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Abstract— Ubiquitous robot control and human-robot col-
laboration using smart devices poses a challenging problem
primarily due to strict accuracy requirements and sparse
information. This paper presents a novel approach that in-
corporates a probabilistic differentiable filter, specifically the
Differentiable Ensemble Kalman Filter (DEnKF), to facili-
tate robot control solely using Inertial Measurement Units
(IMUs) from a smartwatch and a smartphone. The imple-
mented system is cost-effective and achieves accurate esti-
mation of the human pose state. Experiment results from
human-robot handover tasks underscore that smart devices
allow versatile and ubiquitous robot control. The code for
this paper is available at github.com/ir-lab/DEnKF and
github.com/wearable-motion-capture.

I. INTRODUCTION

Examining the human-robot relationship is a central con-
cern in the field of artificial intelligence and robotics. To
facilitate reliable human-robot collaboration, accurate es-
timations of the state of humans and robots are crucial.
One challenge is that numerous robotics systems still rely
heavily on costly motion capture systems in estimating the
human pose, thereby restricting their suitability primarily to
stationary setups or complex calibration procedures.

The gold standard for motion capture are cameras [1].
These systems may feature multiple cameras on multiple
base stations or in one device, e.g, Microsoft Kinect v2 [2] or
Intel RealSense. These systems usually require a dedicated
setup and suffer from line-of-sight issues. Alternatively,
non-optical systems enable motion capture through Inertial
Measurement Units (IMUs) [3], [4]. For this purpose, the
Xsens motion capture system [5] is commonly used [6].
Also, Sony’s recent Mocopi [7] promises new opportunities
for non-visual real-time human motion capture. A downside
of most IMU-based tracking is that they require users to
carefully place multiple specialized units on their body and a
calibration procedure.

Recent research investigates the opportunities of om-
nipresent IMUs in smartphones and smartwatches for motion
capture. Some even limit themselves to a single device [8],
[9]. These approaches have promising potential for human-
robot collaboration because motion capture through smart
devices is ubiquitous and natural to the user [10]. However,
leveraging the data of a single smartwatch for motion capture
of sufficient accuracy for robot control is challenging, and
previous work had to constrain the user to a constant body
forward-facing direction [10].
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Fig. 1. Top: Our Differentiable Ensemble Kalman Filter (DEnKF) achieves
robust body orientation and arm pose estimations from the sensor data of a
single smartwatch and a smartphone. The user can place the phone in any
pocket. Bottom: Orientation predictions are also accurate when the user
sits. We evaluate pose predictions on test data and in a human-robot
collaboration handover task.

This work builds upon [10] and incorporates the sen-sor
data of a connected smartphone to enable ubiquitous robot
control without body orientation constraints. Recursive
Bayesian filters, particularly Kalman filters, play a pivotal
role in tasks such as predicting the future movements of hu-
man interaction partners [11], tracking objects over time [12],
and ensuring stability during robot locomotion [13]. We
propose that advances in state estimation, specifically the
Differentiable Ensemble Kalman Filter (DEnKF) [14], allow
to enhance the accuracy and stability of motion capture using
ubiquitous smart devices.

As depicted in Figure 1, using a probabilistic differentiable
filter provides us with a distribution of solutions, aiding
stability and adding an important measure of uncertainty for
robot control. The proposed filter allows to strike the balance
between less-constrained movements while still achieving
stable and effective pose estimations suitable for human-
robot collaboration.

Il. METHODOLOGY

We present our approach by describing our data collection
and defining our states and observations in Section [I-A.
Then, we define the used Differentiable Ensemble Kalman
Filter (DEKnF) for human pose state estimations in Sec-
tion 11-B.
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Fig. 2.  Left: Our data collection setup with smart devices and Optitrack
system. Right: The DEnKF model structure. The sensor model projects
raw observations to the observation space, the stochastic transition model
forwards the ensemble one step in t, and the KF update step corrects the
state.

A. Data Collection, Observation and State

For data collection, we develop two apps and make use of
a research-grade motion capture system. The apps for the
smartwatch and smartphone stream sensor data to a remote
machine.

