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Abstract

Distributed key-value stores today require frequent key-value
shard migration between nodes to react to dynamic work-
load changes for load balancing, data locality, and service
elasticity. In this paper, we propose NetMigrate, a live mi-
gration approach for in-memory key-value stores based on
programmable network data planes. NetMigrate migrates
shards between nodes with zero service interruption and min-
imal performance impact. During migration, the switch data
plane monitors the migration process in a fine-grained man-
ner and directs client queries to the right server in real time,
eliminating the overhead of pulling data between nodes. We
implement a NetMigrate prototype on a testbed consisting
of a programmable switch and several commodity servers
running Redis, and evaluate it under YCSB workloads. Our
experiments demonstrate that NetMigrate improves the query
throughput from 6.5% to 416% and maintains low access
latency during migration, compared to the state-of-the-art
migration approaches.

1 Introduction

Modern internet services (e.g., e-commerce, mobile gaming,
and social networks) depend on large-scale key-value stores as
the backend to perform various jobs (e.g., web caching, real-
time analytics, and machine learning) [2, 15, 24, 27, 38, 49].
These services often require databases to process queries over
ever-growing data volumes and dynamic workload distribu-
tions. However, static sharding limits the ability of such sys-
tems to adapt to rapidly changing workloads. This may result
in degraded performance and Service Level Agreement (SLA)
violations due to load imbalance, poor data locality, and in-
sufficient provisioning of cloud resources [28, 33, 37, 51, 52].
Live migration techniques are widely adopted for key-value
store reconfiguration [28, 33, 37, 41, 53] that migrates data
between nodes without service downtime.

Existing live migration techniques must assume one or
more locations — migration source, destination, or both, as
the main query serving point because the actual location of
a key-value pair during migration is unknown. Source-based
solutions [23, 33, 53] use source storage to serve all client
queries during migration and incrementally migrate dirty data
logs to the destination when the keys are updated at the source
after their migration. Alternatively, destination-based solu-
tions [28, 37] transfer data ownership at the beginning of
migration and immediately routes newly arrived queries to

the destination. The not-yet-migrated data queried by the
client are pulled on demand from the source. However, while
two techniques can continuously serve user queries during
migration and aim to achieve minimal downtime, they suffer
from fundamental performance limitations. Lack of insight
about the migration process is a key roadblock in minimiz-
ing the overhead caused by accessing the data at the location
that does not have ownership. For example, it takes another
round-trip latency to fetch a key-value pair from the source if
destination-based migration is adopted and this pair has yet
migrated to destination.

Ideally, if client queries can always be served at the “right
location during migration, the cost to serve the queries would
be minimized. Considering either source- or destination-based
migration, extra data movements between the source and des-
tination are necessary when the queried data are not present at
the original location. To address this problem, hybrid migra-
tion techniques take advantage of both source and destination
to serve user queries by tracking the migration process in
clients [30] or replicate queries to both source and destina-
tion [41]. While leveraging both source and destination for
query serving during migration is promising for achieving
better performance, the cost at the client side to track data
ownership and the potential overhead between clients and
servers for maintaining consistency are nontrivial.

In this paper, we propose NetMigrate to rethink the prob-
lem of designing a hybrid live migration approach for in-
memory key-value stores. NetMigrate aims at leveraging ei-
ther source or destination who owns the accessed data chunks
(migration state) to achieve pauseless migration and minimal
impact on query performance. Compared to bookkeeping of
detailed migration states on the client or with additional re-
sources, we argue that the network itself (e.g., top-of-rack
switches) would be a better place to track the migration pro-
cess on the fly because they have a central view of all the
data movements in the dedicated rack-scale clusters. With
emerging programmable hardware, ToR switches can be pro-
grammed to track migration states (e.g., which key-value pairs
are migrated) at line rates without latency overhead and can
directly route the client queries to the right location (source
or destination) who holds the up-to-date data. To our knowl-
edge, NetMigrate is the first proposal to leverage in-network
programmability to improve storage migration.

tE]

Realizing the promise of NetMigrate, however, is easier
said than done, and the use of programmable switches for



migration has several key challenges:

e Tracking migration states with limited on-switch re-
sources. While existing programmable switches guarantee
high-line-rate packet processing capability (e.g., Tbps), the
on-switch resources for performing packet-level operations
are limited, e.g., O(10MB) SRAM and limited accesses to
the SRAM [7, 45]. Given the resource constraints, we lever-
age probabilistic data structures, i.e., Bloom filters [25] to
track if a key has finished migration and counting Bloom
filters [29] to track if a key is currently under migration, as
the “indexing service” to record the up-to-date migration
status. Moreover, to migrate a storage instance with a large
number of keys, we support dynamically adjusting the mon-
itoring granularity from a per-key level to a level of a group
with multiple keys. With these techniques, 64 MB SRAM
on switch will be able to support up to a 34-billion-key
storage cluster migration in the same rack’ (§4.2).

e Maintaining data consistency during migration. To ensure
strong consistency, it is critical to understand the location
that holds the most updated value of a key and route the
new queries to it during migration. It is challenging to keep
this information because of the pending state of ongoing
migration between source and destination and additional er-
rors from probabilistic migration state tracking. We design
an error handling method to ensure correct query results,
following this principle: If we have absolute confidence
about data ownership, the switch routes the queries to the
corresponding location; otherwise, the switch issues small
numbers of replicated queries (e.g., double reads) when
there is any possibility of imprecise information (§4.3).

e Supporting diverse migration policies. Some features of
existing migration protocols can be useful for certain mi-
gration scenarios. For instance, operators may prefer to use
destination-based Rocksteady [37] to ensure a short migra-
tion time because the resource on the source server can be
used primarily for migrating data. NetMigrate can tune its
on-switch data structures and resource budgets from the
source side to optimize various performance goals, such as
minimizing migration time and maximizing query through-
put. With the help of switches, NetMigrate can be adjusted
to achieve comparable migration time as destination-based
solutions such as Rocksteady while offering better query
throughput and latency (§4.4).

We implement a NetMigrate prototype in the P4 lan-
guage [10] (switch side) and C++ (client and server side),
and evaluate it on a testbed with an Intel Tofino switch and 3
commodity servers. We migrate a Redis key-value store [11]
as an example consisting of 256 million key-value pairs with
4-Byte keys and 64-Byte values, and evaluate NetMigrate on

IAsin § 4.2, assuming 16 bits per element in Bloom filter and counting
Bloom filter and each group has 2'° keys, 64MB SRAM can support 34
billion key-value pairs (64MB*8/16%1024). With 4-Byte keys and 64-Byte
values, the total storage size is ~2TB.

YCSB workloads [17] with different write ratios and load-
balancing scenarios against the state-of-the-art approaches.
Experimental results demonstrate that NetMigrate achieves
zero downtime during migration, improves the average query
throughput by 6.5% to 416%, while maintaining low access
latency during migration and incurring negligible extra band-
width overhead. NetMigrate is open-sourced at [9].

2 Background and Motivation

In this section, we first discuss the key-value store live migra-
tion problem and its requirements. We then analyze existing
approaches and their advantages and limitations.

