
This paper is included in the
Proceedings of the 20th USENIX Symposium on

Networked Systems Design and Implementation.
April 17–19, 2023 • Boston, MA, USA

978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked

Systems Design and Implementation
is sponsored by

Scalable Tail Latency Estimation for
Data Center Networks

Kevin Zhao, University of Washington; Prateesh Goyal, Microsoft Research;
Mohammad Alizadeh, MIT CSAIL; Thomas E. Anderson, University of Washington

https://www.usenix.org/conference/nsdi23/presentation/zhao-kevin

Scalable Tail Latency Estimation for Data Center Networks

Kevin Zhao
University of Washington

Prateesh Goyal
Microsoft Research

Mohammad Alizadeh
MIT CSAIL

Thomas E. Anderson
University of Washington

Abstract
In this paper, we consider how to provide fast estimates of
�ow-level tail latency performance for very large scale data
center networks. Network tail latency is often a crucialmetric
for cloud application performance that can be a�ected by a
wide variety of factors, including network load, inter-rack
tra�c skew, tra�c burstiness,�ow size distributions, oversub-
scription, and topology asymmetry. Network simulators such
as ns-3 and OMNeT++ can provide accurate answers, but are
very hard to parallelize, taking hours or days to answer what
if questions for a single con�guration at even moderate scale.
Recent work with MimicNet has shown how to use machine
learning to improve simulation performance, but at a cost
of including a long training step per con�guration, and with
assumptions about workload and topology uniformity that
typically do not hold in practice.
We address this gap by developing a set of techniques to

provide fast performance estimates for large scale networks
with general tra�c matrices and topologies. A key step is
to decompose the problem into a large number of parallel
independent single-link simulations; we carefully combine
these link-level simulations to produce accurate estimates of
end-to-end �ow level performance distributions for the entire
network. LikeMimicNet,weexploit symmetrywherepossible
to gain additional speedups, but without relying on machine
learning, so there is no training delay. On a large-scale net-
work where ns-3 takes 11 to 27 hours to simulate �ve seconds
ofnetworkbehavior, our techniques run inone to twominutes
with accuracy within 9% for tail �ow completion times.

1 Introduction
Counterfactual simulation—to answer “what if” questions
about the interaction of network protocols, workloads, topol-
ogy, and switch behavior—has long been used by both re-
searchers and practitioners as a way of quantifying the e�ect
of design options and operational parameters [2, 16, 21, 23–
26, 36]. As production data center networks have scaled up in
bandwidthandscaledout insize [4, 29],however,networksim-
ulation has failed to keep pace. Although there is ample par-
allelism at a physical level in large scale data center networks,
it has been di�cult to realize signi�cant speedupwith packet-
level network simulation [22, 30].As packets�ow through the
network, the scheduling decisions at each switch a�ect the
behavior of every �ow traversing that switch, and therefore
the scheduling decisions at every downstream switch, and—
with congestion control—future �ow behavior, in a cascading
web of very �ne-grained interaction. In our own experiments
using ns-3 [23], for example, simulating a 384-rack, 6,144-host
network on a single thread of amodern desktop CPU took 11

to 27 hours of wall-clock time to advance �ve seconds of sim-
ulated time. While parallel techniques for discrete event sim-
ulation exist [10], recent work has demonstrated their limited
e�cacy for speeding up simulations of highly interconnected
data center networks [34]. As a result, packet-level network
simulation today is mostly used for small scale studies.

The need for faster network simulation has spawned recent
e�orts to use machine learning to model how di�erent parts
of the network a�ect each other [32, 34]. While promising,
these approaches have several limitations.MimicNet requires
hours-long retraining for newworkloads and network con-
�gurations, and it only accelerates simulations of uniform
fat trees with uniform tra�c among equally-sized clusters of
machines [34]. DeepQueueNet relaxes some of MimicNet’s
restrictions but does notmodel congestion control, which can
be a �rst-order determiner of performance [32].

This paper aims to address this gap, to develop techniques
for fast approximate simulation of large scale networks with
arbitrary workloads and topologies. Our work involves no
training step, aiming to produce near-real time results even at
scale. In addition to reducing the cost of evaluating new pro-
tocols, another goal is to provide real-time decision support
for network operators, such as warnings of SLO violations if
links fail [17, 20], advice on task placement of communication-
intensive jobs [7], and predicting the performance impact of
planned partial network outages and upgrades [8, 35].

A key observation is that we could achieve high degrees of
parallelism if we could somehow disentangle the interactions
between switch queues, allowing us to study the behavior of
the tra�c on each link in isolation. Of course, switch queues
arenot in reality completely disentangled. Thepackets for any
particular �ow experience a very speci�c set of conditions at
each switch, and those conditions are a�ected by the presence
of upstream bottlenecks which can smooth packet arrivals
for competing �ows at downstream switches. The congestion
response for a �ow depends on the combination of conditions
at every switch along the path.
However, large scale data center networks are typically

managed with the goal of delivering consistent high perfor-
mance to applications.While congestion events do occur, they
are often chaotic rather than persistent, popping up and then
disappearing in di�erent spots due to the inherent burstiness
and �ow size distribution of applications, rather than due to
some long-termmismatch between demand and capacity in
some portion of the network [33]. Further, we are often inter-
ested in aggregate behavior, such as the frequency of poor
�owperformance, rather than the behavior of each individual
packet or �ow.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 685

Figure 1. CDF of ns-3 versus Parsimon for �ow completion time
(FCT) slowdown across multiple �ow size ranges, zoomed into
the tail. While ns-3 took nearly 11 hours to produce these results,
Parsimon took one minute and 19 seconds, end-to-end. Results
were taken on a 6,144-host topology with an industry tra�c matrix,
2-to-1 oversubscription, and bursty tra�c.

Tomodel aggregate behavior, our hypothesis is thatwe can
approximate the distribution of end-to-end �ow performance
for a particular workload running on a large scale network by
modeling the frequency and magnitude of local congestion
events at each link along individual paths. A long �owwill
of course experience multiple congestion events during its
lifetime, but most of these will occur at di�erent points along
the path at di�erent times.Modeling the e�ect of simultaneous
congestion events, and the response of the congestion algo-
rithm to multiple simultaneous bottlenecks, is second order.
Our hypothesis is related to the concept of product-form

solutions in queuing theory. For certain classes of queueing
networks (e.g., Jackson [12] andBCMPnetworks [6]), the equi-
libriumdistributionofqueue lengths canbewritten inproduct
form, i.e., the state of an individual queue is only dependent
on the tra�c it receives and not on the state of the rest of the
network. These results generally require speci�c assumptions
about job arrival processes (e.g., Poisson), service-time distri-
butions (e.g., Exponential), and queueing/routing disciplines
(e.g., FIFO or processor-sharing queues), and there has been
much theoretical work on identifying classes of queueing
networks that admit product-form solutions [13]. Although
data center networks do not strictly conform to these condi-
tions and the dynamics of each individual queue can be quite
complex (e.g., due to congestion control), our hypothesis is
that product-form solutions are approximately true in most
realistic settings, and therefore we can analyze individual
queues in isolation and combine the results to approximate
end-to-end network behavior.
We built Parsimon to directly test this hypothesis. First,

we deconstruct the network topology into a large number of
simple and fast simulations where each can be run entirely
in parallel by a single hyperthread. Each simulation aims to
collect the distribution of delays that �ows of a particular

size would experience through a single link, assuming that
the rest of the network is benign. We then combine these
simulated delay distributions to produce predictions of the
end-to-end delay distribution, again for �ows of a given size.
At each step, we make conservative assumptions for how
delays should be computed and combined. In many settings,
researchers and operators are interested in keeping tail behav-
ior well-managed, making a conservative assumption more
appropriate than anoptimistic one. Finally,Parsimon clusters
links with common tra�c characteristics, eliminating much
of the overhead of simulating parallel links in the core of the
network as well as edge links used by replicated or parallel
applications, further improving simulation performance.

Because validation against detailed packet-level simulation
at scale is so expensive, we focus our study on a single widely
used transport protocol, DCTCP [2], with FIFO queues with
ECN packet marking at each switch [27]. We also focus on
queue dynamics rather than packet loss; most data center
networks are provisioned and engineered for extremely low
packet loss [28, 29]. We note that these assumptions are not
fundamental to our approach. We show Parsimon general-
izes to two other transport protocols, DCQCN [36] and the
delay-based TIMELY [19]. Validation of other transport pro-
tocols [3, 14, 16, 21], switch queueing disciplines [1, 9, 11, 21],
and packet loss remains future work. We note that modern
data center transport layer protocols are adept at quickly
adapting to the presence and absence of congestion, and so
we caution our results may not extend to older transport
protocols where convergence time is a large factor.
Parsimon speeds up simulations by reasoning about links

independently, which enables massive parallelization, but at
a cost in accuracy. Aswewill see in §3.6, anything that creates
standing congestion both at the core and at the edge, or when
cross tra�c is correlated across multiple hops, will result in
less accurate estimates.While ourmethods are designed to fa-
vor overestimating rather than underestimating tail latencies,
this property is only evaluated experimentally (§5). In general
there is no formal guarantee, since factors like congestion
control can in theory behave in arbitrary ways that render
less appropriate the approximation of considering links inde-
pendently. We assume that we can simulate for long enough
for the network to reach equilibrium; studies of short term
transient behavior should not use our approach. We do not
provide predictions at the level of an individual �ow, but we
are able to show that Parsimon is accurate for sub-classes of
tra�c for mixed workloads. We do not attempt to model end
host scheduling delay of packet processing, even though that
may have a large impact on network performance [14, 15];
we leave addressing that to future work.

To assess accuracy, we compare distributions of �ow com-
pletion time (FCT) slowdown, de�ned as the observed FCT di-
videdby the best achievable FCTonanunloadednetwork, and
we say a �ow is completewhen all of its bytes have been deliv-
ered to its destination. Fig. 1 shows a sample of our results for

686 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

the 6,144 host networkmentioned above, running a published
industry tra�cmatrix [28] and�ow size distribution [21], and
with standard settings for burstiness and over-provisioning.
We describe the details of this and other experiments later in
the paper. Depicted are FCT slowdown distributions binned
by �ow size. While ns-3 took nearly 11 hours on this con-
�guration, Parsimon was able to match �ow-size speci�c
performance of ns-3 in 79 seconds (a 492 times speedup) on a
single 32-waymulticore server with an error of 9% at the 99th
percentile. Given a small cluster of simulation servers, we
estimate a completion time of 21 seconds using our approach.

