) =g Y. "oy,

(b,z,y)€ By (b,z,y)€ By

(Notice that the 4222 and — 2= cancel out in the summation and hence D(B}) does not depend
on z.) Let D, denote the “Bp-part” of distribution D, namely, D, conditioning on By:
D.(s)
Dzb(S) = D(Bb)’ Vs € Bp.

We think of the random draw of the vector z and the 7" samples as follows: first, we draw T} from
Binomial(T', D(Bs)); second, we draw zp € {+1,—1} uniformly at random; third, we draw T}
samples from the conditional distribution D, ; forth, we draw the remaining vector z_; and the
remaining 7" — Tp samples (which are samples outside of Bp). Only writing the first two steps
explicitly, we have

E[]l{zb £ wb}] = % ]ZE [E[]l{zb # we} | vaTb]H

N = &

= % fE[]l{Zb 7é wb} ‘ 2p = +1,Tb} + %]E[]l{zb 7é wb} ‘ 2y = 1,Tb}:|

[y

1
ZEE §P1“ (26 # wp | 26 = +1,Tp) +§Pr [26 # we | Zb=—1,Tb]]- (30)
b_

Claim E.5. For any Ty, %Pr [zb £ wp | 2p = —|—1,Tb] + %Pr [zb #£ wp | 2p = —l,Tb] >

% — 285\/Tb.

Proof. We notice that £ Pr[zp # ws | 25 = +1,Tp] + 5 Pr[26 # wp | 26 = —1,Tp] is the
probability that we make a mistake when guessing the sign zp using wy, if (1) zp is chosen from
{=1,+1} uniformly at random; (2) we are given Tp samples from D,,; (3) we then draw the
remaining vector z_p and the remaining samples; (4) finally, we use the D,, computed from all
samples to get wp. The steps (3) and (4) define a randomized function that maps the T3 samples of
D.,, to wp € {0, 1}, and therefore, according to the first item of Lemma A.5, we have

1 1 1 /T
5 Pr [Zb 7£ Wp | 2p = +1,Tb]—|—§ Pr [Zb # Wy | 2p = —1,Tb] > 5— %dH(Dzb:+1;Dzb:fl)~
(€29
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Then we consider dy(D,,—+1, D,,——1). We use Lemma A.2 to do so. For any s € By, we have,
on the one hand,

num(s) num(s) _
D,=+1(8) _ 7 + ce > v ce >1— %,
Dzb:—l(s) ,ynum(s) Fece ,ynum(s) + e

because Z—I_'g =1- m >1—2bfora = “um(s) > 1. On the other hand,

Doymin(s) _ 4™ 4 ce
Dapei(8) = y7me) —ce

< 1+ 4ece,

because Z—fz =14+ ag—fb <1+4bfora= vnum(s) >landb=rce < % Therefore, by Lemma A.2
we have

d?(Dye i1, Doy 1) < =(4ce)? = 8262 (32)

1
2
Combining (31) and (32) proves our claim. O]

By (30) and Claim E.5, we have E[]l{zb #* wb}] > :;E [% — 205\/Tb]. Summing over b € S"2,
b
(29) becomes

1 mn—2
S OEI{mAw] = Y 1;:;[5 — e Tb} =T -2 Y
beSn—2 beSn—2 besn—2
n—2
(by Jensen’s inequality E[vV'X] < /E[X]) > m2 — 2ce Z VE[Ty].
besn—2
Because E[Tp] =T - D(By) = Arum (b)) < Lm2~m” e have
W (b,x,y)€By W
n—2 T
Z E[1{z # ws}] > *mQ mr = T e [ m2ym,
besn—2 begn—2 w
(33)

Now, let’s consider the probability with which we can obtain D such that dTV(ﬁ, D,) <e We
will show that this probability is at most 0.99 < 1 — § if T is less than 107> - ’”22_2

Claim E.4 that dpv (D, D) <
at most

Pe[ 3 ta < 25] =P 3 dfn=u) 2o 2
besn—2 besn-2

E[Spegn-2 1{zp = wp}]

mn—2 — 2W

(by Markov’s inequality) <

cm?
mn—2 n—2 %mQ"Ymn
Oy 63 < ———
cm
m” + 205m”72 eT .
n 2 n—2
(Y™ <eandm™ < W < em" by (26)) < T2 Zemn m
cm?
1 eg?
=+ 2¢ —
2 n
:1_—2<0.99<176,

c

when ¢ = 20, T < 1075 - m:; ,and 6 < 0.01. This means that, in order to obtain such D with

probability at least 1 — &, at least 107> - m;_2 samples are needed.
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F Missing Proofs from Section 5

F.1 Proof of Theorem 5.2: the (1 log ) Lower Bound

The proof uses a reduction from the distinguishing distributions problem (defined in Section 3). We
construct two conditionally independent distributions P!, P2 over the space Q2 X S} x -+ x S,
with each |S;| = 2, S; = {a,b}. Given T samples from either P! or P2, we want to tell which
distribution the samples are coming from. We will show that, if we can solve the forecast aggregation
problem, then we can distinguish the two distributions (with high probability), which requires 7' =
Q(m log ) = (4 log §) samples according to Lemma A.5.