Observation: We define that the raw observation y con-
sists of the following values y = [At, 8sw, V, o, v, ®, p, rn]?,
with y @ R?2, where a,y, ¢ B R3 are the IMU readings.
Namely, these are the average values of the linear acceler-
ation, gravity, and gyroscope since the previous observation
At seconds ago. The averaging is necessary because the apps
stream data at around 80 Hz and the accelerometer and gyro-
scope record measurements at a faster rate. We also integrate
linear acceleration measurements between two observations
and denote them as velocities v. In addition, the apps record
the virtual rotation vector sensor (0), which is provided by
Android and Wear OS. We record this orientation in form of a
continuous six-dimensional rotation representation (6DRR),
which is well-suited for training neural networks [15].

Calibration: When the user starts the app on their smart-
watch, they usually hold their arm up, parallel to the chest
and hip. We use this start position to calibrate 8 with the
first initial orientations Binit, which gives us the calibrated
orientation Bsw. The value p with p B R is the atmospheric
pressure sensor. We also calibrate this one by subtracting the
reading when the user started the app from all subsequent
ones. Finally, the phone provides the body-forward facing
direction. Also here, we record the orientation sensor of the
phone and calibrate it with the first observation in the starting
position. Further, we assume that the user has their forward-
facing direction parallel to the watch at the starting position.
This allows us to estimate an offset rotation from the phone to
the forward direction, bringing it into the same global
reference frame as the watch. From this, we denote the body
orientation as the sine and cosine of the calibrated up-axis
rotation of the phone, represented as rn, @ R2 in our raw
observation vy.

State: Our state entails the arm pose and body forward-
facing direction of the human. The ground truth values
were recorded with the research-grade optical motion capture
system OptiTrack [1]. We record data from participants who
wore a 25-marker-upper-body suit along with the smartwatch
on their left wrist and a smartphone in their pocket. We

collect the upper arm rotation (q,), lower arm rotation (q,)
also in the continuous 6DRR and the body-forward facing
direction rn. Therefore, the ground truth state for motion
capture is denoted as x = [q,q ,ra]?, where x B R**.In
our Bayesian filtering framework, we define the learned
observation y to be equivalent to x.

B. Differentiable Ensemble Kalman Filter

To model the temporal transition of the human pose
x and map raw observations y to the state space, we
utilize DEnKF [14], [16], [17] as shown in Figure 2. This
state estimation approach enables us to learn and infer the
dynamics of the human pose over time, while efficiently
incorporating and processing the observed data. We maintain
the core algorithmic steps of an Ensemble Kalman Filter
(EnKF) [18] while leveraging the capabilities of stochastic
neural networks (SNNs) [19]. There are two steps in DEnKF,
the Prediction Step propagates the state one step further in
time, and the Update Step corrects the state based on newly
collected observations. Let Xo.n denote the states of N steps
in t with number of E ensemble members, we initialize
the filtering process with Xo.n = [xX ,...,xE ], where

0O:N O:N
EBZ*.

Prediction Step: In this step, the Transition Model takes
the previous states and predicts the next state. We use a
window of N and we leverage the stochastic forward passes
from a trained state transition model to update each ensemble
member:

Xy Bfo(x' | x{n.t-1), BIBE. (1)

Matrix X¢ = [x;l,--- ,xtE] holds the updated ensemble
members which are propagated one step forward through
the state space. Note that sampling from the transition model
fe(-) implicitly introduces a process noise.

Update Step: Given the updated ensemble members X,
a nonlinear observation model hy(-) is applied to transform
the ensemble members from the state space to observation
space. The observation model is realized via a neural network
with weights {:

HiXe = hy(xc) hy(x), (2)
XE XE
HiAy =

n 1 . #
HtXt - E hll,(X,IE)

M-

hy(x), -,
i=1 i=1
H: X is the predicted observation, and Hi At is the sam-
ple mean of the predicted observation at t. EnKF treats
observations as random variables. Hence, the ensemble can
incorporate a measurement perturbed by a small stochastic
noise thereby accurately reflecting the error covariance of the
best state estimate [18]. As shown in Figure 2, we incorporate a
Sensor Model that can learn projections between the
learned observation and raw observation space. To this end,
we leverage the methodology of SNN to train a stochastic
sensor model that takes N steps of the raw observation and
predicts the current learned observation using sg(-):

viBselyilye), BiRE, (3)



where y: represents the noisy observation. Sampling
yields opservations Yt = [y%, -+, ¥E] and sample mean
¥t = El ;=1 ¥i- The innovation covariance St can then be
calculated as:

Sy = (HeAd) (HeAd) T + relyi), (4)

E-1
where r¢(-) is the measurement noise model implemented
using MLP. We use the same way to model the observation
noise as in [20], r¢(-) takes an learned observation yi in
time t and provides stochastic noise in the observation space
by constructing the diagonal of the noise covariance matrix.
The final estimate of the ensemble X;|: can be obtained by
performing the measurement update step:

lXE x\, K¢ = A¢(HeAy) TSt
Ei:lt, E-1 tro(s)

Xeje = Xt + Ke(Ye = HeXy),

Xt -

where K, is ths Kalman gain. In inference, the ensemble
mean X[t = El iE=1 x‘tIt is used as the updated state.

Prediction Targets: Once the estimated state, comprising
the rotation values for both the lower arm and upper arm, is
obtained, we utilize forward kinematics with fixed lower arm
length |} and fixed upper arm length |, to determine the
corresponding Cartesian XY Z coordinates of the wrist. This
is done due to the constraint of a fixed sagittal plane
orientation rn, where the elbow position is limited to a sphere
around the shoulder with a radius of |,. Additionally, the
wrist position must lie on a manifold defined by spheres
with a radius of || around all possible elbow positions, as
described in prior work [21].

Training: DEnKF contains four sub-modules: a state
transition model, an observation model, an observation noise
model, and a sensor model. The entire framework is trained
in an end-to-end manner via a mean squared error (MSE) loss
between the ground truth state x;|; and the estimated state
Xt|t at every timestep. We also supervise the intermediate
modules via loss gradients L+ and Ls . Given ground truth at
time t, we apply the MSE loss éradient Calculated between Xt|t
and the output of the state transition model to fg as in Eq. 6.
We apply the intermediate loss gradients computed based on
the ground truth observation y: and~the output of the
stochastic sensor model y;: ~

Lig = BXtjt-n:t-1 = Xt;tB2, Ls, = By - wls. (6)

All models in the experiments were trained for 50 epochs
with batch size 256, and a learning rate of n = 107>. We
chose the model with the best performance on a validation
set for testing. The ensemble size of the DEnKF was set to
32 ensemble members.

I1l. EVALUATION

We discuss the validation accuracy on a separate test
dataset. Secondly, we assess the performance of our model
by applying it in a human-robot handover tasks with a real
URS robot.
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Fig. 3. Prediction error distributions of our DEnKF on the test dataset.

A. Evaluation on Dataset

The training dataset comprises data collected from five
human subjects. Written informed consent was obtained and
approved by the institutional review board (IRB) of ASU
under the ID STUDY00017558. Each subject was instructed
to wear the smartwatch on their left arm, the smartphone
in one of their pockets and a 25-marker Optitrack suit
while performing free random arm motions. The subjects
were also encouraged to change their body forward-facing
direction and to move around in the area covered by the
optical tracking system. In total, we gathered a dataset of
970,493 data points. To further augment the dataset, we arti-
ficially adjusted the calibrated smartwatch and smartphone
data to simulate new body orientations. This is possible
because remaining sensor measurements, e.g., accelerometer
or barometer, are in the reference frame of the watch. In
total, our augmented training dataset amounts to 4,259,746
data points.

We evaluate the DEnKF prediction accuracy on a test
dataset completely separate from the training process. The
test dataset comprises 26,688 observations. The participants
were asked to perform a series of movements, including arm
swing, arm cross on chest and behind the head, arm raise,
waving, boxing, clapping, walking in a figure-eight pattern,
and jogging in a circular path. Figure 3 summarizes the
performance of the DEnKF model on the test dataset. On
average, hand positions are off by 9.94 cm, elbow positions
by 9.27 cm, and body orientation by 7.75deg. The DEnKF
quantifies the state uncertainty through the distribution of
ensemble members, for example, depicted at the top in
Figure 1. Our framework achieves inference speed at B62 Hz
on a system using an Intel® Xeon(R) W-2125 CPU and
NVIDIA GeForce RTX 2080 Ti.