In our evaluation, we scan the parameter space to identify
circumstances where our approximations are less accurate.
Link clustering improves performance but hurts accuracy
somewhat; this tradeo� can be avoided by usingmore simula-
tion cores.Without clustering, accuracy su�ers when there is
high utilization of links in the core (above 50%), there are high
levels of oversubscription, and a large fraction of network
tra�c is due to �ows that �nish within a single round trip.
Generally, a combination of factors is required for poor accu-
racy. In 85% of the con�gurations we test, the error relative
to ns-3 is under 10%.

Parsimon source code and evaluation scripts are publicly
available at h�ps://github.com/netiken.

2 ParsimonOverview
This paper describes a set of methods to quickly and scalably
estimate distributions of �ow performance in data center
networks. These techniques are implemented in a prototype
called Parsimon, designed to provide the following:

• Fast, scalable estimates.We aim to supply estimates
twoto threeordersofmagnitude faster thanfull-�delity
simulation. Given enough cores, execution time should
remain bounded regardless of network size.

• Tight latencybounds, including tail performance.
Our approximations bias slightly towards overestima-
tion, but still provide close estimates even for the 95th
or 99th percentile of the distribution for a given �ow
length.

• Minimal restrictions on topology andworkload.
Ourmethods are largely independent of both topology
and workload, although some combinations of topol-
ogy and workload will have lower accuracy.

Fig. 2 illustrates the intuition behind its core method, and
Fig. 3 depicts its work�ow. The user supplies 1) a description
of the topology, as a set ofnodes and links, and2) theworkload,
as a set of �ows and routes. In our implementation, we gen-
erate the �ow list by sampling from the tra�c matrix and the
�ow size distribution, with inter-arrival times determined by
a burstiness parameter. Once inputs are supplied, Parsimon
proceeds in several steps:
Decomposition. To start, �ows are assigned to each link
they traverse, e.g., for a fat tree using ECMP. Then, for each

link ; , Parsimon generates a custom backend simulationwith
a topology selected to determine—as accurately as possible—
the contribution of ; to the end-to-end �ow completion times
(FCTs) of the �ows passing through it. Each of these backend
simulations can run in parallel.
Clustering. Depending on the size of the topology, there
may be tens or hundreds of thousands (or more) of link-level
simulations to perform. Fortunately, data center topologies
exhibit notable symmetries, and industry has reported that
the same is true for many of their workloads [28]. Parsimon
can optionally cluster links with similar workloads together.
Only one representative from each cluster need be simulated;
the rest of the link-level simulations are pruned. Clustering
is discussed in more detail in §4.2.
Simulation. The next step is to simulate all cluster repre-
sentatives in parallel. The decomposition step resulted in a
topology and a workload for each link-level simulation, and
we can use any simulation backend. Our prototype supports
two: ns-3 and a custom high-performance link-level simula-
tor (§4.1). This allows us to directly validate our link-level
simulator against ns-3. However, other e�cient models, such
as �uid �ow [18] or machine learned models could be used
here instead, for di�erent tradeo�s of performance and ac-
curacy. Each link-level simulation produces a distribution of
the delay contributed by that link to the �ow completion time
(FCT), bucketed by �ow size. Note this is not the link’s propa-
gation delay—we calculate that contribution directly from the
topology. These distributions—described in the next section
(§3)—are organized according to the original input topology,
as depicted in Fig. 2. Recall that only one representative from
each cluster is simulated; every other link is populated with
the distributions of its cluster representative.
Aggregation. The last step is to aggregate the link-level
results into estimates for entire paths through the network.
These estimates are also represented as delay distributions.
Conceptually,Parsimonobtainsadelaydistribution forapath
by convolving together the appropriate distributions from
each of the path’s component links. Since there are multiple
distributions per link and potentially many paths through the
network, we do not compute convolutions up-front. Instead,
convolution is done on-demand via Monte Carlo sampling; a
by-product is that we can e�ciently produce estimates for in-
dividual source-destination pairs, virtual networks, or classes
of service (§A). To make a single point prediction for a �ow
taking some path through the network, Parsimon uses the
�owsize to�nd theappropriatedistribution for each link, sam-
ples a value from each of them, and combines them together.
This process is repeated for each �ow.

At a bird’s-eye view, Parsimon’s method is simple: to ac-
celerate FCT estimates, we estimate the e�ect of each link
independently and inparallel. Then tomakepredictions about
the whole network, we combine the results. However in our
experience, the accuracy of the method hinges tightly on the

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 687

https://github.com/netiken

Decomposition & simulation Link-level delay distributions Aggregation

Link-level simulation

Figure 2. Overview of Parsimon. First, for any path, Parsimon estimates the contribution of each component link to delays in �ow
completion times, represented as a probability distribution. Parsimon then combines delays along the path using Monte Carlo simulation
(see §3). Further, for added performance, link-level simulations are optimized and redundant simulations (due to e.g., ECMP or symmetries
in workload patterns) are pruned (see §4).

TopologyFlows

Decompose

Link-level
sims (1)

Query

Simulate

Link-level
delays

Aggregate

FCT
distribution

Parsimon

Link-level
sims (2)

Cluster

Generate
flows

Flow size
distribution

Traffic
matrix

Figure 3. An illustration of Parsimon’s work�ow. All inputs and
outputs are shown in the top row. Rectangular boxes are inputs
and outputs, rounded boxes are intermediate artifacts, and ovals
are Parsimon’s actions.

quality of the link-level estimates and subsequent aggrega-
tion. For example, when generating the backend simulations,
we have observed that failure to adequately capture perti-
nent features of the network severely degrades the quality
of Parsimon’s estimates. Similarly, link-level results must
be processed and aggregated with care to preserve accuracy
across all �ow sizes. §3 describes these techniques in detail.
3 KeyMethods: Decompose and Aggregate
Together, themethods for decomposition and aggregation are
what enables Parsimon’s scaling, and while we later engage
additional techniques for further speed-up, they are a byprod-
uct of—andnot independent from—thesemore essentialmeth-
ods. Decisions made during this step are also the central de-
terminers of accuracy. This section describes these processes
in detail: how link-level topologies are generated, how the
link-level data are post-processed and stored, and �nally how
they are aggregated to produce end-to-end estimates.
3.1 Generating Link-LevelWorkloads
To start, Parsimon associates each linkwith the �ows passing
through it. Since links are bidirectional, there are two sets
of �ows—and consequently two link-level simulations—per
link. Parsimon populates links with �ows using �ows’ routes.
Then for each link and in each direction, the associated �ows
constitute the inputworkload to the link-level simulation.The
sizes and arrival times of the �ows pass though unmodi�ed.

3.2 Generating Link-Level Topologies
Once the link-level workloads are in place, we generate the
link-level topologies. In this step, we think of each link as
contributing some amount of delay to end-to-end FCTs. Any
given �ow will accrue these delays at each hop, depending
on—for example—howmuch bandwidth is available and how
much queueing is present. Highly-loaded links are expected
to contribute more delay, while rarely utilized links will con-
tribute relatively little.

For each link and in each direction, we generate a topology
and perform a simulation using just the �ows traversing that
link. Once the simulation is �nished, the delay caused by the
link for a given �ow is computed by taking the observed FCT
and removing the ideal FCT for that �ow size. (For a �ow
of size B traversing a link of speed⇠ and propagation delay
; , the ideal FCT is B/⇠ + ; .) This intuitively captures all de-
lays incurred due to queueing, congestion control, bandwidth
sharing, and so on at the target link.

In generating a per-link topology, our goal is to isolate and
measure the expected delay contribution of the target link. A
simple but ine�cient strategy would be to use the original
topology, but with only the tra�c traversing the target link,
without any cross tra�c. This would be relatively accurate at
measuring the delay contributed by the target link, albeit a bit
conservative. Upstream cross tra�c congestion will slightly
smooth out downstream congestion at the target link, and so
removing cross tra�c would make the queue distribution at
the target link slightly worse than in reality.

Although relatively accurate and parallelizable, simulating
every linkon theoriginal network topologywould still be inef-
�cient, as packet-level simulation cost is roughly proportional
to the number of packets simulated times the number of hops
each packet takes through the network. Because we run the
link simulation separately in each direction on every packet
that passes through that link, this would in�ate the aggregate
computational cost of the simulationbyamultiplicative factor
of roughlyhalf the averagenetworkpath length—a signi�cant
factor for large-scale networks. Instead, we want to simulate
only a small constant number of hops per target link.

An extreme alternativewould be to simulate only the target
switch queue. This is inaccurate for two reasons. First, we

688 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

0

3

2

1

0 1 2 3

0

1

2

3

0

1 2

3
A

B

C

A B C

1
1

1 1
3

3

2

2

1

1

3

3

1

Figure 4. An illustration of how Parsimon generates link-level topologies. Simulations are unidirectional, and a di�erent topology is used
for (A) �rst-hop links, (B) switch-to-switch links, and (C) last-hop links. For illustration purposes, each link in the original topology has
a propagation delay of one. To the left is the original topology; to the right are the corresponding link-level topologies, with new propagation
delays annotated. Bold lines denote links whose bandwidths have been arti�cially increased during topology generation.

need to preserve end-to-end round trip delays, as these a�ect
the speed of the congestion control adaptation to congestion
or its absence; hosts closer to the target adapt faster than
those farther away. Second, we need to preserve the spacing
of packets induced by the original topology—a large �owdoes
not immediately dump all of its data into the queue for the
target link; instead, those packets arrive spaced apart by the
edge link capacity. Ignoring this e�ect would lead to larger
queues andmore delay at the simulated link thanwould occur
at that link in the original network.
Thus, we construct a topology for each link-level simula-

tion that re�ects a performance-accuracy tradeo�, attempting
to capture themost important e�ects for computing the delay
contributed by the target link. Fig. 4 showshow topologies are
minimized. The generated topology takes one of three shapes,
depending on the location and direction of the target link: (i)
a�rst-hop up-link from a host to a ToR, (ii) a switch-to-switch
link in the middle of the network, or (iii) a last-hop downlink
from a ToR to a host.