2.1 Key-Value Store Live Migration

In distributed key-value store systems, data sharding can be
reconfigured over time for load balancing, access-locality im-
provement, and cluster horizontal scaling (e.g., when a new
node joins the cluster, it “steals” keys from other nodes).
Storage instance migration improves spatial locality to en-
hance item access throughput and reduce access latency to
backend servers [20, 28, 34, 37] and provide load balanc-
ing among dynamic and skewed workloads between servers
[28, 32, 42].Migration can also happen when there is an up-
grade of the server hardware or cluster horizontal scaling.

Data migration between shards can introduce service down-
time and performance degradation. However, during migra-
tion, storage cluster should still provide service reliability and
meet the Service Level Agreement (SLA). For example, even
a slight service outage has significant financial consequences
for a large-scale e-commerce platform and can harm the cus-
tomer’s trust [27]. Thus, live migration techniques, which
move data between nodes without causing client-observable
downtime, become a key enabler to achieve elastic key-value
stores in the cloud environment.

In this paper, we focus on live migration of in-memory
key-value stores, such as Redis [11], Apache Cassendra [1],
RAMCloud [46], and Memcached [8]. These key-value stores
keep all data in DRAM and can scale across thousands of
data center servers. Under these storage systems, they often
construct hash-table data structure for storing and indexing
key-value pairs. We focus on alleviating migration perfor-
mance degradation to the minimum. We assume that there is
an internal or external cluster scheduler that collects statistics
of the storage cluster and generates reconfiguration plan on
when and how the data should be re-sharded and migrated to
fit the current workloads.

Performance requirements. Common metrics used to evalu-
ate a live migration system include service downtime, query
throughput and latency, transferring extra data (extra network
bandwidth usage), and migration completion time. For mi-
gration approaches, there is a fundamental trade-off between
migration completion time and migration cost (e.g., drop in
query performance and transfer of extra data). The shorter
the migration finish time, the higher the migration cost. An



Migration Protocols | Example Systems Downtime Latency Throughput Extra Data Client Overhead Migration Time
Stop-and- Copy | Redis MIGRATE [13], Slacker [23] Yes High Low No No Short

Source-based | RAMCloud [46], Remus [33], DrTM4+B [53]  Minimal Low Medium Yes No Long
Destination-based | Rocksteady [37] No High Low No Yes Short

Hybrid | Fulva [30] No Medium Medium No Yes Medium

Hybrid | NetMigrate No Low High Negligible  Negligible Medium (A djustable)

Table 1: Overview of live migration approaches.

ideal live migration approach is expected to provide minimal
migration cost while maintaining an acceptable migration
finish time.

2.2 Existing Approaches and Limitations

Stop-and-copy is a basic form of migration, which consists
of freezing the storage server (with a read lock), copying the
key-value data to the destination server, and then deleting
them in the source server. For example, Redis MIGRATE
command [13] implements this stop-and-copy at the per-key
level. If migrating the entire store to the destination server, a
faster way is to shutdown the source key-value store, create
a snapshot file, perform a file-level copy of the compressed
snapshot to destination, and then start a new key-value store
instance on the destination server pointing to the copied snap-
shot directory. The main downside of stop-and-copy is the
significant downtime caused by shutting down the storage
instance, which affects the client execution logic. The length
of copying period is proportional to the database size [23].
To perform live migration, there are three existing migra-
tion approaches: source-based, destination-based, and hybrid
(both source and destination).
Source-based approaches choose the source to own the data
during migration, and thus all client read and write queries
are served by the source [22, 23, 53]. The source node itera-
tively migrates “dirty data” (data in the source that are already
migrated but later updated) to the destination, which transfers
additional data. Although source-based approaches can serve
client queries without adding query latency, they have to ter-
minate the source server at some point to copy the last piece
of dirty data to the destination, incurring unavoidable service
pauses. Source-based approaches have low query latency, but
long migration time because migration operations compete
with client queries at the source node.
Destination-based approaches choose the destination server
to hold data ownership and serve client queries [28, 37]. All
read and write queries will be routed to the destination. To
serve data that have not yet migrated, the destination needs to
pull the data from the source, and the client will have to retry
after a wait. Therefore, destination-based solutions incur high
query latency on not-yet-migrated items, especially at the
beginning of migration, because most of the data are still on
the source node. Meanwhile, destination-based approaches
usually migrate data faster than source-based ones due to
more resources available at the source.
Hybrid approaches (e.g., [30, 41]) can choose the desti-

nation node to handle write queries, and send read queries
of not-yet-migrated and on-the-fly data to both source and
destination nodes to achieve data consistency. Hybrid ap-
proaches need to keep track of migration process somewhere.
For example, Fulva [30] tracks completed migration ranges in
their key-value store client libraries. This type of approaches
avoids on-demand data transfer between the source and the
destination but instead uses additional network bandwidth
(due to two read packets). Double-read incurs large resource
overheads (~ 50%) among clients and two storage nodes to
guarantee the protocol consistency because there is no fine-
grained migration status tracking. Clients see the reply results
from the node with a newer version and thus it can increase
the latency by waiting for two replies.

Summary. Table | summarizes the performance character-
istics and strengths/weaknesses of existing data migration
protocols. We posit that data migration tasks usually have up-
per resource limits, and thus foreground client queries should
be put on a higher priority than migration in the storage clus-
ter. All existing live migration approaches have performance
degradation and trade-off between migration cost and migra-
tion time. Our NetMigrate design provides a new alternative
to improve these dimensions and reevaluate the trade-off be-
tween performance and migration time. By comparing the
migration protocols, hybrid approaches do provide better mi-
gration performance compared with simply destination-based
or source-based approaches, as they reduce the number of
queries going to the wrong nodes.

Opportunities of programmable switches. Our aim is to de-
sign a switch-accelerated hybrid migration approach. A ToR
switch positions centrally in all inter-server communications
and acts as the gateway to other racks. This allows it to see
all the migration and query traffic, enabling migration status
tracking without additional communications. Host-based alter-
natives typically require sending migration status to a specific
location (e.g., clients as in Fulva) or dealing with multiple
requests going to the wrong place and pulling from another
(e.g., Rocksteady or Slacker/Remus). Unlike CPUs, most pro-
grammable switches (e.g., Broadcom [16], Juniper [5], In-
tel [7]) are ASIC-based and offer flexible programmability
without performance loss when performing customized mod-
ules. They can also guarantee high line rates such as 12.6
Tbps, orders-of-magnitude higher throughput and lower la-
tency than servers. Therefore, deploying migration indexing
service on switches can alleviate clients’ or cluster coordina-
tors” bookkeeping overheads when using hybrid approaches.



3 NetMigrate Overview

System architecture. NetMigrate is a rack-scale key-value
store live migration accelerator leveraging in-network pro-
grammability. NetMigrate enables ToR switch as a migration
state tracking service and routes client queries to the “right”
server (either source or destination) during migration based
on the latest information on the switch about what data have
been completed migration or under migration. Fig. 1 shows
the overall architecture of NetMigrate, which consists of a
ToR switch, a controller, clients, and servers:

e ToR switch provides the following functionalities for the
live migration service: (1) a migration state table module
tracks migration states of each group of key-value pairs,
indicating the data ownership belongs to the source or
the destination. It uses probabilistic data structures and
serves as an indexing service to determine where the client
queries should go (§ 4.2); (2) a routing module routes client
queries to the “right” storage server under migration (best-
effort) based on the migration state table (§ 4.3); and (3) a
migration instance table module records multiple pairs of
key-value stores that are under migration for enabling (re-
Jrouting client queries to the right corresponding storage.

e Storage servers store key-value data and serve client
queries. In NetMigrate, we consider migration can occur
between multiple storage instances within the same rack.
Storage servers host key-value stores and run a migration
agent that (1) maps key-value store API to NetMigrate
migration packets, (2) serves client queries with consis-
tency guarantees, and (3) handles data transmission be-
tween migrating storage instances. The migration agent
makes NetMigrate easy and general to integrate with dif-
ferent backend key-value stores.

