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Abstract

We consider a Bayesian forecast aggregation model where n experts, after observ-
ing private signals about an unknown binary event, report their posterior beliefs
about the event to a principal, who then aggregates the reports into a single predic-
tion for the event. The signals of the experts and the outcome of the event follow
a joint distribution that is unknown to the principal, but the principal has access
to i.i.d. “samples” from the distribution, where each sample is a tuple of the ex-
perts’ reports (not signals) and the realization of the event. Using these samples,
the principal aims to find an ε-approximately optimal aggregator, where optimal-
ity is measured in terms of the expected squared distance between the aggregated
prediction and the realization of the event. We show that the sample complexity

of this problem is at least Ω̃(mn−2/ε) for arbitrary discrete distributions, where
m is the size of each expert’s signal space. This sample complexity grows expo-
nentially in the number of experts n. But, if the experts’ signals are independent
conditioned on the realization of the event, then the sample complexity is signif-

icantly reduced, to Õ(1/ε2), which does not depend on n. Our results can be
generalized to non-binary events. The proof of our results uses a reduction from
the distribution learning problem and reveals the fact that forecast aggregation is
almost as difficult as distribution learning.

1 Introduction

Suppose you want to know whether it will rain tomorrow. A Google search on “weather” returns
40% probability of raining. The weather forecasting app on your phone shows 85%. And one of
your friends, who is an expert in meteorology, predicts 65%. How do you aggregate these different
predictions into a single, accurate prediction? This problem is called forecast aggregation or forecast
combination [7, 16, 45]. It has innumerable applications in fields ranging from economics, statistics,
operations research, to machine learning, decision theory, and of course, climate science.

A straightforward solution to forecast aggregation is to take the (unweighted) average of all experts’
forecasts. Simple as it is, unweighted average performs surprisingly well in practice, as observed
by many forecast aggregation works from 1960s to 2020s (e.g., [7, 38, 35, 30, 16, 45, 34]). Natu-
rally, when past data of expert forecasts and event outcomes (e.g., historical weather forecasts and
outcomes) are available, one may hope to leverage on such data to learn more accurate aggregators.
While adjusting the weights of experts in averaging according to their individual historical accuracy
has led to improved accuracy for the aggregated prediction [49], interestingly, more sophisticated
data-driven methods [23, 35, 49] were often outperformed by the unweighted average. The dom-
inance of simple aggregators over more sophisticated data-driven methods is observed so often in
empirical applications that it is termed “the forecast combination puzzle” [44, p.428].

There are many potential explanations for the forecast combination puzzle [43, 23, 15]. In some
scenarios, the past events are different from the future events in fundamental ways (e.g., geopolitical
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forecasting) and hence past data may not be informative in predicting the future. Another widely
accepted conjecture is that the amount of past data is not large enough for a data-intensive method
to perform well. Indeed, the sample sizes in many empirical forecast aggregation works are small
under today’s “big-data” standard (24 in [27], 69 in [42], 87 in [6], 100 in [30]). However, there are
aggregation settings where future events are arguably similar to past events and we do have abundant
data — for instance, the forecasting of weather, stock prices [21], and some forecasting competitions
on Kaggle1. Such settings are well-suited for data-driven methods. It is hence tempting to ask how
many data are needed for data-driven aggregators to achieve high accuracy in these settings.

In this paper, we initiate the study of sample complexity of forecast aggregation, building upon
a standard Bayesian forecasting model [37, 48, 24]. In this model, there are n experts who ob-
serve private signals about an unknown binary event and make posterior predictions about the event.
The experts’ signals and the event are jointly distributed according to some underlying unknown
distribution (information structure) P , which determines the optimal way to aggregate the experts’
predictions. With sample access to the unknown distribution P , we ask the following question:

How many samples do we need to approximately learn the optimal aggregator?

Our model favors the use of data-driven aggregation methods because historical tasks are i.i.d. as
future tasks. We show that however, even in this benign model, optimal aggregation in general needs
exponentially many samples. One may thus expect that data-driven methods can hardly perform well
in more realistic and non-i.i.d. scenarios. Nevertheless, for some special, yet interesting, families of
information structures, the sample complexity of forecast aggregation is significantly lower.

Main results (1) If P can be an arbitrary discrete distribution, then at least Ω̃(mn−2/ε) samples

are needed, and Õ(mn/ε2) samples are sufficient, to learn an ε-optimal aggregator with high proba-
bility, where m is the number of signals an expert can possibly observe.2 (2) If the experts’ signals
are conditionally independent, then the sample complexity is exponentially reduced and surprisingly

does not depend on the number of experts or the number of signals: Õ(1/ε2) samples are sufficient,

and Ω̃(1/ε) samples are necessary, to learn an ε-optimal aggregator with high probability.

Main techniques The main technical part of our paper is to prove the Ω̃(mn−2/ε) lower bound
on the sample complexity of forecast aggregation for the general case, via a reduction from the
distribution learning problem. It is known that learning a discrete distribution with support size

|S| in total variation distance ε requires Ω̃(|S|/ε2) samples. By reducing distribution learning to
forecast aggregation, we obtain the lower bound on the sample complexity of the latter problem. This
reduction is highly nontrivial. To do this reduction we define a new distribution learning problem
that is different from the one in the literature, which is of independent interest. This reduction also
reveals an interesting fact: learning to aggregate optimally on some distribution is almost as difficult
as learning the distribution itself. This is a little surprising because one might initially think that
aggregation should be easier than distribution learning – we show that this is not the case.

Structure of the paper We discuss related works in Section 1.1. Section 2 introduces our model.
Section 3 includes some preliminaries, including the distribution learning problem, which we will
use in the proof. Section 4 studies the sample complexity for general distributions. Section 5 focuses
on the conditional independence case. Section 6 summarizes how our results can be generalized to
non-binary (multi-outcome) events. Section 7 concludes and discusses future directions.

1.1 Related Works

Data-driven aggregation Data-driven approaches to forecast aggregation date back to perhaps
the first paper on forecast aggregation [7] and have been a standard practice in the literature (see,
e.g., surveys [16, 45] and more recent works [51, 42, 4, 47, 22, 40]). Many of these works focus
on specific weighted average aggregators like linear pooling (weighted arithmetic mean) [51] and
logarithmic pooling (normalized weighted geometric mean) [42, 40], and the goal is to estimate the
optimal weights from data. However, those weighted average aggregators are not necessarily the

1https://www.kaggle.com/c/m5-forecasting-accuracy
2The Õ(·) and Ω̃(·) notations omit logarithmic factors.
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optimal (Bayesian) aggregator unless the underlying information structure satisfies some strict con-
ditions (e.g., experts’ forecasts are equal to the true probability of the event plus normally distributed
noises [48]). Our work aims to understand the sample complexity of Bayesian aggregation, namely
how many samples are needed to approximate the Bayesian aggregator.

Our work is closely related to a recent work [4] on Bayesian aggregation via online learning. For the
case of conditionally independent experts, [4] shows that the Bayesian aggregator can be approxi-

mated with ε = Õ( n√
T
) regret. By an online-to-batch conversion, this implies a T = Õ(n

2

ε2 ) sample

complexity upper bound for the batch learning setting. Our paper studies the batch learning setting.

For the conditional independence case, we obtain an improved bound of Õ( 1
ε2 ).

Robust forecast aggregation Recent works on “robust forecast aggregation” [2, 39, 18, 3] also
study information aggregation problems where the principal does not know the underlying informa-
tion structure. They take a worst-case approach, assuming that the information structure is chosen
adversarially. This often leads to negative results: e.g., a bad approximation ratio [2, 39] or a de-
generate maximin aggregator that solely relies on a random expert’s opinion [18, 3]. In contrast, we
assume sample access to the unknown information structure. Our sample complexity approach is
orthogonal and complementary to the robust forecast aggregation approach.

Sample complexity of mechanism design Our work may remind the reader of a long line of
research on the sample complexity of revenue maximization in mechanism design (e.g., [17, 20, 36,
19, 5, 11, 29, 10, 25, 50, 28]). In particular, [28] gives a general framework to bound the sample
complexity for mechanism design problems that satisfy a “strong monotonicity” property, but this
property is not satisfied by our forecast aggregation problem. A key observation from this line of
works is that the number of samples needed to learn an ε-optimal auction for n ≥ 1 independent
bidders is increasing in n, because when there are more bidders, although we can obtain higher
revenue, the optimal auction benchmark is also improved. We see a similar phenomenon that the
sample complexity of forecast aggregation increases with the number of experts in the general case,
but not in the case where experts are conditionally independent.

2 Model

2.1 Forecast Aggregation

There are n ≥ 2 experts and one principal. The principal wants to predict the probability that a
binary event ω ∈ Ω = {0, 1} happens (ω = 1), based on information provided by the experts.
For example, ω may represent whether it will rain tomorrow. We present binary events to simplify
notations. All our results can be generalized to multi-outcome events with |Ω| > 2 (see Section 6).
We also refer to ω as “the state of the world”. Each expert i = 1, . . . , n observes some private signal
si ∈ Si that is correlated with ω, where Si denotes the space of all possible signals of expert i. We
assume for now that Si is finite, with size |Si| = m. We relax this assumption in Section 5 where
we consider conditionally independent signals. Let S = S1 × · · · × Sn be the joint signal space of
all experts; |S| = mn. Let P be a distribution over S × Ω, namely, a joint distribution of signals
s = (s1, . . . , sn) and event ω. Since the space S × Ω is discrete, we can use P (·) to denote the
probability: P (s, ω) = PrP [s, ω]. Signals of different experts can be correlated conditioned on
ω. We assume that each expert i knows the marginal joint distribution of their own signal si and
ω, P (si, ω). Neither any expert nor the principal knows the entire distribution P . Each expert i
reports to the principal a forecast (or prediction) ri for the event ω, which is equal to the conditional
probability of ω = 1 given their signal si:

3

ri = P (ω = 1 | si) = P (ω=1)P (si|ω=1)
P (ω=1)P (si|ω=1)+P (ω=0)P (si|ω=0) . (1)

We note that ri depends on si and P , but not on ω or other experts’ signals s−i. Let r =
(r1, . . . , rn) ∈ [0, 1]n denote the reports (joint report) of all experts. We sometimes use r−i to

3One may wonder whether the experts are willing to report ri = P (ω = 1 | si) truthfully. This can be
guaranteed by a proper scoring rule. For example, we can reward each expert the Brier score C − |ri − ω|2

after seeing the realization of ω [9]. Each expert maximizes its expected reward by reporting its belief truthfully.
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denote the reports of all experts except i. The principal aggregates the experts’ reports r into a sin-
gle forecast f(r) using some aggregation function, or aggregator, f : [0, 1]n → [0, 1]. We measure
the performance of an aggregator by the mean squared loss:

LP (f) = EP

[
|f(r)− ω|2

]
. (2)

The notation EP [·] makes it explicit that the expectation is over the random draw of (s, ω) ∼ P
followed by letting ri = P (ω = 1 | si). We omit P and write E[·] when it is clear from the context.

Let f∗ be the optimal aggregator with respect to P , which minimizes LP (f):

f∗ = argmin
f :[0,1]n→[0,1]

LP (f) = argmin
f :[0,1]n→[0,1]

EP

[
|f(r)− ω|2

]
. (3)

We have the following characterization of f∗ and LP (f): f∗ is equal to the Bayesian aggregator,
which computes the posterior probability of ω = 1 given all the reports r = (r1, . . . , rn). And the
difference between the loss of f and the loss of f∗ is equal to their expected squared difference.

Lemma 2.1. The optimal aggregator f∗ and any aggregator f satisfy:

• f∗(r) = P (ω = 1 | r), for almost every r.

• LP (f)− LP (f
∗) = EP

[
|f(r)− f∗(r)|2

]
.

An aggregator f is ε-optimal (with respect to P ) if LP (f) ≤ LP (f
∗) + ε. By Lemma 2.1, this is

equivalent to EP

[
|f(r)− f∗(r)|2

]
≤ ε. For an ε-optimal f , we also say it ε-approximates f∗.

Definition 2.2. An aggregator f is ε-optimal (with respect to P ) if EP

[
|f(r)− f∗(r)|2

]
≤ ε.

Discussion of the benchmark f∗ Our benchmark, the Bayesian aggregator f∗, is common in
the forecast aggregation literature (e.g., [27, 26, 45]). It is stronger than the typical “best expert”
benchmark in no-regret learning (e.g., [13, 22]), but weaker than the “omniscient” aggregator that
has access to the experts’ signals: fomni(s) = P (ω = 1 | s). If there is a one-to-one mapping
between signals s and reports r, then fomni and f∗ are the same. Otherwise, fomni could be much
stronger than f∗ and an ε-approximation to fomni using experts’ reports only is not always possible.4

In contrast, an ε-approximation to f∗ is always achievable (in fact, achieved by f∗ itself). The
difference between f∗ and fomni is known as the difference between “aggregating forecasts” and
“aggregating information sets” in the literature [27, p.198-199], [26, p.168-169], [45, p.143].

2.2 Sample Complexity of Forecast Aggregation

The principal has access to T i.i.d. samples of forecasts and event realizations drawn from the un-
derlying unknown distribution P :

ST =
{
(r(1), ω(1)), . . . , (r(T ), ω(T ))

}
, (s(t), ω(t)) ∼ P, r

(t)
i = P (ω = 1 | s(t)i ). (4)

Here, we implicitly regard P as a distribution over (r, ω) instead of (s, ω). The principal uses

samples ST to learn an aggregator f̂ = f̂ST
, in order to approximate f∗. Our main question is:

How many samples are necessary and sufficient for finding an ε-optimal aggregator f̂
(with probability at least 1− δ over the random draw of samples)?

The answer to the above question depends on the family of distributions we are interested in. Let P
denote a family of distributions over S × Ω. It could be the set of all distributions over S × Ω, or
in Section 5 we will only consider distributions where the signals are independent conditioned on ω.
We define the sample complexity of forecast aggregation, with respect to P , formally:

Definition 2.3. The sample complexity of forecast aggregation (with respect to P) is the minimum
function TP(·, ·) of ε, δ ∈ (0, 1), such that: if T ≥ TP(ε, δ), then for any distribution P ∈ P , with
probability at least 1− δ over the random draw of T samples ST from P (and over the randomness

of the learning procedure if it is randomized), we can obtain an aggregator f̂ = f̂ST
satisfying

EP [|f̂(r)− f∗(r)|2] ≤ ε.

4This has been noted by [2, 4, 39]. They give an XOR example where ω = s1 ⊕ sn, s1 and s2 are
i.i.d. Uniform{0, 1} distributed. The experts always report ri = 0.5, fomni(s1, s2) = ω, f∗(r1, r2) = 0.5, so
LP (fomni) = 0 but LP (f

∗) = 0.25 > 0. No aggregator that uses experts’ reports only can do better than f∗.
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The principal is assumed to know the family of distributions P but not the specific distribution
P ∈ P . There should be at least two different distributions in P . Otherwise, the principal knows
what the distribution is and there is no need for learning.

3 Preliminaries

In this section, we briefly introduce some notions that will be used in our analysis of the sample
complexity of forecast aggregation, including some definitions of distances between distributions,
the distribution learning problem, and the distinguishing distributions problem.

Distances between distributions We recall two distance metrics for discrete distributions: the
total variation distance and the (squared) Hellinger distance.

Definition 3.1. Let D1, D2 be two distributions on a discrete space X .

• The total variation distance between D1 and D2 is dTV(D1, D2) =
1
2

∑

x∈X
∣
∣D1(x)−D2(x)

∣
∣.

• The squared Hellinger distance between D1 and D2 is d2H(D1, D2) = 1
2

∑

x∈X
(√

D1(x) −
√

D2(x)
)2

= 1−∑

x∈X
√

D1(x)D2(x).

The total variation distance has the following well-known property that upper bounds the difference
between the expected values of a function on two distributions:

Fact 3.2. For any function h : X → [0, 1], |Ex∼D1
h(x)− Ex∼D2

h(x)| ≤ dTV(D1, D2).

In Appendix A we give some properties of the Hellinger distance that will be used in the proofs.

Distribution learning in total variation distance Our analysis of the sample complexity of the
forecast aggregation problem will leverage on the sample complexity of another learning problem:
learning discrete distributions in total variation distance. We review this problem below.

Let D be a family of distributions over X . The sample complexity of learning distributions in D
within total variation distance ε is the minimum function TTV

D (ε, δ), such that: if T ≥ TTV
D (ε, δ),

then for any distribution D ∈ D, with probability at least 1− δ over the random draw of T samples

from D, we can obtain (from the T samples) a distribution D̂ such that dTV(D̂,D) ≤ ε.

Proposition 3.3 (e.g., [12, 33]). Let Dall be the set of all distributions over X . Then, TTV
Dall

(ε, δ) =

Θ
( |X |+log(1/δ)

ε2

)
. In particular, the upper bound can be achieved by using the empirical estimate

D̂emp (which is the uniform distribution over the T samples). The lower bound holds regardless of
what learning algorithm is used.

Distinguishing distributions Another learning problem that we will leverage on is the problem
of distinguishing (two) distributions: given samples from a distribution randomly chosen from
{D1, D2}, we are to guess whether the samples are from D1 or D2. The sample complexity of
distinguishing distributions is characterized by the squared Hellinger distance. It is known that at
least T = Ω

(
1

d2
H(D1,D2)

log 1
δ

)
samples are needed to distinguish two distributions with probability

at least 1− δ. See Appendix A for a formal statement of this result.