Suppose the tra�c through the target link originates from
sources (and terminates in destinations) . In case A of Fig. 4,
we connect the target link directly to each host in) via a ded-
icated link. If the target link is a switch-to-switch link (case
B), we remove intermediate hops and connect the hosts in (
directly to the input, and the output directly to the hosts in) .
Lastly, if the target link is a last hop (case C), then the hosts in
(are connected directly to the input. Rewriting the topology
in thismanner ensures that packets can traverse atmost three
hops, regardless of the size of the original topology.
Modeling round-trip delay. Next, we set the link delays in
each constructed topology to match the round trip delays in
theoriginalnetwork. Forexample, in caseAofFig. 4, the round-
trip time between host 0 and host 2 is 8 in both the original
topology and the generated topology, even though Parsimon
has removed intermediate hops between the switch and host
2. Fig. 4 is meant as illustrative; as with ns-3, Parsimon can
model arbitrary round-trip delays.

In data center networks, congestion controllers play a large
role in determining the extent to which longer �ows yield
throughput to bene�t the latency of short �ows. Most algo-
rithms such as DCTCP [2], DCQCN [36], and TIMELY [19]

are end-to-end in the sense that sources adjust their send-
ing rates based on feedback echoed from destinations [11].
With an end-to-end control loop, a sourcemust wait an entire
round-trip time (RTT) before being able to adapt its sending
rate based on congestion feedback, resulting in longer queue
lengths with higher RTTs. Thus, correctly modeling RTTs is
essential to correctly modeling queue dynamics.
Selecting link bandwidths. In some cases, we arti�cially
increase the bandwidth of downstream links to ensure that
they do not arti�cially add congestion. We say such links are
in�ated. For example, in cases A and B of Fig. 4, the bandwidths
of the last-hop links are in�ated. We want any queueing to be
due to the target link and not the downstream link. By in�at-
ing downstream links, we remove store and forward delay (a
small packet following a large packet would otherwise need
to queue for the downstream link); it also addresses the case
where core links are fatter than downstream links. Queueing
at the downstream link itself is accounted for in case C. By
contrast, we do not in�ate �rst-hop links in cases B and C, as
this would enable a long �ow to arrive at the target link at a
higher rate than it would in practice.
A cluster of sources sending simultaneously through an

oversubscribed top-of-rack (ToR) switch in the original net-
workwill be throttled beyondwhat is implied by the edge link
capacity. To improve simulation speed, we ignore this e�ect
and are therefore slightly conservative in our estimates for
oversubscribed networks.
Correcting for ACK tra�c. Since Parsimon only simu-
lates one direction at a time, we must account for the load
induced by acknowledgments due to tra�c in the reverse
direction. This is usually small, but can be signi�cant at high
load and where average packet size is small. Instead of model-
ing ACK tra�c in detail, we apply a simple rule, mechanically
reducing the forwardbandwidthoneach simulated linkby the
average volume consumed by ACKs for �ows in the opposite
direction over the course of the simulation. This correction
is applied to all links but is most necessary for the target link.
Note that Parsimon does not account for extra delay caused
by ACK jitter on the reverse path; this could be an issue when
applying our ideas to networks with bandwidth asymmetry
between forward and reverse paths [5].

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 689

3.3 Post-Processing Link-Level Results
Each link-level simulation produces an FCT for each �ow in
the link-level workload, and these FCTs are used to compute
delays. Recall from §3.2 that the delay is just the observed
FCTminus the ideal FCT on an unloaded network. For each
�ow, we could, theoretically, estimate the end-to-end delay as
some function of the delay contributed by each link for that
�ow.We discuss how that function works in Parsimon, along
with its sources of bias, later in this section.

First, we address a di�erent issue. Recall that we cluster
similar links together (§4.2) so thatwe only simulate the�ows
through a single representative link for each cluster of links.
Thus, to compute the end-to-end delay for a particular �ow,
we take a sample from the delay distributions at each hop in
the path, or from the hop’s standin representative.
In post-processing the link-level results and constructing

these distributions, our primary objective is to support accu-
rate estimates for all �ow sizes. It is not enough to produce
the correct FCT distribution across the entire workload; we
must also accurately estimate the FCT distribution for short
�ows containing just a few packets as well as for long �ows
that last for hundreds of round trips. This extra requirement
necessitates some post-processing before distributions can
be constructed. Here we describe how this is done.
Packet-normalizeddelay. Maintainingaccuracyacross all
�ow sizeswould not be possible if we used delays directly. For
example, long�ows,whichmay experience variations in their
bandwidth share over time, will almost always experience
more absolute delay than short �ows.
As a start, we can address this by normalizing delays by

�ow size: after computing the delay for a particular �ow, we
can then divide the delay by the �ow’s size in packets.We call
the resulting metric the packet-normalized delay, and it has
the intuitive interpretation of summarizing the �ow’s aver-
age delay per packet. Link-level distributions are constructed
from packet-normalized delays rather than absolute delays.
We normalize by the number of packets instead of the num-
ber of bytes because �ows are discretized into—and therefore
delays are incurred by—packets. Further, normalizing by the
number of bytes loses accuracy for small �ows, especially
those smaller than the maximum packet size. For example,
a 10 byte packet would be delayed by the same amount as
would a 100 byte packet if it arrived in the switch queue just
behind a jumbo (9 KB) frame [31].
Bucketing distributions. Even with packet-normalized
delays, we should still expect long �ows to have di�erent
delay distributions than short �ows. The FCT of a long �ow
is mainly determined by the throughput it achieves, while
the FCT of a short �ow depends on how much queueing it
encounters. Further, congestion control algorithms trade the
throughput of long �ows for the latency of shorter ones to
varying degree. An aggressive congestion control algorithm

could try to keep queues near-empty [16], resulting in smaller
short-�ow delay and larger long-�ow delay.
To ensure that estimates for di�erent �ow sizes are accu-

rate, it is necessary to sample each packet-normalized delay
from the appropriate distribution. We bucket the distribution
of packet-normalized delays by �ow size. Buckets need to
contain enough samples to form statistically meaningful dis-
tributions, but they should also be small enough so that the
values come from �owswith similar delay characteristics (i.e.,
similarly-sized �ows).

Parsimon uses a simple bucketing algorithm. In brief, we
start with a packet-normalized delay per �ow, and we sort
them according to �ow size. Then, starting with the short-
est �ow, we begin populating buckets. For each bucket 1, let
maxf1 and minf1 be the maximum and minimum �ow sizes
associated with 1, respectively, and let =1 be the number of
elements in 1. Each bucket 1 apart from the last one is locally
subject to two constraints

=1 �⌫ and maxf1 �G ⇤minf1,
for some choice of ⌫ and G . Globally, Parsimon also ensures
buckets are contiguous and non-overlapping. For any bucket,
once the two local constraints are satis�ed, Parsimon begins
populating the next bucket, and the �nal bucket is assigned
whatever elements remain.

In practice, we �nd ⌫ = 100 and G = 2 works well. Data
center workloads have heavy-tailed �ow size distributions
in which short �ows arrive much more frequently than long
ones. With these parameters, the �rst buckets will have size
boundaries that are approximately powers of two, and as
�ows get larger, buckets will cover larger and larger ranges.
This is the desired behavior. Intuitively, a queueing-sensitive
1 KB �ow should not be grouped with a throughput-sensitive
1 GB �ow, but a 1 GB �ow can be grouped with a 10 GB
�ow provided the distribution of throughput is stable on long
timescales. Accuracy across di�erent �ow sizes at �ner or
coarser resolution can be achieved by modulating G . We ex-
amined sensitivity to the number of buckets by decreasing G
for selected experiments and found no meaningful change in
the predicted distributions.

In summary, each link-level simulation produces FCTs, and
these FCTs are used to construct bucketed distributions of
packet-normalized delay. Since di�erent links have di�erent
workloads, bucketing is performed on a per-link basis. This
means that the links in any given path are likely to have dif-
ferent bucket sizes with di�erent �ow size ranges. In the next
subsection (§3.4) we describe how the data are aggregated.
3.4 Aggregating Link-Level Estimates
For any given range of �ow sizes, the �nal distribution of
(packet-normalized) delay for any path through the network
canbe estimatedby selecting an appropriate distribution from
each component link and then performing an n-ary convolu-
tion. However, the e�ciency of this step must be considered.
Since there are multiple distributions per link and potentially

690 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 5. An illustration of how Parsimon aggregates link-level
results into a path-level point estimate. Parsimon samples a
packet-normalized delay (§3.3) from each link along the path, and
combines these to estimate the end-to-end absolute delay⇡ .

many paths through the network, performing all convolu-
tions up front and storing one path-level distribution per path,
per �ow-size range would be costly in space and in time.
To avoid these costs, Parsimon uses an on-demand sam-

pling strategy to perform the convolution. Recall that the
simulation step resulted in bucketed distributions of packet-
normalized delay per link, organized in a graph isomorphic to
the original topology. Parsimonmakes this graph a queryable
object that is capable of supporting point estimates. Given a
size, a source, and a destination, Parsimon computes a path
from the source to the destination and uses the size to select
a distribution per-link. Then, one packet-normalized delay
is sampled from each distribution and the results are subse-
quently combined into a point estimate. Suppose there are =
hops and let⇡⇤1,⇡

⇤
2,...,⇡

⇤
= be the sampled packet-normalized

delays. Then, the end-to-end absolute delay⇡ is computed as

%
=’
8=1

⇡⇤8 =
=’
8=1

⇡⇤8 % =
=’
8=1

⇡8 = ⇡,

where % is the input �ow size in packets and⇡8 is the absolute
delay for hop 8 . Fig. 5 illustrates this process. Finally, to obtain
a distribution of end-to-end delay estimates, we need only
sample enough point estimates for the desired �ow size range
and source destination pairs.
3.5 Primary Source of Speedup
Parsimon speeds up large network simulations by consid-
ering the e�ect of each link in isolation, allowing it to scale
in the size of the simulated network and the number of pro-
cessing cores. Although the link is the unit of decomposition,
Parsimon’s scaling ability is determined not by the total the
number of links, but rather by the fraction of total packets
traversing any link. In other words, Parsimon’s speed-up de-
pends on the number of busy links and howwell the load is
balanced among them. This explains why Parsimon is most
suited for large data center networks, where the total work-
load comprises many source destination pairs with many
paths between them. If a network tra�c is heavily skewed
such that most of the workload traverses only a few paths,
the amount of speedup will be limited.
3.6 Primary Sources of Error
To balance accuracy and performance, Parsimon makes a
number of approximations, with some having more of an
e�ect on accuracy than others. Here we catalog some of the
main sources of error, describing 1) howwe expect the errors

to manifest and 2) what modi�cations, if any, could be made
to address them.
Bottleneckfan-in. Tosimulateagiventarget link in thenet-
work, Parsimon constructs a topology that connects all of the
source nodes feeding tra�c directly into that target. In prac-
tice, of course, there would be multiple stages of fan-in, and
that fan-inwould tend to spreadoutanyburstof arriving�ows
due to upstream bandwidth capacity constraints. Any target
link would experience slightly less queueing and less conges-
tion in reality than in Parsimon. Of course, Parsimon also
simulates the upstream link; because it is closer to the sources,
its tra�c and queueing behavior would be a closer model to
what would happen in a full network-wide simulation.