Let ¢ = 32. We assume £ < 2%, so that ¢,/ < 15. For P!, we let

1
Pl(w:1):05—F+g— !
n n
For P2, we let
1
]32(0;1:1)—05———i =:p?.

16n n
We require that, in the forecast aggregation problem under both distributions P* and P?, whenever
expert ¢ sees signal a, b, she reports

Tq = 0.5, ry = 0,
respectively. This gives the following conditional probabilities P! (- | w), P?(- | w):

1—r, M1— L 4 2cVE ] ro1_ deyE T
Pllalw=0)] _pl=n [i5] _ |z || [Biblw=0)] _ |\ s
Plalw=1)] " ro—n | 3 s |0 [P b w=1) o
(4)
1—r, M1_ 1 _2cVE ] [ L dcvE 7
e ] e kel B e ) IOV b B Feere =
P a|w=1) Ta — Ty | 5% 8n1 n P2(b|w=1) - 8”0 n ]
(35)

Given T' samples from the unknown distribution P € {P', P?}, each of which is a vector of w(®)
and all experts’ signals s € {a,b}, we feed the correspondlng reports r( ) € {rq,rp} and w®
to the forecast aggregation problem and obtain a solution f which is an e-optimal aggregator. We

want to use f to estimate the prior p = P(w = 1) € {p',p?} so that we can tell apart P! and P2,
Recall from Lemma 5.1 that f*(r) = —”, where p = 2. Writing p in terms of

I+pn T, =+
f*(r), we have

k3

n

o= G I

In particular, when r; = r, = 0.5 forall i € {1,...,n}, we have:
p:"71;—1 7”‘052(0505)
f* (T’O 5) ) . ) )
So, we estimate p by:
1
p= nif— 1
f(ros)

Now, we want to argue that, if f is e-optimal, then |5 — p| is at most O(%) Consider the function:

whose derivative is




By definition, we have

p—p|= ’h(f(To.s)) — h(f*(ros))|- (36)
ClaimF.1. 1 < f*(ros5) < 2.

Proof. For P € {P', P?},its p = ;£ satisfies

_ 1 _VENm
n—1 n 0.5 16n cn
L2pzp ! 2 pn > (2o
0'5+16n+cn

]_,L,QC\[ 9 n
S (Y s (12 5) 2 -2 2ev) >

1 + % + n

(37

where in the last three transitions we used the 1nequa11tles e >1-2zand (1 —z/n)" > 11—z

for € (0,1) and the fact that ¢\/z < =. So,

1 1 1 12
€ ’ =155
fr(ros) = 1+ pnt [1+1 1+%} [2 3}
which proves the claim. O

With Claim F.1, we can without loss of generality assume % < f (ros) < % as well (otherwise, we

can truncate f(rg.5) to this range; this only reduces the approximation error E [l Flr) = f*(r) 2]).

ClaimF.2. For } <z < 2, |/ (2)] < 25

Proof.
1

n—1

W ()] =

—~

2 1
r o 1--1. 1 1 ( 5 )1—ﬁ 1 4 1o 1 8
n < = 2 n—1 < . D
1—:17) 22 " n-—1 1—% (32 n-1 “n-1

Claim E.3. If f is e-optimal, then |f(ro.5) — f*(ro.5)| < 2VE.

Proof. If f is c-optimal, i.e., E[|f(r) — f*(r)|?] < e, then, by Jensen’s inequality E[X?] > E[X]?,
we have

Ve > E|[|f(r) ZP — f*(r)| = P(ros)|f(ros) — f*(ros).  (38)

For both P € { P!, P?}, we have

P(ros)=p-P(ros |lw=1)+(1—p) - P(res | w=0)
=p-Plalw=1)"+(1-p) - Pla|w=0)"

—1—20\@)" by (37 1
n >

1
>p~1+<1—p>-(8“ !
1+%+2%ﬁ 2

Plugging P(rg5) > % into (38), we get |f(r0,5) — [*(ro5)] < 24/c. O
From (36), Claim F.1, Claim F.2, and Claim F.3, we get

ﬁ—P’ = |h(f(7“0.5)) - h(f*(ro.s))’ < Tfl f(r()ﬁ) - f*(r0'5)| < % - 2/e = nwl(\gi_)

Since p = —2- as a function of p has a bounded derivative gp

T+s < 1, Equation (39) implies

W <

R 16
Ip—p| < ——=/e
n—1
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if we use p = as an estimate of p. This allows us to tell part P! and P? because the difference

1+
between p! and p? is greater than twice of our estimation error [p — p|:

2V BLE L BLVE | 32E
n n ~2n-1) n-1
Therefore, we can tell part P! and P? by checking whether p! or p? is closer to p.

p > 2p —p.

Finally, we upper bound the squared Hellinger distance between P' and P2. This will give the
sample complexity lower bound we want.

Claim F4. d2(P', P?) < O(c%).