4 Sample Complexity for General Distributions

In this section we characterize the sample complexity of forecast aggregation for general distribu-
tions P . We give an exponential (in the number of experts, n) upper bound and an exponential lower
bound on the sample complexity, as follows:

Theorem 4.1. Let Pall be the set of all distributions over S × Ω, with |S| = mn. Suppose n ≥ 2.
The sample complexity of forecast aggregation with respect to Pall is

O
(mn+log(1/δ)

ε2

)
≥ TPall

(ε, δ) ≥ Ω
(mn−2+log(1/δ)

ε

)
. (5)

This theorem is for n ≥ 2. When there is only one expert (n = 1), there is no need to learn to
aggregate because the optimal “aggregator” f∗ simply outputs the forecast given by the only expert:
f∗(r1) = P (ω = 1 | r1) = P (ω = 1 | s1) = r1. The sample complexity is 0 in this case.
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There is a gap in the dependency on ε in the upper bound and the lower bound in Theorem 4.1. We
conjecture that the tight dependency on ε should be 1

ε (so the lower bound is tight). See Section 7
for a detailed discussion of this conjecture, where we show that the dependency on ε in the upper
bound can be improved to 1

ε for a large family of distributions.

4.1 Proof of the Upper Bound

In this subsection we prove the O
(mn+log(1/δ)

ε2

)
upper bound in Theorem 4.1. This is a direct

corollary of the distribution learning result introduced in Section 3.

We regard P as a distribution over r and ω instead of over s and ω. Then P is a discrete distribution
with support size at most 2mn because each possible report ri ∈ [0, 1] corresponds to some discrete

signal si in Si. Let P̂emp be the empirical distribution of reports and event realizations: P̂emp =

Uniform
{
(r(1), ω(1)), . . . , (r(T ), ω(T ))

}
. By Proposition 3.3, with probability at least 1 − δ over

the random draw of T = O
( 2mn+log(1/δ)

ε2

)
samples, we have dTV(P̂emp, P ) ≤ ε. According to

Fact 3.2, and by the definition of LP (f), we have: for any aggregator f : [0, 1]n → [0, 1],

∣
∣LP̂emp

(f)− LP (f)
∣
∣ =

∣
∣
∣EP̂emp

[
|f(r)− ω|2

]
− EP

[
|f(r)− ω|2

]
∣
∣
∣ ≤ dTV(P̂emp, P ) ≤ ε.

Therefore, if we pick the empirically optimal aggregator f̂emp = argminf LP̂emp
(f), we get

LP (f̂emp) ≤ LP̂emp
(f̂emp) + ε ≤ LP̂emp

(f∗) + ε ≤ LP (f
∗) + 2ε,

which means that f̂emp is a 2ε-optimal aggregator for P .

4.2 Proof of the Lower Bound

In this subsection we prove the Ω
(mn−2+log(1/δ)

ε

)
lower bound in Theorem 4.1. The main idea is

a reduction from the distribution learning problem (defined in Section 3) for a specific family D of
distributions over the joint signal space S = S1 × · · · × Sn. We construct a corresponding family
of distributions P = {PD : D ∈ D} for the forecast aggregation problem, such that, if we can

obtain an ε-optimal aggregator f̂ for PD, then we can convert f̂ into a distribution D̂ such that

dTV(D̂,D) ≤ O(
√
ε). We then prove that learning D within total variation distance εTV = O(

√
ε)

requires Ω
(mn−2+log(1/δ)

ε2TV

)
= Ω

(mn−2+log(1/δ)
ε

)
samples. This gives the sample complexity lower

bound for the forecast aggregation problem for P (and hence Pall).

We will need a family of distributions D that satisfies the following three properties:

Definition 4.2. We say a family of distributions D satisfies

1. B-uniformly bounded, if: D(s) ≤ B
|S| =

B
mn , ∀s ∈ S, ∀D ∈ D, where B ≥ 1 is a constant.

2. same marginal across distributions, if: for any D,D′ ∈ D, any i, any si ∈ Si, D(si) = D′(si).

3. distinct marginals across signals, if: for any D ∈ D, any i, any si 6= s′i ∈ Si, D(si) 6= D(s′i).

How do we construct the family P? For each distribution D ∈ D, we construct distribution PD as
follows: the marginal distribution of ω is Uniform{0, 1}, i.e., PD(ω = 0) = PD(ω = 1) = 1

2 ;

conditioning on ω = 0, the joint signal s is uniformly distributed: PD(s | ω = 0) = 1
|S| = 1

mn ,

∀s ∈ S; conditioning on ω = 1, the joint signal is distributed according to D: PD(s | ω = 1) =
D(s), ∀s ∈ S. The family P is {PD : D ∈ D}.

We show that if we can obtain ε-optimal aggregators for distributions in P , then we can learn the
distributions in D within total variation distance (1+B)2

√
ε, and thus the sample complexity of the

former is lower bounded by the sample complexity of the latter:

Lemma 4.3. Let D be a family of distributions that satisfies the three properties in Definition 4.2.
Let P = {PD : D ∈ D} be defined above. Then, TP(ε, δ) ≥ TTV

D
(
(1 +B)2

√
ε, δ

)
.
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Proof sketch of Lemma 4.3. The full proof is in Appendix E.1. We give a sketch here. According to
the definition of PD, by Bayes’ rule, we have

PD(ω = 1 | s) =
1
2PD(s|ω=1)

1
2PD(s|ω=0)+

1
2PD(s|ω=1)

= D(s)
1

mn +D(s)
. (6)

The “distinct marginals across signals” property in Definition 4.2 ensures that there is a one-to-one
mapping between signal si and report ri = PD(ω = 1 | si), and hence a one-to-one mapping
between joint signal s and joint report r. So, the Bayesian aggregator f∗ satisfies f∗(r) = PD(ω =

1 | r) = PD(ω = 1 | s) = D(s)
1/mn+D(s) . This gives

D(s) = 1
mn

f∗(r)
1−f∗(r) . (7)

Suppose we have obtained an ε-optimal aggregator f̂ for PD, EPD

[
|f̂(r) − f∗(r)|2

]
≤ ε, then we

convert f̂ into D̂ by letting D̂(s) = 1
mn

f̂(r)

1−f̂(r)
. The total variation distance between D̂ and D is:

dTV(D̂,D) = 1
2

∑

s∈S

∣
∣D̂(s)−D(s)

∣
∣

(7)
= 1

2

∑

s∈S

1
mn

∣
∣
∣

f̂(r)

1−f̂(r)
− f∗(r)

1−f∗(r)

∣
∣
∣. (8)

The “B-uniformly bounded” property in Definition 4.2 ensures D(s) = O( 1
mn ), which has two

consequences: (1) PD(s) = O( 1
mn ); (2) f∗(r) = O(1), which implies

∣
∣ f̂(r)

1−f̂(r)
− f∗(r)

1−f∗(r)

∣
∣ =

O
(
|f̂(r) − f∗(r)|

)
due to Lipschitz property of the function x

1−x for x = O(1). These two conse-

quences imply

dTV(D̂,D) = O
(∑

s∈S

1
mn

∣
∣f̂(r)− f∗(r)

∣
∣

)

= O
(∑

s∈S

PD(s)
∣
∣f̂(r)− f∗(r)

∣
∣

)

= O
(

E
[
|f̂(r)− f∗(r)|

]) Jensen’s inequality

≤ O
(√

E
[
|f̂(r)− f∗(r)|2

])

= O(
√
ε).

So, we obtain dTV(D̂,D) ≤ O(
√
ε) = (1 +B)2

√
ε.

There is a subtlety, however: In the distribution learning problem we are given samples from D,

which are signals {s(t)}Tt=1. We need to convert them into the corresponding reports {r(t)}Tt=1 as
the samples for the forecast aggregation problem. To do this we need to know PD or D, which we
do not know. So, we make use of the “same marginal across distributions” property in Definition 4.2
here: because all the distributions D ∈ D have the same marginal probability D(si) = D′(si) (but
possibly different joint probabilities D(s) 6= D′(s)), we are able to compute the report

r
(t)
i = PD(ω = 1 | s(t)i ) =

1
2PD(s

(t)
i |ω=1)

1
2PD(s

(t)
i |ω=0)+ 1

2PD(s
(t)
i |ω=1)

=
D(s

(t)
i )

1
m+D(s

(t)
i )

separately for each expert i without knowing D, since we know what the family D is. This allows
us to reduce the distribution learning problem for D to the forecast aggregation problem for P .

Then, we find a family of distributions D that satisfies the three properties in Definition 4.2 and
requires many samples to learn.

Proposition 4.4. There exists a family of distributions D that satisfies the three properties in Defini-

tion 4.2 (with B = e+ 1
2 ) and requires TTV

D (εTV, δ) = Ω
(mn−2+log(1/δ)

ε2TV

)
samples to learn.

The above sample complexity is smaller than the Ω
( |S|+log(1/δ)

ε2TV

)
lower bound in Proposition 3.3

because we are restricting to a smaller set of distributions than the set of all distributions over S. The
proof of Proposition 4.4 is analogous to a textbook proof of Proposition 3.3, which uses reductions
from the distinguishing distributions problem. See details in Appendix E.2.

Finishing the proof of Theorem 4.1: By Lemma 4.3 and Proposition 4.4, plugging in εTV =
(1 + B)2

√
ε with B = e + 1

2 , we obtain the lower bound on the sample complexity of forecast
aggregation for P (and hence for Pall):

TP(ε, δ) ≥ TTV
D

(
(1 +B)2

√
ε, δ

)
= Ω

(
mn−2+log(1/δ)
((1+B)2

√
ε)2

)

= Ω
(mn−2+log(1/δ)

ε

)
.
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5 Sample Complexity for Conditionally Independent Distributions

Section 4 proved that learning ε-optimal aggregators for all discrete distributions needs exponentially
many samples. As shown in the proof, this large sample complexity is because the experts’ signals
can be arbitrarily correlated conditioned on the event ω. Accurate estimation of such correlation
requires many samples. So, in this section we restrict attentions to the case where the experts’ signals
are conditionally independent. It turns out that an ε-optimal aggregator can be learned using only
O( 1

ε2 log
1
εδ ) samples in this case, which does not depend on n. The assumption of discrete signal

space can be relaxed here. We also investigate two special and interesting families of conditionally
independent distributions that admit an even smaller sample complexity of O( 1ε log

1
δ ).

5.1 General Conditionally Independent Distributions

Let P be a conditionally independent distributions over S × Ω, namely, P (s |ω) = ∏n
i=1 P (si |ω)

for all s ∈ S, for ω ∈ {0, 1}. Here, Si can be a continuous space, in which case, P (· |ω) represents
a density function. We introduce some additional notations. Let p = P (ω = 1) be the prior
probability of ω = 1. For technical convenience we assume p ∈ (0, 1). Define

ρ = p
1−p = P (ω=1)

P (ω=0) ∈ (0,+∞). (9)

We will be working with ratios like “ ri
1−ri

” and “ p
1−p” a lot in this section. We will use the following

characterization of the optimal aggregator f∗ for conditionally independent distributions:

Lemma 5.1 ([8]). For conditionally independent distribution P , given signals s = (si)
n
i=1, with

corresponding reports r = (ri)
n
i=1 where ri = P (ω = 1|si), the posterior probability of ω = 1 is:

f∗(r) = P (ω = 1 | r) = P (ω = 1 | s) = 1

1+ρn−1
∏n

i=1

1−ri
ri

. (10)

(Define f∗(r) = 0 if ρn−1
∏n

i=1
1−ri
ri

= +∞.)

Lemma 5.1 implies that one way to learn f∗ is to simply learn the value of ρ. If we can learn ρ with

accuracy
√
ε

n , then we can learn ρn−1 with accuracy
√
ε and obtain an f̂ that is ε-close to f∗ for

every possible input r ∈ [0, 1]n. However, by standard concentration inequalities, learning ρ with

accuracy
√
ε

n requires Õ(n
2

ρε ) samples, which is larger than the Õ( 1
ε2 ) bound we will prove. The key

is that we do not actually need f̂(r) to be close to f∗(r) for every r ∈ [0, 1]n+; we only need the

expectation E
[
|f̂(r) − f∗(r)|2

]
≤ ε. This allows us to prove a smaller sample complexity bound,

using a pseudo-dimension argument.

The main result of this section is that the sample complexity of forecast aggregation with respect to
all conditionally independent distributions is between Ω( 1ε log

1
δ ) and O( 1

ε2 log
1
εδ ):

Theorem 5.2. Let Pind be the set of all conditionally independent distributions over S×Ω. Suppose
n ≥ 2. The sample complexity of forecast aggregation with respect to Pind is

O
(

1
ε2 log

1
εδ

)
≥ TPind

(ε, δ) ≥ Ω
(
1
ε log

1
δ

)
. (11)

We provide the main ideas of the proof of Theorem 5.2 here. The upper bound O( 1
ε2 log

1
εδ ) is a

corollary of our theorem for multi-outcome events (Theorem C.1), so we only give a sketch here. We
note that, according to Lemma 5.1, the optimal aggregator has the form f∗(r) = 1

1+ρn−1
∏n

i=1
1−ri
ri

.

We consider the class of aggregators F =
{
fθ : fθ(r) = 1

1+θn−1
∏n

i=1
1−ri
ri

}
parameterized by

θ ∈ (0,+∞). The class of loss functions G =
{
gθ : gθ(r, ω) = |fθ(r) − ω|2

}
associated with F

has pseudo-dimension Pdim(G) = O(1). By the known result (e.g., [1]) that the pseudo-dimension
gives a sample complexity upper bound on the uniform convergence of a class of functions, we
conclude that the empirically optimal aggregator in F must be O(ε)-optimal on the true distribution

(with probability at least 1− δ), given O
(

1
ε2 (Pdim(G) log 1

ε + log 1
δ )
)
= O( 1

ε2 log
1
εδ ) samples.

We prove the Ω( 1ε log
1
δ ) lower bound by a reduction from the distinguishing distributions problem

(introduced in Section 3). We construct two conditionally independent distributions P 1, P 2 over
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the space Ω × S that differ by d2H(P
1, P 2) = O(ε) in squared Hellinger distance. Specifically, P 1

has prior P 1(ω = 1) = 0.5 − O( 1n ) + O(
√
ε

n ) and P 2 has prior P 2(ω = 1) = 0.5 − O( 1n ) −
O(

√
ε

n ); the conditional distributions of each signal, P 1(si |ω) and P 2(si |ω), differ by O( ε
n ) in

squared Hellinger distance; taking the product of n signals, P 1(s |ω) and P 2(s |ω) differ by O(ε).
The distinguishing distributions problem asks: given T samples from either P 1 or P 2, tell which
distribution the samples come from. We show that, if we can solve the forecast aggregation problem,

namely, ε-approximate f∗(r) = 1

1+ρn−1
∏n

i=1
1−ri
ri

, then we can estimate ρ with accuracy O(
√
ε

n ),

and hence distinguish P 1 and P 2. But distinguishing P 1 and P 2 requires Ω( 1
d2
H(P 1,P 2)

log 1
δ ) =

Ω( 1ε log
1
δ ) samples. This gives the lower bound we claimed. See details in Appendix F.1.

5.2 Strongly and Weakly Informative Experts

While the sample complexity of forecast aggregation for general conditionally independent distribu-
tions is O( 1

ε2 log
1
εδ ), under further assumptions this bound can be improved. In particular, we find

two special yet natural families of conditionally independent distributions that admit O( 1ε log
1
δ )

sample complexity. In these two cases, the experts are either “very informative” or “very non-
informative”. Roughly speaking, an expert is “very informative” if the conditional distributions of
the expert’s signal under event ω = 0 and ω = 1 are significantly different, so the expert’s prediction
ri is away from the prior p. An expert is “very non-informative” if the opposite is true. Intuitively,
an expert being informative should help aggregation and hence reduce the sample complexity. In-
terestingly though, we show that even if the experts are non-informative the sample complexity of
forecast aggregation can also be reduced. See details in Appendix B.

6 Extension: Multi-Outcome Events

Our main results regarding the sample complexity of forecast aggregation for binary events (The-
orems 4.1 and 5.2) can be generalized to multi-outcome events with |Ω| > 2. We prove that: for

general distributions, the sample complexity is Ω̃
(
mn−2

ε

)
= Ω

(mn−2+log(1/δ)
ε

)
≤ TP(ε, δ) ≤

O
( |Ω|mn+log(1/δ)

ε2

)
= Õ

( |Ω|mn

ε2

)
; for conditionally independent distributions, the sample complex-

ity is Ω̃
(
1
ε

)
= Ω

(
1
ε log

1
δ

)
≤ TPind

(ε, δ) ≤ O
( |Ω| log |Ω|

ε2 log 1
ε + 1

ε2 log
1
δ

)
= Õ( |Ω|

ε2 ). See Ap-
pendix C for details.

7 Conclusion and Discussion

In this work, we showed an exponential gap between the sample complexity of forecast aggregation

for general distributions, Ω̃(m
n−2

ε ), and conditionally independent distributions, Õ( 1
ε2 ). This gap is

due to the need of estimating the conditional correlation between experts in the general case, which

is not needed in the conditional independence case. Notably, the bound Õ( 1
ε2 ) for conditionally

independent distributions does not depend on the number of experts.

We discuss the dependency of the sample complexity on ε and other directions for future works:

The dependency on ε An open question left by our work is the dependency of the sample com-
plexity on the parameter ε. We conjecture that the tight dependency should be 1

ε (so our lower
bounds are tight). This is supported by the following evidence:

Theorem 7.1. For the case of |Ω| = 2 and for general distributions, if the distribution P has a
minimum joint probability min(s,ω)∈S×Ω P (s, ω) > c

mn for some c > 0, then the sample complexity

of forecast aggregation is at most O
(
mn

cε (n logm+ log 1
δ )
)
= Õ

(
nmn

cε

)
.5

In particular, this theorem can be applied to distributions that are close to uniform, where P (s, ω) ≈
1

|S×Ω| = 1
2mn , giving a bound of Õ(nm

n

ε ). Notably, the set of distributions we constructed in

the proof of the Ω̃(m
n−2

ε ) lower bound in Theorem 4.1 are also close to uniform. This means that

5This bound has a better dependency on ε but worse on n than the O(m
n

ε2
) bound in Theorem 4.1.
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close-to-uniform distributions have a tight sample complexity bound of the form Θ( f(n,m)
ε ), not

Θ( f(n,m)
ε2 ). Moreover, since close-to-uniform distributions are the “most difficult” distributions to

learn in the distribution learning problem, it is likely that they are also the most difficult distributions
for the forecast aggregation problem, and therefore the tight sample complexity of forecast aggrega-

tion should be determined by the sample complexity for those distributions, which is Θ( f(n,m)
ε ).