Because Parsimon sums the delay contributed by each hop
along a�ow’s path, the lack of fan-inwill tend to slightly over-
estimate the delays caused by downstream links. Put another
way,anydelay inducedbyfan-inconstraints is counted twice—
once whenwe simulate the upstream link and again whenwe
simulate the downstream link. In our evaluation, accuracy is
slightly lower for networks with higher degrees of oversub-
scription, as we would expect. We could potentially remove
this inaccuracy by including the upstream fan-in as part of the
topology for each link simulation. Since simulation time ispro-
portional to the number of hops, this would decrease individ-
ual link simulation e�ciency by a small but signi�cant factor.
Lack of tra�c smoothing. Similarly, any cross-tra�c that
shares a portion of a path with tra�c destined for the target
link will tend to smooth out tra�c before it reaches the target.
Parsimondoesnot include any cross-tra�c in its per-link sim-
ulation, making it slightly overestimate the queueing delay
at the target link. Assuming the simulation is stable—that the
arrival rate does not exceed the service rate for any link—the
target link will experience the correct long-term average rate,
but without as much smoothing as would happen in practice.
We see evidence of this e�ect in our evaluation, where error
is slightly larger for workloads with a predominance of short
�ows which would bene�t more from smoothing. Of course,
correctly modeling the e�ect of cross-tra�c on the tra�c ar-
riving at a downstream link would be di�cult to accomplish
without reverting to a full network simulation.
Link-level independence. Amore fundamental approxi-
mation is that link-level simulationsare treated independently.
This technique enables wholesale parallelization, but its accu-
racy depends on the amount of correlation between the tra�c
intensities on the various hops along the path. Themore corre-
lated the tra�c, the more error Parsimon’s method produces.
Since Parsimon produces estimates by convolving delay

distributions (adding independent random variables), full ac-
curacy requires the mutual independence of delays among
the links in every path. Consider a single-packet �ow that
traverses two hops, both with load ; . If the delays along the
two hops are independent, the probability that the �owwill
encounter no queueing is simply (1� ;)2. However, if both

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 691

hops tend to have queueing at the same time (i.e., if the traf-
�c intensities and therefore the delays are correlated), then
that probability is closer to 1� ; . Since Parsimon does not
distinguish between these two scenarios, the di�erence is not
re�ected in its estimates.

In very large networks with thousands of hosts and paths,
and with realistic workloads, we expect the e�ects of corre-
lation to be small. A basic result of queueing theory is that
under some circumstances it is possible to analyze queues
independently, even when the output of one queue connects
to the input of another, so that queue behaviors are obviously
correlated. One view of our work is that we are empirically
observing that data center networks approximately admit
product-form solutions for their equilibrium state queue dis-
tributions under realistic workloads.

However, somenetworksusePFC [36] to reducepacket loss
due to go-back N error handling in some RDMA network in-
terface cards. Because PFC su�ers fromhead-of-line blocking,
PFCcancausecorrelatedcongestionacrossmultiple links, and
so Parsimonwould not be a good choice for modeling such
networks. If correlation is a problem, we could potentially
measure thedegreeofcorrelationandapplyacorrecting factor
during the convolution step, butwe leave that for futurework.
One bottleneck at a time. Estimating the performance of
long �ows comes with an additional di�culty which is also
exacerbated by correlated delays. While a single packet �ow
can only reside in one queue at a time, a long �ow can be back-
logged on multiple links at the same time.Depending on the
speci�c congestion control mechanism, the throttling back
of a long �ow (the delay it experiences) is typically not the
sum of the delays it would experience on individual links (as
Parsimon approximates), but rather only the delay caused by
the true (instantaneous) bottleneck. Since Parsimon sums all
delays, it will overestimate the end-to-end delay for the long
�ow that encounters simultaneous cross-tra�c congestion
at multiple points along its path. In summary, Parsimon is
more accurate when the congestion is episodic and tempo-
rary, appearing at di�erent links at di�erent times, and less
accurate when congestion is persistent across multiple edge
and core links of a given path.
Congestion on any link (and therefore simultaneous con-

gestion onmultiple links) becomesmore commonwithhigher
network load, and we see this e�ect in our evaluation. We
can potentially correct for this bias by using a more complex
function for combining link delays when overall network uti-
lization is high. Because network operators are often willing
to over-provision their network hardware to reduce applica-
tion tail latency, this is rare in practice. For example, some
recent end-to-end congestion protocols, such as Homa [21],
simply assume that network congestion predominantly oc-
curs at the last hop of each path. We do not make such an
assumption; we handle congestion equally wherever it might
occur. However, we do assume that congestion events are not
persistent and network wide.

Our approximations are biased toward producing overesti-
mates rather thanunderestimates, becauseweexpectnetwork
operators to be more sensitive to over-promising tail behav-
ior, even if that comes at the cost of being too conservative
with respect to capacity planning. Additional analyses on the
errors induced by these approximations can be found in the
appendix (§C).
4 ComplementaryMethods
The previous section described howwe decompose a single
large network simulation into many small, independent ones
that can be executed in parallel and later combined. This sec-
tion describes additional optimizations that reduce, cluster,
and prune these link-level simulations for better computa-
tional e�ciency. These reduce the number of cores needed to
simulate a given network within some time bound, or equiv-
alently, the execution time on a single server machine.
4.1 Fast Link-Level Simulation
By far the largest computational cost in Parsimon are the
link-level simulations. Initially we used ns-3 as our link-level
backend. However, as a general-purpose simulator, ns-3 is
designed to support arbitrary protocols with arbitrary exten-
sions, all the way down to hardware models. This is more
�exible but means that every packet in ns-3 generates events
at everyhost, queue, and link—aswell as throughout thehosts’
modeled network stacks.
Instead, we implemented a custom and minimal simula-

tor optimized for high �delity single link simulation. This
backend only models the workload, topology, queueing, and
congestion control. For congestion control, our prototype
implements DCTCP’s core algorithm [2] in a few tens of lines
of code. For example, we do not need to model the mecha-
nism for carrying ECN bits from switches back to endpoints.
Switching to a custom simulator speeds up the individual link
simulations by roughly anorder ofmagnitude,withnegligible
loss of accuracy. Reducing the simulation time of the worst
case (most congested) link also reduces the critical path dra-
matically. If more simulation features are needed, Parsimon
can use ns-3 at the cost of using more cores.
4.2 Clustering and Pruning Simulations
Lastly,we recall thatParsimon’s decomposition results in two
simulations per link: one in each direction (§3.1). On a large-
scale 6,144-host topologyweuse for evaluation, there are over
9,000 links, and therefore over 18,000 simulations generated.
Fortunately, data center topologies commonly induce sym-
metries that render some of these simulations redundant. For
example, up-links in the sameECMPgroupingcanbeassumed
to have the same characteristics and tra�c patterns. Further-
more, the workloads themselves may also induce symmetries
due to communication patterns and load balancing [28].
We can take advantage of these symmetries by clustering

links that carry similar tra�c and only simulating one rep-
resentative from each cluster. Then, in each cluster, all links

692 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Algorithm 1Greedy link clustering
1: unclustered A��L���� ù links here are unidirectional
2: clusters [] ù list of list of links
3: while not E����(unclustered) do
4: members [] ù new cluster
5: representative P��F����(unclustered)
6: P���(members, representative) ùwith initial member
7: for candidate in unclustered do ù �nd other members
8: rfeature F������(representative)
9: cfeature F������(candidate)
10: if I�C����E�����(rfeature, cfeature) then
11: P���(members, candidate) ù newmember
12: R�����(unclustered, candidate)
13: P���(clusters, members)
14: return clusters

inherit the delay distribution produced by the representa-
tive link. Parsimon’s clustering requirement is quite speci�c,
which limits the range of popular clustering algorithms that
can be used. Let ;1,;2 2 ! be any two link-level simulations,
and let 3 :!⇥!!R be a distance function. Ideally,

;1 and ;2 are clustered together() 3 (;1,;2)<n,
where n is some bound. The left-to-right direction preserves
accuracy; the right-to-left supports e�ciency. Most centroid-
basedanddensity-basedclusteringalgorithmsaren’tdesigned
to provide the left-to-right property. Instead, Parsimon uses
Alg. 1. This algorithm greedily clusters simulations together,
using a distance function that predicts which links will have
similar delay pro�les. In our prototype, we check that the
link �ow size and inter-arrival time distributions—as well as
their load levels—are close.We �nd this provides a reasonable
tradeo� between e�ciency and accuracy, but users can turn
o� the optimization at the cost of using more cores. Further
details about the clustering can be found in the appendix (§D).
5 Evaluation
Parsimon’s goal is to quickly estimate tail latencies for a vari-
etyof largedata centernetworks andworkloads. In evaluating
Parsimon, we would like to assess 1) Parsimon’s accuracy
and performance at the scale of thousands of hosts, and 2)
how accuracy is a�ected by awide range of variables over the
workload and the topology.