Proof. For the marginal distributions of w, P and P2, according to Lemma A.2 and the fact that

w 1— L _ 2cvE den/E .
12 Plgwg _81”+ﬁ :1_%@ =1-0( f) we have
2
2 1 p2 C\/ c’e
wrr) <o((5)) =0(5) (40)
Given w = 0 or 1, we consider the conditional distributions of each s;, Psli‘ andP oo For s; = a,
we have
P2(a|w) 1_%_% 1+8L_2c\/5
L2 B w) S (3 L s e [ a5 2o
Tt l-mt =
1+8L_2c\/5 1_7_20\/5
ST 1—%+Lf
dey/e 4cy/e
21 (10 2) (1 ) <10
atz a 1+8—n ]__STI n
For s; = b, we have
1 1 deve 14 L 42V 1 _ deye B
1> POlw) o m + 5+ = o~ X5 1—16cyE O(ev?).

fpz(b|w)—1+%_2cﬁ' ﬁ—f—%ﬁ *ﬁ+407\/5_1+160\@:

n n

So, d (P} o Pfi |») can be upper bounded as follows:

A (Py, o Plg) = % :(\/Pl(a |w) = VP2(a] w))2 + (VPO w) - VP20 @)2]
B (O T S
<3| -y 1-00) (5 + 25) - (1= 0ea) |

sinee 1 - VT=7 <) < 3 |0(“5)* +0(7) - 0(cvEP]

O

-0(%).

Since P' = P} - [[}_, P, |, and P* = P2 - [];_ we have, by Lemma A.3 and Lemma A 4,

Iw’

d% (P!, P?) < d% (P!, P?) + max {dH H 5w H silw }

we{0,1}
< d(PL, P2)+ max {n~dH<P o Pm}
we{0,1}
2

(40)and(41)§0(%)+ max {n O(C 5)}

we{0,1} n
= 0(c%). O
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Therefore, according to Lemma A.5, to tell apart P! and P? with probability at least 1 — § we need

at least ] ) 1 ]
T= Q(d%{(Pl,PQ) log 5) - Q(c2 log 5)

samples. This concludes the proof.

G Missing Proofs from Section B

G.1 Proof of Theorem B.2

G.1.1 Additional Notations and Lemmas

We introduce some additional notations and lemmas for the proof. Let po be the expected average
report of all experts conditioning on w = 0:

n

1
Mozﬁzﬂi[n |w=0] = ZEsl\w 0 W:1|‘91‘)|W:0]7 (42)

i=1

which is equal to the expected prediction of w given expert ¢’s signal s; where s; is distributed
conditioning on w = 0, averaged over all experts. Symmetrically, let

Z]E1—n|w_1 Z]EWl (W=0]s)|w=1]. (43)

Recall that p = P(w = 1).
Fact G.1. (1 —p)uo = pp.

Proof. For each expert i, by the law of total expectation and the fact that r; = P(w = 1]s;), we
have the following equations:

(1=p)-Elri [w=0/+p-Elri |w=1]=Plw=0)-Elri |0 =0+ Plw=1)-E[r |w=1]
E[ri]
Es, [Plw=1]s;)] = Plw=1) =p.

Subtracting p from both sides, we get
(I1-p)-Elri]lw=0—-p-E[l—r|w=1]=0.

Averaging over all experts ¢ € {1,...,n}, we conclude that
! iE[ | 0] ! iE[l | 1]=0 O
— Tl w= — . — -1, | w= = 0.
"= " i=1

Lemma G.2. If (1 — p)uo = pu1 < 5, then the averaging aggregator fo,q(r) = £ 30" | r; is
e-optimal.

Proof. If (1 — p)po = pp1 < §, then the expected loss of fq,, is at most

LP(favg) = ]E[‘favg - w|2]
= PE[(farg(r) = 1) |w = 1] + (1 = D)E[(favg(r) = 0)* | w = 0]
< pE[l - favg(’r) | w = 1] + (1 _p)E[favg(r) | w = 0}

I I
=pE|l - — i =1 1—-pE|— i =0
PE[ n;T |lw=1]+(1-p) [n;T | w=0]
=pu1+ (L =puo
<iii-e
2 2
which implies that fg,4 is e-optimal. O
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The following lemma says that O(é log %) samples are sufficient to tell whether the mean of a

random variable is below ¢ or above %:

Lemma G.3. Given T = 46—0 log% i.i.d. samples XV, ... XT) of a random variable X € [0,1]
with unknown mean E[X| = i, with probability at least 1 — 6 we can tell whether i < € or j1 > 5.
This can be done by checking whether the empirical mean i = % Zle X s < %5 or > %5.

Proof. If © > ¢, using the multiplicative version of Chernoff bound we have

($)2uT T
T

Pr[ﬂ<%s]§Pr{ﬂ<Zu}§e* 7 <e 32 <4

Namely, with probability at least 1 — 9, it holds that
o> §5.