Other future directions

• The middle ground between fully correlated experts and conditionally independent experts: An
example is the partial evidence model in [4]. Applying [4]’s results, one can show that the sample

complexity of forecast aggregation in the partial evidence model is at most Õ(n
2

ε2 ).
6 Giving a

lower bound for the partial evidence model and exploring other intermediate models is open.

• Weaker benchmark: Since the Bayesian aggregator needs exponentially many samples to ap-
proximate, can we find a weaker yet meaningful benchmark with a small sample complexity?

• Samples vs experts: In reality, obtaining samples of experts’ historical forecasts can be difficult,
while recruiting experts is easy. Can we achieve better aggregation by recruiting more experts
instead of collecting more samples? How many experts do we need?

• Eliciting more information: Previous works on information elicitation and aggregation have
noticed that better aggregation can be achieved by eliciting more information than agents’ own
predictions, for example, also eliciting each agent’s prediction about other agents’ predictions
(e.g., [41, 47, 31, 14]). One can ask whether and how eliciting more information can help to
reduce the sample complexity of information aggregation.

• Continuous distributions: In our model the random variable ω to be predicted is discrete. One
can study a setting where ω is a continuous random variable and the experts report, e.g., the
means of their posterior beliefs about ω. The results for continuous random variables might be
very different from the results in this work.

• Other loss functions: We focused on the squared loss E
[
|f(r) − ω|2

]
due to its popularity

in machine learning problems and its useful property that the difference between the squared
losses of any aggregator and the optimal aggregator is equal to their expected squared differ-
ence (Lemma 2.1). Alternatively, one can consider other loss functions like the logarithmic loss
E[ω log(f(r))+(1−ω) log(1−f(r))] and the absolute loss E[|f(r)−ω|]. There might be some
technical challenges in the analysis of sample complexity for those loss functions, though: e.g.,
the logarithmic loss can be unbounded [4, 40] and the absolute loss does not enjoy a property
like Lemma 2.1.
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A Additional Preliminaries

A.1 Properties of Hellinger Distance

We review some useful properties of the Hellinger distance. First, the Hellinger distance gives upper
bounds on the total variation distance:

Fact A.1 (e.g., Lemma 2.3 in [46]).

• dTV(D1, D2) ≤
√
2dH(D1, D2).

• 1− d2TV(D1, D2) ≥
(
1− d2H(D1, D2)

)2
. (This inequality implies the first one.)

Second, we will use the following lemma to upper bound the squared Hellinger distance between
two distributions that are close to each other:

Lemma A.2. Let D1 and D2 be two distributions on X satisfying 1− ε ≤ D2(x)
D1(x)

≤ 1 + ε, ∀x ∈ X .

Then, d2H(D1, D2) ≤ 1
2ε

2.

Proof. By definition,

d2H(D1, D2) =
1

2

∑

x∈X

(√

D1(x)−
√

D2(x)
)2

=
1

2

∑

x∈X
D1(x)

(

1−
√

D2(x)
D1(x)

)2

.

If 1− ε ≤ D2(x)
D1(x)

< 1, then we have
(
1−

√
D2(x)
D1(x)

)2 ≤
(
1−

√
1− ε

)2 ≤
(
1− (1− ε)

)2
= ε2. If

1+ ε ≥ D2(x)
D1(x)

> 1, then we have
(
1−

√
D2(x)
D1(x)

)2 ≤
(√

1 + ε− 1
)2 ≤

(
(1 + ε)− 1

)2
= ε2. These

two cases together imply

d2H(D1, D2) ≤
1

2

∑

x∈X
D1(x) · ε2 =

1

2
ε2.

Third, we will use a property of the Hellinger distance between distributions defined on a product
space. Suppose D1 and D2 are two distributions over a product space X × Y . They can be de-
composed into the marginal distribution of x ∈ X and the conditional distribution of y ∈ Y given
x, namely, D1(x, y) = D1,x(x) · D1,y|x(y|x) and D2(x, y) = D2,x(x) · D2,y|x(y|x). Then, the
squared Hellinger distance between D1 and D2 satisfies the following:

Lemma A.3. d2H(D1, D2) ≤ d2H(D1,x, D2,x) + maxx∈X d2H(D1,y|x, D2,y|x). In particular, if x

and y are independent, then d2H(D1, D2) ≤ d2H(D1,x, D2,x) + d2H(D1,y, D2,y).

Proof. By definition,

d2H(D1, D2) = 1−
∑

x∈X

∑

y∈Y

√

D1(x, y)D2(x, y)

= 1−
∑

x∈X

√

D1,x(x)D2,x(x)
∑

y∈Y

√

D1,y|x(y|x)D2,y|x(y|x)

= 1−
∑

x∈X

√

D1,x(x)D2,x(x) +
∑

x∈X

√

D1,x(x)D2,x(x)
(

1−
∑

y∈Y

√

D1,y|x(y|x)D2,y|x(y|x)
)

= d2H(D1,x, D2,x) +
∑

x∈X

√

D1,x(x)D2,x(x) · d2H(D1,y|x, D2,y|x)

≤ d2H(D1,x, D2,x) +
∑

x∈X

√

D1,x(x)D2,x(x) ·max
x∈X

d2H(D1,y|x, D2,y|x)

≤ d2H(D1,x, D2,x) + 1 ·max
x∈X

d2H(D1,y|x, D2,y|x),

where the last inequality is because
∑

x∈X
√

D1,x(x)D2,x(x) = 1− d2H(D1,x, D2,x) ≤ 1.

14



Finally, let D⊗T denote the distribution of T i.i.d. samples from D, namely, the product of T inde-

pendent D’s. We have the following lemma that relates d2H(D
⊗T
1 , D⊗T

2 ) with d2H(D1, D2):

Lemma A.4 (e.g., [32]). d2H(D
⊗T
1 , D⊗T

2 ) = 1−
(
1− d2H(D1, D2)

)T ≤ T · d2H(D1, D2).

A.2 Distinguishing Distributions

Let D1, D2 be two distributions over a discrete space X . A distribution Di is chosen uniformly at
random from {D1, D2}. Then, we are given T samples from Di and want to guess whether the

distribution is D1 or D2. It is known that at least T = Ω
(

1
d2
H(D1,D2)

log 1
δ

)
samples are needed to

guess correctly with probability at least 1− δ, no matter how we guess. Formally:

Lemma A.5 (e.g., [32]). Let j ∈ {1, 2} be the index of the distribution we guess based on the
samples. The probability of making a mistake when distinguishing D1 and D2 using T samples,
namely Pr[j 6= i] = 1

2 Pr[j 6= i | i = 1] + 1
2 Pr[j 6= i | i = 2], is at least:

• Pr[j 6= i] ≥ 1
2 −

√
T
2 dH(D1, D2).

• Pr[j 6= i] ≥ 1
4

(
1− d2H(D1, D2)

)2T ≥ 1
4e

−4Td2
H(D1,D2), assuming d2H(D1, D2) ≤ 1

2 .

The second item implies that, in order to achieve Pr[j 6= i] ≤ δ, we must have T ≥
1

4d2
H(D1,D2)

log 1
4δ .

We provide a proof of this lemma for completeness:

Proof. Let D⊗T
1 and D⊗T

2 denote the distributions of T i.i.d. samples from D1 and D2, respectively.

The draw of T samples from D1 or D2 is equivalent to the draw of one sample from D⊗T
1 or

D⊗T
2 . Given one sample from D⊗T

1 or D⊗T
2 , the probability of making a mistake when guessing

the distribution is at least:

Pr[j 6= i] =
1

2

(

Pr[j = 2 | i = 1] + Pr[j = 1 | i = 2]
)

=
1

2

(

1− Pr[j = 1 | i = 1] + Pr[j = 1 | i = 2]
)

=
1

2
− 1

2

(

Pr[j = 1 | i = 1]− Pr[j = 1 | i = 2]
)

=
1

2
− 1

2

(

ED⊗T
1

[1{j = 1}]− ED⊗T
2

[1{j = 1}]
)

by Fact 3.2 ≥ 1

2
− 1

2
dTV(D

⊗T
1 , D⊗T

2 ). (12)

We then upper bound dTV(D
⊗T
1 , D⊗T

2 ) in two ways, which will prove the two items of the lemma,
respectively. First, according to first item of Fact A.1, we have

dTV(D
⊗T
1 , D⊗T

2 ) ≤
√
2dH(D

⊗T
1 , D⊗T

2 ).

By Lemma A.4,

dH(D
⊗T
1 , D⊗T

2 ) ≤
√
TdH(D1, D2).

The above two inequalities give dTV(D
⊗T
1 , D⊗T

2 ) ≤
√
2TdH(D1, D2). This proves the first item

of the lemma.

Second, according to the second item of Fact A.1 and Lemma A.4, we have

1− d2TV(D
⊗T
1 , D⊗T

2 ) ≥
(
1− d2H(D

⊗T
1 , D⊗T

2 )
)2

=
(
1− d2H(D1, D2)

)2T

Since 1 − d2TV(D
⊗T
1 , D⊗T

2 ) =
(
1 + dTV(D

⊗T
1 , D⊗T

2 )
)(
1 − dTV(D

⊗T
1 , D⊗T

2 )
)

≤ 2
(
1 −

dTV(D
⊗T
1 , D⊗T

2 )
)
, we have

1− dTV(D
⊗T
1 , D⊗T

2 ) ≥ 1

2

(
1− d2H(D1, D2)

)2T
.
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Plugging into (12), we get

Pr[j 6= i] ≥ 1

4

(
1− d2H(D1, D2)

)2T
.

When d2H(D1, D2) <
1
2 , we use the inequality 1− x ≥ e−2x for 0 < x < 1

2 to conclude that

Pr[j 6= i] ≥ 1

4

(
e−2d2

H(D1,D2)
)2T

=
1

4
e−4Td2

H(D1,D2).

B Special Cases: Strongly and Weakly Informative Experts

In this section we investigate two special families of conditionally independent distributions that
admit O( 1ε log

1
δ ) sample complexity, which is smaller than the O( 1

ε2 log
1
εδ ) bound for general

conditionally independent distributions. In these two cases, the (signals of) experts are either “very
informative” or “very non-informative”.

Definition B.1. Let γ ∈ [0,∞] be a parameter. For an expert i, we say its signal si ∈ Si is

• γ-strongly informative if either
P (si|ω=1)
P (si|ω=0) ≥ 1 + γ or

P (si|ω=1)
P (si|ω=0) ≤ 1

1+γ holds.

• γ-weakly informative if 1
1+γ ≤ P (si|ω=1)

P (si|ω=0) ≤ 1 + γ.

An expert i is γ-strongly (or γ-weakly) informative if all of its signals in Si are γ-strongly (or γ-
weakly) informative.7

A signal si being γ-strongly (or γ-weakly) informative implies that its corresponding report ri will
be “γ-away from” (or “γ-close to”) the prior p = P (ω = 1), in the “ ri

1−ri
and p

1−p” ratio form.

Specifically, if si is γ-strongly informative, then from Equation (1) we have

ri
1−ri

= P (si|ω=1)
P (si|ω=0)

p
1−p ≥ (1 + γ)ρ or ≤ 1

1+γ ρ. (13)

As γ gets larger, a γ-strongly informative signal (expert) is more informative for predicting whether
ω = 1 or 0. This would make aggregation easier. If si is γ-weakly informative, then:

1
1+γ ρ ≤ ri

1−ri
≤ (1 + γ)ρ. (14)

As γ gets smaller, a γ-weakly informative signal (expert) is less informative for predicting ω, but in
this case their report ri will be close to the prior p, which allows us to estimate the ρn−1 term in the
optimal aggregator f∗(r) = 1

1+ρn−1
∏n

i=1
1−ri
ri

better. Those are some intuitions why both strongly

and weakly informative signals can reduce the sample complexity of forecast aggregation.

Formally, for γ-strongly informative experts with not-too-small γ, we have the following result:

Theorem B.2. If n ≥ 32 log 2
ε and all experts are γ-strongly informative with

γ
1+γ ≥ 8

√
2
n log 2

ε ,

then the sample complexity of forecast aggregation is ≤ O( 1
εn( γ

1+γ )2 log
1
δ +

1
ε log

1
δ ) = O( 1ε log

1
δ ).

We remark that the conditions of the theorem, n ≥ 32 log 2
ε and γ

1+γ ≥ 8
√

2
n log 2

ε , are easier to be

satisfied when the number of experts n increases, if the informativeness parameter γ of each expert
is a constant or does not decrease with n (which we believe is a reasonable assumption given that
experts are independent of each other). Also, if γ is fixed or increasing, then as n increases the
sample complexity decreases.

The proof of Theorem B.2 is in Appendix G.1. Roughly speaking, we divide each expert’s signal set

into two sets, S1
i and S0

i : signals that are more likely to occur under ω = 1 (i.e.,
P (si|ω=1)
P (si|ω=0) ≥ 1+ γ)

and under ω = 0 (i.e.,
P (si|ω=1)
P (si|ω=0) ≤ 1

1+γ ). If the realized ω is 1, then one may expect to see Ω
(

γ
1+γn

)

more S1
i signals than the S0

i signals from the n experts, because the probabilities of these two types
of signals differ by Ω( γ

1+γ ) for each expert. If ω is 0 then one may expect to see more S0
i signals

than the S1
i signals. So, by checking which type of signals are more we can tell whether ω = 0 or

7We note that an expert can be neither γ-strongly informative nor γ-weakly informative for any γ.
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1. To tell whether a signal belongs to S1
i or S0

i , we compare the corresponding report ri
1−ri

with ρ

(namely, ri
1−ri

≥ (1 + γ)ρ ⇐⇒ si ∈ S1
i and ri

1−ri
≤ 1

1+γ ρ ⇐⇒ si ∈ S0
i ), where ρ is estimated

with accuracy γ
1+γ using O( 1

ρn( γ
1+γ )2 log

1
δ ) samples. Dealing with the case of ρ < ε separately, we

obtain the bound O( 1
εn( γ

1+γ )2 log
1
δ + 1

ε log
1
δ ).

For γ-weakly informative experts with small γ, we have:

Theorem B.3. If all experts are γ-weakly informative with γ ≤ 1, then the sample complexity of
forecast aggregation is ≤ min

{
O(γnε log 1

δ ), O( 1
ε2 log

1
εδ )

}
, which is O( 1ε log

1
δ ) if γ = O( 1n ).

The O( 1
ε2 log

1
εδ ) term in the sample complexity follows from the result for general conditionally

independent distributions (Theorem 5.2). The O(γnε log 1
δ ) term is proved in Appendix G.2. We

give the rough idea here using γ = 1
n as an example. The proof relies on the observation that

E
[∏n

i=1
ri

1−ri
| ω = 0

]
= ρn. Since experts are weakly informative, each of their reports ri

1−ri

is around ρ in the range [ 1
1+γ ρ, (1 + γ)ρ] ⊆ [ 1

1+ 1
n

ρ, (1 + 1
n )ρ]. Taking the product, we have

∏n
i=1

ri
1−ri

∈ [ρ
n

e , eρn], which is in a bounded range. This allows us to use Chernoff bound to

argue that the ρn (or ρn−1) term in the optimal aggregator f∗(r) = 1

1+ρn−1
∏n

i=1
1−ri
ri

can be esti-

mated, with O(
√
ε) accuracy, using only O( e

(
√
ε)2

log 1
δ ) = O( 1ε log

1
δ ) samples of

∏n
i=1

ri
1−ri

. The

aggregator using the estimate ρ̂n−1, f̂(r) = 1

1+ρ̂n−1
∏n

i=1
1−ri
ri

, turns out to be O(ε)-optimal.

C Extension: Multi-Outcome Events

In this section we generalize our model from binary events to multi-outcome events. The event space
now becomes Ω = {1, 2, . . . , |Ω|} with |Ω| > 2. The joint distribution of event ω ∈ Ω and experts’
signals s = (si)

n
i=1 ∈ S is still denoted by P , which belongs to some class of distributions P . The

size of each expert’s signal space is still assumed to be |Si| = m < +∞ for general distributions
and can be infinite for conditionally independent distributions (where s1, . . . , sn are independent
conditioned on ω). After observing signal si, expert i reports its posterior belief of the event given
si, which is ri = (rij)j∈Ω where rij = P (ω = j | si). An aggregator now is a vector-valued
function f = (fj)j∈Ω that maps the joint report r = (ri)

n
i=1 = (rij)ij to a probability distribution

f(r) over Ω, where fj(r) is the aggregated predicted probability for ω = j. We assume fj(r) ≥ 0
and

∑

j∈Ω fj(r) = 1. The definition of the (expected) loss of an aggregator f becomes:

LP (f) = EP

[ ∑

j∈Ω

∣
∣ fj(r)− 1[ω = j]

∣
∣
2
]

. (15)

It is easy to see that the optimal aggregator f∗ = argminf LP (f) in the multi-outcome case is still
the Bayesian aggregator (this is a generalization of Lemma 2.1):

f∗ = (f∗
j )j∈Ω, f∗

j (r) = P (ω = j | r) (16)

and the difference between the losses of f and f∗ satisfies

LP (f)− LP (f
∗) = EP

[ ∑

j∈Ω

∣
∣ fj(r)− f∗

j (r)
∣
∣
2
]

. (17)

So, an ε-optimal aggregator f is an aggregator that satisfies EP

[∑

j∈Ω |fj(r)− f∗
j (r)|2

]
≤ ε.