Our strategy is as follows. Using workloads extracted from
industry datasets, we start with a 384-rack, 6144-host topol-
ogy to evaluate Parsimon’s speed and accuracy in one sce-
nario at scale. Then, to evaluate nearly 200 other topology
and workload scenarios, we downsample the workload so
that it can run on a smaller 256-host topology. This allows us
to run enough ns-3 simulations quickly enough to perform
a detailed sensitivity analysis.

To more clearly illustrate sources of error in Parsimon, we
also construct and evaluate Parsimon on syntheticworkloads
on a small-scale parking lot topology in Appendix §C.

Variant Clustering? Link-level backend

Parsimon No custom
Parsimon/C Yes custom
Parsimon/ns-3 No ns-3
Parsimon/inf — custom

Table 1.The Parsimon variants under consideration. Parsimon/inf
is a variant that assumes in�nite cores and memory.

5.1 General Setup
Each scenario we consider has six components: 1) a topology
size, 2) an oversubscription factor, 3) a tra�c matrix, 4) a �ow
size distribution, 5) a burstiness level, and 6) a maximum load
level. Here, we brie�y describe how these are speci�ed and
con�gured.We also discuss which Parsimon variants wewill
assess and howwe establish a baseline.
Topology and oversubscription. To mimic an industry
topology, our topologies are modeled after Meta’s data center
fabric [4]. In brief, there are three layers of switches: hosts
connected to a top-of-rack switch (ToR) with 10 Gbps links
constitute a rack, racks connected to each other via fabric
switches with 40 Gbps links constitute a pod, and pods con-
nected to each other via spine switches with 40 Gbps links
constitute a cluster. Spine switches are organized in planes.
We can modulate the size of a topology (corresponding to a
cluster) by adjusting the number of pods, the number of racks
per pod, and the number of hosts per rack, and we can mod-
ulate the oversubscription factor by adjusting the number of
spines per plane.
Tra�c matrices. The tra�c matrices are extracted from
the datasets accompanying Roy et al.’s study of Meta’s data
center network [28]. The data only allow us to construct re-
liable rack-to-rack matrices. When sampling workloads, we
use the matrices to generate rack-to-rack tra�c, but once a
rack is chosen, we select its hosts uniformly at random. This
may bear semblance to reality: according to Roy et al., Meta’s
racks typically only contain servers in the same role, and load
balancing is used pervasively. We use tra�c matrices from
three di�erent clusters: a database cluster (matrix A), a web
server cluster (matrix B), and a Hadoop cluster (matrix C).
Fig. 6a shows 32-rack samples of the matrices.
Flow sizes and burstiness. We use three �ow size distribu-
tions, estimated from published data in Roy et al.’s study [28].
These are reproduced in Fig. 6b. For inter-arrival times,weuse
the log-normal distribution to model bursty tra�c, and we
modulate the burstiness by adjusting the log-normal shape
parameter f . For low burstiness, we select f =1, and for high
burstiness, we choose f =2.
Maximumload level. When setting a load level, we ensure
that the o�ered rate is less than the link capacity for each link
by specifying the maximum load level that any link can have.
Note that a given maximum load level may result in di�erent
link load distributions, depending on the tra�c matrix and
the topology. Fig. 6c shows the distribution of normalized link

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 693

(a) Tra�c matrices (32-rack sample) (b) Flow size distributions (c)Normalized link load distributions

Figure 6. In the evaluation, we model workloads using data from Roy et al.’s study of Meta’s data center network [28]. The tra�c matrices in
Fig. 6a are extracted from the accompanying dataset, and the �ow size distributions in Fig. 6b are estimated from the published data. Lastly, for
a given topology, the distribution of link loads depends on 1) the tra�c matrix and 2) the degree of oversubscription. Fig. 6c shows the link loads
induced by thematrices in Fig. 6a on two 32-rack topologieswith di�erent overprovisioning. The x-axis is normalized to themaximum link load.

Estimator Time Speed-up

ns-3 10h 48m 26s —
Parsimon 4m 13s 154⇥
Parsimon/C 1m 19s 492⇥
Parsimon/inf 21s 1864⇥

Table 2. Running times and speed-up of Parsimon variants
for �ve seconds of simulated time on a large oversubscribed
network with thousands of hosts. We �nd that Parsimon estimates
latencies orders of magnitude faster than does ns-3. If there is ample
opportunity for clustering or if there are in�nite compute resources,
speed-up is substantially further increased. Measurements were
taken on a 32-core machine.

loads on a 32-rack topologywith the tra�c matrices in Fig. 6a
and two di�erent oversubscription factors. When describing
how loaded a topology is, we will usually specify the average
load of the top 10%most loaded links.
Parsimonvariantsandbaseline. Toestablishabaseline for
Parsimon’s accuracy and performance, we use ns-3 with the
optimized build pro�le. We also consider several Parsimon
variants, summarized in Table 1. By default, Parsimon uses
the custom link-level backend (§4.1) with clustering turned
o�. This expresses a lower bound on Parsimon’s expected
speed-up given a particular machine. Parsimon/C adds clus-
tering to the default variant using the methods described
at the end of §4.2, and Parsimon/ns-3 replaces the default’s
custom backend with ns-3. Lastly, Parsimon/inf provides an
estimate of Parsimon’s performance given in�nite cores and
in�nite memory, computed by adding the run time of the
longest link-level simulation to the �xed costs of network
setup and convolution sampling. This represents an upper
bound on the Parsimon’s achievable performance. All per-
formance measurements are taken on a 32-core AMD Ryzen
Threadripper 3970X.
5.2 Analysis on a Large-Scale Network
Here we evaluate Parsimon’s accuracy and performance on
a 384-rack, 6144-host topology. The topology has eight pods,
48 racks per pod, and 16 hosts per rack, with 2-to-1 oversub-
scription. For the workload, we use matrix B, theWebServer
�ow size distribution, and high burstiness (f = 2). We set a

maximum link load of about 50%, which gives the 100 most
loaded links an average load of 32%, and the top 10% most
loaded links an average load of about 15%.We con�gure all
simulations to run for �ve seconds of simulated time. To es-
tablish a baseline, we �rst run the scenario in ns-3, then we
run the scenario in Parsimon and Parsimon/C (see Table 1).
Due to memory constraints we omit Parsimon/ns-3 here, but
we include its analysis at smaller scale in §5.3.

Fig. 7 shows the accuracy of Parsimon relative to ns-3
across four�owsizebins.We�ndthatacrossall bins, bothvari-
ants accurately estimate tail latencies. If we consider all �ow
sizes together,we�nd thatParsimon andParsimon/C overes-
timate the p99 FCT slowdown by 8.8% and 7.5%, respectively.
Table 2 shows the running time and speed-up for each

estimator, which includes topology generation and convolu-
tion sampling overheads where applicable. While ns-3 took
nearly 11 hours, Parsimonwithout clustering took four min-
utes and 13 seconds, for a speed-up of 154⇥. If we turn clus-
tering on by using Parsimon/C, the running time is further
reduced to one minute and 19 seconds, for a speed-up of
492⇥. 1 In this case, only 25% of links were simulated; the rest
were pruned. Lastly, Parsimon/inf estimates Parsimon’s best
possible performance given in�nite compute resources. The
longest-running single-link simulation took 11 seconds, and
with the additional 10 seconds required for network setup
and convolution sampling, the fastest projected running time
is 21 seconds.
We chose an oversubscribed topology to slightly disad-

vantage Parsimon’s method, as oversubscription can lower
Parsimon’s accuracy. §5.3 analyzes the e�ect of oversubscrip-
tion in more detail. We also ran the above experiment on a
topology without oversubscription, which for the same maxi-
mum load setting increased the top 10%average link load from
15% to 25%. We found Parsimon’s p99 accuracy improved
from 9% to about 7%, while Parsimon/C’s accuracy remained

1We advise caution both in interpreting this number and in generalizing
it to scenarios at large. While our workloads are modeled after industry data,
they are still synthetic. There may be more or less opportunity to cluster and
prune link-level simulations, depending on the structure of real workloads
and the quality of the clustering algorithm.

694 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 7. CDFs of FCT slowdown estimated by ns-3 and two Parsimon variants (note the y-axis). On a large network with 6,144 hosts,
an industry tra�c matrix (matrix B), and 2-to-1 oversubscription in the core, Parsimon’s latency estimates are similar to those produced
by full-�delity simulation. Table 2 shows the performance of each estimator.

Parameter Sample space

Oversubscription 1-to-1, 2-to-1, 4-to-1
Tra�c matrix Matrix A, Matrix B, Matrix C
Flow size distribution CacheFollower, WebServer, Hadoop
Burstiness Low (f =1), High (f =2)
Max load 26% to 83% (continuous range)

Table 3. The sample space for the sensitivity analysis in §5.3.

Figure 8. CDFs of p99 error between Parsimon and ns-3 across all
scenarios drawn from the sample space in Table 3. The distributions
are binned by maximum load. In parentheses, we give the maximum
value for the top 10% average load in each bin. Under common
conditions of low to moderate load, Parsimon’s estimates for the
p99 FCT slowdown are reliably within 10% of the ground truth.

approximately the same. However, because aggregate load in-
creased, ns-3 took 27 hours for �ve seconds of simulated time,
and speed-ups for Parsimon, Parsimon/C and Parsimon/inf
were 152⇥, 872⇥, and 3487⇥, respectively. Parsimon/C bene-
�ted from the increased number of links in each ECMP group-
ing, allowing it to prune 85% of the link-level simulations.
5.3 Sensitivity Analysis at Small Scale
Next we turn our attention to how di�erent aspects of work-
loads and topologies a�ect Parsimon’s accuracy. To be able
to simulate enough scenarios in ns-3 for a sensitivity analysis,
we downsample the topologies and tra�cmatrices to 32 racks.
The resulting topologies have two pods, 16 racks per pod, and
eight hosts per rack, and the number of spines per plane varies
to accommodate di�erent oversubscription factors.
Our approach is as follows. First, we construct a sample

space over the parameters de�ning the workload and the

topology (aside from the number of servers, which is �xed).
The sample space is shown in Table 3. Then, we sample 192
scenarios uniformly at random, and we run ns-3 and the de-
fault Parsimon variant on each of them for several seconds
of simulated time. Next, for each scenario, we take the p99
FCT slowdown estimated by both ns-3 and Parsimon, andwe
compute the error between them. If these values are = and
? respectively, then the error is (? �=)/=. Negative values
indicate that Parsimon produced an underestimate.

