é} usenix
4 THE ADVANCED

COMPUTING SYSTEMS
ASSOCIATION

Scalable Tail Latency Estimation for
Data Center Networks

Kevin Zhao, University of Washington; Prateesh Goyal, Microsoft Research;
Mohammad Alizadeh, MIT CSAIL; Thomas E. Anderson, University of Washington

https://www.usenix.org/conference/nsdi23/presentation/zhao-kevin

This paper is included in the
Proceedings of the 20th USENIX Symposium on
Networked Systems Design and Implementation.

April 17-19, 2023 * Boston, MA, USA
978-1-939133-33-5

Open access to the Proceedings of the
20th USENIX Symposium on Networked
Systems Design and Implementation
is sponsored by

alllasc flal] aeala

.% King Abdullah University of

Science and Technology

+ B S————
T e »

Scalable Tail Latency Estimation for Data Center Networks

Kevin Zhao
University of Washington

Prateesh Goyal
Microsoft Research

Abstract

In this paper, we consider how to provide fast estimates of
flow-level tail latency performance for very large scale data
center networks. Network tail latency is often a crucial metric
for cloud application performance that can be affected by a
wide variety of factors, including network load, inter-rack
traffic skew, traffic burstiness, flow size distributions, oversub-
scription, and topology asymmetry. Network simulators such
as ns-3 and OMNeT++ can provide accurate answers, but are
very hard to parallelize, taking hours or days to answer what
if questions for a single configuration at even moderate scale.
Recent work with MimicNet has shown how to use machine
learning to improve simulation performance, but at a cost
of including a long training step per configuration, and with
assumptions about workload and topology uniformity that
typically do not hold in practice.

We address this gap by developing a set of techniques to
provide fast performance estimates for large scale networks
with general traffic matrices and topologies. A key step is
to decompose the problem into a large number of parallel
independent single-link simulations; we carefully combine
these link-level simulations to produce accurate estimates of
end-to-end flow level performance distributions for the entire
network. Like MimicNet, we exploit symmetry where possible
to gain additional speedups, but without relying on machine
learning, so there is no training delay. On a large-scale net-
work where ns-3 takes 11 to 27 hours to simulate five seconds
of network behavior, our techniques run in one to two minutes
with accuracy within 9% for tail flow completion times.

1 Introduction

Counterfactual simulation—to answer “what if” questions
about the interaction of network protocols, workloads, topol-
ogy, and switch behavior—has long been used by both re-
searchers and practitioners as a way of quantifying the effect
of design options and operational parameters [2, 16, 21, 23—
26, 36]. As production data center networks have scaled up in
bandwidth and scaled out in size [4, 29], however, network sim-
ulation has failed to keep pace. Although there is ample par-
allelism at a physical level in large scale data center networks,
it has been difficult to realize significant speedup with packet-
level network simulation [22, 30]. As packets flow through the
network, the scheduling decisions at each switch affect the
behavior of every flow traversing that switch, and therefore
the scheduling decisions at every downstream switch, and—
with congestion control—future flow behavior, in a cascading
web of very fine-grained interaction. In our own experiments
using ns-3 [23], for example, simulating a 384-rack, 6,144-host
network on a single thread of a modern desktop CPU took 11

Thomas E. Anderson
University of Washington

Mohammad Alizadeh
MIT CSAIL

to 27 hours of wall-clock time to advance five seconds of sim-
ulated time. While parallel techniques for discrete event sim-
ulation exist [10], recent work has demonstrated their limited
efficacy for speeding up simulations of highly interconnected
data center networks [34]. As a result, packet-level network
simulation today is mostly used for small scale studies.

The need for faster network simulation has spawned recent
efforts to use machine learning to model how different parts
of the network affect each other [32, 34]. While promising,
these approaches have several limitations. MimicNet requires
hours-long retraining for new workloads and network con-
figurations, and it only accelerates simulations of uniform
fat trees with uniform traffic among equally-sized clusters of
machines [34]. DeepQueueNet relaxes some of MimicNet’s
restrictions but does not model congestion control, which can
be a first-order determiner of performance [32].