Using T = TP(ε, δ) samples {(r(t), ω(t))}Tt=1 from P , the principal wants to find an ε-optimal

aggregator f̂ with probability at least 1 − δ, for any distribution P in a class P . We give lower
bounds and upper bounds on the sample complexity:

Theorem C.1. The sample complexity of forecast aggregation for multi-outcome events is:

• For the class P of general distributions: Ω
(mn−2+log(1/δ)

ε

)
≤ TP(ε, δ) ≤ O

( |Ω|mn+log(1/δ)
ε2

)
.

• For the class Pind of conditionally independent distributions: Ω
(
1
ε log

1
δ

)
≤ TPind

(ε, δ) ≤
O
( |Ω| log |Ω|

ε2 log 1
ε + 1

ε2 log
1
δ

)
.
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C.1 Proof of Theorem C.1

Before proving the theorem, we note that the loss of any aggregator f satisfying fj(r) ≥ 0 and
∑

j∈Ω fj(r) = 1 is bounded by [0, 2]:

0 ≤
∑

j∈Ω

∣
∣fj(r)− 1[ω = j]

∣
∣
2 ≤

∑

j∈Ω

∣
∣fj(r)− 1[ω = j]

∣
∣ ≤ 1 +

∑

j∈Ω

fj(r) = 2. (18)

Similarly,

0 ≤
∑

j∈Ω

∣
∣fj(r)− f∗

j (r)
∣
∣
2 ≤ 2. (19)

C.1.1 Lower Bounds

The lower bounds directly follow from the lower bounds for the binary case (Theorem 4.1 and
Theorem 5.2) because the binary case is a special case of the multi-outcome case. Specifically, we
can regard any binary event distribution P as a multi-outcome distribution that puts probability only

on outcomes {1, 2} ⊆ Ω. If we can learn an ε-optimal aggregator f̂ for the multi-outcome case:

E
[∑

j∈Ω |f̂j(r)− f∗
j (r)|2

]
≤ ε, then this aggregator satisfies

E

[ ∑

j∈{1,2}

∣
∣f̂j(r)− f∗

j (r)
∣
∣
2
]

≤ ε

⇐⇒ E

[∣
∣f̂1(r)− f∗

1 (r)
∣
∣
2
+
∣
∣(1− f̂1(r))− (1− f∗

1 (r))
∣
∣
2
]

= E

[

2
∣
∣f̂1(r)− f∗

1 (r)
∣
∣
2
]

≤ ε

⇐⇒ E

[∣
∣f̂1(r)− f∗

1 (r)
∣
∣
2
]

≤ ε

2
.

So, the aggregator f̂1(·) is an ε
2 -optimal aggregator for the binary case.

C.1.2 Upper Bounds

General distributions: the O
( |Ω|mn+log(1/δ)

ε2

)
upper bound. The proof for general distributions

in the multi-outcome case is the same as the proof for general distributions in the binary case (Sec-
tion 4.1), except for three differences: (1) P (regarded as a distribution over reports r and event ω)
now is a discrete distribution with support size at most |Ω|mn; (2) the loss |f(r) − ω|2 ∈ [0, 1] in
the binary case is replaced by the loss

∑

j∈Ω |fj(r)−1[ω = j]|2 ∈ [0, 2] in the multi-outcome case;

(3) the ε in the binary case is replaced by ε
2 because the loss is now upper bounded by 2. Thus, the

bound O
(mn+log(1/δ)

ε2

)
in the binary case becomes O

( |Ω|mn+log(1/δ)
( ε
2 )

2

)
= O

( |Ω|mn+log(1/δ)
ε2

)
in the

multi-outcome case.

Conditionally independent distributions: the O
( |Ω| log |Ω|

ε2 log 1
ε +

1
ε2 log

1
δ

)
upper bound. The

sample complexity upper bound for conditionally independent distributions is proved by a pseudo-
dimension argument. We first show in Lemma C.2 that the optimal aggregator f∗ belongs to some
parametric family of aggregators. Then, we upper bound the pseudo-dimension of the loss functions
associated with this parametric family of aggregators, which will give the desired sample complexity
upper bound.

Lemma C.2. For multi-outcome conditionally independent distribution P , given signals s =
(si)

n
i=1, with corresponding reports r = (ri)

n
i=1 = (rij)ij where rij = P (ω = j | si), the pos-

terior probability of ω = j satisfies:

f∗
j (r) = P (ω = j | r) = P (ω = j | s) =

1
P (ω=j)n−1

∏n
i=1 rij

∑

k∈Ω
1

P (ω=k)n−1

∏n
i=1 rik

.
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Proof. By Bayes’ rule and the fact that s1, . . . , sn are independent conditioning on ω,

P (ω = j | s) = P (ω = j)
∏n

i=1 P (si | ω = j)
∑

k∈Ω P (ω = k)
∏n

i=1 P (si | ω = k)

=

1
P (ω=j)n−1

∏n
i=1 P (ω = j)P (si | ω = j)

∑

k∈Ω
1

P (ω=k)n−1

∏n
i=1 P (ω = k)P (si | ω = k)

=

1
P (ω=j)n−1

∏n
i=1

P (ω=j)P (si|ω=j)
P (si)

∑

k∈Ω
1

P (ω=k)n−1

∏n
i=1

P (ω=k)P (si|ω=k)
P (si)

=

1
P (ω=j)n−1

∏n
i=1 rij

∑

k∈Ω
1

P (ω=k)n−1

∏n
i=1 rik

.

Since the above expression depends only on ri’s but not on si’s, we have:

f∗
j (r) = P (ω = j | r) = P (ω = j | s) =

1
P (ω=j)n−1

∏n
i=1 rij

∑

k∈Ω
1

P (ω=k)n−1

∏n
i=1 rik

.

(For the special binary event case,

f∗(r) = P (ω = 1 | r) =
1

P (ω=1)n−1

∏n
i=1 ri

1
P (ω=1)n−1

∏n
i=1 ri +

1
P (ω=0)n−1

∏n
i=1(1− ri)

=
1

1 + (P (ω=1)
P (ω=0) )

n−1
∏n

i=1
1−ri
ri

.

This proves Lemma 5.1.)

According to Lemma C.2, the optimal aggregator f∗ = (fj)j∈Ω belongs to the following family of

aggregators, parameterized by θ = (θj)j∈Ω ∈ R
|Ω|
+ :

F =

{

fθ = (fθ
j )j∈Ω

∣
∣
∣
∣
fθ
j (r) =

θj
∏n

i=1 rij
∑

k∈Ω θk
∏n

i=1 rik

}

(20)

(The optimal aggregator f∗ has parameter θj = 1
P (ω=j)n−1 .) Let G be the family of loss functions

associated with F , which is also parameterized by θ ∈ R
|Ω|
+ ,

G =
{

gθ
∣
∣
∣ gθ(r, ω) =

∑

j∈Ω

∣
∣fθ

j (r)− 1[ω = j]
∣
∣
2
}

. (21)

We recall the definition of pseudo-dimension of a family of functions:

Definition C.3 (e.g., [1]). Let H be a family of functions from input space X to real numbers R. Let

x(1), . . . , x(d) ∈ X be d inputs. Let t(1), . . . , t(d) ∈ R be d “thresholds”. Let b = (b(1), . . . , b(d)) ∈
{−1,+1}d be a vector of labels. We say b can be generated by H (on inputs x(1), . . . , x(d) with

thresholds t(1), . . . , t(d)) if there exists a function hb ∈ H such that hb(x
(i)) > t(i) if b(i) = 1

and hb(x
(i)) < t(i) if b(i) = −1 (namely, sign(hb(x

(i)) − t(i)) = b(i)) for every i ∈ {1, . . . , d}.
The pseudo-dimension of H, Pdim(H), is the largest integer d for which there exist d inputs and d
thresholds such that all the 2d label vectors in {−1,+1}d can be generated by H.

Pseudo-dimension gives a sample complexity upper bound for the uniform convergence of the em-
pirical means of a family of functions to their true means:

Theorem C.4 (e.g., [1]). Let H be a family of functions from X to [0, U ] with Pdim(H) = d. For
any distribution D on X , with probability at least 1− δ over the random draw of

T = O

(
U2

ε2

(

d · log U

ε
+ log

1

δ

))

samples x(1), . . . , x(T ) from D, we have: for every h ∈ H,
∣
∣Ex∼D[h(x)]− 1

T

∑T
t=1 h(x

(t))
∣
∣ ≤ ε.

We now upper bound the pseudo-dimension of G:
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Lemma C.5. Pdim(G) ≤ O
(
|Ω| log |Ω|

)
.

Proof. Suppose Pdim(G) = d. By definition, there exist d inputs (r(1), ω(1)), . . . , (r(d), ω(d)) and

d thresholds t(1), . . . , t(d) ∈ R such that all the 2d label vectors b ∈ {−1,+1}d can be generated by

some function gθb ∈ G. We will count how many label vectors can actually be generated by G.

Consider the ℓ-th input (r(ℓ), ω(ℓ)) and threshold t(ℓ). To simplify notations we omit superscript (ℓ),
so we have (r, ω) and t. We write x = (xj)j∈Ω where xj =

∏n
i=1 rij . For any function gθ ∈ G,

we have

gθ(r, ω) =
∑

j∈Ω

∣
∣
∣

θjxj
∑

k∈Ω θkxk
− 1[ω = j]

∣
∣
∣

2

=
∑

j∈Ω

( θjxj
∑

k∈Ω θkxk

)2

− 2
θωxω

∑

k∈Ω θkxk
+ 1

=
1

(∑

k∈Ω θkxk

)2

[
∑

j∈Ω

(θjxj)
2 − 2θωxω

∑

k∈Ω

θkxk +
(∑

k∈Ω

θkxk

)2
]

.

By definition, the set of parameters that give input (r, ω) label “+1” is
{
θ ∈ R

|Ω|
+ | gθ(r, ω) > t

}
.

By the above equation, this set is equal to the set
{

θ ∈ R
|Ω|
+

∣
∣
∣
∣

∑

j∈Ω

(θjxj)
2 − 2θωxω

∑

k∈Ω

θkxk +
(∑

k∈Ω

θkxk

)2

> t
(∑

k∈Ω

θkxk

)2
}

.

We note that the above set is the solution set to the quadratic form inequality θ⊤Aθ > 0 for some

matrix A ∈ R
|Ω|×|Ω|. Similarly, the set of parameters that give input (r, ω) label “−1” is the

solution set to θ⊤Aθ < 0. These two sets share a boundary: the solution set to θ⊤Aθ = 0, which

is a hyper-ellipsoid in R
|Ω|. In other words, the input (r, ω) and threshold t define a hyper-ellipsoid

which divides the parameter space R
|Ω|
+ into two regions such that all the parameters in one region

generate the same label for that input.

Enumerating all inputs (r(1), ω(1)), . . . , (r(d), ω(d)). They define d hyper-ellipsoids in total, dividing

the parameter space R
|Ω|
+ into several regions. Within each region, all the parameters generate the

same label for each input and hence generate the same label vector. So, the number of label vectors

that can be generated by all the parameters in R
|Ω|
+ is upper bounded by the number of regions.

The number of regions divided by d hyper-ellipsoids in R
|Ω|
+ is in the order of O(d|Ω|). Hence, to

generate all the 2d label vectors we need O(d|Ω|) ≥ 2d. This gives d ≤ O(|Ω| log |Ω|).

By Theorem C.4 and Lemma C.5, plugging in d = Pdim(G) ≤ O(|Ω| log |Ω|) and U = 2 (because

gθ(r, ω) is bounded by [0, 2] according to (18)), we obtain the following: with probability at least
1− δ over the random draw of

T = O

(
U2

ε2

(

d · log U

ε
+ log

1

δ

))

= O

( |Ω| log |Ω|
ε2

log
1

ε
+

1

ε2
log

1

δ

)

samples (r(1), ω(1)), . . . , (r(T ), ω(T )) from P , we have for any gθ ∈ G,

∣
∣
∣EP

[
gθ(r, ω)

]
− 1

T

T∑

t=1

gθ(r(t), ω(t))
∣
∣
∣ ≤ ε.

This is equivalent to for any fθ ∈ F ,
∣
∣
∣
∣
EP

[∑

j∈Ω

∣
∣fθ

j (r)− 1[ω = j]
∣
∣
2
]

− 1

T

T∑

t=1

∑

j∈Ω

∣
∣fθ

j (r
(t))− 1[ω(t) = 1]

∣
∣
2
∣
∣
∣
∣
≤ ε

⇐⇒
∣
∣
∣LP (f

θ)− LP̂emp
(fθ)

∣
∣
∣ ≤ ε,

where P̂emp is the empirical distribution Uniform
{
(r(1), ω(1)), . . . , (r(T ), ω(T ))

}
. By the same

logic as the proof of the upper bound in Theorem 4.1 (Section 4.1), the empirically optimal aggrega-

tor f̂∗ = argminfθ∈F LP̂emp
(fθ) is 2ε-optimal.
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D Missing Proofs from Section 2

D.1 Proof of Lemma 2.1

To prove the first item f∗(r) = P (ω = 1 | r), we simply note that

f∗ = argmin
f

Er

[

E
[
|f(r)− ω|2 | r

]]

should minimize E
[
|f(r) − ω|2 | r

]
for almost every r. This gives f∗(r) = E[ω | r] = P (ω =

1 | r).
To prove the second item LP (f)−LP (f

∗) = EP

[
|f(r)− f∗(r)|2

]
, we note that, by the definition

of LP (·) and the fact that f∗(r) = E[ω | r] proven above,

LP (f)− LP (f
∗) = E

[
|f(r)− ω|2

]
− E

[
|f∗(r)− ω|2

]

= E
[
f(r)2

]
− 2E

[
f(r)ω

]
− E

[
f∗(r)2

]
+ 2E

[
f∗(r)ω

]

= E
[
f(r)2

]
− 2Er

[
f(r)E[ω|r]

]
− E

[
f∗(r)2

]
+ 2Er

[
f∗(r)E[ω|r]

]

= E
[
f(r)2

]
− 2Er

[
f(r)f∗(r)

]
− E

[
f∗(r)2

]
+ 2Er

[
f∗(r)2

]

= E
[
f(r)2 − 2f(r)f∗(r) + f∗(r)2

]

= E
[
|f(r)− f∗(r)|2

]
.

E Missing Proofs from Section 4

E.1 Proof of Lemma 4.3

Recall that we have a family D of distributions over S = S1×· · ·×Sn satisfying the three properties
in Definition 4.2 (B-uniformly bounded, same marginal across distributions, and distinct marginals
across signals). We have constructed from D the family of distributions P = {PD : D ∈ D} for the
forecast aggregation problem as follows:







PD(ω = 0) = PD(ω = 1) =
1

2
,

PD(· | ω = 0) = Uniform(S), namely, PD(s | ω = 0) =
1

|S| =
1

mn
,

PD(· | ω = 1) = D, namely, PD(s | ω = 1) = D(s).

(22)

We want to show that ε-optimal aggregation with respect to P will imply (1+B)2
√
ε total variation

distance learning with respect to D, and hence TP(ε, δ) ≥ TTV
D

(
(1 +B)2

√
ε, δ

)
.

First, we have the following observations about D and P:

Fact E.1. For a family of distributions D that satisfies the three properties in Definition 4.2:

1. Given signal si, expert i’s report is ri = PD(ω = 1 | si) = D(si)
1
m+D(si)

, which is the same

for all distributions D ∈ D.

2. For every expert i, given different signals si 6= s′i, its reports ri 6= r′i. So, there is a one-to-
one mapping between si and ri for every i ∈ {1, . . . , n} and also a one-to-one mapping
between the joint signal s = (s1, . . . , sn) and the joint report r = (r1, . . . , rn).

3. For any joint signal s, with corresponding joint report r, we have D(s) = f∗(r)
mn(1−f∗(r)) .

Proof. We prove the three items one by one:

1. By definition, the marginal distribution of joint signal, PD(s), is

PD(s) = PD(ω = 0)PD(s | ω = 0) + PD(ω = 1)PD(s | ω = 1) =
1

2

( 1

mn
+D(s)

)

.

(23)
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Fixing si, summing over s−i = (s1, . . . , si−1, si+1, . . . , sn) ∈ S−i, we get

PD(si) =
1

2

( |S−i|
mn

+
∑

s−i∈S−i

D(s)
)

=
1

2

( 1

m
+D(si)

)

.

So, given signal si, expert i reports

ri = PD(ω = 1 | si) =
Pz(ω = 1)PD(si | ω = 1)

PD(si)
=

D(si)
1
m +D(si)

, (24)

and this is the same for all D ∈ D since D(si) = D′(si) by the “same marginal across
distributions” property.

2. Given si 6= s′i, by the “distinct marginals across signals” property, we have D(si) 6= D(s′i).

Since ri =
D(si)

1
m+D(si)

and x
1
m+x

is a strictly increasing function of x, it follows that ri 6= r′i.

3. According to item 2, there is a one-to-one mapping between s = (s1, . . . , sn) and r =
(r1, . . . , rn); in other words, observing signals s1, . . . , sn is equivalent to observing reports
r1, . . . , rn. Therefore, by Bayes’ rule we have

f∗(r) = PD(ω = 1 | r) = PD(ω = 1 | s) = PD(ω = 1)PD(s | ω = 1)

PD(s)

by (22) and (23) =
D(s)

1
mn +D(s)

. (25)

Rearranging, we obtain D(s) = f∗(r)
mn(1−f∗(r)) .

Claim E.2. If we have an aggregator f̂ that is ε-optimal with respect to PD, then we can find a

distribution D̂ such that dTV(D̂,D) ≤ (1 +B)2
√
ε.