Since we have one error value per scenario, the errors give
rise to distributions of error associated with the original sam-
ple space. Nowwhat remains is to determine how the work-
load and topology parameters a�ect error distributions. To
start, recall from the discussion in §3.6 that the magnitude
of error is expected to be load-dependent, with higher errors
typically manifesting at higher loads, so we begin by exam-
ining the e�ect of the maximum load setting on Parsimon’s
accuracy.
Maximumload. Fig. 8 shows the error distributions binned
by maximum load. Among all scenarios, Parsimon’s p99 es-
timates are within 10% of ns-3’s estimates 85% of the time At
high load, we observe larger overestimates of up to 52% in
theworst case. In themost highly-loaded group of scenarios—
with maximum link loads between 56% and 83%—Parsimon
is within 10% of ns-3 62% of the time, with an average error
of about 11%. However, this includes scenarios where 10% of
the links have an average load of up to 68%, which is much
higher than what is reported in the literature. For example,
Roy et al. report that in Meta’s data center network, 99% of
host links are less than 10% loaded, and the top 5% of core
links have loads between 23% and 46% [28]. Among scenar-
ios where the maximum link load is between 26% and 41%,
Parsimon is within 10% of ns-3 100% of the time. If we further
include scenarios with maximum link loads between 41% and
56%, that number falls to 96%. Finally, while Parsimon’s tech-
niques tend to overestimate latencies, in 3% of the scenarios,
Parsimon underestimates p99 slowdown by up to 2%.
Other parameters. We next turn to the e�ects of all other
workload and topology parameters. We start by only consid-
ering scenarios where the maximum link load is less than or
equal to 50%; this will tell us whether any of the parameters

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 695

(a)Max load  50% (b)Max load > 50%

Figure 9.Distributions of p99 error between Parsimon and ns-3, faceted by di�erent workload and topology parameters. For each distribution
we show the median, the quartiles, and a rotated kernel density estimation. We consider the low-load regime (Fig. 9a) and the high-load
regime (Fig. 9b) separately. At low load, the workload and topology parameters only have a modest e�ect on Parsimon’s accuracy, but at high
load, the conditions leading to the largest errors come into view: high load, high oversubscription, with very short �ows. Note the di�erent
y-axes between the two load regimes.

Error Max load Matrix Sizes Oversub f

51.9% 77.6% A WebServer 4-to-1 1
30.1% 67.3% A WebServer 4-to-1 2
29.6% 67.0% A WebServer 4-to-1 2
25.6% 65.9% A WebServer 4-to-1 1
24.6% 73.2% B WebServer 4-to-1 1

Table 4. The �ve scenarios with the highest error values from the
sensitivity analysis in §5.3.

have a large e�ect on accuracy in the low-load regime. Fig. 9a
shows the median error and error distributions as a violin
plot for low-load scenarios grouped by tra�c matrix, �ow
size distribution, oversubscription, and burstiness. Overall,
changes to these parameters appear only to have a modest
e�ect. The choice of tra�c matrix has the clearest trend, but
load is a confounder here: recall from Fig. 6c that di�erent
tra�c matrices yield di�erent link load distributions for the
same maximum load setting.
When we look at the high load regime in Fig. 9b, a clear

picture comes into view. We see much longer tails in error
distributions for matrix A, theWebServer �ow size distribu-
tion, and 4-to-1 oversubscription. Together with Fig. 9a, this
suggests that none of these settings has a strong e�ect on its
own, but coupled together in the high load regime, they have a
pronounced e�ect on Parsimon’s accuracy. Matrix A induces
higher average load and hasmore cross-rack tra�c, making it
more likely for its �ows to encounter multiple simultaneous
bottlenecks. The WebServer �ow size distribution is domi-
nated by short �ows (Fig. 6b), a third of which are smaller
than 1 KB and 80% of which are smaller than 10 KB. Because
more of the tra�c completes within a single round trip, there
is more ephemeral congestion and bandwidth smoothing can
have a larger impact.

Finally, oversubscription has an e�ect at high load: if we
removed all scenarios with 4-to-1 oversubscription, the max-
imum error would only be 20% rather than 52%, even at high
load. In addition to the double counting of delays described in
§3.6, oversubscription can also increase correlations in link
delays. To achieve 4-to-1 oversubscription in topologies as
small as these, there are only four spine switches per plane
forwarding tra�c between groups of 16 racks, leaving rel-
atively few paths through the core. Fewer paths can result
in higher degrees of correlation—especially with matrix A,
whose tra�c is primarily inter-rack (Fig. 6a). Finally, this
setting combined with the short �ows from theWebServer
distributions gives rise to errors of up to 52%.
Table 4 lists the scenarios with the top �ve highest error

values. Four have matrix A, all have theWebServer distribu-
tion, and all �ve have 4-to-1 oversubscription. In this group,
the average maximum load is 70.2%. Since we expect the
combination of all-to-all workload, heavily oversubscribed
topology, and persistently high core utilization to occur rela-
tively infrequently, the data suggest thatParsimonmaintains
good accuracy under common conditions.
MixedWorkloads. Wealso use the small topology to study
the Parsimon prediction error for subsets of tra�c in hetero-
geneous workloads in Appendix §A.
5.4 Analysis of One Con�guration
We pick one representative scenario to examine in more de-
tail, to test if our approach is robust to alternate de�nitions
of tail latency, congestion control protocol, workload, and
topology. To pick a scenario whose accuracy is somewhat
worse than the average case, we rank-order all scenarios by
error and select the one at the 85th percentile. This has matrix
A, the Hadoop �ow size distribution, low burstiness, 2-to-1
oversubscription, and amaximum load of 68% (with a top 10%
average load of 56%).

696 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Figure 10. CDFs of FCT slowdown estimated by ns-3 and
Parsimon for the scenario whose error is at the 85th percentile of
the p99 error distribution. Note the y-axis. Even though the accuracy
here is worse than in the common case, Parsimon’s estimates
remain close across most of the tail. Also shown is Parsimon/ns-3.

Protocol Max load Error in p99 FCT slowdown
< 10 KB 10 KB - 1 MB > 1MB

DCTCP 45% 1.4% 9.2% 15.9%
TIMELY 45% 4.0% 17.9% 13.7%
DCQCN 45% 5.9% 11.6% 12.8%

DCTCP 56% 2.8% 9.2% 14.6%
TIMELY 56% 8.1% 20.0% 11.3%
DCQCN 56% 7.6% 14.6% 12.2%

DCTCP 67% 13.8% 11.3% 13.6%
TIMELY 67% 13.3% 18.2% 5.0%
DCQCN 67% 18.0% 15.2% 13.6%

Table 5. Prediction error of Parsimon/ns-3 for estimated p99 FCT
slowdown with three di�erent congestion control protocols for
the sample con�guration at di�erent load levels and for di�erent
request sizes.

Tail distribution. Operators may di�er in their de�nitions
of tail latency, e.g., focusing on the 90th or 99.9th percentile,
rather than just the 99th FCT slowdown. Fig. 10 shows the tail
of the cumulative distribution of FCT slowdown for di�erent
�ow sizes for the selected con�guration, for ns-3 and each of
the Parsimon variants. The prediction error is similar across
the tail of thedistribution for this scenario,with little accuracy
di�erence between any of the variants.
Transport protocols. We use the sample scenario to test
the generality of Parsimon to two additional congestion con-
trol protocols, DCQCN [36] and TIMELY [19]. DCQCN is
designed for RDMA tra�c, while TIMELY uses network de-
lay, rather than ECN signals, to detect congestion. To focus
on prediction error for our approximation methods, we use
the pre-existing ns-3 implementation of the protocols as the
Parsimon link level simulator for this part of the evaluation.
Note that Parsimon and Parsimon/ns-3 exhibit a few percent
di�erence in p99 error for DCTCP for this con�guration. Be-
cause the prediction error for di�erent congestion control
protocols may depend on the amount of congestion, we also
run the experiment at varying load levels.

Table 5 shows the prediction error for Parsimon/ns-3 rela-
tive to ns-3 in the estimated p99 FCT slowdown at three load

levels for the three transport protocols, aggregated by request
size. For this con�guration, Parsimon is most accurate for
small �ows and low to moderate maximum link utilization,
and that is true for all three congestion control protocols.
DCTCP has somewhat lower error for small and medium size
�ows at low to moderate utilization. Relative error is higher
for larger transfers and highermaximum link utilization,with
no clear pattern in the error for di�erent protocols.
Simulated link failures. We also use the sample con�gu-
ration to examine the prediction accuracy for topologies with
simulated link failures in Appendix §B.
6 Conclusion
In this paper, we propose and evaluate a newmethod for com-
puting a conservative estimate of �ow-level tail latency for
large scale data center networks, given an arbitrary tra�cma-
trix, topology, �ow size distribution, and inter-arrival process.
Our approach decomposes the problem into a large number of
individual link simulations, specially constructed to produce
accurate estimates of the probability distribution of delay
contributed by congestion at each link.We thenmechanically
combine these link-level delay distributions to produce �ow-
level estimates. On a large-scale network using a commercial
workload, our approach outperforms ns-3 by a factor of 492
on a single multicore server with a loss of accuracy of less
than 9% in the tail of the latency distribution.

Acknowledgments. We are grateful to Vincent Liu, Je�
Mogul, our shepherdArpitGupta, and the anonymous review-
ers for their feedback and useful comments. This work was
supported inpartbyNSFgrantsCNS-2006346,CNS-2006827, a
CiscoResearchCenterAward, and aGoogle ResearchAward.

References
[1] A. G. Alcoz, A. Dietmüller, and L. Vanbever. SP-PIFO:

Approximating Push-In First-Out Behaviors using
Strict-Priority Queues. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 59–76, 2020.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, pages 63–74, 2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A. Vahdat, and M. Yasuda. Less Is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center.
In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 253–266, 2012.