¢ Clients issue storage queries. NetMigrate provides a client
agent to support the switch-based migration system. The
client agent maps queries (e.g., GET, SET, DELETE com-
mands) to the switch-based query packets, and transform
NetMigrate reply packets into the backend storage com-
mands. Migration process is transparent to client applica-
tions.

Challenges and Key Insights. To realize NetMigrate, we
need to address several key design challenges:

e Fine-grained migration state tracking with limited on-
switch resources. There is a disconnect between the poten-
tially large key-value data to migrate and limited on-switch
resources (e.g., SRAM, TCAM, etc.) that can be used to
track migration status. It is infeasible to record the status
of every single key. Therefore, we combine a number of
key-value pairs together as a group and and record migra-
tion state at the group level. However, there is a tradeoff
here: a too large group size (i.e., a small number of groups)
limits the switch’s ability to accurately determine the right

| Clients |

| ToR Switch Controller | Key-Value Storage Rack
:

Migration State Table Migration
(Probabilistic Data Structures) Instance Table

ToR Switch Data Plane

Migration Instance 1~ Migration Instance 2 Storage Servers

r

Figure 1: NetMigrate system architecture.
destination for many queries, thereby compromising per-
formance benefits, and vice versa. We need a memory-
efficient design on the switch to support a large number of
migration groups and the group sizes are relatively small.
NetMigrate specifies three group-level migration states, not-
yet-migrated, ongoing-migration, and complete-migration,
to support fine-grained routing operations for client queries.
Atahigh level, we use probabilistic data structures — Bloom
filters (BF) [25], counting Bloom filters (CBF) [25, 29],
and the hybrid of the two. We choose BF and CBF be-
cause of their memory efficiency and the fact that they can
cover the required state tracking. BF tracks migrated keys
at group-level and once a membership of a key is inserted,
it cannot be removed. CBF tracks only ongoing-migration
keys because we can delete keys from it once the keys are
migrated. Hybrid of the two can indicate not-yer-migrated
state. This choice leads to memory efficiency and simplistic
design because Bloom filters can probabilistically perform
membership tracking and involve only hashes and simple
arithmetic operations.

Maintaining data consistency during migration. We con-
sider the linearizability requirements [31] in consistency,
including Read-After-Write (RAW), Write-After-Write
(WAW), and Write-After-Read (WAR). To ensure consis-
tency, it is critical to understand the right location that holds
a key’s up-to-date value and route the new queries to it dur-
ing migration. The consistency issue becomes more chal-
lenging when our migration state tracking brings additional
errors (e.g., false positives in BF and CBF). We propose a
fine-grained error handling method to ensure correct query
results as in § 4.3. At a high level, the key principle is
that we always route write queries to the destination
unless we are sure that the migration has yet started,
and issue read queries to both locations when we are
definitely unsure about the migration state. When we
are almost confident that the data are on the destination
but can have false positives, e.g., BF shows positive (the
group has migrated) and CBF shows not positive (not under
migration), we will route read queries to destination (and
issue data pulls to the source if errors) instead of double



reads because the false positive rates are relatively small
and we can reduce the workload for the source.

e Dynamic migration policies. One disadvantage of using
existing live migration approaches is they have to sacrifice
on or optimize towards a fixed set of dimensions (migration
time or query performance). However, the operator may
have different performance objectives when planning a mi-
gration (e.g., minimizing migration time or maximizing
query performance) [43]. NetMigrate can optimize toward
various performance goals (simulating any other protocols)
and dynamically change the migration policy by tuning the
probabilistic data structures in the switch and adjusting the
CPU utilization of the source server. For example, we can
simply set all BF entries to 1 to mimic destination-based
solutions like Rocksteady [37]. To optimize migration time
while offering better performance than source-based solu-
tions, we can limit CPU usage to serve client queries and
leave more CPU headroom for migration.

4 NetMigrate Design

In this section, we discuss the design of NetMigrate and de-
scribe how an in-network accelerator can help live migration.

4.1 Migration Workflow

Fig. 2 shows NetMigrate’s general migration process. It starts
from the current (source) server to a new server (destination)
capable of accommodating the key-value shard. The source
server initiates migration by notifying the destination server
and registering the migration instance in the switch via con-
trol packets (Step (). Throughout migration, clients remain
unaware and continue sending queries to the original storage
instances. The ToR switch decides whether a query should
go to the source or destination based on migration status, and
clients receive replies as if they are from the source server.
During migration, the source server concurrently migrates
data to the destination using data packets. The switch tracks
the migration at the key-value group level, with each group
containing multiple key-value pairs (Step @). The destina-
tion server receives and replays these packets into its storage
structures. Upon completion of the migration process, the
source server agent issues a termination notification to the
destination, switch, and clients (Step 3)). In response, the
source server cleans up its database, the switch removes the
migration pair registration, the destination server takes over
data ownership, and clients direct queries to the destination.

4.2 Migration State Tracking

NetMigrate accelerates key-value store live migration by
tracking the migration states entirely in a central position (in
the network) and using this in-network information to deter-
mine where to route the user queries as precisely as possible.
However, it’s impossible to store every migrated key given
the large key space. Therefore, we make two design choices
to shrink the tracking space requirement: (1) a combination

Dst.
g Lm=) (. CIN -
g (1) <src, dst> E -
E starts migration H
B | Client queries
I
Migration | -
SE"EI%TW!——'| Update index |—-| Replay data |
(Repeated) |
(@) <sre, dst> E | ——
finishes migration | Deregister
E Take over data
Clean up H Clean up ownership

Figure 2: NetMigrate migration workflow.

of probabilistic data structures such as Bloom filers (BF) and
counting Bloom filters (CBF) to track migration states with
low false positives and fine-grained migration state, and (2)
recording data ownership at a coarse granularity of groups.
Each migration group represents a set of adjacent entries in
the underlying key-value storage, e.g., several adjacent buck-
ets in the hash table. These enable NetMigrate to scale to
a large number of key-value pairs while maintaining high
accuracy and low resource overhead.

Hybrid Bloom filters. The combination of BF and CBF is
used to track three migration states: (S1) Entire group has
not started migration; (82) The group is under migration and
only a subset of key-value pairs maybe migrated; (S3) Entire
group has completed migration. Once a group (of key-value
pairs) has completed migration, this group is recorded in BF.
CBF tracks the “ongoing-migration” groups. When a group
has started migration, this group is added to the CBF until
migration is done. Compared to using a single BF to track
which group(s) have completed migration, our hybrid design
with both BF and CBF provides more fine-grained migration
states and reduces false positives.