Proof. Because D is B-uniformly bounded, from (25) we can verify that f∗(r) satisfies f∗(r) ≤
B

1+B . So, we can assume f̂(r) ≤ B
1+B as well (if f̂(r) > B

1+B , we can let f̂(r) be B
1+B ; this only

reduces the approximation error E
[
|f̂(r) − f∗(r)|2

]
). Define D̂ by letting D̂(s) = f̂(r)

mn(1−f̂(r))
,

∀s ∈ S, where r is the reports corresponding to s (cf., Fact E.1). Then, dTV(D̂,D) is

dTV(D̂,D) = 1
2

∑

s∈S

∣
∣D̂(s)−D(s)

∣
∣ = 1

2

∑

s∈S

∣
∣ f̂(r)

mn(1−f̂(r))
− f∗(r)

mn(1−f∗(r))

∣
∣

= 1
2mn

∑

s∈S

∣
∣ f̂(r)

1−f̂(r)
− f∗(r)

1−f∗(r)

∣
∣.

Because f̂(r), f∗(r) ≤ B
1+B and the function x

1−x has derivative 1
(1−x)2 ≤ (1+B)2 when x ≤ B

1+B ,

we have

dTV(D̂,D) ≤ 1
2mn (1 +B)2

∑

s∈S

∣
∣f̂(r)− f∗(r)

∣
∣

by (23) ≤ (1 +B)2
∑

s∈S

PD(s)
∣
∣f̂(r)− f∗(r)

∣
∣ = (1 +B)2EPD

[∣
∣f̂(r)− f∗(r)

∣
∣

]

.

By Jensen’s inequality (E[X])2 ≤ E[X2] and by the assumption that f̂ is ε-optimal, we have
(
EPD

[
|f̂(r)− f∗(r)|

])2 ≤ EPD

[
|f̂(r)− f∗(r)|2

]
≤ ε. Thus,

dTV(D̂,D) ≤ (1 +B)2
√
ε,

which proves the claim.

Now, we present the reduction from learning D in total variation distance to forecast aggregation

for P . We use notations x(1), . . . ,x(T ) ∈ S to represent the samples from D. From x(1), . . . ,x(T )

we construct the samples (r(1), ω(1)), . . . , (r(T ), ω(T )) for the forecast aggregation problem. After

obtaining a solution f̂ to the latter problem, we convert it into a solution D̂ to the former. Details
are as follows:
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Input: T i.i.d. samples x(1), . . . ,x(T ) from an unknown distribution D ∈ D.

Reduction:

1. Draw T samples ω(1), . . . , ω(T ) ∼ Uniform{0, 1}.

2. For each t = 1, . . . , T , do the following:

• If ω(t) = 0, draw s(t) ∼ Uniform(S).

• If ω(t) = 1, let s(t) = x(t).

• For each i, compute r
(t)
i =

D(s
(t)
i )

1
m+D(s

(t)
i )

. Let r(t) = (r
(t)
1 , . . . , r

(t)
n ).

3. Feed ST =
{
(r(1), ω(1)), . . . , (r(T ), ω(T ))

}
to the forecast aggregation problem. Ob-

tain solution f̂ .

4. Convert f̂ into D̂ according to Claim E.2.

Output: D̂.

We remark that, in the second step of the reduction, the report r
(t)
i can be computed even if D is

unknown, because the D(s
(t)
i ) is the same for all D ∈ D and hence known.

Using the above reduction, we show that the sample complexity of ε-optimal forecast aggregation
for P cannot be smaller than the sample complexity of learning D within total variation distance
(1 +B)2

√
ε, which will prove Lemma 4.3:

Proof of Lemma 4.3: First, we verify that the distribution of samples ST in the above reduction

is exactly the distribution of T samples {(r(1), ω(1)), . . . , (r(T ), ω(T ))} from PD. This is because:

(1) the distribution of ω(t) is Uniform{0, 1}, as defined in PD; (2) given ω(t) = 0, the distribution

of s(t) is Uniform(S), as defined in PD; (3) given ω(t) = 1, the distribution of s(t) is the same as

the distribution of x(t), which is D, because the random draws of ω(t) and x(t) are independent; (4)

according to Fact E.1, the report r
(t)
i =

D(s
(t)
i )

1
m+D(s

(t)
i )

= PD(ω = 1 | s(t)i ), as desired.

Then, by the definition of sample complexity of forecast aggregation, if we are given T = TP(ε, δ)
samples ST for the forecast aggregation problem, then with probability at least 1 − δ we should be

able to find an ε-optimal aggregator f̂ with respect to PD. According to Claim E.2, we can convert

f̂ into a D̂ such that

dTV(D̂,D) ≤ (1 +B)2
√
ε.

By the definition of sample complexity TTV
D (·, δ) of distribution learning, T must be at least

T ≥ TTV
D

(
(1 +B)2

√
ε, δ

)
,

which proves the lemma.

E.2 Proof of Proposition 4.4

To prove Proposition 4.4 we will construct a family of distributions D that satisfies the three proper-

ties in Definition 4.2 and requires TTV
D (εTV, δ) = Ω

(mn−2+log(1/δ)
ε2TV

)
samples to learn. For simplic-

ity, we write ε = εTV. For technical convenience, we assume ε < 1
40 , δ < 0.01.

E.2.1 Part 1: Constructing D

We index the distributions Dz ∈ D by z; the meaning of z will be defined later. Without loss of
generality, we assume |Si| = m to be an even integer, and denote Si = {1, . . . ,m} =: S. We will
define Dz to be a distribution over the joint signal space S = S1 × · · · × Sn = Sn = {1, . . . ,m}n.
In the following we will call a joint signal s ∈ Sn simply a signal. We write a signal s ∈ Sn as
s = (b, x, y), where b ∈ Sn−2 and x, y ∈ S. We sort all the mn signals in Sn by the lexicographical
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order, from (1, . . . , 1, 1), (1, . . . , 1, 2), ..., to (m, . . . ,m,m). We number the signals from 1 to mn,
using

num(s) = num(b, x, y) ∈ {1, . . . ,mn}.
to denote their numbers. We divide the whole signal space Sn into |Sn−2| = mn−2 “buckets”, each
of size m2 and denoted by Bb:

Bb =
{
(b, x, y) : x, y ∈ S

}
, b ∈ Sn−2.

We first define a “base” distribution Dbase, then construct the distributions Dz’s by modifying the
probabilities of the base distribution within each bucket Bb. Let γ = 1+ 1

mn . The base distribution
is defined as follows:

Dbase(s) =
γnum(s)

W
, W =

∑

s∈Sn

γnum(s) =
mn
∑

ℓ=1

γℓ.

Because 1 ≤ γℓ ≤ γmn ≤ (1 + 1
mn )

mn ≤ e, we have

mn ≤ W ≤ emn. (26)

We assign a sign zb ∈ {+1,−1} to each bucket Bb, and let z be a vector of length mn−2 that
includes the signs of all buckets:

z = (zb)b∈Sn−2 , zb ∈ {+1,−1}.

We have 2m
n−2

different z’s in total, and hence 2m
n−2

different distributions Dz’s in D in total. Let
c = 20, so that cε ≤ 1/2. For each z, we define Dz as follows: within each bucket Bb, for each
element (b, x, y) ∈ Bb let

Dz(b, x, y) =







Dbase(b, x, y) +
zbcε
W if x ≤ m

2 , y ≤ m
2

Dbase(b, x, y)− zbcε
W if x ≤ m

2 , y > m
2

Dbase(b, x, y)− zbcε
W if x > m

2 , y ≤ m
2

Dbase(b, x, y) +
zbcε
W if x > m

2 , y > m
2

. (27)

Claim E.3. The family of distributions D = {Dz}z defined above satisfies the three properties in
Definition 4.2: B-uniformly bounded with B = e+1/2, same marginal across distributions, distinct
marginals across signals.

Proof. B-uniformly bounded: For any s, any Dz , by definition,

Dz(s) ≤ Dbase(s) +
cε

W
≤ γmn

W
+

cε

W

(26)

≤ e

mn
+

1/2

mn
.

So, the distribution is B-uniformly bounded with B = e+ 1/2.

Same marginal across distributions: Consider each Dz(si). We want to show that Dz(si) does
not depend on z, and in fact, Dz(si) = Dbase(si). If i ∈ {1, . . . , n− 2}, namely, si is a component
of the vector b, then we have

Dz(si) =
∑

s−i∈S−i

Dz(si, s−i) =
∑

b∈Sn−2: bi=si

m∑

x=1

m∑

y=1

Dz(b, x, y).

We notice that, fixing any b, the numbers of +zbcε
W and −zbcε

W in the summation
∑m

x=1

∑m
y=1 Dz(b, x, y) are the same. So, they cancel out, and we obtain

Dz(si) =
∑

b∈Sn−2: bi=si

m∑

x=1

m∑

y=1

Dbase(b, x, y) = Dbase(si).

If i = n− 1, namely si = x, then we have:

Dz(si) =
∑

s−i∈S−i

Dz(si, s−i) =
∑

b∈Sn−2

m∑

y=1

Dz(b, x, y).
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Fixing any b, the numbers of +zbcε
W and −zbcε

W in the summation
∑m

y=1 Dz(b, x, y) are the same.

So, they cancel out, and we obtain

Dz(si) =
∑

b∈Sn−2

m∑

y=1

Dbase(b, x, y) = Dbase(si).

Finally, if i = n, namely si = y, then by a similar argument as above we have

Dz(si) =
∑

b∈Sn−2

m∑

x=1

Dbase(b, x, y) = Dbase(si).

Distinct marginals across signals: By the “same marginal across distributions” property above we
have Dz(si) = Dbase(si). So, to prove “distinct marginals across signals” we only need to prove
Dbase(si) 6= Dbase(s

′
i) for si 6= s′i. Without loss of generality assume si < s′i. By the definition

Dbase(s) =
γnum(s)

W and the fact that num(si, s−i) < num(s′i, s−i) for any s−i ∈ S−i, we have

Dbase(si) =
∑

s−i∈S−i

Dbase(si, s−i) <
∑

s−i∈S−i

Dbase(s
′
i, s−i) = Dbase(s

′
i),

so Dbase(si) 6= Dbase(s
′
i).

E.2.2 Part 2: Sample Complexity Lower Bound of Learning D

Overview We want to prove the proposition that the sample complexity of learning the family of

distributions D = {Dz}z defined above is at least TTV
D (ε, δ) = Ω

(mn−2+log(1/δ)
ε2

)
. This proof is

analogous to a textbook proof of Proposition 3.3 (the sample complexity for learning all distribu-
tions), which uses reductions from the distinguishing distributions problem. Roughly speaking, if
one can learn the unknown distribution Dz well then one must be able to guess most of the com-
ponents of the sign vector z = (zb)b∈Sn−2 correctly, meaning that one can distinguish whether the
distribution Dzb on bucket Bb is Dzb=+1 or Dzb=−1. However, since Dzb=+1 and Dzb=−1 are

“O(ε)-close” to each other, distinguishing them requires Ω( 1
ε2 ) samples. In average, there are only

O( T
mn−2 ) samples falling into a bucket (because there are mn−2 buckets in total and the distribution

Dz is close to uniform). We thus need O( T
mn−2 ) = Ω( 1

ε2 ), which gives T = Ω(m
n−2

ε2 ). Ignoring
logarithmic terms, this proves the proposition.

Formal argument First, we note that if we can learn Dz very well, then we can guess the vector
z correctly for a large fraction of its mn−2 components. Formally, suppose we obtain from T

samples a distribution D̂ such that dTV(D̂,Dz) ≤ ε. We find the distribution Dw in D, w =

(wb)b∈Sn−2 ∈ {+1,−1}mn−2

, that is closest to D̂ in total variation distance. By definition, we have

dTV(Dw, D̂) ≤ dTV(Dz, D̂) ≤ ε. Hence, by triangle inequality,

dTV(Dw, Dz) ≤ dTV(Dw, D̂) + dTV(D̂,Dz) ≤ 2ε.

Let

# =
∣
∣{b ∈ Sn−2 | wb 6= zb}

∣
∣

be the number of different components of w and z. We claim that:

Claim E.4. dTV(Dw, Dz) ≤ 2ε implies # ≤ 2W
cm2 .

Proof. Whenever we have a different component wb 6= zb, this different component contributes the
following to the total variation distance between Dw and Dz:

1

2

∑

(b,x,y)∈Bb

∣
∣Dw(b, x, y)−Dz(b, x, y)

∣
∣ =

1

2

∑

(b,x,y)∈Bb

2cε

W
=

m2cε

W
. (28)

So, the number of different components of w and z is at most
dTV(Dw,Dz)

m2cε
W

≤ 2W
cm2 .
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We first show the Ω( log(1/δ)ε2 ) part in the sample complexity lower bound, and then show

the Ω(m
n−2

ε2 ) part. Together, they give the lower bound max{Ω( log(1/δ)ε2 ),Ω(m
n−2

ε2 )} =

Ω(m
n−2+log(1/δ)

ε2 ). Consider the distribution D+1 ∈ D whose index is the all “+1” vector and
the distribution D−1 ∈ D whose index is the all “−1” vector. According to (28), the total variation

distance between D+1 and D−1 is dTV(D+1, D−1) = mn−2 · m2cε
W = mncε

W because +1 and −1

have mn−2 different components. Since W ≤ emn (26), we have dTV(D+1, D−1) ≥ cε
e > 2ε.

Consider the distinguishing distributions problem (defined in Section 3) where we want to distin-

guish D+1 and D−1. If we can learn from samples a distribution D̂ that is ε-close in total variation
distance to the unknown distribution D+1 or D−1, then we can perfectly tell whether the unknown
distribution is D+1 or D−1 because the two distributions are more than 2ε-away from each other
in total variation distance. Lemma A.5 implies that, to distinguish D+1 and D−1 with probability

1 − δ, the number of samples must be at least Ω( log(1/δ)
d2
H(D+1,D−1)

) = Ω( log(1/δ)ε2 ). This proves the

Ω( log(1/δ)ε2 ) part.

We then prove the Ω(m
n−2

ε2 ) part. Suppose we first draw the vector z from {+1,−1}mn−2

uniformly
at random, then draw T samples from Dz . We obtain the Dw as above. Let’s consider the expected
number of different components of w and z in this two-step random draw procedure:

E
z, T samples

[#] = E

[ ∑

b∈Sn−2

1{zb 6= wb}
]

=
∑

b∈Sn−2

E
[
1{zb 6= wb}

]
. (29)

We consider each component E
[
1{zb 6= wb}

]
in the above summation. Suppose that, within the T

samples drawn from Dz , Tb of them fall into the bucket Bb. So, Tb follows the Binomial(T,D(Bb))
distribution with

D(Bb) =
∑

(b,x,y)∈Bb

Dz(b, x, y) =
1

W

∑

(b,x,y)∈Bb

γnum(b,x,y).

(Notice that the + zbcε
W and − zbcε

W cancel out in the summation and hence D(Bb) does not depend
on z.) Let Dzb denote the “Bb-part” of distribution Dz , namely, Dz conditioning on Bb:

Dzb(s) =
Dz(s)

D(Bb)
, ∀s ∈ Bb.

We think of the random draw of the vector z and the T samples as follows: first, we draw Tb from
Binomial(T,D(Bb)); second, we draw zb ∈ {+1,−1} uniformly at random; third, we draw Tb

samples from the conditional distribution Dzb ; forth, we draw the remaining vector z−b and the
remaining T − Tb samples (which are samples outside of Bb). Only writing the first two steps
explicitly, we have

E
[
1{zb 6= wb}

]
= E

Tb

[

E
zb

[

E
[
1{zb 6= wb} | zb, Tb

]]
]

= E
Tb

[
1

2
E
[
1{zb 6= wb} | zb = +1, Tb

]
+

1

2
E
[
1{zb 6= wb} | zb = −1, Tb

]
]

= E
Tb

[
1

2
Pr

[
zb 6= wb | zb = +1, Tb

]
+

1

2
Pr

[
zb 6= wb | zb = −1, Tb

]
]

. (30)

Claim E.5. For any Tb, 1
2 Pr

[
zb 6= wb | zb = +1, Tb

]
+ 1

2 Pr
[
zb 6= wb | zb = −1, Tb

]
≥

1
2 − 2cε

√
Tb.

Proof. We notice that 1
2 Pr

[
zb 6= wb | zb = +1, Tb

]
+ 1

2 Pr
[
zb 6= wb | zb = −1, Tb

]
is the

probability that we make a mistake when guessing the sign zb using wb, if (1) zb is chosen from
{−1,+1} uniformly at random; (2) we are given Tb samples from Dzb ; (3) we then draw the
remaining vector z−b and the remaining samples; (4) finally, we use the Dw computed from all
samples to get wb. The steps (3) and (4) define a randomized function that maps the Tb samples of
Dzb to wb ∈ {0, 1}, and therefore, according to the first item of Lemma A.5, we have

1

2
Pr

[
zb 6= wb | zb = +1, Tb

]
+
1

2
Pr

[
zb 6= wb | zb = −1, Tb

]
≥ 1

2
−
√

Tb

2
dH(Dzb=+1, Dzb=−1).

(31)
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Then we consider dH(Dzb=+1, Dzb=−1). We use Lemma A.2 to do so. For any s ∈ Bb, we have,
on the one hand,

Dzb=+1(s)

Dzb=−1(s)
=

γnum(s) ± cε

γnum(s) ∓ cε
≥ γnum(s) − cε

γnum(s) + cε
≥ 1− 2cε,

because a−b
a+b = 1− 2b

a+b ≥ 1− 2b for a = γnum(s) ≥ 1. On the other hand,

Dzb=+1(s)

Dzb=−1(s)
≤ γnum(s) + cε

γnum(s) − cε
≤ 1 + 4cε,

because a+b
a−b = 1+ 2b

a−b ≤ 1 + 4b for a = γnum(s) ≥ 1 and b = cε ≤ 1
2 . Therefore, by Lemma A.2

we have

d2H(Dzb=+1, Dzb=−1) ≤
1

2
(4cε)2 = 8c2ε2. (32)

Combining (31) and (32) proves our claim.

