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ABSTRACT: Modern cities are becoming increasingly smart and interconnected, with the 
capacity to gather unprecedented amounts of information. However, available methods for 
resilience quantification lack agility to cope with the ever-changing conditions and data that 
underpin disaster resilience and lifecycle performance analysis. In this paper, we discuss the 
limitations in the models themselves, i.e. even though frameworks predict uncertain and tem-
porally evolving system performance, they are unable to learn from new data. To address these 
limitations, we pose a ‘smart resilience modeling concept’ which presents the ability to update 
model estimations and to efficiently estimate the lifecycle resilience as new data emerges. Hypo-
thetical examples on community infrastructure affected by deterioration effects and punctuated 
events are presented. This conceptualization is expected to lay a foundation for smart resilience 
models capable of capturing the dynamic, uncertain, and evolving characteristics of future 
environmental demands, societal characteristics, and infrastructure conditions.

1 INTRODUCTION

The exposure of the built infrastructure to disruptive events demands a comprehensive way to 
measure its resilience. The importance of its quantification lies in the need of communities to 
set a baseline, define resilience goals and actions, quantify progress, and to estimate the social 
benefits and losses of resilience-related decisions (Committee on Increasing National Resilience 
to Hazards and Disasters et al. 2012). Modeling techniques are needed to establish such meas-
urement in a prospective way; we need to predict communities and systems’ capacity to with-
stand, adapt to and progressively recover after a disruption (Bruneau et al. 2003, Cimellaro 
et al. 2010). This requires interdisciplinary work and, although it has been a field of active 
research in the past decade, gaps and questions about measuring resilience still exist.

In the engineering community, there are difficulties in measuring resilience because of its 
multidimensional nature, the lack of evidentiary data and the uncertain and evolving condi-
tions that underpin disaster resilience (National Academies of Sciences, Engineering, and 
Medicine 2019). Different efforts have been made to improve resilience estimation; for 
example, considering time-affected conditions of the engineering systems (Ghosh and Padgett 
2010, Rokneddin et al. 2014, Jia and Gardoni 2019, Capacci et al. 2020); acknowledging the 
absorptive capacity of the system to accommodate or reduce the events’ impacts (Ouyang and 
Dueñas-Osorio 2012, Decò et al. 2013); take account of the availability of resources needed 
for recovery processes (González et al. 2016); the multi-hazards conditions and cascading 
effects (Hernandez-Fajardo and Dueñas-Osorio 2013); the varying demand-supply of infra-
structure services after events (Ouyang and Dueñas-Osorio 2012, Blagojević et al. 2022), 
among others. However, existing resilience modeling paradigms are designed with constrained 
inputs and model settings, and therefore easily become outdated over time.

To solve this limitation, we pose the idea of a ‘smart resilience modeling approach’. We con-
sider the infrastructure systems’ resilience as a dynamic and uncertain quantity that evolves as 
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data and new modeling approaches emerge. A ‘smart’ resilience model should be able to con-
tinuously learn from new data gathered, cope with shifts in environmental demands, consider 
variations in social needs and infrastructure uses, handle new monitoring parameters from 
emerging technologies, and others, adapting to the dynamic conditions of the systems. This 
paper presents the needs of such a framework using hypothetical examples. It is shown that 
lacking flexibility for coping with the emerging sources mentioned above may hinder the com-
munity spatial resilience, reduce their ability to identify and adaptively learn from varying 
threads and dimmish the ability to understand the community progress towards resilience 
goals, with probable worser impacts within the most vulnerable populations.

2 LIFECYCLE RESILIENCE MODELING

Infrastructure lifecycle and resilience assessments are commonly separate analyses given the 
differences in their temporal scale. Lifecycle analyses typically evaluate the system time- 
dependent performance in which progressive and punctuated events can affect the infrastructure 
during decades of service (Sanchez-Silva et al. 2011). On the other hand, resilience assessments 
are usually related to the recovery phase after a punctuated disturbance occurred, often framed 
in a scale from days to years (see Figure 1). Recent emphasis has been given to the joint evalu-
ation of lifecycle and resilience aiming to capture the increased vulnerability in aging infrastruc-
ture, shifts in user-demands over time and the adaptation of communities after shock-based 
events. However, lifecycle resilience modeling paradigms still lack flexibility to include these vari-
ations as new knowledge about the system becomes available at any point at time. This makes 
the lifecycle resilience modeling challenging to be repeatable, generalizable and, sometimes, 
impractical to be applied (National Academies of Sciences, Engineering, and Medicine 2019).