Specifically, when a group starts migration, the correspond-
ing CBF entries are incremented by 1; when the group fin-
ishes migration, the same CBF entries will be deducted
by 1. The states of each migration group are updated by
its migration control packets — GROUP-START-MIGRATION
and GROUP-COMPLETE-MIGRATION packets in the switch data
plane (detailed packet format description is in Appendix A).
Compared to using a single BF with the same memory space,
NetMigrate’s hybrid filters significantly reduce the false posi-
tives rate that can lead to throughput and latency degradation.
We configure BF and CBF based on the following. For 2*
groups and 2¥ migration parallelism (i.e., there are 2¥ threads
in total migrating key-value instances), the false positive rate
upper bound of combining BF and CBF together is approxi-

u
mately 1— (1 — (1 —e)¥)(1—(1 —eiﬁ’n_)"’), where k and
k' are the number of hash functions, n and »n’ are the total
number of groups (elements), and m and m’ are the number
of entries used in BF and CBF respectively [25]. Here we
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Figure 3: NetMigrate migration state tracking and query han-
dling state machine. Assuming two hash functions are used in BF and
CBF, the values in BF and CBF arrays are located at the hashed indices of a
particular group.

consider the CBF’s false positive is the same as BF’s and use
k =k’ = 4 for both BF and CBE. If the target combined false
positive rate is less than 1%, a good-enough configuration is
using 2*+*-bit Bloom filter and counting Bloom filter with
29+ entries (8 bits per entry) to achieve less than 0.5% com-
bined false positive rate, resulting 16 bit-per-element space
complexity. Also, 2*+3-bit BF and 2*+3-entry CBF (about 8
bits per element) can achieve a 5% false positive rate.
Group size tuning, The number of keys in a group is also a
critical parameter that affects performance during migration.
When the group size is smaller, the pending period where the
switch cannot determine the location of the key is shorter. Dur-
ing the pending state (state (52)), NetMigrate has to handle
the wrong locations, adding up the performance degradation.
In practice, there is an upper bound of the group size under
which the performance impact is acceptable. As evaluated
in § 6.4, the upper bound is around 22° keys in a group. The
lower bound of group size (namely, the upper bound of the
number of groups given the total number of keys) is bounded
by the BF and CBF sizes that the data plane can offer. Con-
sidering BE, CBF sizes and group sizes together, theoretically,
64 MB SRAM on switch will be able to support up to a
34-billion-key storage cluster migration in the same rack.

4.3 Data Consistency During Query Handling

It is important to avoid introducing additional inconsistency to
the backend key-value stores during migration. As guaranteed
by existing migration protocols, we consider the strongest
data consistency (linearizability) [31] when designing our mi-
gration protocol — including Read-After-Write (RAW), Write-
After-Write (WAW) and Write-After-Read (WAR) when han-
dling client READ and WRITE queries. A migration state ma-
chine in Fig. 3 demonstrates the migration index tracking and
query routing decisions in the switch data plane and to show
how our protocol guarantees consistency during migration.

Migration packets updating indexes. Recall that there are
three group migration states (S1-S3 in Fig. 3). However, due
to probabilistic errors and hash collisions in BF and CBF,
there is a fourth migration state — false positive (84). 34 in-

dicates a false positive because the BF and CBF entries of
one group cannot be both positive simultaneously. We de-
fine migration control packets GROUP-START-MIGRATION to
inform the switch that a specific group starts migration, and
GROUP-COMPLETE-MIGRATION to notify the completion of
the migration for a group. When a GROUP-START-MIGRATION
packet arrives at the switch, it increments the CBF entries by
1, indicating a new ongoing migration. This transits state 31
to 32. When a GROUP-COMPLETE-MIGRATION packet arrives,
it sets the BF entries as 1 and decrements the corresponding
CBFentries by 1, indicating that the group has finished migra-
tion. Thus, this action transits state 32 to 83. Other transitions
shown in Fig. 3 are false positives caused by hash collisions
with other groups.

Query routing based on migration status look-up. Each
state in Fig. 3 also shows index look-up results from BF
and CBF and outlines query routing decisions. The general
principle is: In the state machine, no state returns to a state
with READ queries from the source (i.e., state S1). If a state
WRITE to the destination, all possible following states are READ
from either the destination or both nodes, ensuring access to
the latest data. The states are explained as follows:

State S1 means the group does not start migration, so both
READ and WRITE queries are directed to the source. There are
no false positives because both BF and CBF entries are 0.

State S2 means the group is currently migrating. For READ
query, the switch cannot determine whether the queried key-
value pair is still on the source server, or on-the-fly, or on the
destination server because the migration tracking granular-
ity is larger than the per-key level. In this case, the switch
generates double-read query packets via packet mirroring,
where the original query is still forwarded to the source and
a mirrored query is sent to the destination server. Thus, the
client will receive two READ reply packets for this one READ
query and merge two READ replies. If the destination has a
successful reply, the client ignores the reply from the source
because the destination may have updated values; otherwise,
the key has not been migrated to the destination, so the client
takes the source reply. We route the WRITE query to the desti-
nation in this state because the READ queries are doubled to
both source and destination servers, and the client can always
read the latest value. There can be false positives from CBF
in this state, which are handled by double reads. The double-
read ratio is low because the period when a group is under
migration usually does not last long.

State 3 stands for the group that finishes migration. Both
READ and WRITE queries can be directed to the destination.
There can be false positives from BF, and READ queries will be
falsely directed to the destination while the data have not been
migrated. In this case, NetMigrate agent on the destination
issues PriorityPulls on-demand [37] to retrieve the missing
key-value pairs from the source and respond to the client.
This step also corrects the false positives of BF for subsequent
queries as the keys are already at the destination.



State S4 represents a false positive case because a group
cannot be in both a complete-migration and an ongoing-
migration state simultaneously. To correct the false positive,
we also use double-read for READ queries and direct WRITE
queries to the destination.

Handling corner case. There is a corner case that some mi-
grated key-value pairs can still be updated by WRITE queries in
the source node. This happens when the WRITE query updates
a key-value pair that is about to migrate. Specifically, this
case occurs when a WRITE query arrives at the switch first and
looks up the migration index. The index indicates that the key-
value pair is still in the source node, and the switch forwards
this query to the source. Next, the GROUP-START-MIGRATION
packet is sent from the source, arrives at the switch, and up-
dates the migration index. At the source, the data migration
packet containing this key-value pair has been sent to the
destination before the WRITE is executed. To guarantee data
consistency in this case, we collect the late updates in memory
at the source and periodically transfer the late dirty logs to
the destination as a source-based protocol.

In summary, NetMigrate can ensure data consistency dur-
ing migration. Moreover, experiments in § 6.4 show a low
overhead to correct false positives, with the portion of dou-
ble reads and PriorityPulls being less than 0.05%, and less
than 4 x 1073% extra bandwidth overhead incurred by the
late dirty logs.