!
If 1 < ¢, then using the additive version of Chernoff-Hoeffding theorem, we have

Pr [ﬂ <p- E} < e~ D=5llwT
4 — )
Pr [ﬂ >+ f} < g~ Put+llmT
4 - b

(z—y)?
2y

where D(z||y) = 2In ¢ + (1 — x)In 3=2. Using the inequality D(z|ly) > for z < y and

D(zlly) > % for z > y, we obtain:

b

N £ _@y Sk e p
Pr|:/,l;</j,—1:|§e 2p Se_ 2¢ = e 32 S

| 9

(502 (5?

£ -2 T =T
Pr [ﬂ>g+ﬂ <e WD <e 2007 =~

&
)ﬂ
IA
IR

By a union bound, with probability at least 1 — §, we have
[
!
Combining the case of ;1 > € and p < €, we conclude that: with probability at least 1 — 4,

o If o < %5, then we must have p < €.

o If i > %5,thenwehaveu2€0rs>,u2ﬂ—%Z . In either case, we have y >

3
s
U

The last lemma we will use shows how to estimate the unknown value of p = £ = legizég
accuracy A using T' = O(ni2 log %) samples. Notice that, if one simply uses the empirical value
A ST 1{wW=1}

o Z?:l 1{w®=0}
which is larger than what we claim by a factor of n. This sub-optimality is because one only uses

the w(®)’s in the samples to estimate p, wasting the reports rl(t)’s. By using rl(t)’s to estimate p, we

can reduce the number of samples by a factor of n. The basic idea is the following: According to

Fact G.1, we have p = £ = Lo = %. The numerator E[>_;" | 7; | w = 0] and
n (1),

the denominator E[>"." ; (1 — ;) | w = 1] can be estimated from samples of r,

and 1 respectively. The total number of rgt)’s is T'n, because we have n experts per sample. This

reduces the needed number of samples by a factor of n. Formally:

with

to estimate p, then by Chernoff bound this needs T = O(<5 log %) samples,

s where w(®) = 0

P(w=1)
P(w=0)

accuracy @ < A < 1 (equivalently, g € 1 £ A) with probability at least 1 — § using

with

Lemma G.4. For conditionally independent distribution P, we can estimate p =

1 1 1 1
T = log = = Jog=
O((lp)uo~n~A2 %85+ min{p, 1 — p} Og5>
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#o 2wt g it Tv(t)
#11 Et;w(t)=1 Zi:l( gf))r
bers of samples with w") = 0 and 1 respectively.

samples of (w(t (t)) s, by letting p = where # and #1 are the num-

Proof. Recallthatp = P(w=1),1—p=P(w=0),and p = 125 According to Fact G.1 (which
says (1 — p)uo = pu1), we have

o= P _ Mo _ s E[ri [w=10] ) (44)

17}) H1 Z?:l]E[l—Ti‘wzl]

Consider the following way of estimating p from T samples (w®), ()T : Let #,, #1 be the
numbers of samples where w(*) = 0, 1, respectively:

T T

#o=> Hw® =0}, # =) 1{u® =1}

t=1 t=1
We let
% D=0 2ot Tz(t)
F Tewoo D (L= r)

p= (45)

Now, we compare the p in (45) and the p in (44): we see that % Y tw®—o ZZL:I rl(t) is an (unbiased)
estimate of the numerator Y7 ) E[r; | w = 0] = nj0 and that -3, —y >y (1 — r®) s an
(unbiased) estimate of the denominator Y- ; E[1 — r; | w = 1] = nu,. We use Chernoff bounds
to argue that the accuracy of the two estimates is within A with high probability if #q and #;
are big enough. Suppose that, when drawing the 7' samples, we draw all the w(*)’s first (and hence
#0, #1 are determined), and then draw all the 7’1@ ’s. After all the w(®)’s are drawn, the 7’1@ ’s become
independent, because the signals 35“’
use Chernoff bounds:

s are conditionally independent given w(®). Therefore, we can

n i A2
Z ngt) fn,uol > Anuo] < e~ Fomget- ,

w®) =0 i=1

H > Z —nM1’>Anu1} i e

tu(f) =11:=1

PrH%

_ #inpa?

.. _ #onuga?
Requiring § > 2e 3 and § > 2e 5, namely,

2

#Ho > #1> —log—, (46)
n )

3 1 2
— 2 log=
npgA2 &5
we have, with probability at least 1 — 24, both of the following hold:

= > Zr(” e (1+A)nu, # > Zl—rt) € (1£A)nuw, (47

fw(t) =0 =1 t:w®) =1 i=1

Then, we argue that (46) can be satisfied with high probability if 7" is large enough. This is again
done by a Chernoff bound: since E[#;] = E[Zthl Hw® =} =T P(w=j),forj =0,1, we
have

1 _Ta-p)($)? 1 _Te($)?
Pr[#o —T(L-p)| = 3T(1-p)| <2e77 5, Pr[|# —Tp| = 4Tp| <2¢7 7
(48)
So, if we are given
12
(49)

>———log -
~ min{p,1 — p} 85

33



samples, then we can ensure that with probability at least 1 — 24, it holds #, > %T(l — p) and
#1 > +Tp. Then, in order for (46) to be satisfied, we can let