[4] A. Andreyev. Introducing Data Center Fabric, the
Next-Generation Facebook Data Center Network.
h�ps://engineering.fb.com/2014/11/14/production-
engineering/introducing-data-center-fabric-the-
next-generation-facebook-data-center-network/, 2014.

[5] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz.
The E�ects of Asymmetry on TCP Performance. Mobile

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 697

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

Networks and Applications, 4(3):219–241, 1999.
[6] F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios.

Open, Closed, and Mixed Networks of Queues with
Di�erent Classes of Customers. Journal of the ACM
(JACM), 22(2):248–260, 1975.

[7] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes. Borg, omega, and kubernetes. ACM Queue,
14:70–93, 2016.

[8] M. Dalton, D. Schultz, J. Adriaens, A. Are�n, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.
Docauer, et al. Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 373–387, 2018.

[9] A.Demers, S.Keshav, andS. Shenker. Analysis andSimu-
lationof a FairQueueingAlgorithm. InProceedings of the
ACM SIGCOMM 1989 Conference, pages 514–528, 2020.

[10] R. M. Fujimoto. Parallel Discrete Event Simulation.
Communications of the ACM, 33(10):30–53, 1990.

[11] P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh,
and T. E. Anderson. Backpressure Flow Control. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 779–805, 2022.

[12] J. R. Jackson. Networks of Waiting Lines. Operations
Research, 5(4):518–521, 1957.

[13] F. P. Kelly. Networks of Queues. Advances in Applied
Probability, 8(2):416–432, 1976.

[14] G. Kumar, N. Dukkipati, K. Jang, H. M.Wassel, X. Wu,
B.Montazeri, Y.Wang,K. Springborn,C.Alfeld,M.Ryan,
et al. Swift: Delay is Simple and E�ective for Congestion
Control in the Datacenter. In Proceedings of the ACM
SIGCOMM 2020 Conference, pages 514–528, 2020.

[15] J. Li, N. K. Sharma, D. R. K. Ports, and S. D. Gribble. Tales
of the tail: Hardware, os, and application-level sources
of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, page 1–14, 2014.

[16] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z.Cao,M.Zhang, F.Kelly,M.Alizadeh, andM.Yu. HPCC:
High Precision Congestion Control. In Proceedings of
the ACM SIGCOMM 2019 Conference, page 44–58, 2019.

[17] V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.
F10: A Fault-Tolerant Engineered Network. In 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 399–412, 2013.

[18] V. Misra, W.-B. Gong, and D. Towsley. Fluid-Based
Analysis of a Network of AQMRouters Supporting TCP
Flows with an Application to RED. In Proceedings of the
ACM SIGCOMM 2000 Conference, pages 151–160, 2000.

[19] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and
D. Zats. TIMELY: RTT-Based Congestion Control for
the Datacenter. In Proceedings of the ACM SIGCOMM
2015 Conference, page 537–550, 2015.

[20] J. C. Mogul and J. Wilkes. Nines are Not Enough: Mean-
ingfulMetrics forClouds. In Proceedings of theWorkshop
on Hot Topics in Operating Systems, pages 136–141, 2019.

[21] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A Receiver-Driven Low-Latency Transport
Protocol Using Network Priorities. In Proceedings of the
ACM SIGCOMM 2018 Conference, pages 221–235, 2018.

[22] D. Nicol and R. Fujimoto. Parallel Simulation Today.
Annals of Operations Research, 53(1):249–285, 1994.

[23] ns-3 Network Simulator. h�ps://www.nsnam.org, 2020.
[24] OpenSim. OMNeT++. h�ps://www.omnetpp.org, 2018.
[25] OPNET Network Simulator, 2015.
[26] V. Paxson and S. Floyd. WhyWe Don’t Know How to

Simulate the Internet. In Proceedings of the 1997Winter
Simulation Conference, pages 1037–1044, 1997.

[27] K. Ramakrishnan and S. Floyd. A Proposal to Add
Explicit Congestion Noti�cation (ECN) to IP. Technical
report, RFC 2481, January, 1999.

[28] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren.
Inside the Social Network’s (Datacenter) Network. In
Proceedings of the ACM SIGCOMM 2015 Conference,
pages 123–137, 2015.

[29] A. Singh, J. Ong,A.Agarwal, G.Anderson,A.Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Ger-
mano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,
J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat. Jupiter
Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network. In Proceedings
of the ACM SIGCOMM 2015 Conference, page 183–197,
2015.

[30] B. K. Szymanski, A. Saifee, A. Sastry, Y. Liu, and
K. Madnani. Genesis: A System for Large-scale Parallel
NetworkSimulation. InProceedings of the 16thWorkshop
on Parallel and Distributed Simulation (PADS), 2002.

[31] R. Winter, R. Hernandez, G. Chawla, A. Faustini, C. Sol-
der, T. Scheibe, D. Law, S. Ayandeh, B. Booth, B. Kohl,
C. Lavacchia, S. Krishnamurthy, R. Karthikeyan, E. Mul-
tanen, andM.Wadekar. Ethernet Jumbo Frames. h�p:
//www.ethernetalliance.org/wp-content/uploads/
2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf, 2009.

[32] Q. Yang, X. Peng, L. Chen, L. Liu, J. Zhang, H. Xu, B. Li,
and G. Zhang. DeepQueueNet: Towards Scalable and
Generalized Network Performance Estimation with
Packet-Level Visibility. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 441–457, 2022.

[33] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-
ResolutionMeasurement ofDataCenterMicrobursts. In
Proceedings of the 2017 Internet Measurement Conference,
pages 78–85, 11 2017.

[34] Q. Zhang, K. K. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu.
MimicNet: Fast Performance Estimates for Data Center
Networks with Machine Learning. In Proceedings of the
ACM SIGCOMM 2021 Conference, pages 287–304, 2021.

698 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://www.nsnam.org
https://www.omnetpp.org
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf

Name Matrix Sizes Max load f

W0 A CacheFollower ~20% 2
W1 B WebServer ~20% 2
W2 C Hadoop ~20% 2

Table 6. The three workloads mixed together in §A.

[35] S. Zhao, R. Wang, J. Zhou, J. Ong, J. C. Mogul, and
A. Vahdat. Minimal Rewiring: E�cient Live Expansion
for Clos Data Center Networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 221–234, 2019.

[36] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of the ACM SIGCOMM
2015 Conference, page 523–536, 2015.

A MixedWorkloads
Parsimon’s methods are designed to estimate performance
distributions rather thanper-�owmetrics.However, it is often
useful to aggregate FCT performance estimates in di�erent
ways. For example, an operator may wish to estimate the
performance of individual virtual networks or individual ser-
vices. In this section,weconduct a simple experiment to assess
Parsimon’s ability to estimate performance for separate ag-
gregates.

We start bymixing three di�erentworkloads—eachwith its
own tra�c matrix and �ow size distribution—into one work-
load. Table 6 summarizes their di�erences. Eachworkload has
a maximum load setting of 20% and a high burstiness setting
(f =2), and their combination results in a maximum link load
of about 50%. We run the combined workload on the small-
scale topology with 2-to-1 oversubscription from §5.3, and
we observe the accuracy for each workload faceted by �ow
size. Fig. 11 shows the cumulative distribution function (CDF)
of FCT slowdown for ns-3 and Parsimon. We observe that
across all workloads and �ow size bins, Parsimonmaintains
good accuracy.

B Link Failures
One operational use case for Parsimon is to estimate counter-
factual network performance in the presence of potential
link failures or planned outages. In this section, we use the
sample scenario from §5.4 (matrix A, the Hadoop �ow size
distribution, low burstiness, 2-to-1 oversubscription, and a
maximum link load of 68%) to evaluate Parsimon for this
use case. For this con�guration, the error in estimated p99
FCT slowdown between ns-3 and Parsimonwas around 10%.
Since link failures increase the load on the remaining links,
we should expect some decreased accuracy for Parsimon in
this case. On the other hand, simulating all possible network
failures in ns-3 would be prohibitively expensive.

Figure 11. CDFs of FCT slowdown for ns-3 and Parsimon,
bucketed by workload and �ow size. Note the y-axes. When mixing
workloads in a single simulation, Parsimon can accurately estimate
performance distributions for individual workloads in addition to
full-network aggregates.

(a) p99 errors (b) CDF with the max p99 error (0.144)

Figure 12. Errors between ns-3 and Parsimon in estimated FCT
slowdowns when there is a link failure. Fig. 12a shows the error
distribution for p99 estimates from ten trials—eachwith one random
link failure—with the dashed line showing the error with no link
failure. Fig. 12b shows the CDF of FCT slowdowns for the trial with
the highest p99 error. For the small oversubscribed topology used in
this experiment, a link failure modestly increases estimation error.

In selecting links to fail, we only consider links in ECMP
groupings, such that the failure of one link causes tra�c to be
routed to the other links in the group. In Meta’s data center
fabric [4], this corresponds to links between fabric switches
and spine switches and links betweenToR switches and fabric
switches. In the small 32-rack topology used here (§5.3 for
details), there are 96 such links. We run ten trials, each time
picking a randomoneof the links to fail, keeping theworkload
constant. We note that this setting represents a particularly
bad case for Parsimon: in addition to the high link loads, the
scenario uses an all-to-all communication pattern on a small
and oversubscribed topology, which means each link failure
in the core can have an outsized e�ect on other core links.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 699

0

1

2

3

4

5

6

Figure 13. The parking lot topology used in §C. In this topology,
zero sends to six, one sends to two, three sends to four, and �ve
sends to six. We refer to the tra�c from zero to six asmain tra�c
and to all other tra�c as cross tra�c. The bolded red links contain
both main tra�c and cross tra�c, and we call them congested links.

Figure14.CDFsof FCTslowdownestimatedbyns-3 andParsimon
for themain tra�c, bothwith andwithout cross tra�c.When there is
cross tra�c, errors arising from �rst-hop delays are second-order, as
most delays are cause by queueing on the congested links. However,
when there is no cross tra�c, those errors become dominant. The
graph on the right uses the same workload as the one on the left,
except the cross tra�c is removed. Note the di�erent x-axes.