TABLE |
MoDEL COMPARISON WITH RELATED WORK

Free Forward- VVTIST EIoowW HIp
Method ~ Anywhere Facing Dir. (cm) (cm) (deg)
o1 X 4 10793 = =
[22] v x 8.50  8.50 -
[21] v x 9.20 7.90 -
Ours v v 9.94 9.27 7.75

We compare our results with other related works [9], [21],
[22] in Table I. The method of [22] requires inference in
the same environment where the training data was collected,
therefore, it is not applicable anywhere. Further, [22] focuses
on pose predictions for the wrist, omitting the rest of the body
pose including elbow or hip orientation. Methods of [9] and
[21] demonstrate lower errors for wrist and elbow but fix the



Fig. 4. The handover task system setup is illustrated on the left, showcasing the workspace divided into three distinct labeled areas. On the right, picture
sequences of the handover results are presented for each of these designated zones.

user to a constant forward-facing direction. In contrast, our
proposed method using the DEnKF also provides an estimate
of the Hip pose and allows for ubiquitous pose estimation
regardless of location or changes in body orientation.

B. Handover Task

We demonstrate the efficacy of the trained model in
a human-robot handover task. As depicted in Figure 4,
participants sit in a chair and engage in handover interactions
with the robot. Participants are free to rotate on the chair to
experiment with various handover scenarios. The smartphone
in their pocket and the smartwatch on their wrist enable
estimating the body orientation and arm pose to extract the
global hand position.

Task Setup: Participants perform six handover interac-
tions. Each handover interaction is treated as an individual
task. At the onset of each task, the participant holds their
hand as shown on the left in Figure 4 and initiates the
task by issuing a voice command. Like in the work of
[10], the smartwatch recognizes the voice command and
triggers the robot. Subsequently, the robot grasps the green
cube and moves it towards the tracked hand position of the
participant. When the cube reaches close proximity to the
hand, the participant says “give me the cube” and closes
their hand around it. In response to this voice command, the
robot releases its grip on the cube, signifying the successful
completion of the handover.

To evaluate a range of handover positions, we divide the
table surface into three distinct areas labeled as 1, 2, and
3. Each participant is instructed to perform two handoversin
each area, with one at a high position and one at a low
position. In total, every participant performs all six handovers
utilizing smartwatch and smartphone tracking, along with an
additional six handovers conducted with the gold-standard
Optitrack for our baseline comparison. The order of the tasks
and tracking modes is randomized to eliminate any potential
biases.

Results: The handover experiment utilizing smartwatches
is depicted in Figure 4 (right), illustrating the handover
process conducted in zones 1, 2, and 3. We collected data
from five human subjects, with each subject performing
a total of 12 handover tasks. The evaluation metrics in

TABLE 1l

HANDOVER TASK RESULTS

Method Time (s) Dist. (cm)
Wearable 11.74+ 5.35 7.74% 4.68
Optitrack 9.86+ 2.67 7.77+ 4.71
Difference 1.88+ 4.83 0.03+ 7.13

Table Il include the task completion time and the actual 3D
distance between hand and cube when the participant gave
the voice command to hand over the cube. As summarized
in Table 1l, we observe a relatively small disparity in the
task completion time, with an average difference of 1.88
seconds. Further, observed handover 3D distances exhibit a
minimal average difference of 0.03 cm when comparing both
methods. Altogether, the results suggest that handover tasks
with smartwatch and smartphone tracking might take about
1.88 seconds longer but the participant is comfortable to
complete the handover at similar distances. It is important to
note that all handover tasks were accomplished successfully,
with users consistently grasping the cube within the desired
zones without any instances of dropping it. The obtained
results indicate that the smartwatch system is comparable
to the Optitrack system for this task, thus establishing its
potential as a cost-efficient alternative.

IV. CONCLUSION

This work introduces the integration of a ubiquitous robot
control system by leveraging smart devices and employing
differentiable filters. The experimental results demonstrate
that the proposed framework effectively addresses the es-
timation challenges related to human arm pose estimation,
especially in scenarios involving diverse human hip ori-
entations. Additionally, the results from the human-robot
handover task showcase that the proposed system achieves
comparable error metrics, highlighting its effectiveness. With
no additional user instrumentation, the proposed framework
offers new and intriguing possibilities for low-cost robot
control and human-robot collaboration applications.
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