1 3 2 1 3 2
-T(1—-p) > ———=log — —Tp> ——log —.
2 (1-p) 2 npoA? 85 2= np A2 %85
This gives
6 2 6 2\ (-p)po=pm 6 2
- max{(l—p)NO'nA2 %5 purnA? "gé} T —puo-nA? %3

(50)
Both (49) and (50) are satisfied when
6 2 12

T> ———— 1 ———log —.
= (1 —p)uo - nA2 %85 * min{p,1 — p} 85

1772171)} log % samples, then with proba-

To conclude, if we are given T = Mt% log % + omlp

bility at least 1 — 44, (47) holds, which implies

(L& A)po (1+A) 1p—pl
- C (14+4A)p — PPl yp,
TN N Ll rE

forA<%. O

G.1.2 The Proof

We want to show the O(@ log 5 +1 log +) sample complexity upper bound for the case where
experts have ~v-strongly informative signals.

We first use O(2 log §) samples tell whether (1 — p)uo = pu1 < 5 or (1 — p)uo = pu1 > 5. We
note that
n

1 1
1_ _p :o.E[f : :0]:1{3[1 -0}~ l]
(= po = Pl =0) B[ =003
which is the expectation of the random variable X = 1{w = 0} - 23" ;. So, according to
Lemma G.3, we can tell whether (1 — p)ug < § or > § with probability at least 1 — ¢ using
O(% log 1) samples of X. If (1 — p)po = pp1 < £, then according to Lemma G.2, the averaging
aggregator fq,q(r) = % Z?Zl r; is e-optimal. We hence obtained an e-optimal aggregator in this

case. So, in the following proof, we assume (1 — p)uo = pu1 > 5.

For each expert i, let S} = {s; € S; : %

signals that are more likely to be realized under w = 1 than under w = 0. Let S = S;\ S} = {s; €

> 1+ ~} be its set of y-strongly informative

S;: % < ﬁ} be the set of signals that are more likely to be realized under w = 0. Since

11—“ = % p by Equation (1), whenever an expert receives a signal in S}, its report satisfies
r
— > (14+7)p, Vs €S} (51)
1-— T
and whenever it receives a signal in SP, its report satisfies
T 1 0
<——p, Vs €S8, 52
= =114 "siEe (52)

We will use the notation P(S} | w) = P(s; € §' | w) = >, cou P(si | w), foru € {0,1}.
Given a set of n signals s1,. .., s, one per expert, we let X' = >  1{s; € S!} be the total
number of signals that belong to the S} sets, and similarly let X0 = 7" | 1{s; € S}. We have
X%+ X! = n, and by definition,

EX'|w=1] = znjp(s} lw=1) > 1+9)P(S} |w=0) = (1+7)E[X* |w=0]. (53)
i=1

EX°|w=0] = Zn:P(SZQIW=0) > (1+7)P(S) w=1) = Q1+EX° |w=1], (54)
=1

34



Claim G.5. At least one of E[X' | w = 1] and E[X° | w = 0] is > %.

Proof. Suppose on the contrary both E[X! | w = 1] and E[X° | w = 0] are < %. Then, from (54)
we have

1
EX°|w=1<—EX°|w=0] <=
14+ 2
This implies n = E[X? + X! | w = 1] < 2 4+ % = n, a contradiction. O

Let u € {0,1} be an index such that

n
1
Claim G.5 guarantees that such a u exists. We construct a “hypothetical” aggregator fypo that,
having access to p and E[X™ | w], predicts whether w = 0 or 1 by counting the number X* of signals
that belong to the S}* sets and comparing it with its expectations under w = 0 and 1, E[X™* | w = 0]
and E[X™ | w = 1], respectively. Specifically, given reports r = (ry,...,r,) as input, with
corresponding unobserved signals s = (s1,...,8y), fuypo does the following:

EX" |w=u] > (55)

lfi’l‘i
reports ;s satisfy ;70— < ﬁ p. According to (51) and (52), this number is exactly equal
to the number of signals that belong to the S;* sets, X*.

(2) Then, check whether X* is closer (in terms of absolute difference) to E[X* | w = u] or
EX* |w=1—u]. If X" is closer to E[ X" | w = u], output fhypo(r) = u; otherwise,
output frypo(r) =1 —w.

(1) If w = 1, count how many reports r;’s satisfy

> (14 7)p; If w =0, count how many

We claim that fi,yp, is -optimal.

Claim G.6. Given ﬁ > 8y/2log 2 and E[X" |w = u] > %, fuypo is e-optimal.