2.1  Smart resilience modeling

“Smart resilience” has appeared recently as a concept to depict the use of emerging technologies 
and intelligent practices (e.g. models, algorithms or tools) to enhance the system’s capacity to 
handle, absorb, react and recover from any disturbance (DesRoches and Taylor 2018, Kumar 
et al. 2019, Padgett et al. 2022). Different examples in the literature demonstrate these smart tech-
nologies has permeated the resilience lifecycle assessment, including real-time health monitoring, 
physical and social sensors, IoT, and digital twins (Li and Pozzi 2019, Fan et al. 2021, Panakkal 
and Padgett 2022, Yabe et al. 2022). Also the evaluation of the benefits obtained from introdu-
cing these smart technologies for infrastructure monitoring purposes and the adaptability gained 
by the possibility of on-time decision-making have seen a tremendous increase of interest from 
researchers (Rabiei and Modarres 2013, Malings and Pozzi 2016, Zuluaga and Sánchez-Silva 
2020). However, most of the recent contributions tend to focus on specific and individual por-
tions of the infrastructure resilience lifecycle, i.e. they concentrate on introducing data acquisition 
techniques for characterization of exposed inventory, definition of system parameters to be moni-
tored, or estimation of system performance during the post-disaster response phase.

To address the measurement and estimation of infrastructure resilience we pose a ‘smart mod-
eling paradigm’. We focus on the modeling paradigm itself to tackle the dynamic, uncertain and 

Figure 1.  Lifecycle resilience analysis and resilience assessment time scales.
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evolving lifecycle conditions over time. Smart resilience modeling refers to algorithms able to 
infuse existing modeling techniques with the ever-changing conditions measured or observed on 
the systems’ dynamics (social, environmental, physical, and others). Hence, these must be flexible 
algorithms able to evolve as new knowledge and innovative approaches arise in the infrastructure 
lifetime horizon (see Figure 2).

Figure 2 depicts, conceptually, the system resilience estimations influenced by potential sources 
of data such as periodic or continuous observations (red stars and lines, respectively). For 
example, with the vast advances in smart technologies, shifts in the functionality of the system 
could be suddenly observed. On the other hand, performance estimates of the system are pre-
dicted by means of existing algorithms, which may include the effect of degradation stressors 
(blue lines) or the estimation of recovery trajectories after a shock event (green line). One key 
goal of the smart resilience concept is to continuously fuse these different knowledge sources to 
inform future resilience models. The outcomes of such approaches result in mean estimates of the 
system performance with bounds that show the varying uncertainty and its relationship with 
data collection efforts (black solid and dashed lines). Such a modeling paradigm requires intelli-
gent algorithms to estimate, efficiently and confidently, the actual resilience of the system as time 
evolves. Recursive Bayesian algorithms, active learning, and transfer learning techniques, among 
others, are envisioned for this purpose. Such methods can help to limit the resources required for 
computation and data gathering, overcome data limitations and introduce the heterogeneous 
gathered knowledge into the assessment of future systems’ resilience.

3 ILLUSTRATIVE EXAMPLE

3.1  Problem definition

A rather simple transportation network is selected to explain the smart resilience approach 
(Figure 3). It consists of seven cities connected through 10 roads which condition depends on 
bridges’ availability. Multi-span simply supported concrete bridges (assumed as representative 
of the bridges in the network) are affected by deterioration processes related to chloride 
ingress (Ghosh and Padgett 2010). The bridges’ capacity to sustain service loads (i.e. live 
loads) and extreme loads (represented by seismic events) are affected. The live loads crossing 
the bridges are represented probabilistically by a three parameter Weibull distribution following 
Chowdhury et al. (2013), and seismic loads by a point of fault rupture that generates events 
whose magnitude follows a truncated Gutenberg-Richter model (Mw,min = 5, Mw,max = 8, b = 1). 
The loads and magnitude probability distributions are considered fixed in this study.

Bridges in this network are the only components considered susceptible to failure producing 
a complete road closure. Failure events related to live loads occur when a live load exceeds the 
bridge’s moment capacity or the reliability index (β) reaches a value of β = 2.6 (Vishnu 2019). 
Besides, when a seismic event occurs leading to extensive damage is also considered as bridge 
failure (or if β = 1.5). It is assumed that a failure condition always requires a complete bridge 
closure for intervention purposes.

Figure 2.  Resilience modeling of infrastructure performance over time and potential to leverage differ-

ent data sources in a smart resilience framework.
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Inspection campaigns, information about failure events and data collected during repair activ-
ities are documented in Table 1. Bridge deterioration affected components are examined (using 
intrusive approaches) every 5 years. Deck or total bridge replacements are reported if the 
moment capacity has been exceeded on the bridge’s deck or a seismic event damaged structures 
within the network. Finally, field observations of the progress and used times are collected during 
bridge interventions. These sources of information are used to update model inputs, model 
parameters or to infuse authoritative data within the predicted model estimations.