4.4 Dynamic Migration Policies

There is a fundamental tradeoff between migration time and
the query performance: The migration completion time is re-
lated to the source’s CPU headroom left for migration, while
the query performance also depends on the source’s and des-
tination’s CPU cycles for query serving. By configuring mi-
gration CPU cycles and taking advantages of Bloom filters,
NetMigrate has more flexibility to be configured to support
various migration goals, such as minimizing migration time
or optimizing query throughput and latency.
¢ Minimize migration time. As shown in the experiments,
Rocksteady has the shortest migration time because all the
source CPU cycles can be used for migration. To achieve
the similar migration time as Rocksteady, one way is to
simply pre-set all BF entries as 1, indicating that all queries
should be routed to the destination. NetMigrate will issue
PriorityPulls to fetch not-yet-migrated keys. Thus, Net-
Migrate’s protocol is now essentially the same as that of
Rocksteady. However, this strawman solution only gives
NetMigrate the same query performance as Rocksteady. Al-
ternatively, we can limit the CPU cycles for serving client
query in the source to a low level and leave more CPU
headroom for migration. By doing so, NetMigrate achieves
a similar migration time as Rocksteady, while gaining some
throught and latency benefits because BF correctly identi-
fies the keys belonging to the source.

¢ Maximize query throughput and minimize latency. Net-
Migrate is designed to gain more benefits in query per-
formance from the source and destination. To maximize
query throughput and minimize query latency, we set the
CPU cycles in the source for client queries to a medium
level, and leave some CPU headroom for migration. By
doing so, NetMigrate achieves the highest throughput and
lowest median latency compared to other baselines while
maintaining a similar migration time, as detailed in §06.2.

Mimic other migration protocols and take advantages
of all. An interesting feature of NetMigrate is that it can
be configured to hybrid and source-based protocols in ad-
dition to Rocksteady because its design takes fine-grained
migration states into consideration. To make it equivalent
to Fulva (hybrid protocol), we can pre-increment all CBF
entries by 1 so that it will be in state S2 or s4 forever. To
make it the same as a source-based protocol, NetMigrate
needs to disable the BF and CBF updates, which keeps its
state in S1. NetMigrate also consists of transferring late
dirty logs from the source to the destination, similar to a
source-based protocol. In addition to these, we observe in
the evaluation (§ 6.3) that a medium-size BF and CBF can
give the best query performance, e.g., the 8-bit-per-element
setting in Table 2, compared to the ones with more BF and
CBF space. This is because some false positives in the
switch index actually shift the query workload from the
source to the destination, which gives more CPU headroom
for the source to migrate data and helps move the work-
loads to destination faster. Thus, by adjusting some false
positives of BF and the headroom of the source CPU for mi-
gration, NetMigrate can take the performance advantage of
both destination-based and source-based approaches while
maintaining data consistency.

5 Implementation

We have implemented a prototype of NetMigrate with Re-
dis [11] as an example, including the programmable data
plane serving as a migration index, the migration server
agents, and the client running YCSB workloads. The indexing
switch is implemented with 2K lines of P4-16 code and is
compiled to Intel Tofino ASIC [7]. We implement the migra-
tion instance table using a P4 table and the migration state
table using BF and CBF where each BF entry is 1 bit and
each CBF entry has 8 bits. Both BF and CBF use 4 different
hash functions. We implement L3 routing and redirect client
queries by changing their destination or mirroring queries to
both storage nodes. The switch control plane is implemented
with 600 lines of Python code, which registers and deregisters
the migration instances by modifying the migration instance
table in the control plane. The migration server agents and
clients are implemented with 15K lines of C++ code. In the
prototype, we use the Redis-plus-plus library [14] to com-
municate with Redis instances in migration servers. We add
three new User-Defined Functions to get the current hash ta-



ble information for migration and to scan key-value pairs in
the order of hash values. Source server agents call the user-
defined commands, scan key-value pairs in parallel, and send
migration control and data packets via UDP sockets. Destina-
tion server agents receive migration packets and insert data
into the destination instance. We modified the C++ YCSB
client [17] for key-value store and UDP communication.

6 Evaluation

We conduct extensive experiments comparing NetMigrate to
the latest live migration solutions and demonstrate:

e NetMigrate improves the query throughput by 6.5% to
416% under different YCSB workloads and load-balancing
scenarios (§6.2 and §6.5) while keeping low tail latency.

¢ NetMigrate supports diverse migration policies with differ-
ent performance goals, including query throughput, latency,
and migration completion time. It improves the average
query throughput from 32% to 78% compared to baseline
protocols with similar migration time (§6.2).

¢ NetMigrate can achieve the above improved performance
with slim BF and CBF space allocation within the switch
memory limitation (§ 6.3).

e NetMigrate incurs negligible bandwidth overhead (§6.4).
6.1 Methodology

Testbed. The experiments are conducted on a testbed con-
sisting of one 6.5 Tbps Intel Tofino switch and 3 commodity
servers. Each server is equipped with an 8-core CPU (Intel
Xeon E5-2620 @ 2.10GHz), 64GB total memory (two 32GB
DRR4-2400 DRAMS), and one 40G NIC (Intel X1.710).

KV workloads. By default, we create Redis key-value stores
consisting of 256 million key-value pairs (~16GB), occupy-
ing 52.7% memory of a server (33GB including Redis index-
ing data structures), with 4-Byte keys and 64-Byte values. We
use YCSB benchmark [26] designed for key-value stores eval-
uation. The queried keys are generated randomly according to
the Zipfian distribution with @ = 0.99. We use 5% write ratio
and 100% source Redis CPU usage budget to show the overall
performance impact in § 6.2. We furthertune the workload
write ratio among 0% (YCSB-C), 5% (YCSB-B), 10%, 20%,
and 30%, and limit source Redis CPU to different budgets, i.e.,
100% (not overloaded), 70% (slightly overloaded), and 40%
(heavily overloaded), using cpulimit [3] to create different
load balancing scenarios in § 6.5.

Evaluation parameters and metrics. By default, we set
BF size to 512 KB and CBF size to 1024 KB, with which
uses 4 hash functions. The default CBF size of 1024KB was
a sufficiently large starting point as we were not sure how
many KV pairs are on-the-fly during migration. Additional
sensitivity tests in Table 2 show that 1024KB CBF is usually
an overkill but it’s significantly smaller than the total switch
memory. We configure 2!7 migration groups, each of which
has up to 2048 key-value pairs. In the experiments, we show

client-observed performance metrics, such as Queries per
Second (QPS), end-to-end latency, and migration completion
time. We use extra bandwidth percentages between a client
and servers (denoted as client-size), and between the source
and destination servers (denoted as server-size) to evaluate
the extra migration overhead.

Baselines. We implement three types of migration systems
and their protocols (as discussed in §2.2) in our testbed for a
fair comparison. All baselines follow the same data I/O and
network protocols, export the key-value pairs from the source,
and use the migration agents at both the source and the desti-
nation to transmit the key-value data, as shown in Fig. 2. The
difference is that they do not use switch indexing. We imple-
ment (1) source-based protocols including Slacker [23] and
Remus [33]; (2) destination-based protocols including Rock-
steady [37] with gRPC asynchronous API [6] to implement
the PriorityPull RPCs; and (3) hybrid protocols including
Fulva [30]. In particular, the client in Fulva keeps track of
the migration progress and the hot keys are migrated with a
higher priority based on sampling statistics.

6.2 Overall Performance

In this experiment, we consider a migration scenario where
both the source and the destination are not overloaded and
have 100% CPU budgets for Redis. We show the client-side
throughput and latency during migration using YCSB-B work-
loads with a 5% write ratio.