By (30) and Claim E.5, we have E
[
1{zb 6= wb}

]
≥ E

Tb

[
1
2 − 2cε

√
Tb

]
. Summing over b ∈ Sn−2,

(29) becomes

∑

b∈Sn−2

E
[
1{zb 6= wb}

]
≥

∑

b∈Sn−2

E
Tb

[1

2
− 2cε

√

Tb

]

=
mn−2

2
− 2cε

∑

b∈Sn−2

E[
√

Tb]

(by Jensen’s inequality E[
√
X] ≤

√

E[X]) ≥ mn−2

2
− 2cε

∑

b∈Sn−2

√

E[Tb].

Because E[Tb] = T ·D(Bb) =
T
W

∑

(b,x,y)∈Bb
γnum(b,x,y) ≤ T

W m2γmn

, we have

∑

b∈Sn−2

E
[
1{zb 6= wb}

]
≥ mn−2

2
− 2cε

∑

b∈Sn−2

√

T

W
m2γmn =

mn−2

2
− 2cεmn−2

√

T

W
m2γmn .

(33)

Now, let’s consider the probability with which we can obtain D̂ such that dTV(D̂,Dz) ≤ ε. We

will show that this probability is at most 0.99 < 1 − δ if T is less than 10−5 · mn−2

ε2 . Recall from

Claim E.4 that dTV(D̂,Dz) ≤ ε implies # =
∑

b∈Sn−2 1{zb 6= wb} ≤ 2W
cm2 . So, the probability is

at most

Pr
[ ∑

b∈Sn−2

1{zb 6= wb} ≤ 2W

cm2

]

= Pr
[ ∑

b∈Sn−2

1{zb = wb} ≥ mn−2 − 2W

cm2

]

(by Markov’s inequality) ≤ E
[∑

b∈Sn−2 1{zb = wb}
]

mn−2 − 2W
cm2

(by (33)) ≤
mn−2

2 + 2cεmn−2
√

T
W m2γmn

mn−2 − 2W
cm2

(γmn ≤ e and mn ≤ W ≤ emn by (26)) ≤
mn−2

2 + 2cεmn−2
√

eT
mn−2

mn−2 − 2emn

cm2

=

1
2 + 2c

√
eε2

mn−2T

1− 2e
c

< 0.99 < 1− δ,

when c = 20, T < 10−5 · mn−2

ε2 , and δ < 0.01. This means that, in order to obtain such D̂ with

probability at least 1− δ, at least 10−5 · mn−2

ε2 samples are needed.
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F Missing Proofs from Section 5

F.1 Proof of Theorem 5.2: the Ω
(
1
ε log

1
δ

)
Lower Bound

The proof uses a reduction from the distinguishing distributions problem (defined in Section 3). We
construct two conditionally independent distributions P 1, P 2 over the space Ω × S1 × · · · × Sn

with each |Si| = 2, Si = {a, b}. Given T samples from either P 1 or P 2, we want to tell which
distribution the samples are coming from. We will show that, if we can solve the forecast aggregation
problem, then we can distinguish the two distributions (with high probability), which requires T =
Ω( 1

d2
H(P1,P2)

log 1
δ ) = Ω( 1ε log

1
δ ) samples according to Lemma A.5.

Let c = 32. We assume ε < 2−18, so that c
√
ε < 1

16 . For P 1, we let

P 1(ω = 1) = 0.5− 1

16n
+

c
√
ε

n
=: p1.

For P 2, we let

P 2(ω = 1) = 0.5− 1

16n
− c

√
ε

n
=: p2.

We require that, in the forecast aggregation problem under both distributions P 1 and P 2, whenever
expert i sees signal a, b, she reports

ra = 0.5, rb = 0,

respectively. This gives the following conditional probabilities P 1(· | ω), P 2(· | ω):
[
P 1(a | ω = 0)
P 1(a | ω = 1)

]

=
p1 − rb
ra − rb

[ 1−ra
1−p1

ra
p1

]

=

[
1− 1

8n+ 2c
√

ε
n

1+ 1
8n− 2c

√
ε

n

1

]

,

[
P 1(b | ω = 0)
P 1(b | ω = 1)

]

=

[
1
4n− 4c

√
ε

n

1+ 1
8n− 2c

√
ε

n

0

]

.

(34)
[
P 2(a | ω = 0)
P 2(a | ω = 1)

]

=
p2 − rb
ra − rb

[ 1−ra
1−p2

ra
p2

]

=

[
1− 1

8n− 2c
√

ε
n

1+ 1
8n+ 2c

√
ε

n

1

]

,

[
P 2(b | ω = 0)
P 2(b | ω = 1)

]

=

[
1
4n+ 4c

√
ε

n

1+ 1
8n+ 2c

√
ε

n

0

]

.

(35)

Given T samples from the unknown distribution P ∈ {P 1, P 2}, each of which is a vector of ω(t)

and all experts’ signals s
(t)
i ∈ {a, b}, we feed the corresponding reports r

(t)
i ∈ {ra, rb} and ω(t)

to the forecast aggregation problem and obtain a solution f̂ , which is an ε-optimal aggregator. We

want to use f̂ to estimate the prior p = P (ω = 1) ∈ {p1, p2} so that we can tell apart P 1 and P 2.
Recall from Lemma 5.1 that f∗(r) = 1

1+ρn−1
∏n

i=1
1−ri
ri

, where ρ = p
1−p . Writing ρ in terms of

f∗(r), we have

ρ = n−1

√
√
√
√

( 1

f∗(r)
− 1

) n∏

i=1

ri
1− ri

.

In particular, when ri = ra = 0.5 for all i ∈ {1, . . . , n}, we have:

ρ = n−1

√

1

f∗(r0.5)
− 1, r0.5 = (0.5, . . . , 0.5).

So, we estimate ρ by:

ρ̂ = n−1

√

1

f̂(r0.5)
− 1.

Now, we want to argue that, if f̂ is ε-optimal, then |ρ̂− ρ| is at most O(
√
ε

n ). Consider the function:

h(x) =
n−1

√

1

x
− 1,

whose derivative is

h′(x) = − 1

n− 1

( x

1− x

)1− 1
n−1 1

x2
.
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By definition, we have
∣
∣ρ̂− ρ

∣
∣ =

∣
∣h
(
f̂(r0.5)

)
− h

(
f∗(r0.5)

)∣
∣. (36)

Claim F.1. 1
2 ≤ f∗(r0.5) ≤ 2

3 .

Proof. For P ∈ {P 1, P 2}, its ρ = p
1−p satisfies

1 ≥ ρ ≥ ρn−1 ≥ ρn ≥
(

0.5− 1
16n −

√
ε

cn

0.5 + 1
16n + c

√
ε

n

)n

=

(
1− 1

8n − 2c
√
ε

n

1 + 1
8n + 2c

√
ε

n

)n

>
(

1− 2
(

1
8n + 2c

√
ε

n

))n

≥ 1− 2
(
1
8 + 2c

√
ε
)
> 1

2 ,

(37)

where in the last three transitions we used the inequalities 1−x
1+x > 1− 2x and (1− x/n)n ≥ 1− x

for x ∈ (0, 1) and the fact that c
√
ε < 1

16 . So,

f∗(r0.5) =
1

1 + ρn−1
∈
[ 1

1 + 1
,

1

1 + 1
2

]

=
[1

2
,
2

3

]

,

which proves the claim.

With Claim F.1, we can without loss of generality assume 1
2 ≤ f̂(r0.5) ≤ 2

3 as well (otherwise, we

can truncate f̂(r0.5) to this range; this only reduces the approximation error E
[
|f̂(r)− f∗(r)|2

]
).

Claim F.2. For 1
2 ≤ x ≤ 2

3 , |h′(x)| ≤ 8
n−1 .

Proof.

|h′(x)| = 1

n− 1

( x

1− x

)1− 1
n−1

1

x2
≤ 1

n− 1

( 2
3

1− 2
3

)1− 1
n−1 1

( 12 )
2
=

4

n− 1
·21− 1

n−1 ≤ 8

n− 1
.

Claim F.3. If f̂ is ε-optimal, then |f̂(r0.5)− f∗(r0.5)| < 2
√
ε.

Proof. If f̂ is ε-optimal, i.e., E
[
|f̂(r)− f∗(r)|2

]
≤ ε, then, by Jensen’s inequality E[X2] ≥ E[X]2,

we have
√
ε ≥ E

[
|f̂(r)− f∗(r)|

]
=

∑

r

P (r)|f̂(r)− f∗(r)| ≥ P (r0.5)|f̂(r0.5)− f∗(r0.5)|. (38)

For both P ∈ {P 1, P 2}, we have

P (r0.5) = p · P (r0.5 | ω = 1) + (1− p) · P (r0.5 | ω = 0)

= p · P (a | ω = 1)n + (1− p) · P (a | ω = 0)n

≥ p · 1 + (1− p) ·
(
1− 1

8n − 2c
√
ε

n

1 + 1
8n + 2c

√
ε

n

)n
by (37)

>
1

2
,

Plugging P (r0.5) >
1
2 into (38), we get |f̂(r0.5)− f∗(r0.5)| < 2

√
ε.

From (36), Claim F.1, Claim F.2, and Claim F.3, we get

∣
∣ρ̂− ρ

∣
∣ =

∣
∣h
(
f̂(r0.5)

)
− h

(
f∗(r0.5)

)∣
∣ ≤ 8

n− 1

∣
∣f̂(r0.5)− f∗(r0.5)

∣
∣ <

8

n− 1
· 2
√
ε =

16

n− 1

√
ε.

(39)

Since p = ρ
1+ρ as a function of ρ has a bounded derivative ∂p

∂ρ = 1
(1+ρ)2 ≤ 1, Equation (39) implies

|p̂− p| < 16

n− 1

√
ε
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if we use p̂ = ρ̂
1+ρ̂ as an estimate of p. This allows us to tell part P 1 and P 2 because the difference

between p1 and p2 is greater than twice of our estimation error |p̂− p|:

|p1 − p2| = 2c
√
ε

n
=

64
√
ε

n
≥ 64

√
ε

2(n− 1)
=

32
√
ε

n− 1
> 2|p̂− p|.

Therefore, we can tell part P 1 and P 2 by checking whether p1 or p2 is closer to p̂.

Finally, we upper bound the squared Hellinger distance between P 1 and P 2. This will give the
sample complexity lower bound we want.

Claim F.4. d2H(P
1, P 2) ≤ O(c2ε).

Proof. For the marginal distributions of ω, P 1
ω and P 2

ω , according to Lemma A.2 and the fact that

1 ≥ P 2
ω(ω)

P 1
ω(ω) =

1− 1
8n− 2c

√
ε

n

1− 1
8n+ 2c

√
ε

n

= 1−
4c

√
ε

n

1− 1
8n+ 2c

√
ε

n

= 1−O( c
√
ε

n ), we have

d2H(P
1
ω , P

2
ω) ≤ O

((c
√
ε

n

)2
)

= O
(c2ε

n2

)

. (40)

Given ω = 0 or 1, we consider the conditional distributions of each si, P
1
si|ω and P 2

si|ω . For si = a,

we have

1 ≥ P 2(a | ω)
P 1(a | ω) ≥ 1− 1

8n − 2c
√
ε

n

1 + 1
8n + 2c

√
ε

n

· 1 +
1
8n − 2c

√
ε

n

1− 1
8n + 2c

√
ε

n

=
1 + 1

8n − 2c
√
ε

n

1 + 1
8n + 2c

√
ε

n

· 1−
1
8n − 2c

√
ε

n

1− 1
8n + 2c

√
ε

n

(a−x
a+x ≥ 1− 2x

a ) ≥
(

1−
4c

√
ε

n

1 + 1
8n

)

·
(

1−
4c

√
ε

n

1− 1
8n

)

= 1−O
(c

√
ε

n

)
.

For si = b, we have

1 ≥ P 1(b | ω)
P 2(b | ω) ≥

1
4n − 4c

√
ε

n

1 + 1
8n − 2c

√
ε

n

· 1 +
1
8n + 2c

√
ε

n

1
4n + 4c

√
ε

n

≥
1
4n − 4c

√
ε

n

1
4n + 4c

√
ε

n

=
1− 16c

√
ε

1 + 16c
√
ε
= 1−O(c

√
ε).

So, d2H(P
1
si|ω, P

2
si|ω) can be upper bounded as follows:

d2H(P
1
si|ω, P

2
si|ω) =

1

2

[(√

P 1(a | ω)−
√

P 2(a | ω)
)2

+
(√

P 1(b | ω)−
√

P 2(b | ω)
)2

]

=
1

2

[

P 1(a | ω)
(

1−
√

P 2(a | ω)
P 1(a | ω)

)2

+ P 2(b | ω)
(

1−
√

P 1(b | ω)
P 2(b | ω)

)2
]

≤ 1

2

[

1 ·
(

1−
√

1−O
(c

√
ε

n

))2

+
( 1

4n
+

4c
√
ε

n

)

·
(

1−
√

1−O(c
√
ε)
)2

]

(since 1−
√
1− x ≤ x) ≤ 1

2

[

O
(c

√
ε

n

)2
+O

( 1

n

)
·O(c

√
ε)2

]

= O
(c2ε

n

)

. (41)

Since P 1 = P 1
ω ·∏n

i=1 P
1
si|ω and P 2 = P 2

ω ·∏n
i=1 P

2
si|ω , we have, by Lemma A.3 and Lemma A.4,

d2H(P
1, P 2) ≤ d2H(P

1
ω , P

2
ω) + max

ω∈{0,1}

{

d2H
(

n∏

i=1

P 1
si|ω,

n∏

i=1

P 2
si|ω

)}

≤ d2H(P
1
ω , P

2
ω) + max

ω∈{0,1}

{

n · d2H(P 1
si|ω, P

2
si|ω)

}

(40) and (41) ≤ O
(c2ε

n2

)

+ max
ω∈{0,1}

{

n ·O
(c2ε

n

)}

= O(c2ε).
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Therefore, according to Lemma A.5, to tell apart P 1 and P 2 with probability at least 1− δ we need
at least

T = Ω
( 1

d2H(P
1, P 2)

log
1

δ

)

= Ω
( 1

c2ε
log

1

δ

)

samples. This concludes the proof.

G Missing Proofs from Section B

G.1 Proof of Theorem B.2

G.1.1 Additional Notations and Lemmas

We introduce some additional notations and lemmas for the proof. Let µ0 be the expected average
report of all experts conditioning on ω = 0:

µ0 =
1

n

n∑

i=1

E[ri | ω = 0] =
1

n

n∑

i=1

Esi|ω=0

[
P (ω = 1 | si) | ω = 0

]
, (42)

which is equal to the expected prediction of ω given expert i’s signal si where si is distributed
conditioning on ω = 0, averaged over all experts. Symmetrically, let

µ1 =
1

n

n∑

i=1

E[1− ri | ω = 1] =
1

n

n∑

i=1

Esi|ω=1

[
P (ω = 0 | si) | ω = 1

]
. (43)

Recall that p = P (ω = 1).

Fact G.1. (1− p)µ0 = pµ1.

Proof. For each expert i, by the law of total expectation and the fact that ri = P (ω = 1 | si), we
have the following equations:

(1− p) · E[ri | ω = 0] + p · E[ri | ω = 1] = P (ω = 0) · E[ri | ω = 0] + P (ω = 1) · E[ri | ω = 1]

= E[ri]

= Esi

[
P (ω = 1 | si)

]
= P (ω = 1) = p.

Subtracting p from both sides, we get

(1− p) · E[ri | ω = 0]− p · E[1− ri | ω = 1] = 0.

Averaging over all experts i ∈ {1, . . . , n}, we conclude that

(1− p) · 1
n

n∑

i=1

E[ri | ω = 0]− p · 1
n

n∑

i=1

E[1− ri | ω = 1] = 0.

Lemma G.2. If (1 − p)µ0 = pµ1 < ε
2 , then the averaging aggregator favg(r) = 1

n

∑n
i=1 ri is

ε-optimal.

Proof. If (1− p)µ0 = pµ1 < ε
2 , then the expected loss of favg is at most

LP (favg) = E
[
|favg − ω|2

]

= pE
[
(favg(r)− 1)2 | ω = 1

]
+ (1− p)E

[
(favg(r)− 0)2 | ω = 0

]

≤ pE
[
1− favg(r) | ω = 1

]
+ (1− p)E

[
favg(r) | ω = 0

]

= pE
[
1− 1

n

n∑

i=1

ri | ω = 1
]
+ (1− p)E

[ 1

n

n∑

i=1

ri | ω = 0
]

= pµ1 + (1− p)µ0

<
ε

2
+

ε

2
= ε,

which implies that favg is ε-optimal.
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The following lemma says that O( 1ε log
1
δ ) samples are sufficient to tell whether the mean of a

random variable is below ε or above ε
2 :

Lemma G.3. Given T = 40
ε log 2

δ i.i.d. samples X(1), . . . , X(T ) of a random variable X ∈ [0, 1]
with unknown mean E[X] = µ, with probability at least 1− δ we can tell whether µ < ε or µ ≥ ε

2 .

This can be done by checking whether the empirical mean µ̂ = 1
T

∑T
t=1 X

(t) is < 3
4ε or ≥ 3

4ε.

Proof. If µ ≥ ε, using the multiplicative version of Chernoff bound we have

Pr
[

µ̂ <
3

4
ε
]

≤ Pr
[

µ̂ <
3

4
µ
]

≤ e−
( 1
4
)2µT

2 ≤ e−
εT
32 ≤ δ.

Namely, with probability at least 1− δ, it holds that

µ̂ ≥ 3

4
ε.