3.2  Lifetime reliability and resilience assessment

Given the small size of the network, the system failure evaluation is performed through matrix- 
based approaches (Kang et al. 2008). This method enumerates the m possible ‘network states’ 
into a matrix of system events C; i.e. the entire sample space of mutually exclusive and collect-
ively exhausting (MECE) bridge states combinations or ‘network states’. The probability of 
occurrence of each MECE events, arranged in vector P(t), is obtained using individual bridges’ 
failure probabilities; these are time-dependent functions conditioned on seismic intensities im or 
live loads w, pS (im,t) and pL(w,t) respectively. Finally, the probability of disconnection Pr D jtð Þ
of any source-terminal pair can be obtained using this method combined with network science 
algorithms (see details in Kang et al. 2008). In the present study, the probability of losing connec-
tion between any city and City 7 is defined as a network-level reliability metric of interest.

Additionally, the method has been extended to obtain the probability of network disconnec-
tion ND ; a vector D is created using the indicator function over the connectivity of the system for 
the MECE events (0 if the network is connected, and 1 otherwise). Then, ND is computed as:

Figure 3.  Hypothetical transportation network.

Table 1. Timeline of data collected and event occurrence.

Year Event type Data gathered Unit

0 Exposed assets Bridges ages: 45, 24, 26, 12, 47, 37, 19, 37 years

5 Bridge inspection Deterioration affected parameters* cm

15 Bridge inspection Deterioration affected parameters* cm

17 Seismic event, Mw=5.7 Damaged condition 0,0,0,0,1,0,1,0 1: failure, 0: safe

25 Bridge inspection Deterioration affected parameters* cm

35 Bridge inspection Deterioration affected parameters* cm

36 Exceeded moment 

capacity on a bridge

Damaged condition 0,0,0,0,0,1,0,0 1: failure, 0: safe

38 Seismic event, Mw=7.8 Damaged condition 0,1,0,1,0,1,0,1 1: failure, 0: safe

40 Bridge inspection Deterioration affected parameters* cm

* Deterioration affected parameters correspond to rebars’ diameter measured on columns, deck and 
elastomeric bearing dowels (data not shown here for brevity).
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For seismic events, the bridge’s failure probability pS(im) is computed from the bridge fragility 
functions proposed by (Rokneddin et al. 2014) and the intensity measure obtained from the 
(Atkinson and Boore 1995) ground motion model. Hence, the network states probability vector 
P is also conditioned on the magnitude of the event. The analysis of the unconditional failure 
probability of the system Psys,s requires the integration of the network failure events over the 
joint probability density function of the event magnitudes (Kang et al. 2008). In this study, Psys,s 

is computed for each time t of analysis obtaining a lifetime metric useful for decision making.
The system failure probability for extreme live loads depends on pL(w,t), which is obtained 

from the surrogate model presented by Vishnu (2019) for exceeding the allowable moment in 
a bridge deck. To consider the uncertainty on the bridge structural parameters and in live loads 
w (inputs required of the surrogate model), pL is computed using 10,000 Monte Carlo (MC) simu-
lations. Mean failure probability pL for each year t is obtained by updating the deck reinforcement 
bar diameter on the MC analysis; then, pL is used for the lifetime network reliability analysis.

In addition to reliability metrics, average network resilience is computed from the network 
states. Each network state, represented by one MECE event, indicates a unique network condi-
tion, thus MC analysis is used to simulate the bridge recovery processes. The recovery simulation 
of each damaged bridge follows the approach proposed by Decò et al. (2013) and simultaneous 
repairs are assumed to occur if the number of available crews (ncrews) is larger than one. The simu-
lated repair schedule defines the time at which functionality at the road level is recovered, resulting 
in a stepwise network recovery profile. The ‘network functionality’ η is assumed to be equivalent 
to the ‘global network efficiency’ (weighted version) often used in network science (LiYing Cui 
et al. 2010). The time-dependent efficiency computed during the repair phase is normalized by the 
unperturbed network functionality η0, canceling out the normalization factor:

where dij(tr) refers to the distance between ij pairs considering all the available roads at recovery 
time tr. The resilience metric is computed using Equation 3, with Q(t) as the functionality metric, 
TR assumed as the total time required to finish repair activities within the network, and a target 
functionality TQ, commonly assumed as 100% (Ouyang and Dueñas-Osorio 2012). This pro-
posed metric depicts the evolution of the global system functionality (in terms of distance trav-
eled by the users), between the nodes of the network, relative to the original system state.