Proof. Given either w = 0 or 1, consider the conditional random draw of signals s1,...,s,. Be-
cause X* = >  1{s; € S} and the random variables 1{s;, € S}, i = 1,...,n, are [0,1]-
bounded and independent conditioning w, by Hoeffding’s inequality we have

242

Pr[\X“—E[X“M\za‘w} < 2e= .

a:wﬁlogg. (56)
2 €

a

Then with probability at least 1 — 26_¥ =1 —¢, it holds
| X" —E[X*|w]| < a. (57)
Consider the difference between E[X" | w = u] and E[X™“ | w = 1 — u]. By (53) and (54), we have

Let

BX*[w=1-u] < — E[X"|w=u] = (1- 71 )EX |w=u]

1+~ 1+~
By the assumption E[ X" | w = u] > %,
By the assumption 17 > 84/ 2 log 2, we have e h 2 8y/2log2 -2 =4,/%log2 = 4a.
Therefore
EX“|w=u] -E[X"|w=1-1u] > 4a. (58)

Because we already had |X v —E[X" | w]’ < a (which happened with probability at least 1 — ¢),
if X* turns out to be closer to E[X™ | w = w] it must be that w = wu; if X* turns out to be closer
to E[X* | w = 1 — «] it must be that w = 1 — u. In either case, our output fiypo(7) is equal to
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w, having a loss 0. If |X“ —E[X™ | wH < a did not happen, our loss is at most 1. Therefore, the
expected loss of our aggregator fiyp, iS at most

L (frypo) = Bu [ | fiypo(r) = wf? [ w]] <EL[(1-e)- 041

Since the expected loss of the optimal aggregator f* is non-negative, fuypo is €-optimal. O

In the remaining proof, we show how to use samples to learn a “real” aggregator f that implements
the same functionality as the hypothetical aggregator fiypo and hence is e-optimal. We have two
learning tasks: First, we need to estimate p, so that we can implement the step (1) of fhypo Which
tells apart 7o~ > (1 + 1) 1}W p. Second, we need to find an index u € {0,1} such
that E[X" | w = u| > % and estimate E[X" | w = u], so that we can implement the step (2) of
fnypo Which tells whether X" is closer to E[X* | w = u] or E[X" | w = 1 — u]. We show that

these two tasks can be achieved using O(ﬁ log 3+ + %log$) samples, with probability at
1+
least 1 — O(9).

Task 1: estimate p, using 7; = O(gn(%i)2 log 3 + Llog %) samples. We want to use samples
T+
to obtain an estimate p of p such that # ~p<p< (1+7)p.

(1+7)p and rm < 1+’vp Usmg LemmaG4W1thA— m,

T4
1—7r;
we obtain a p such that

pe(£A),
with probability at least 1 — § using

1 1 1 1 1 1 1
T =0 log= + ——— <O(———=lo 10
! ((1—10)#0"A2 B85 T mimip 1 p) © ) (m(lw &5 7 ga)

samples (recall that we have min{p, 1 —p} > (1 — p)uo = pu1 > ). The p then satisfies

) Y X v 1
B (B S S
T4)° (IL+7)p p )= 17

as desired.

Task 2: find u such that E[X" | w = u] > % and estimate E[X" | w = u], using 75 = O(% log §)
samples. First, we show how to use T = O(Z log ) samples to estimate both E[X° | w = 0] and
E[X! | w = 1] with accuracy a = |/ % log % By the same argument as in the proof of Lemma G.4
(Equations 48 and 49), we know that with probability at least 1 — 2§ over the random draws of

> 12 1

.t el

= minfp, T—p} 6
samples, the numbers of samples (w(®), rgt), .. ,rg))’
#0 and #1, must satisfy

(59)

s where w® = 0 and w® = 1, denoted by

1 1
#Ho > *(1 —p)T5, #1 > ipTQ-

We consider the samples where w(®) = 0. There are #,n total number of 7"( )

(®)

s. Suppose we have

(t)

accomplished Task 1. Then, for each r;”’, we can tell whether the corresponding signal s, ’ belongs

P

to S? by checking whether PO < p. So, we can exactly compute the total number of such signals
in the ¢-th sample, X°(*) = Zi:l 1{s{" € 8%}, whose expected value is E[X° | w = 0]. Because
signals are independent given w(*) = 0, by Hoeffding’s inequality we have

2(#ga)? 2#a2
U > Zﬂ{s“’eSO} #oE[X? | w = 0] >#oa]<26 M gt
— —m————

t:w®) =0 =1

X0(t)
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Plugging in a = /% log 2 and #( > (1 — p)T>, we get

|: Z X0 _ XO |w= 0]‘ > a:| < 9~ #o0 log 2 < 26—%(1—;0)T2 log 2
w®) =0

Similarly, con51dermg the samples where w® = 1, we get

Pr U Z X1 [Xl |w = 1]‘ > a] < 9e#1log 2 < 9e~3PT2log 2
#i, o
Therefore, if we require
21og(2/0)
~ min{p,1 —p}log(2/e)’
then with probability at least 1 — 24, both

X00 — E[X° |w = ‘ X0 _EX! |w=1

‘#0 % o | o < #1 ; . | | <
hold. Namely, =D =0 X0(t) and - Zt -1 X1 are a-accurate estimates of E[X° | w =
0] and E[X! | w = 1]. Equations (59) and (60) together imply that Tp = O(m log 6) <
O(Llog §) samples suffice.
Then, we identify an index u € {0, 1} such that E[X" | w = u] > %. By Claim G.5, there exists
av € {0,1} with E[X" | w = v] > 5. Since 2- 3, y_, X" is an a-accurate estimate of
E[X? | w = v], we must have

(60)