Query throughput. This experiment highlights the through-
put difference and performance trade-offs in different migra-
tion protocols. Fig. 4 (a), (b) and (c) show the throughput and
migration time of the three baselines. Compared to the three
baselines, NetMigrate improves the average query throughput
by 78.2%, 56.5%, and 31.9% when it is configured as high,
medium, and low migration speeds respectively. Among the
baselines, (1) Rocksteady has the lowest throughput and also
the shortest migration time because all queries are handled
by the destination Redis, leaving the most CPU headroom
for source Redis to perform migration. (2) Fulva’s client
throughput has been cut by a half compared to a fully-utilized
Redis instance’s throughput because of the overhead caused
by double-reads and being bounded by the packet rate. (3)
Source baseline’s throughput keeps stable during migration
and it is slightly lower than without migration because it uses
the smallest portion of source Redis CPU for migration and
thus its migration time is the longest.

When zooming into NetMigrate, we can see that NetMi-
grate’s throughput first increases to a peak level and then
drops as depicted in Fig. 4 (d), (e), and (f). This is because at
the beginning of migration, client queries are mainly served
by the source. During migration, increasing numbers of key-
value pairs are migrated to the destination. The destination
Redis can serve queries of the already-migrated data, and
thus total query throughput increases. When most data are
migrated to the destination, destination is pressured from both
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Figure 4: Comparing Rocksteady, Fulva, Source-based protocol, and NetMigrate on query throughput with YCSB-B workload and
100% source CPU budget. We report the average throughput as the horizontal lines, label the migration start and finish timestamps as dotted lines,

and show migration time of each protocol in the figures. NetMigrate-short, NetMigrate-medium, and NetMigrate-long denote the experimental results when

NetMigrate is configured to different migration time policies.

migrated data insertion and query serving, so the throughput
drops when migration is nearing the completion and there is a
peak throughput point during migration. The peak throughput
is even larger than a single Redis’ query throughput because
the ToR switch lets the client leverage both the source and the
destination Redis’s query power.

Query latency. We then evaluate the latency percentiles as
shown in Fig. 5 and 6. The average median latencies of Rock-
steady, Fulva, and Source baseline are all larger than NetMi-
grate’s under any migration time configurations. NetMigrate
reduces the average median latency from 49% to 65% in
all cases. For average 99%-tail latency, NetMigrate is bet-
ter than Rocksteady and Fulva when it’s configured to the
similar migration time, reducing the latency by 27.0% and
39.5% correspondingly. NetMigrate-long’s 99%-tail latency
is almost twice than Source baseline’s because in the worst
case, NetMigrate still needs to wait for two replies from both
source and destination Redis and it can have PriorityPulls for
wrongly directed queries.

NetMigrate’s adaptable migration policies. NetMigrate
can adjust between migration cost and migration time based
on the user needs. We limit source Redis client query process-
ing CPU cycles to adjust the CPU headroom for migration,
and NetMigrate can migrate data with high migration speed
(similar as Rocksteady), medium migration speed (similar
as Fulva), and low migration speed (similar but better than
Source baseline) based on the configurations. Fig. 4, 5, 6
(d), (e), and (f) show NetMigrate is adaptable to different mi-
gration time requirements and demonstrates different query
performance levels. Also, NetMigrate can achieve similar mi-
gration time while maintaining higher throughput and lower
access latency compared to all three baselines (except for
comparing to Source baseline in the case of 99%-tail latency).

6.3

Bloom filter size tuning. We evaluate the impact of BF and
CBF sizes on migration and query performance. We also run
real migration experiments changing the BF and CBF sizes
with totally 217 migration groups and 4 threads to migrate in
parallel. Table 2 shows that combining BF and CBF reduces
false positives in practice significantly. The client-side extra
bandwidth usage can reveal actual false positives. In Table 2,
given a large enough BF size, we shrink the CBF sizes and
find that 64 Bytes CBF is the tuning point before performance
drops. Keeping the good-enough CBF size, we shrink the
BF sizes. Results show that 8-bit-per-element gives the best
performance while avoiding wasting too much space. When
the actual false positive rate is too high, e.g., when space
complexity is less than 2 bits per element, client-side extra
bandwidth usage and 99%-tail latency are worse due to the
increased number of PriorityPulls and double-reads to correct
false positives.

Tuning Bloom Filter Sizes and Group Sizes

Group size tuning. Given large enough BF and CBF sizes,
e.g., 512KB BF and 64B CBF, we tune the group size (i.e.,
the total number of groups). Table 3 shows that when group
size (i.e., the number of keys in the group) is larger than 220,
the throughput and latency will be harmed because of the
increased double-reads when the queried key is in an ongoing-
migration group.

6.4 Extra Overhead for Migration

Extra bandwidth usage. Table 4 shows extra bandwidth
usage under all write ratios and source CPU budget settings.
Source protocol’s extra bandwidth usage only comes from
the server side, where the source server needs to transfer
dirty logs to the destination when WRITE queries are later
than the migration of their keys. Rocksteady’s only comes
from the client side, where client needs to retry queries with
PriorityPulls. For Fulva, double-reads contribute to almost a
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Figure 5: Comparing Rocksteady, Fulva, Source-based protocol, and NetMigrate on median latency with YCSB-B workload and 100%
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BF, CBF size FP Bits’/Ele  Throughput Median, 99% Latency Client BW
512KB, 128B  0.038% 32 564.1 KQPS  1.13 ms, 7.83 ms 0.06%
512KB,64 B 0.26% 32 ST2TKQPS  0.92ms, 7.23 ms 0.30%
512KB,32B 242% 32 3625 KQPS  0.89 ms, 26.5 ms 1.37%
512KB, 16B 16.0% 32 197.5 KQPS  1.15 ms, 190.2 ms 373%
256 KB, 64 B 048% 16 569.6 KQPS  0.94 ms, 5.61 ms 0.30%
128 KB, 64 B 263% 8 57T32KQPS  0.93 ms, 447 ms 0.30%
64 KB, 64 B 162% 4 563.6 KQPS  0.95ms, 542 ms 0.30%
32KB,64B 56.0% 2 5238 KQPS  0.93 ms, 438 ms 047%
16KB, 64 B 929% 1 4958 KQPS  1.01 ms, 573 ms 0.65%

Table 2: Impact on migration when tuning BF and CBF sizes.
“FP" represents the upper bound of combined false positive rates of BF and
CBE “Bits/Ele” stands for total BF and CBF bits per element. “Client BW”
means the extra bandwidth usage between the client and servers, compared
with total query traffic. In the settings listed in the table, the server-side extra
bandwidth usages are all less than 6 x 10~°% and negligible.

half of extra READ query packets in the client-side and there is
no extra communication between servers. NetMigrate’s extra
bandwidth usage comes from both the client and server sides,
but they are both negligible as shown in the results. The client-
side extra usage comes from PriorityPull query retries as
well as double-reads for undecidable conditions in the switch

Groupsize Throughput Median, 99% Latency Client BW
a1 567 KQPS 2.33 ms, 8.46 ms 0.0060%
24 599 KQPS 1.05 ms, 5.19 ms 0.0165%
218 573 KQPS 0.95 ms, 10.97 ms 0.2613%
219 561 KQPS 0.91 ms, 3.82 ms 0.3733%
2% 521 KQPS 0.9 ms, 3.63 ms 0.4858%
22 494 KQPS 0.9 ms, 4.01 ms 0.66%