If µ < ε, then using the additive version of Chernoff–Hoeffding theorem, we have

Pr
[

µ̂ < µ− ε

4

]

≤ e−D(µ− ε
4 ||µ)T ,

Pr
[

µ̂ > µ+
ε

4

]

≤ e−D(µ+ ε
4 ||µ)T ,

where D(x||y) = x ln x
y + (1 − x) ln 1−x

1−y . Using the inequality D(x||y) ≥ (x−y)2

2y for x ≤ y and

D(x||y) ≥ (x−y)2

2x for x ≥ y, we obtain:

Pr
[

µ̂ < µ− ε

4

]

≤ e−
( ε
4
)2

2µ T ≤ e−
( ε
4
)2

2ε T = e−
ε
32T ≤ δ

2
,

Pr
[

µ̂ > µ+
ε

4

]

≤ e
− ( ε

4
)2

2(µ+ ε
4
)
T ≤ e

− ( ε
4
)2

2( 5ε
4

)
T
= e−

ε
40T ≤ δ

2
.

By a union bound, with probability at least 1− δ, we have

|µ̂− µ| ≤ ε

4
.

Combining the case of µ ≥ ε and µ < ε, we conclude that: with probability at least 1− δ,

• If µ̂ < 3
4ε, then we must have µ < ε.

• If µ̂ ≥ 3
4ε, then we have µ ≥ ε or ε > µ ≥ µ̂− ε

4 ≥ ε
2 . In either case, we have µ ≥ ε

2 .

The last lemma we will use shows how to estimate the unknown value of ρ = p
1−p = P (ω=1)

P (ω=0) with

accuracy ∆ using T = O( 1
n∆2 log

1
δ ) samples. Notice that, if one simply uses the empirical value

ρ̂ =
∑T

t=1 1{ω
(t)=1}

∑T
t=1 1{ω(t)=0} to estimate ρ, then by Chernoff bound this needs T = O( 1

∆2 log
1
δ ) samples,

which is larger than what we claim by a factor of n. This sub-optimality is because one only uses

the ω(t)’s in the samples to estimate ρ, wasting the reports r
(t)
i ’s. By using r

(t)
i ’s to estimate ρ, we

can reduce the number of samples by a factor of n. The basic idea is the following: According to

Fact G.1, we have ρ = p
1−p = µ0

µ1
=

E[
∑n

i=1 ri|ω=0]

E[
∑n

i=1(1−ri)|ω=1] . The numerator E[
∑n

i=1 ri | ω = 0] and

the denominator E[
∑n

i=1(1− ri) | ω = 1] can be estimated from samples of r
(t)
i ’s where ω(t) = 0

and 1 respectively. The total number of r
(t)
i ’s is Tn, because we have n experts per sample. This

reduces the needed number of samples by a factor of n. Formally:

Lemma G.4. For conditionally independent distribution P , we can estimate ρ = P (ω=1)
P (ω=0) with

accuracy
|ρ̂−ρ|

ρ ≤ ∆ < 1 (equivalently,
ρ̂
ρ ∈ 1±∆) with probability at least 1− δ using

T = O

(
1

(1− p)µ0 · n ·∆2
log

1

δ
+

1

min{p, 1− p} log
1

δ

)
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samples of (ω(t), r(t))’s, by letting ρ̂ =
1

#0

∑
t:ω(t)=0

∑n
i=1 r

(t)
i

1
#1

∑
t:ω(t)=1

∑n
i=1(1−r

(t)
i )

, where #0 and #1 are the num-

bers of samples with ω(t) = 0 and 1 respectively.

Proof. Recall that p = P (ω = 1), 1− p = P (ω = 0), and ρ = p
1−p . According to Fact G.1 (which

says (1− p)µ0 = pµ1), we have

ρ =
p

1− p
=

µ0

µ1
=

∑n
i=1 E[ri | ω = 0]

∑n
i=1 E[1− ri | ω = 1]

. (44)

Consider the following way of estimating ρ from T samples (ω(t), r(t))Tt=1: Let #0, #1 be the

numbers of samples where ω(t) = 0, 1, respectively:

#0 =

T∑

t=1

1{ω(t) = 0}, #1 =

T∑

t=1

1{ω(t) = 1}.

We let

ρ̂ =

1
#0

∑

t:ω(t)=0

∑n
i=1 r

(t)
i

1
#1

∑

t:ω(t)=1

∑n
i=1(1− r

(t)
i )

. (45)

Now, we compare the ρ̂ in (45) and the ρ in (44): we see that 1
#0

∑

t:ω(t)=0

∑n
i=1 r

(t)
i is an (unbiased)

estimate of the numerator
∑n

i=1 E[ri | ω = 0] = nµ0 and that 1
#1

∑

t:ω(t)=1

∑n
i=1(1 − r

(t)
i ) is an

(unbiased) estimate of the denominator
∑n

i=1 E[1 − ri | ω = 1] = nµ1. We use Chernoff bounds
to argue that the accuracy of the two estimates is within ∆ with high probability if #0 and #1

are big enough. Suppose that, when drawing the T samples, we draw all the ω(t)’s first (and hence

#0,#1 are determined), and then draw all the r
(t)
i ’s. After all the ω(t)’s are drawn, the r

(t)
i ’s become

independent, because the signals s
(t)
i ’s are conditionally independent given ω(t). Therefore, we can

use Chernoff bounds:

Pr
[ ∣
∣
∣
1

#0

∑

t:ω(t)=0

n∑

i=1

r
(t)
i − nµ0

∣
∣
∣ > ∆nµ0

]

≤ 2e−
#0nµ0∆2

3 ,

Pr
[ ∣
∣
∣
1

#1

∑

t:ω(t)=1

n∑

i=1

(1− r
(t)
i )− nµ1

∣
∣
∣ > ∆nµ1

]

≤ 2e−
#1nµ1∆2

3 .

Requiring δ ≥ 2e−
#0nµ0∆2

3 and δ ≥ 2e−
#1nµ1∆2

3 , namely,

#0 ≥ 3

nµ0∆2
log

2

δ
, #1 ≥ 3

nµ1∆2
log

2

δ
, (46)

we have, with probability at least 1− 2δ, both of the following hold:

1

#0

∑

t:ω(t)=0

n∑

i=1

r
(t)
i ∈ (1±∆)nµ0,

1

#1

∑

t:ω(t)=1

n∑

i=1

(1− r
(t)
i ) ∈ (1±∆)nµ1, (47)

Then, we argue that (46) can be satisfied with high probability if T is large enough. This is again

done by a Chernoff bound: since E[#j ] = E[
∑T

t=1 1{ω(t) = j}] = T · P (ω = j), for j = 0, 1, we
have

Pr
[∣
∣#0 − T (1− p)

∣
∣ ≥ 1

2T (1− p)
]

≤ 2e−
T (1−p)( 1

2
)2

3 , Pr
[∣
∣#1 − Tp

∣
∣ ≥ 1

2Tp
]

≤ 2e−
Tp( 1

2
)2

3 .

(48)
So, if we are given

T ≥ 12

min{p, 1− p} log
2

δ
(49)
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samples, then we can ensure that with probability at least 1 − 2δ, it holds #0 ≥ 1
2T (1 − p) and

#1 ≥ 1
2Tp. Then, in order for (46) to be satisfied, we can let

1

2
T (1− p) ≥ 3

nµ0∆2
log

2

δ
,

1

2
Tp ≥ 3

nµ1∆2
log

2

δ
.

This gives

T ≥ max

{
6

(1− p)µ0 · n∆2
log

2

δ
,

6

pµ1 · n∆2
log

2

δ

}
(1−p)µ0=pµ1

=
6

(1− p)µ0 · n∆2
log

2

δ
.

(50)
Both (49) and (50) are satisfied when

T ≥ 6

(1− p)µ0 · n∆2
log

2

δ
+

12

min{p, 1− p} log
2

δ
.

To conclude, if we are given T = 6
(1−p)µ0·n∆2 log

2
δ + 12

min{p,1−p} log
2
δ samples, then with proba-

bility at least 1− 4δ, (47) holds, which implies

ρ̂ ∈ (1±∆)µ0

(1±∆)µ1
=

(1±∆)

(1±∆)
ρ ⊆ (1± 4∆)ρ =⇒ |ρ̂− ρ|

ρ
≤ 4∆,

for ∆ < 1
4 .

G.1.2 The Proof

We want to show the O( 1
εn( γ

1+γ )2 log
1
δ+

1
ε log

1
δ ) sample complexity upper bound for the case where

experts have γ-strongly informative signals.

We first use O( 1ε log
1
δ ) samples tell whether (1 − p)µ0 = pµ1 < ε

2 or (1 − p)µ0 = pµ1 ≥ ε
4 . We

note that

(1− p)µ0 = P (ω = 0) · E
[ 1

n

n∑

i=1

ri | ω = 0
]

= E

[

1{ω = 0} · 1
n

n∑

i=1

ri

]

,

which is the expectation of the random variable X = 1{ω = 0} · 1
n

∑n
i=1 ri. So, according to

Lemma G.3, we can tell whether (1 − p)µ0 < ε
2 or ≥ ε

4 with probability at least 1 − δ using

O( 1ε log
1
δ ) samples of X . If (1 − p)µ0 = pµ1 < ε

2 , then according to Lemma G.2, the averaging

aggregator favg(r) = 1
n

∑n
i=1 ri is ε-optimal. We hence obtained an ε-optimal aggregator in this

case. So, in the following proof, we assume (1− p)µ0 = pµ1 ≥ ε
4 .

For each expert i, let S1
i = {si ∈ Si : P (si|ω=1)

P (si|ω=0) ≥ 1 + γ} be its set of γ-strongly informative

signals that are more likely to be realized under ω = 1 than under ω = 0. Let S0
i = Si \S1

i = {si ∈
Si :

P (si|ω=1)
P (si|ω=0) ≤ 1

1+γ } be the set of signals that are more likely to be realized under ω = 0. Since

ri
1−ri

= P (si|ω=1)
P (si|ω=0)ρ by Equation (1), whenever an expert receives a signal in S1

i , its report satisfies

ri
1− ri

≥ (1 + γ)ρ, ∀si ∈ S1
i ; (51)

and whenever it receives a signal in S0
i , its report satisfies

ri
1− ri

≤ 1

1 + γ
ρ, ∀si ∈ S0

i . (52)

We will use the notation P (Su
i | ω) = P (si ∈ Su

i | ω) =
∑

si∈Su
i
P (si | ω), for u ∈ {0, 1}.

Given a set of n signals s1, . . . , sn, one per expert, we let X1 =
∑n

i=1 1{si ∈ S1
i } be the total

number of signals that belong to the S1
i sets, and similarly let X0 =

∑n
i=1 1{si ∈ S0

i }. We have

X0 +X1 = n, and by definition,

E[X1 | ω = 1] =
n∑

i=1

P (S1
i | ω = 1) ≥ (1+ γ)P (S1

i | ω = 0) = (1+ γ)E[X1 | ω = 0]. (53)

E[X0 | ω = 0] =

n∑

i=1

P (S0
i | ω = 0) ≥ (1+ γ)P (S0

i | ω = 1) = (1+ γ)E[X0 | ω = 1], (54)
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Claim G.5. At least one of E[X1 | ω = 1] and E[X0 | ω = 0] is ≥ n
2 .

Proof. Suppose on the contrary both E[X1 | ω = 1] and E[X0 | ω = 0] are < n
2 . Then, from (54)

we have

E[X0 | ω = 1] ≤ 1

1 + γ
E[X0 | ω = 0] <

n

2
.

This implies n = E[X0 +X1 | ω = 1] < n
2 + n

2 = n, a contradiction.

Let u ∈ {0, 1} be an index such that

E[Xu | ω = u] ≥ n

4
. (55)

Claim G.5 guarantees that such a u exists. We construct a “hypothetical” aggregator fhypo that,
having access to ρ and E[Xu |ω], predicts whether ω = 0 or 1 by counting the number Xu of signals
that belong to the Su

i sets and comparing it with its expectations under ω = 0 and 1, E[Xu | ω = 0]
and E[Xu | ω = 1], respectively. Specifically, given reports r = (r1, . . . , rn) as input, with
corresponding unobserved signals s = (s1, . . . , sn), fhypo does the following:

(1) If u = 1, count how many reports ri’s satisfy ri
1−ri

≥ (1 + γ)ρ; If u = 0, count how many

reports ri’s satisfy ri
1−ri

≤ 1
1+γ ρ. According to (51) and (52), this number is exactly equal

to the number of signals that belong to the Su
i sets, Xu.

(2) Then, check whether Xu is closer (in terms of absolute difference) to E[Xu | ω = u] or
E[Xu | ω = 1 − u]. If Xu is closer to E[Xu | ω = u], output fhypo(r) = u; otherwise,
output fhypo(r) = 1− u.

We claim that fhypo is ε-optimal.

Claim G.6. Given γ
1+γ ≥ 8

√
2
n log 2

ε and E[Xu | ω = u] ≥ n
4 , fhypo is ε-optimal.

Proof. Given either ω = 0 or 1, consider the conditional random draw of signals s1, . . . , sn. Be-
cause Xu =

∑n
i=1 1{si ∈ Su

i } and the random variables 1{si ∈ Su
i }, i = 1, . . . , n, are [0, 1]-

bounded and independent conditioning ω, by Hoeffding’s inequality we have

Pr
[∣
∣Xu − E[Xu | ω]

∣
∣ ≥ a

∣
∣
∣ ω

]

≤ 2e−
2a2

n .

Let

a =

√

n

2
log

2

ε
. (56)

Then with probability at least 1− 2e−
2a2

n = 1− ε, it holds
∣
∣Xu − E[Xu | ω]

∣
∣ < a. (57)

Consider the difference between E[Xu | ω = u] and E[Xu | ω = 1− u]. By (53) and (54), we have

E[Xu | ω = 1− u] ≤ 1

1 + γ
E[Xu | ω = u] =

(

1− γ

1 + γ

)

E[Xu | ω = u].

By the assumption E[Xu | ω = u] ≥ n
4 ,

E[Xu | ω = 1− u] ≤ E[Xu | ω = u]− γ

1 + γ
· n
4
.

By the assumption γ
1+γ ≥ 8

√
2
n log 2

ε , we have γ
1+γ · n

4 ≥ 8
√

2
n log 2

ε · n
4 = 4

√
n
2 log 2

ε = 4a.

Therefore
E[Xu | ω = u]− E[Xu | ω = 1− u] ≥ 4a. (58)

Because we already had
∣
∣Xu − E[Xu | ω]

∣
∣ < a (which happened with probability at least 1 − ε),

if Xu turns out to be closer to E[Xu | ω = u] it must be that ω = u; if Xu turns out to be closer
to E[Xu | ω = 1 − u] it must be that ω = 1 − u. In either case, our output fhypo(r) is equal to
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ω, having a loss 0. If
∣
∣Xu − E[Xu | ω]

∣
∣ < a did not happen, our loss is at most 1. Therefore, the

expected loss of our aggregator fhypo is at most

LP (fhypo) = Eω

[

E
[
|fhypo(r)− ω|2

∣
∣ ω

]]

≤ Eω

[

(1− ε) · 0 + ε · 1
]

= ε.

Since the expected loss of the optimal aggregator f∗ is non-negative, fhypo is ε-optimal.

In the remaining proof, we show how to use samples to learn a “real” aggregator f̂ that implements
the same functionality as the hypothetical aggregator fhypo and hence is ε-optimal. We have two
learning tasks: First, we need to estimate ρ, so that we can implement the step (1) of fhypo which

tells apart ri
1−ri

≥ (1 + γ)ρ and ri
1−ri

≤ 1
1+γ ρ. Second, we need to find an index u ∈ {0, 1} such

that E[Xu | ω = u] ≥ n
4 and estimate E[Xu | ω = u], so that we can implement the step (2) of

fhypo which tells whether Xu is closer to E[Xu | ω = u] or E[Xu | ω = 1 − u]. We show that

these two tasks can be achieved using O( 1
εn( γ

1+γ )2 log
1
δ + 1

ε log
1
δ ) samples, with probability at

least 1−O(δ).

Task 1: estimate ρ, using T1 = O( 1
εn( γ

1+γ )2 log
1
δ + 1

ε log
1
δ ) samples. We want to use samples

to obtain an estimate ρ̂ of ρ such that 1
1+γ ρ < ρ̂ < (1 + γ)ρ. So, by checking whether ri

1−ri
> ρ̂ or

ri
1−ri

< ρ̂ we can tell apart ri
1−ri

≥ (1 + γ)ρ and ri
1−ri

≤ 1
1+γ ρ. Using Lemma G.4 with ∆ = γ

1+γ ,

we obtain a ρ̂ such that

ρ̂ ∈ (1±∆)ρ,

with probability at least 1− δ using

T1 = O

(
1

(1− p)µ0n∆2
log

1

δ
+

1

min{p, 1− p} log
1

δ

)

≤ O

(
1

εn( γ
1+γ )

2
log

1

δ
+

1

ε
log

1

δ

)

samples (recall that we have min{p, 1− p} ≥ (1− p)µ0 = pµ1 ≥ ε
4 ). The ρ̂ then satisfies

ρ̂ <
(

1 +
γ

1 + γ

)

ρ < (1 + γ)ρ and ρ̂ >
(

1− γ

1 + γ

)

ρ =
1

1 + γ
ρ,

as desired.

Task 2: find u such that E[Xu | ω = u] ≥ n
4 and estimate E[Xu | ω = u], using T2 = O( 1ε log

1
δ )

samples. First, we show how to use T2 = O( 1ε log
1
δ ) samples to estimate both E[X0 | ω = 0] and

E[X1 | ω = 1] with accuracy a =
√

n
2 log 2

ε . By the same argument as in the proof of Lemma G.4

(Equations 48 and 49), we know that with probability at least 1− 2δ over the random draws of

T2 ≥ 12

min{p, 1− p} log
2

δ
(59)

samples, the numbers of samples (ω(t), r
(t)
1 , . . . , r

(t)
n )’s where ω(t) = 0 and ω(t) = 1, denoted by

#0 and #1, must satisfy

#0 ≥ 1

2
(1− p)T2, #1 ≥ 1

2
pT2.