1
— X”(t)ZIE[X”w:v}—azﬁ—a.
o 2
tw(®=yp
So, at least one of u € {0, 1} must satisfy - # S () X O > 5 — a. By picking any such a u,
we are guaranteed that E[X™ | w = u] > & Zt:w(w:u xut) a > 4 — 2a. Given the assumption

n > 32log % in the statement of the theorem, we have

Hence, E[X" [w=u] > § —2a > § - 2(%) =

n
2

Finally, as argued above, an a-accurate estimate of E[X™ | w = u] is given by #i > iy XD,

Constructing f. After accomplishing Tasks 1 and 2 using T} + 715 = O(ﬁ log 5 + Llog %)
T+
samples, we construct a f that implements the same functionality as fiypo. Let
M=— xu — 2a,
twlt)=u
where % 3=y XU is our estimate of E[X* | w = u] in Task 2 and a = 5 log
ClaimG.7. E[ X" |w=u]—a>M >EX"|w=1—-u]+a

o 2

Proof. Because 2= 3", -, X“() is an a-accurate estimate of E[X* | w = u], we have

#u Z X'® g =M +a.

tiw(t) =y
Recall from Equation (58) that E[ X" | w =1 — u] < E[X" | w = u] — 4a. So,
Z X“(t)—i—a) —4a =M — a.

tw®) =y

EX"|w=u] >
EXY | lw=1—-u]< (L
Hu
The above two inequalities prove the claim. O
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Given reports 7 = (r1, ..., 7y,) as input, we let f do the following:

(1) If u = 1, count how many reports r;’s satisfy
r;’s satisfy —Zi- < p. Let this number be X;

1—7r;

Ti
T

i—— > p; If u = 0, count how many reports

k3

(2) Then, check whether X > M or X < M. If X > M, output f (r) = u; otherwise, output
fir)=1-u.

We argue that f implements the same functionality as fhypo: (1) In Task 1 we got ﬁ p<p<
(1+7)p. So, by checking whether i~ > p or < p we can exactly tell whether %~ > (1 +7)p

or < ﬁ p. Hence, we have X = X*, the number of signals that belong to the S;* sets. (2) Recall

from Equation (57) that with probability at least 1 — &, X is a-close to its expectation E[X™ | w].
Then, according to Claim G.7, X > M implies that X is closer to E[ X" | w = u]; X < M implies

that X is closer to E[X“ | w = 1 — u]. So, f implements both of the two steps in fnypo- Hence,
according to Claim G.6, f is e-optimal.

G.2 Proof of Theorem B.3

According to Lemma 5.1, the optimal aggregator is

1
= — =0
1_|_pn 1H;L:17T

T

fr(r)

(61)

where p = ﬁ. We claim that an approximately optimal aggregator can be obtained by first esti-
mating p from samples and then use the aggregator with the estimate p:

s 1

flr)= — (62)
T I 5
Claim G.8. If 1o ;p | < Z‘/i < %, then the aggregator f defined above is e-optimal.
Proof. Consider the function g(p) = ﬁ (where p is the variable and r;’s are con-
A |
stants). We claim that
. n—1
lg'(p)| < v (63)

To see this, we note that if 7, = 0 for some ¢ then g(p) = 0 and ¢’(p) = 0. Otherwise, we let
Y= H?:1 1= < 400 and take the derivative with respect to p,

T4

J(5) = - WEZ VI !

1 ~n—2 = —(n— _
e (Y

By the AM-GM inequality a + b > 2v/ab, we get

R 1 1
lg'(p)| < (n—1) s =(n—1)—,
( L ﬁ%\/@) 4p
2 T
as claimed.
Using (63), we have, for p > £,
) = £ = l9(D) — g € 2 fp—p < B PR g
~ 4min{p, p} - 2 p

So, to obtain e-approximation E[|f('r) — f*(r)]?] < e, we can require If(r) — f*(r)| < 2L -
@ < /2. This can be satisfied if the error in estimating p is at most @ < Ve O

n—1
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We then show how to use O(22 log 1) samples to estimate the value of p with O(n—‘ﬁ) accuracy,
which will give us an e-optimal aggregator according to Claim G.8. Recall from (14) that when
signals are y-weakly informative, the reports always satisfy

1 T

—p< 1 . 65
va_l_rl < (147 (65)
The following observation is the key:
Lemma G.9. For each expert i, we have
s B[ lw=0]=p
. 1- 7‘1 = =1
E[ w= 1] =5
As corollaries, for k conditionally independent reports r1, ...,k we have E[Hle | w =

0] =p" andIEI[Hf=1 17

T4

w:l]:#.

— P(silw=1)
1—r; = P(s;|lw=0)

E[1Ti |w:0}: ZP<siw—0>§EzZZ:8p_ > Plsilw=1p=p.

p (from (13)), we have

—T; s = forrd
For conditionally independent 1, . . ., 7%, we have
k
_ ok
e[ Il 1= |- HE[ =o0] ="
=1
Similarly, we can prove E[l Ly =1] = % andI[-E[]_[i:1 1;—’“ w=1] = #. O
Let A = suppose we are given ' = 3 be - log 2 5= 546”" log2 = O(*log ) samples.