224 255 KQPS 0.94 ms, 86.27 ms 2.76%

225 180 KQPS 1.07 ms, 250.52 ms 4.05%

Table 3: Impact on migration when tuning group sizes. “Client
BW" means the extra bandwidth usage between the client and servers.

indexing; the server-side extra usage is from transferring late
dirty logs to the destination as Source protocol. As shown
in Table 4, Source protocol’s extra bandwidth usage from
the server side is proportional to the workload write ratio.
Fulva’s extra bandwidth usage all exceeds 35% and is several
times higher than Rocksteady’s. Rocksteady’s and Fulva’s
client-side extra usages decrease with the write ratio increases
because WRITE queries are directly served by the destination.
NetMigrate achieves negligible extra bandwidth usage from
both the client side and the server side. NetMigrate’s client-



Write Ratio 0% L0% 20% 30%

Source CPU Budget 100%: T0% 40% 100% T0% 40% L00% T0% 40% 100% T0% 40%
Extra Bandwidth Usage (%) C 5 C 5 C 5 C 5 C 5 C s C 5 C 5 C 5 C 5 C s C 5
Source o o o 0 0 o o 0s o 02 0 98 0 07 0 06 0 05 0 3L 0 305 0 0.6
Rocksteady 125 0 126 0 1.3 0 s o0 104 0 9.3 o 86 0 86 o 15 0 6.9 0 6.8 o 55 0
Fulva 581 0 605 0 503 0 484 0 550 0 466 0 436 0 582 0 534 0 369 0 392 0 441 0
NetMigrate (S <1075 %) 0025 311 0031 33% 005 265 0005 327 0005 269 0005 105 00M L36 0004 374 0004 237 0003 L7101 0003 288 0003 21

Table 4: Extra bandwidth usage between a client and servers and between two migration servers. ‘C’ stands for Client-side extra bandwidth

usage and ‘S’ stands for that of server-side. NetMigrate’s server-side extra usage is at 1075% level
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Write Ratio 0% 10% 20% 30%

Source CPU Budget  100% 70% 40% 100% T0% 40% 100% T0% 40% 100%  70% 40%
Source 445.66 289.16 15230 417.98 289.17 14596 42472 266.27 14038 41277 266.51 142.25
Rocksteady 113.17 11452 67.73 119.11 12515 77.53 13376 13234 84.07 14779 145.57 99.28
Fulva 239.68 25177 201.73 26227 27899 24349 24415 296.81 25336 241.86 247.76 261.79
NetMigrate 584.41 45958 29736 554.67 44683 29083 549.70 427.67 286.42 55992 420.09 278.75

Table 5: Throughput under varied write ratios and source Redis CPU budgets.

side extra usage indicates that double-reads issued by the
switch and PriorityPulls from the destination happen less than
0.05%. Also, NetMigrate’s server-side extra usage is less than
4 x 1073 and negligible. Therefore, NetMigrate puts much
less overhead to both the clients and the servers than other
three baselines.

6.5 More Scenarios and Workloads

In this section, we evaluate more load-balancing scenarios and
write-sensitive workloads by tuning the source Redis CPU
limits and write ratios in the YCSB benchmark.

Load balancing scenarios. In a case that needs load balanc-
ing, the source node is usually overloaded and the destination
node serves queries faster than the source. We mimic differ-
ent overload levels by limiting the source Redis CPU to 70%
and 40%. In this experiment, we configure NetMigrate to
be throughput-optimized. Fig. 7 shows the throughput and
latency comparisons among four migration protocols. Fig. 7
(a) and (d) show the throughput results. A lower source CPU
budget for migration leads to a longer migration time for all
protocols. NetMigrate’s average throughput during migration
are the highest for both 70% and 40% source CPU limitations.

NetMigrate improves the throughput from 63% to 286% with
70% CPU limitation and from 29% to 305% with 40% CPU
limitation. For Rocksteady, the less the CPU budget is given,
the more slowly the throughput increases from the nearly zero
QPS. For NetMigrate and Fulva, at the beginning of migra-
tion, the throughput improvement curves are similar, because
both are limited by the migration speed. After that, NetMi-
grate is better than Fulva because our client is not bounded by
the client-side packet rate. Source baseline keeps a low but
stable throughput. Fig. 7 (b), (c), (e), and (f) show the latency
results. For both 70% and 40% CPU budgets, median latency
of NetMigrate and Source baseline remains low and stable,
while Rocksteady’s and Fulva’s latency suddenly increases
and gradually drops during migration. NetMigrate’s median
latency remains the lowest compared to other baselines. It
reduces the median latency from 8% to 65% with 70% CPU
limitation and from 32% to 97% with 40% CPU limitation.
In terms of 99%-tail latency, Rocksteady is two orders of
magnitude higher than other migration protocols during the
entire migration due to its on-demand data fetching. However,
it quickly falls to normal tail latency when migration finishes.
Both NetMigrate’s and Fulva’s tail latencies drop gradually



Write Ratio 0% 10% 20% 30%
Source CPU Budget 100% 70% 40% 100% 70% 40% 100% 70% 40% 100% 70% 40%
Source 3.38 1.09 140 3.65 1.23 238 3.55 1.31 133 3.62 1.21 1.28
Rocksteady 3.43 315 297 330 3.14 245 283 270 219 281 251 1.92
Fulva 3.11 2.07 193 2.58 2.10 180 2.72 2.09 1.80 2.79 238 1.82
NetMigrate 212 120 110 226 111 105 227 1.05 1.08 220 097 1.05
Table 6: Median latency under varied write ratios and source Redis CPU budgets.
Write Ratio 0% 10% 20% 30%
Source CPU Budget 100% T0% 40% 100% T70% 40% 100% T70% 40% 1009 70% 40%
Source 6.40 2932  62.11 6.83 30.05 66.01 7.19 31.03 6822 811 30.31 63.29
Rocksteady 491.86 50492 864.89 368.89 425.64 973.53 331.37 346.02 866.59 21379 227.03 79549
Fulva 2175 2334 48775 21.04 2459 4236 1851 2342 4606 21.50 22.65 38.79
NetMigrate 9.21 23.09 4831 7.73 2174 33.89 8.38 19.19 4128 7.50 15.89 3475

Table 7: 99%-tail latency under varied write ratios and source Redis CPU budgets.

from the high latency level before migration while the tail
latency of Source protocol remains the same as before mi-
gration until it is approaching migration completion. Overall,
NetMigrate reduces 99%-tail latency from 18% to 56% with
70% CPU limitation and up to 94% with 40% CPU limitation.

Diverse write ratios. Changing the YCSB workloads among
different write ratios (0%, 10%, 20%, and 30%), Table 5, 6,
and 7 show that NetMigrate can achieve the highest through-
put (improved from 6.5% to 416%) while maintaining the
lowest latency as Source baseline. Rocksteady’s 99%-tail la-
tency is also much higher than other migration protocols when
write ratios and source CPU budgets change.