The average network resilience obtained for each MECE event is arranged in vector U. It is 
used to obtain the time-dependent mean network resilience NR:

4 RESULTS: SMART TIME-DEPENDENT RESILIENCE ASSESSMENT

New knowledge that emerges at a certain time t are denominated here as ‘learning events’. If 
a certain learning event occurs during time t, the subsequent step should consider the knowledge 
acquired through a fusion process. For example, bridge mean failure probabilities for extreme live 
loads are initially predicted using a deterioration model without introducing any observation (see 
Figure 4a). These, translated into reliability indexes β, can help to define the expected year when 
bridge deck replacement must take place. Following a recursive Bayesian estimation approach, spe-
cifically the Kalman filter algorithm (Kalman 1960), lifetime predictions are updated by infusing the 
knowledge obtained from the inspection cycles defined in Table 1. The first inspection is clearly 
depicted by a large shift on the predicted values for β towards the “true performance” (i.e. when 
complete knowledge is available); beyond that point the recursive Bayesian approach improves the 
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model predictions, increasing its accuracy with every new observation. If after each updating process 
large computational efforts are needed, then smart algorithms can also be used to reduce the 
burden. For example, active learning reliability estimation methods, e.g. using gaussian process 
regression and MC analysis (Echard et al. 2011), are possible solutions for recomputing the large 
MC analysis. In addition to enhancing individual performance indicators, infusing the knowledge 
from observations clearly influences the computed mean network total restoration time TR (i.e. the 
estimated performance) as depicted in Figure 4b. Annual expected TR is relatively small considering 
that the failure associated to live loads, for this particular example, presents a low failure probability.

Observations about bridge deterioration on column and elastomeric bearing dowel rebars affect 
the expected seismic response of bridges. The model for parameterized seismic fragility functions 
(Rokneddin et al. 2014) is suitable for time-dependent analysis and it is easily updated as new 
information about the components’ conditions is collected. However, although directly measured, 
data gathered is only representative of the real (yet uncertain) structural state. The probability of 
extensive damage predicted by the fragility functions is also updated indirectly as new information 
from the rebar condition is considered in the recursive Bayesian estimation. Figure 5a depicts the 
evolution of approximate seismic reliability index and the impact of new data introduced to the 
model. The implications of the observations on the bridge’s conditions are propagated to the net-
work reliability NR as observed in Figure 5b. After some sequential observations the model greatly 
improves its guesses about the future resilience, reducing the error between the predicted and the 
‘true’ system performance indicators.

Finally, the occurrence of seismic events in years 17 and 38, and the failure of bridge N° 6 
in year 36 require the total replacement of some bridges. Once these replacements are done, the 
recursive Bayesian estimation must be initiated again on those bridges using the information of the 
new conditions (e.g. new column rebar area). The introduction of renewed conditions is depicted as 
an abrupt positive modification on the mean network downtime and mean network resilience (see 
Figure 6). Note that this change influences both the ‘true’ and estimated performance; it occurs 
considering that the ‘true’ network vulnerability is also diminished with newer bridges. Repair 

Figure 4.  Model estimations and updated predictions for a) bridge-level reliability index and 

b) time-dependent mean network downtime for extreme live loads.

Figure 5.  Model estimations and updated predictions for a) bridge-level reliability index for an event of 

Mw=6 and b) time-dependent mean network resilience for seismic events.
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times measured during the intervention efforts could also be used to additionally improve the distri-
butions of the model inputs (not included for brevity). This illustrative example shows that the 
model predictions sequentially updated with observations tend to represent more accurately the 
performance metrics at the component (bridge) and system (network) level.

5 CONCLUSIONS

Models for resilience estimation commonly focus on instantaneous infrastructure resilience, 
lacking the ability to introduce data gathered throughout the system lifecycle. Also, existing 
models may not be able to improve the model parameters, not being able to cope with real 
ever-changing conditions. This paper attempts to review the challenges of such modeling 
frameworks and provides the ‘smart resilience’ concept as a practical solution. Smart resilience 
modeling refers to algorithms able to continuously learn from new data gathered, cope with 
shifts in environmental demands, consider variations in social needs and infrastructure uses, 
handle new monitoring parameters from emerging technologies, and others, adapting to the 
dynamic conditions of the systems. Hence, it is essential to use ‘smart’ algorithms such as 
active learning schemes to improve information gain, transfer learning techniques to cope 
with heterogenous and changing conditions, or recursive Bayesian approaches for continuous 
updating processes, among others. An illustrative example using a hypothetical transportation 
network is presented. Deteriorated conditions of aging-bridge parameters (specifically steel 
rebars) are assumed to be collected as well as the dates of bridge replacements (after failure 
occurs). The introduction of sequential data gathered to update existing model predictions 
were shown to improve the accuracy of metrics of interest, such as the bridge-level reliability 
index and network-level annual expected recovery times and annual mean resilience, demon-
strating the importance of working toward smart resilience approaches.
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