Suppose when drawing the samples we first draw the events w(t) ’s, and then draw the reports r( )
conditioning on w(*) being 0 or 1. After the first step, the numbers of samples with w® = 0 and
w® = 1 are determined, which we denote by #¢ and #1. Since #¢ + #1 = T, one of them must

be at least T'/2. We argue that whether #( > % or #, > % we can estimate pl/ 7 with accuracy
3A. (For simplicity, we assume that 1/ is an integer.)

o If #9 > T/2, then we consider the #on reports r( )’s in the samples with w® = 0.
We divide these #(n reports evenly into #gn~y groups, each of size 1/, denoted by
P

G1,...,Guyny. Consider the product of fE=o) ’s in a group G;: because r( )°s are in-

dependent given w = 0, by Lemma G.9 we have

E{ H (®)

r; ‘ w=0|= pl/’y.
O
’r‘gt)GGj o ri

Using (65) and the inequality (1 4 v)'/7 < e, we have

(t)
1

o < 1/’7 <

p N (1—|—’)’)1/V “HG l—rlm

< (L)Y < ept.

()
. 1 T . .
Let X; be the random variable Vel Hrgt) cG; T From the above equation and in-

equality we have E[X;] = L and X; € [,1] C [0, 1]. So, by Chernoff bound,

#Fony
Pr [#olm ix e (1:|:A*|w—0}>1*26

TnyA2

2
>1-2 8% =1-90,
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Z#"m X; by ep'/7, we obtain the following

given our choice of 7. Multiplying

#o m
estimate of p'/7:
Ay 1 #i? H Tz(t) € (1+A) 1/~
Po = F#Fony 1—r® re
M S e, LT

Dividing by p'/7, we get (%’)1/7 €1+A.

o If #, > T/2, then by considering the #n reports in the samples with w® = 1, divid-

ing them into #in<y groups of size 1/, Hi, ..., Hy4,ny, and similarly defining random
r(®
variable Y; = % Hr,ﬁ“ cH, = (,) , we obtain the following estimate of ( Y

F#F1ny

Z H e(uA)(p)lM

(t)eH ’L

(G =

p1 #1”7
Mult1p1y1ng by p/7, we get ( )1/ 7 € 1 4+ A. Taking the reciprocal and noticing that
2x C1+3AwhenA < Weobtaln(pl)l/"’ €1+3A.

From the discussion above we obtained an estimate p € {pg, p1} of p such that (§)1/ 7 e 14 3A.
Raising to the power of 7, and using the inequality (1—2)” > 1—zvyand (14+z)7 < e*7 < 142z
for xy < 1, we get

g € (1£3A)7 C [1-3A7, 37 C [1-3A7, 1+ 6A4].
In particular, this implies 2 lo=el < 2\[ Then, according to Claim G.8, the aggregator f
defined by f (r) = W is e- optlmal We hence obtained an e-optimal aggregator.

H Missing Proofs from Section 7

H.1 Proof of Theorem 7.1

Regard P as a joint distribution over reports » = (71, ..., r,) and the state w, where r; is sampled
by first sampling s; € S; and then letting r; = P(w = 1| s;). Since |S;| = m, there are at most m
different values of r; that can be sampled, so there are at most 2m™ different tuples of (r,w) in the
support of P. For each such tuple (7, w), consider the empirical probability of this tuple:

Z]l r(t = (r,w)].

By the Chernoff bound, we have

TP(r,w)A?

Pr [|P(r,w) — P(r,w)| > AP(r,w)] <2 3

Using a union bound for all the 2m™ tuples and the fact that P(r,w) > P(s,w) > -5 (where
s € § are some signals that generate ), we have

|P(r,w) = P(r,w)| < AP(r,w) (66)
holds for all tuples (r,w) except with probability at most
o . 9o TS <4Am" e —EA 5
if - Am
m m
T> —log —. 67
Z Az %% ©7)
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Assuming (66) holds, we consider the “empirical” Bayesian aggregator:

) — P(r,w)
f(r) Pr)

Since (66) implies P(r,w) € (14 A)P(r,w) and P(r) € (1+ A)P(r), we have
1-A P(r,w) 2A

) 21738 oy = (0 L) ()= (1= 22)1° ()
and

. 1+A P(r,w) 2A ., x

fr) € TR - et = (L4 pg) P (0) < (L+48)7 (r),

if A < % Putting these two inequalities together:

() = £ ()| < 4Af7 ().
We note that this holds for all possible r in the support of P. So, the expected approximation error
of f is at most:

E[lf(r) = ()] =D P@)|f(r) = f*(r)
<> P(r)16A%f*(r)?

P

(r,w),2
P(r) )

=16A%) " P(r)(

=16A%Y Pg(’:;)Q <16A%Y ];((72)2 — 16A2.

Letting 16A% = ¢, namely A% = =, we have E[|f(r) — f*(r)|?] < e, so f is an -optimal

aggregator. Plugging A% = 15 into (67) we obtain the sample complexity

™

3m™ m" 48m™ m" m" 1
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