We consider the samples where ω(t) = 0. There are #0n total number of r
(t)
i ’s. Suppose we have

accomplished Task 1. Then, for each r
(t)
i , we can tell whether the corresponding signal s

(t)
i belongs

to S0
i by checking whether

r
(t)
i

1−r
(t)
i

< ρ̂. So, we can exactly compute the total number of such signals

in the t-th sample, X0(t) =
∑n

i=1 1{s
(t)
i ∈ S0

i }, whose expected value is E[X0 | ω = 0]. Because

signals are independent given ω(t) = 0, by Hoeffding’s inequality we have

Pr

[∣
∣
∣

∑

t:ω(t)=0

n∑

i=1

1{s(t)i ∈ S0
i }

︸ ︷︷ ︸

X0(t)

−#0E[X
0 | ω = 0]

∣
∣
∣ ≥ #0a

]

≤ 2e−
2(#0a)2

#0n = 2e−
2#0a2

n .
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Plugging in a =
√

n
2 log 2

ε and #0 ≥ 1
2 (1− p)T2, we get

Pr

[∣
∣
∣
1

#0

∑

t:ω(t)=0

X0(t) − E[X0 | ω = 0]
∣
∣
∣ ≥ a

]

≤ 2e−#0 log 2
ε ≤ 2e−

1
2 (1−p)T2 log 2

ε .

Similarly, considering the samples where ω(t) = 1, we get

Pr

[∣
∣
∣
1

#1

∑

t:ω(t)=1

X1(t) − E[X1 | ω = 1]
∣
∣
∣ ≥ a

]

≤ 2e−#1 log 2
ε ≤ 2e−

1
2pT2 log 2

ε .

Therefore, if we require

T2 ≥ 2 log(2/δ)

min{p, 1− p} log(2/ε) , (60)

then with probability at least 1− 2δ, both
∣
∣
∣
1

#0

∑

t:ω(t)=0

X0(t) − E[X0 | ω = 0]
∣
∣
∣ < a,

∣
∣
∣
1

#1

∑

t:ω(t)=1

X1(t) − E[X1 | ω = 1]
∣
∣
∣ < a

hold. Namely, 1
#0

∑

t:ω(t)=0 X
0(t) and 1

#1

∑

t:ω(t)=1 X
1(t) are a-accurate estimates of E[X0 | ω =

0] and E[X1 | ω = 1]. Equations (59) and (60) together imply that T2 = O( 1
min{p,1−p} log

2
δ ) ≤

O( 1ε log
1
δ ) samples suffice.

Then, we identify an index u ∈ {0, 1} such that E[Xu | ω = u] ≥ n
4 . By Claim G.5, there exists

a v ∈ {0, 1} with E[Xv | ω = v] ≥ n
2 . Since 1

#v

∑

t:ω(t)=v X
v(t) is an a-accurate estimate of

E[Xv | ω = v], we must have

1

#v

∑

t:ω(t)=v

Xv(t) ≥ E[Xv | ω = v]− a ≥ n

2
− a.

So, at least one of u ∈ {0, 1} must satisfy 1
#u

∑

t:ω(t)=u X
u(t) ≥ n

2 − a. By picking any such a u,

we are guaranteed that E[Xu | ω = u] ≥ 1
#u

∑

t:ω(t)=u X
u(t)− a ≥ n

2 − 2a. Given the assumption

n ≥ 32 log 2
ε in the statement of the theorem, we have

a

n
=

√

1

2n
log

2

ε
≤ 1

8
.

Hence, E[Xu | ω = u] ≥ n
2 − 2a ≥ n

2 − 2(n8 ) =
n
4 .

Finally, as argued above, an a-accurate estimate of E[Xu | ω = u] is given by 1
#u

∑

t:ω(t)=u X
u(t).

Constructing f̂ . After accomplishing Tasks 1 and 2 using T1+T2 = O( 1
εn( γ

1+γ )2 log
1
δ + 1

ε log
1
δ )

samples, we construct a f̂ that implements the same functionality as fhypo. Let

M =
1

#u

∑

t:ω(t)=u

Xu(t) − 2a,

where 1
#u

∑

t:ω(t)=u X
u(t) is our estimate of E[Xu | ω = u] in Task 2 and a =

√
n
2 log 2

ε .

Claim G.7. E[Xu | ω = u]− a > M > E[Xu | ω = 1− u] + a.

Proof. Because 1
#u

∑

t:ω(t)=u X
u(t) is an a-accurate estimate of E[Xu | ω = u], we have

E[Xu | ω = u] >
1

#u

∑

t:ω(t)=u

Xu(t) − a = M + a.

Recall from Equation (58) that E[Xu | ω = 1− u] ≤ E[Xu | ω = u]− 4a. So,

E[Xu | ω = 1− u] <
( 1

#u

∑

t:ω(t)=u

Xu(t) + a
)

− 4a = M − a.

The above two inequalities prove the claim.
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Given reports r = (r1, . . . , rn) as input, we let f̂ do the following:

(1) If u = 1, count how many reports ri’s satisfy ri
1−ri

> ρ̂; If u = 0, count how many reports

ri’s satisfy ri
1−ri

< ρ̂. Let this number be X;

(2) Then, check whether X > M or X ≤ M . If X > M , output f̂(r) = u; otherwise, output

f̂(r) = 1− u.

We argue that f̂ implements the same functionality as fhypo: (1) In Task 1 we got 1
1+γ ρ < ρ̂ <

(1 + γ)ρ. So, by checking whether ri
1−ri

> ρ̂ or < ρ̂ we can exactly tell whether ri
1−ri

≥ (1 + γ)ρ

or ≤ 1
1+γ ρ. Hence, we have X = Xu, the number of signals that belong to the Su

i sets. (2) Recall

from Equation (57) that with probability at least 1 − ε, X is a-close to its expectation E[Xu | ω].
Then, according to Claim G.7, X > M implies that X is closer to E[Xu | ω = u]; X < M implies

that X is closer to E[Xu | ω = 1 − u]. So, f̂ implements both of the two steps in fhypo. Hence,

according to Claim G.6, f̂ is ε-optimal.

G.2 Proof of Theorem B.3

According to Lemma 5.1, the optimal aggregator is

f∗(r) =
1

1 + ρn−1
∏n

i=1
1−ri
ri

, (61)

where ρ = p
1−p . We claim that an approximately optimal aggregator can be obtained by first esti-

mating ρ from samples and then use the aggregator with the estimate ρ̂:

f̂(r) =
1

1 + ρ̂n−1
∏n

i=1
1−ri
ri

. (62)

Claim G.8. If
|ρ̂−ρ|

ρ ≤ 2
√
ε

n−1 < 1
2 , then the aggregator f̂ defined above is ε-optimal.

Proof. Consider the function g(ρ̂) = 1

1+ρ̂n−1
∏n

i=1
1−ri
ri

(where ρ̂ is the variable and ri’s are con-

stants). We claim that

|g′(ρ̂)| ≤ n− 1

4ρ̂
. (63)

To see this, we note that if ri = 0 for some i then g(ρ̂) = 0 and g′(ρ̂) = 0. Otherwise, we let

y =
∏n

i=1
1−ri
ri

< +∞ and take the derivative with respect to ρ̂,

g′(ρ̂) = − 1

(1 + ρ̂n−1y)2
(n− 1)ρ̂n−2y = −(n− 1)

(ρ̂
n
2 −1√y)2

(1 + ρ̂n−1y)2
= −(n− 1)

1
(

1

ρ̂
n
2

−1√y
+ ρ̂

n
2
√
y
)2 .

By the AM-GM inequality a+ b ≥ 2
√
ab, we get

|g′(ρ̂)| ≤ (n− 1)
1

(

2
√

1

ρ̂
n
2

−1√y
· ρ̂n

2
√
y
)2 = (n− 1)

1

4ρ̂
,

as claimed.

Using (63), we have, for ρ̂ ≥ ρ
2 ,

|f̂(r)− f∗(r)| = |g(ρ̂)− g(ρ)| ≤ n− 1

4min{ρ̂, ρ} · |ρ̂− ρ| ≤ n− 1

2
· |ρ̂− ρ|

ρ
. (64)

So, to obtain ε-approximation E
[
|f̂(r) − f∗(r)|2

]
≤ ε, we can require |f̂(r) − f∗(r)| ≤ n−1

2 ·
|ρ̂−ρ|

ρ ≤ √
ε. This can be satisfied if the error in estimating ρ is at most

|ρ̂−ρ|
ρ ≤ 2

√
ε

n−1 .
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We then show how to use O(γnε log 1
δ ) samples to estimate the value of ρ with O(

√
ε

n−1 ) accuracy,

which will give us an ε-optimal aggregator according to Claim G.8. Recall from (14) that when
signals are γ-weakly informative, the reports always satisfy

1

1 + γ
ρ ≤ ri

1− ri
≤ (1 + γ)ρ. (65)

The following observation is the key:

Lemma G.9. For each expert i, we have

• E
[

ri
1−ri

| ω = 0
]
= ρ;

• E
[

1−ri
ri

| ω = 1
]
= 1

ρ .

As corollaries, for k conditionally independent reports r1, . . . , rk, we have E
[∏k

i=1
ri

1−ri
| ω =

0
]
= ρk and E

[∏k
i=1

1−ri
ri

| ω = 1
]
= 1

ρk .

Proof. Because ri
1−ri

= P (si|ω=1)
P (si|ω=0)ρ (from (13)), we have

E

[ ri
1− ri

∣
∣ω = 0

]

=
∑

si∈Si

P (si | ω = 0)
P (si | ω = 1)

P (si | ω = 0)
ρ =

∑

si∈Si

P (si | ω = 1)ρ = ρ.

For conditionally independent r1, . . . , rk, we have

E

[ k∏

i=1

ri
1− ri

∣
∣ω = 0

]

=

k∏

i=1

E

[ ri
1− ri

∣
∣ω = 0

]

= ρk.

Similarly, we can prove E
[
1−ri
ri

| ω = 1
]
= 1

ρ and E
[∏k

i=1
1−ri
ri

| ω = 1
]
= 1

ρk .

Let ∆ =
√
ε

3γn and suppose we are given T = 6e
γn∆2 log

2
δ = 54eγn

ε log 2
δ = O(γnε log 1

δ ) samples.

Suppose when drawing the samples we first draw the events ω(t)’s, and then draw the reports r
(t)
i ’s

conditioning on ω(t) being 0 or 1. After the first step, the numbers of samples with ω(t) = 0 and

ω(t) = 1 are determined, which we denote by #0 and #1. Since #0 +#1 = T , one of them must

be at least T/2. We argue that whether #0 ≥ T
2 or #1 ≥ T

2 we can estimate ρ1/γ with accuracy
3∆. (For simplicity, we assume that 1/γ is an integer.)

• If #0 ≥ T/2, then we consider the #0n reports r
(t)
i ’s in the samples with ω(t) = 0.

We divide these #0n reports evenly into #0nγ groups, each of size 1/γ, denoted by

G1, . . . , G#0nγ . Consider the product of
r
(t)
i

1−r
(t)
i

’s in a group Gj : because r
(t)
i ’s are in-

dependent given ω = 0, by Lemma G.9 we have

E

[ ∏

r
(t)
i ∈Gj

r
(t)
i

1− r
(t)
i

∣
∣ ω = 0

]

= ρ1/γ .

Using (65) and the inequality (1 + γ)1/γ ≤ e, we have

1

e
ρ1/γ ≤ 1

(1 + γ)1/γ
ρ1/γ ≤

∏

r
(t)
i ∈Gj

r
(t)
i

1− r
(t)
i

≤ (1 + γ)1/γρ1/γ ≤ eρ1/γ .

Let Xj be the random variable 1
eρ1/γ

∏

r
(t)
i ∈Gj

r
(t)
i

1−r
(t)
i

. From the above equation and in-

equality we have E[Xj ] =
1
e and Xj ∈ [ 1

e2 , 1] ⊆ [0, 1]. So, by Chernoff bound,

Pr
[ 1

#0nγ

#0nγ∑

j=1

Xj ∈ (1±∆)
1

e

∣
∣ ω = 0

]

≥ 1− 2e−
#0nγ∆2

3e ≥ 1− 2e−
Tnγ∆2

6e = 1− δ,
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given our choice of T . Multiplying 1
#0nγ

∑#0nγ
j=1 Xj by eρ1/γ , we obtain the following

estimate of ρ1/γ :

ρ̂
1/γ
0 :=

1

#0nγ

#0nγ∑

j=1

∏

r
(t)
i ∈Gj

r
(t)
i

1− r
(t)
i

∈ (1±∆)ρ1/γ .

Dividing by ρ1/γ , we get ( ρ̂0

ρ )1/γ ∈ 1±∆.

• If #1 ≥ T/2, then by considering the #1n reports in the samples with ω(t) = 1, divid-
ing them into #1nγ groups of size 1/γ, H1, . . . , H#1nγ , and similarly defining random

variable Yj =
ρ1/γ

e

∏

r
(t)
i ∈Hj

1−r
(t)
i

r
(t)
i

, we obtain the following estimate of ( 1ρ )
1/γ :

(
1

ρ̂1
)1/γ :=

1

#1nγ

#1nγ∑

j=1

∏

r
(t)
i ∈Hj

1− r
(t)
i

r
(t)
i

∈ (1±∆)(
1

ρ
)1/γ .

Multiplying by ρ1/γ , we get ( ρ
ρ̂1
)1/γ ∈ 1 ± ∆. Taking the reciprocal and noticing that

1
1±∆ ⊆ 1± 3∆ when ∆ < 1

3 , we obtain ( ρ̂1

ρ )1/γ ∈ 1± 3∆.

From the discussion above we obtained an estimate ρ̂ ∈ {ρ̂0, ρ̂1} of ρ such that ( ρ̂ρ )
1/γ ∈ 1 ± 3∆.

Raising to the power of γ, and using the inequality (1−x)γ ≥ 1−xγ and (1+x)γ ≤ exγ ≤ 1+2xγ
for xγ ≤ 1, we get

ρ̂

ρ
∈ (1± 3∆)γ ⊆ [1− 3∆γ, e3∆γ ] ⊆ [1− 3∆γ, 1 + 6∆γ].

In particular, this implies
|ρ̂−ρ|

ρ ≤ 6∆γ = 2
√
ε

n . Then, according to Claim G.8, the aggregator f̂

defined by f̂(r) = 1

1+ρ̂n−1
∏n

i=1
1−ri
ri

is ε-optimal. We hence obtained an ε-optimal aggregator.

H Missing Proofs from Section 7

H.1 Proof of Theorem 7.1

Regard P as a joint distribution over reports r = (r1, . . . , rn) and the state ω, where ri is sampled
by first sampling si ∈ Si and then letting ri = P (ω = 1 | si). Since |Si| = m, there are at most m
different values of ri that can be sampled, so there are at most 2mn different tuples of (r, ω) in the
support of P . For each such tuple (r, ω), consider the empirical probability of this tuple:

P̂ (r, ω) =
1

T

T∑

t=1

1

[
(r(t), ω(t)) = (r, ω)

]
.

By the Chernoff bound, we have

Pr
[∣
∣P̂ (r, ω)− P (r, ω)

∣
∣ > ∆P (r, ω)

]
≤ 2e−

TP (r,ω)∆2

3 .

Using a union bound for all the 2mn tuples and the fact that P (r, ω) ≥ P (s, ω) > c
mn (where

s ∈ S are some signals that generate r), we have
∣
∣P̂ (r, ω)− P (r, ω)

∣
∣ ≤ ∆P (r, ω) (66)

holds for all tuples (r, ω) except with probability at most

2mn · 2e−
TP (r,ω)∆2

3 ≤ 4mn · e− cT∆2

3mn = δ

if

T ≥ 3mn

c∆2
log

4mn

δ
. (67)
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Assuming (66) holds, we consider the “empirical” Bayesian aggregator:

f̂(r) =
P̂ (r, ω)

P̂ (r)
.

Since (66) implies P̂ (r, ω) ∈ (1±∆)P (r, ω) and P̂ (r) ∈ (1±∆)P (r), we have

f̂(r) ≥ 1−∆

1 +∆
· P (r, ω)

P (r)
=

(
1− 2∆

1 +∆

)
f∗(r) ≥ (1− 2∆)f∗(r)

and

f̂(r) ≤ 1 + ∆

1−∆
· P (r, ω)

P (r)
=

(
1 +

2∆

1−∆

)
f∗(r) ≤ (1 + 4∆)f∗(r),

if ∆ < 1
2 . Putting these two inequalities together:

|f̂(r)− f∗(r)| ≤ 4∆f∗(r).

We note that this holds for all possible r in the support of P . So, the expected approximation error

of f̂ is at most:

E
[
|f̂(r)− f∗(r)|2

]
=

∑

r

P (r)|f̂(r)− f∗(r)|2

≤
∑

r

P (r)16∆2f∗(r)2

= 16∆2
∑

r

P (r)
(P (r, ω)

P (r)

)2

= 16∆2
∑

r

P (r, ω)2

P (r)
≤ 16∆2

∑

r

P (r)2

P (r)
= 16∆2.

Letting 16∆2 = ε, namely ∆2 = ε
16 , we have E

[
|f̂(r) − f∗(r)|2

]
≤ ε, so f̂ is an ε-optimal

aggregator. Plugging ∆2 = ε
16 into (67) we obtain the sample complexity

3mn

c∆2
log

mn

δ
=

48mn

cε
log

mn

δ
= O

(mn

cε

(
n logm+ log

1

δ

))

.
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