7 Discussion and Related Work

Migration speed. In our experiments, migration time is lim-
ited by exporting key-values out from Redis and then sending
through UDP socket. Key-value stores utilizing RDMA or
other kernel-by-passing transmission (e.g., Intel DPDK [4],
MICA [40], KV-Direct [39]) can increase migration speed
by a lot. Despite kernel-bypassing, migration time remains
non-negligible (e.g., 60 sec for 200GB data, 40Gbps links
[37]). Migration degrades query performance significantly
and migration happens fairly frequently in the storage clus-
ters. NetMigrate can work with faster networking to improve
the KV serving performance during migration.

Fault tolerance is also critical during migration, including
server failures and switch failures. To handle server failures,
enabling logs on both source and destination key-value stor-
age servers is a viable solution. Recovery is achieved by
merging logs from both sides to attain the latest version. Red-
Plane [35] and ExoPlane [36] provide fault-tolerant solutions
for switch failures and resource augmentation.

Strong/weak data consistency. UDP-based protocol can
have packet loss and out-of-order transmission, which weak-
ens the data consistency. We can add a reliable transmission
mechanism to our UDP-based migration protocol, and thus
it can be robust to give a strong data consistency over net-
work transmission. The migration control packet replies are
generated by the switch and sent back to the source node.

This avoids duplicated updates in the switch index structures.
Also, when NetMigrate merges data insertion from migration
and write queries at the destination, it needs the key-value
store’s version numbers to guarantee strong consistency. In
practice, many key-value stores provide weak consistency and
sacrifice consistency for availability and performance [12, 19].
NetMigrate is compatible with weak data consistency.

Key and value sizes and multi-key operations. We use
4-Byte keys and 64-Byte values in the prototyping experi-
ments but NetMigrate can be extended to larger key and value
lengths as long as a group id and a single key can be fit into
switch metadata (128 bits at most). If the key size is relatively
small, we can also extend the packet format to support multi-
key operations in one packet and recirculate one query packet
in the switch and treat each pass as serving a single-key query.

Clearing bloom filters in practice. When a shard of data
migration information is updated to the storage cluster index-
ing proxy, the cluster scheduler can pause migrations for a
bit (for synchronization) and clean the probabilistic indexing
data structures shared in the switch periodically.

Migration plan. There are works generating reconfiguration
plan based on cluster load status, migration time, performance
impact and so on [18, 21, 41, 43, 44, 47, 48, 50], while Net-
Migrate focuses on live migration technique.

8 Conclusions

We present NetMigrate, a new live migration approach for in-
memory key-value stores based on programmable data planes.
NetMigrate migrates shards between nodes with zero service
interruption and minimal performance impact using switches
for migration status tracking. Extensive experimental results
demonstrate the ability of NetMigrate to provide enhanced
throughput and maintain low access latency under a variety
of changing workloads and scenarios during migration.
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A NetMigrate Network Protocol
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Figure 8: NetMigrate packet format for migration packets and
client query/reply packets.
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Key-value pairs as payload

Packet format. Fig. 8 shows the packet format in NetMigrate
protocol. NetMigrate is an application-layer protocol inside
L4 payload. A set of dedicated UDP ports are reserved
for key-value storage server/client agents. In the switch,
these ports indicate the packets are NetMigrate migration
packets, client query, or reply packets, to invoke the custom
packet processing logic. The NetMigrate header fields are
OP, SEQ, and DBPort. OP fields represents client query or
reply operators, or migration-related operators. SEQ can
be used as a sequence number for reliable transmissions
with UDP protocol. DBPort refers to which key-value
store instance the packet is responsible for, filled with the
application port. For packets deal with client queries and
data migration, they have KEY, VALUE, or VERSION fields.
KEY and VALUE carry the key and value of a key-value
pair and VERSION indicates the version number in reply
packets for data consistency guarantees during migration.
NetMigrate supports GET, SET, and DELETE client query
types and can be extended to other type of queries. GET and
DELETE query operators only have KEY fields; SET packets
have both KEY and VALUE fields; and all reply packets has
VERSION fields indicating whether the operation is successful
and the reply is from the source or the destination storage
instance. The header fields for migration control packets are
OP, and migration instance (SRC_IP, SRC_Port, DST_IP,
DST_Port) or group_id which is attached depending on
the OP. OP can be MIGRATE_INIT, MIGRATE_TERMINATE,
MIGRATE_GROUP_START, MIGRATE_GROUP_COMPLETE,

MIGRATE_DATA, and their corresponding reply operators.
MIGRATE_INIT and MIGRATE_TERMINATE packets have fields
indicating the source and destination key-value store migra-
tion instance, filled with the server IP address and transport
layer port pair (SRC_IP, SRC_Port, DST_IP, DST_Port).
MIGRATE_GROUP_START and MIGRATE_GROUP_COMPLETE
packets notify switch that a migration group from DBPort
instance has started migration or has completed migration,
to update migration status tracking indexing in the switch.
MIGRATE_DATA packets simply carry the key-value pairs in



the packets and are transferred from the source server to the
destination server.

Network Routing. NetMigrate leverages existing routing
protocols to forward packets. For migration control and migra-
tion data packets, they are routed as normal packets from the
source server to the destination server, in addition to updating
indexing data structure in the switch. NetMigrate switches
are placed on the path from the clients to the storage clusters.
Client query and reply packets are forwarded based on index-
ing look-up results to determine the “right” storage server as
described in § 4.3.

Merging read replies with version control. NetMigrate has
an 8-bit version control field in reply packets, identifying: (1)
whether the query is successfully executed in the backend
storage server, (2) the reply packet is from the source server
or the destination server, (3) whether the reply is from double-
read, and (4) whether the query needs PriorityPull. Two more
bits are reserved for more controls. To handle double-reads,
the client agent merges two replies received from the source
and the destination to the one with a newer version.

B Artifact Appendix
Abstract

NetMigrate is a key-value store live migration protocol by
leveraging programmalbe switches. NetMigrate migrates
KVS shards between nodes with zero service interruption and
minimal performance impact. During migration, the switch
data plane monitors the migration process in a fine-grained
manner and directs client queries to the right server in real
time.

Our artifact provides code and scripts to reproduce experi-
mental results in the paper, especially in replicating Figures
4-7. We demonstrated experimental results on three commod-
ity machines and a Barefoot Tofino switch.

Scope

The artifact can be used as a prototype of NetMigrate migra-
tion protocol with the backend KVS as Redis, and to validate
the experimental results on performance improvement com-
pared with other migration baselines in the paper.

Contents

The artifact contains four migration protocols’ server
agents in cpp/server folder, YCSB client implementa-
tion for four migration protocols in cpp/YCSB-client, and
switch data-plane and control-plane code for NetMigrate in
tna_kv_migration, with experiment steps in README.md
and experiment_steps folder.

Hosting

The artifact is hosted on GitHub (https://github.com/
Froot-NetSys/NetMigrate, main branch, commit
c977bfa2c8eeec7d77tb4a834cebfble3f819e24).

Requirements

We developed and tested the artifact on the below platform:

* Hardware: A Barefoot Tofino switch, and three servers
each with a NIC (we used an Intel XL710 for 40GbE
QSFP+) and multi-core CPU, connected by the Tofino
switch.

* Software: Tofino SDK (version 9.4.0) on the switch,
Python2.7 on the switch, and gRPC 1.50.0 and protobuf
3.21.6.0 for PriorityPulls in KV servers.
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