Fig. 12a shows the distribution of errors in p99 estimates.
With a single link failure, the errors range from 11% to 14%,
with amedian error of 12%. Fig. 12b shows the estimatedCDFs
of FCT slowdown for the trial with the highest error.

C Studying Error Sources
Recall from §3.6 that Parsimon’s approximations induce er-
rors in its end-to-end estimates. In this appendix, we use
microbenchmarks to study the e�ects of some pathological
cases on Parsimon’s accuracy. For an initial discussion on
these topics, please refer to §3.6.
Throughout, we use the parking lot topology shown in

Fig. 13 with 40 Gbps links. The �ow of tra�c through the
topology is shown with arrows and described in the caption.
We refer to the tra�c fromnode zero tonode six asmain tra�c
and to all other tra�c as cross tra�c. The bolded red links
contain both main tra�c and cross tra�c, and we call them
congested links. In all experiments, we set the load of the main
tra�c to 25%.When there is cross tra�c, its load is also 25%,
yielding a total load of 50% on all three congested links. Lastly,
to isolate the e�ects on the main path from zero to six, we
measure FCT slowdowndistributions only for themain tra�c.
C.1 First-Hop Delays
First, consider the case where all tra�c in Fig. 13 originates
from node zero and is destined to node six, and recall that

all links have the same capacity. In a real network, all queue-
ing in this scenario would occur at the �rst hop. Subsequent
hops would see tra�c completely smoothed, and they would
therefore contributing zero queueing delay.

If we re-examine how link-level topologies are constructed
in Fig. 4,we see that this smoothing e�ect is captured, since all
tra�cpasses throughedge linkswith theoriginal edge-linkca-
pacities. However, for the link-level topologies in cases B and
C of Fig. 4, it is possible for �rst-hop edge links to contribute
delays thatwill be (erroniously) attributed to the target link. In
most cases,weexpect themagnitudeof this error tobe small.A
target linkwill almost always havemultiple sources, and only
the tra�c passing through the target link is simulated. Con-
sequently, the �rst-hop delays in link-level simulation are ex-
pected to be small compared to delays accrued at target links.
The scenario which we �rst described—in which all traf-

�c on a path originates from a single source—represents the
worst case. Here, all target links (aside from the �rst hop) con-
tribute no queueing delay, thus magnifying the error induced
by repeatedly counting the �rst-hop delays for each target
link. Fig. 14 shows this e�ect. In this experiment, the main
tra�c consists of one kilobyte �ows, and the cross tra�c con-
sists of 10 kilobyte �ows. All tra�c follows a Poisson arrival
process. With cross tra�c, we see from the graph on the left
that Parsimon accurately estimates the FCT slowdown dis-
tribution of the main tra�c. However, when we remove the
cross tra�c, as done to produce the graph on the right, we see
substantial error in Parsimon’s estimates due to the �rst-hop
delayspreviouslydescribed.Wenote that this error exists even
when there is cross tra�c, but the error contributes so little to
total delays—which are dominated by queueing at congested
links—that Parsimon still maintains good accuracy.
C.2 Correlated and Simultaneous Delays
Next we examine the e�ect of correlated and simultaneous
delays on Parsimon’s accuracy.We begin by arti�cially corre-
latingdelays and examining the e�ect on estimated slowdown
distributions.Note that if thedelays alongapatharepositively
correlated—for example, if the probability of encountering
delay at hop 8+1 is higher given there is delay at hop 8—then
we also expect to see more simultaneous delays along the
path. We create these correlated delays by modulating the
cross tra�c. For regular unmodi�ed cross tra�c, we use the
same setup as in the previous subsection (§C.1). To arti�cially
correlate delays,we replicate the exact sequence of�ows from
source one on sources three and�ve in Fig. 13, so that all three
sources of cross tra�c send the same �ows at the same time.
This produces an extreme case of correlation.

Because short-�ow and long-�ow estimates have di�erent
sources of error, we separate the two cases when generating
the main tra�c. For short �ows we use the same one kilobyte
�ows as before, and for long �ows we generate �ows that
are 10 times the maximum bandwidth-delay product, or 400

700 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

(a) Short �ows (1 KB), Poisson cross tra�c

(b) Long �ows (400 KB), Poisson cross tra�c

Figure 15. CDFs of FCT slowdown estimated by ns-3 and
Parsimon for the main tra�c with regular or identical cross tra�c.
The main tra�c consists either of short �ows (Fig. 15a) or long
�ows (Fig. 15b). When delays are arti�cally correlated by replicating
the same cross tra�c across hosts, accuracy decreases for both
short and long �ows, with long �ows seeing larger errors. In fact,
long-�ow estimates have signi�cant error even when delays are not
explicitly correlated; this is due to the simultaneous delays induced
by the smooth Poisson cross tra�c.

Figure 16. CDFs of FCT slowdown for the same scenario as in
Fig. 15b, but with bursty cross tra�c (log-normal inter-arrival times,
f =2). When the cross tra�c is bursty, long �ows experience fewer
simultaneous delays with regular cross tra�c. This results in less
error in Parsimon’s estimates.

kilobytes. Fig. 15 shows the e�ect of correlating delays on
Parsimon’s accuracy for short and long �ows.
Short-�owmaintra�c. In the caseof short�ows (Fig. 15a),
a chief e�ect of increased correlation is to alter the probability
that a �ow will encounter queueing. For example, suppose
a short �ow traverses only two links at 50% utilization. If
the delays of the two links are independent, we can estimate
the probability that the �ow encounters no delay (i.e., no
queueing) as 50% ⇥ 50% = 25%. However, if the delays are

perfectly positively correlated, then the probability that the
�owencounters no delay increases to 50%. Parsimon does not
capture this e�ect because it treats all links independently;
in this experiment, this manifests as slight overestimates in
FCT slowdown distributions.
Long-�owmain tra�c. While the total delay for a short
�ow can be thought of as the sum of individual link delays,
the same reasoning does not straightforwardly extend to long
�ows. Unlike a short �ow, a long �ow occupies multiple hops
at the same time, and only the bottleneck at each instant con-
tributes to end-to-end delay. Summing link delays is therefore
onlyappropriate if di�erenthops contribute signi�cantdelays
at largely di�erent times. However, Parsimon always aggre-
gates individual link contributions by adding them, regardless
of whether a link was the bottleneck when the delay was in-
curred.Whenwe turnour attention to Fig. 15b,we see that not
only is the e�ect of identical cross tra�cmore severe, but also
there is signi�cant error evenwith regular cross tra�c. This is
because the cross tra�c is smooth (recall that it uses uniform
�owsizes andaPoissonarrival process). Smooth tra�c results
in small but frequent delays at congested links, increasing the
chance that long �ows will experience simultaneous delays.
In Fig. 16, we duplicate the scenario in Fig. 15b, except we

make the cross tra�c bursty by using a log-normal inter-
arrival time distribution with shape parameter f =2. Because
the cross tra�c is bursty, there is less simultaneous delay
in the regular case, and the induced error is less dominant.
Consequently, Parsimon’s estimates are closer to the ground
truth in the graph on the left. Identical cross tra�c still in-
duces large and frequent simultaneous delays, so the errors
remain in the graph on the right.

D Clustering Details
Here we brie�y describe the distance function and the thresh-
olding critera we use in the evaluation (§5) for clustering link-
level simulations. First, recall from §4.2 that the link features
we extract are 1) the average load, 2) the �ow size distribution,
3) the inter-arrival time distribution. For any two links, we
compute distances between their features, and we cluster the
links together if the distances are under some threshold.
Distance functions. To compute a distance between link
loads, we compute the error. If0 and1 are two link loads, error
4 is computed as

4 =
|0�1 |
0

.

To compare distributions, there are many options. We opt for
a function that is 1) easily interpretable, 2) scale-independent,
and 3) adequately captures di�erences in the tail. To com-
pute a distance between two distributions, we extract 1,000
percentiles from each of them, and we compute a weighted
mean absolute percentage error (WMAPE) between them.
Suppose� and ⌫ are the sequences of extracted percentiles.

USENIX Association 20th USENIX Symposium on Networked Systems Design and Implementation 701

Then, WMAPE is computed as

WMAPE =
Õ=

8=1 |�8�⌫8 |Õ=
8=1 |�8 |

.

For our purpose,�8 and ⌫8 are non-negative for all 8 . We note
it is a bit counterintuitive for our distance functions not to
commute. However, we have found that it is easy to set thresh-
olds for these metrics, and they produce adequate clustering
for the workloads under study.
Distance thresholds. Recall that we only want to cluster
two links together if we expect their simulation outputs to be
similar. Consequently, when setting a threshold for link loads
we must consider the network and the workload being as-
sessed. At high load, small di�erences in link loads can yield

large di�erences in the tails of FCT distributions; in these
cases, we typically set tighter thresholds to preserve accuracy
(as usual, this is subject to a speed-accuracy trade-o�). For
highly-loaded networks, we commonly require 4 <0.001 or
4 <0.002 for links to be clustered together. Ideally, this deci-
sion would be made on a link-by-link basis, so that tighter
thresholds would be set only for high-load links—doing so
may allow for more liberal clustering of the low-load links
contributing little delay, resulting in more pruned simula-
tions. However, the current prototype sets a single threshold
per simulation. To set a threshold between distributions, we
typically requireWMAPE<0.1.

702 20th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

	Abstract
	1 Introduction
	2 Parsimon Overview
	3 Key Methods: Decompose and Aggregate
	3.1 Generating Link-Level Workloads
	3.2 Generating Link-Level Topologies
	3.3 Post-Processing Link-Level Results
	3.4 Aggregating Link-Level Estimates
	3.5 Primary Source of Speedup
	3.6 Primary Sources of Error

	4 Complementary Methods
	4.1 Fast Link-Level Simulation
	4.2 Clustering and Pruning Simulations

	5 Evaluation
	5.1 General Setup
	5.2 Analysis on a Large-Scale Network
	5.3 Sensitivity Analysis at Small Scale
	5.4 Analysis of One Configuration

	6 Conclusion
	References
	A Mixed Workloads
	B Link Failures
	C Studying Error Sources
	C.1 First-Hop Delays
	C.2 Correlated and Simultaneous Delays

	D Clustering Details