This paper aims to address this gap, to develop techniques
for fast approximate simulation of large scale networks with
arbitrary workloads and topologies. Our work involves no
training step, aiming to produce near-real time results even at
scale. In addition to reducing the cost of evaluating new pro-
tocols, another goal is to provide real-time decision support
for network operators, such as warnings of SLO violations if
links fail [17, 20], advice on task placement of communication-
intensive jobs [7], and predicting the performance impact of
planned partial network outages and upgrades [8, 35].

A key observation is that we could achieve high degrees of
parallelism if we could somehow disentangle the interactions
between switch queues, allowing us to study the behavior of
the traffic on each link in isolation. Of course, switch queues
are notin reality completely disentangled. The packets for any
particular flow experience a very specific set of conditions at
each switch, and those conditions are affected by the presence
of upstream bottlenecks which can smooth packet arrivals
for competing flows at downstream switches. The congestion
response for a flow depends on the combination of conditions
at every switch along the path.

However, large scale data center networks are typically
managed with the goal of delivering consistent high perfor-
mance to applications. While congestion events do occur, they
are often chaotic rather than persistent, popping up and then
disappearing in different spots due to the inherent burstiness
and flow size distribution of applications, rather than due to
some long-term mismatch between demand and capacity in
some portion of the network [33]. Further, we are often inter-
ested in aggregate behavior, such as the frequency of poor
flow performance, rather than the behavior of each individual
packet or flow.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 685

Parsimon
10 KB to 100 KB

—— Ground truth model

Smaller than 10 KB
1.00q -

0.95 N
w
8 0.90 N
0.85 N
0.80 T T T T T T T T
100 Kl_O&K_Bj_o_l_ MB Larger than 1 MB

0.95 | .

L
0 0.90 1
o
0.85 N
0.80 T T T T T T

T T
25 5.0 7.5 10.0 25 5.0 7.5 10.0
FCT slowdown FCT slowdown

Figure 1. CDF of ns-3 versus Parsimon for flow completion time
(FCT) slowdown across multiple flow size ranges, zoomed into
the tail. While ns-3 took nearly 11 hours to produce these results,
Parsimon took one minute and 19 seconds, end-to-end. Results
were taken on a 6,144-host topology with an industry traffic matrix,
2-to-1 oversubscription, and bursty traffic.

To model aggregate behavior, our hypothesisis that we can
approximate the distribution of end-to-end flow performance
for a particular workload running on a large scale network by
modeling the frequency and magnitude of local congestion
events at each link along individual paths. A long flow will
of course experience multiple congestion events during its
lifetime, but most of these will occur at different points along
the path at different times. Modeling the effect of simultaneous
congestion events, and the response of the congestion algo-
rithm to multiple simultaneous bottlenecks, is second order.

Our hypothesis is related to the concept of product-form
solutions in queuing theory. For certain classes of queueing
networks (e.g., Jackson [12] and BCMP networks [6]), the equi-
librium distribution of queue lengths can be written in product
form, i.e., the state of an individual queue is only dependent
on the traffic it receives and not on the state of the rest of the
network. These results generally require specific assumptions
about job arrival processes (e.g., Poisson), service-time distri-
butions (e.g., Exponential), and queueing/routing disciplines
(e.g., FIFO or processor-sharing queues), and there has been
much theoretical work on identifying classes of queueing
networks that admit product-form solutions [13]. Although
data center networks do not strictly conform to these condi-
tions and the dynamics of each individual queue can be quite
complex (e.g., due to congestion control), our hypothesis is
that product-form solutions are approximately true in most
realistic settings, and therefore we can analyze individual
queues in isolation and combine the results to approximate
end-to-end network behavior.

We built Parsimon to directly test this hypothesis. First,
we deconstruct the network topology into a large number of
simple and fast simulations where each can be run entirely
in parallel by a single hyperthread. Each simulation aims to
collect the distribution of delays that flows of a particular

size would experience through a single link, assuming that
the rest of the network is benign. We then combine these
simulated delay distributions to produce predictions of the
end-to-end delay distribution, again for flows of a given size.
At each step, we make conservative assumptions for how
delays should be computed and combined. In many settings,
researchers and operators are interested in keeping tail behav-
ior well-managed, making a conservative assumption more
appropriate than an optimistic one. Finally, Parsimon clusters
links with common traffic characteristics, eliminating much
of the overhead of simulating parallel links in the core of the
network as well as edge links used by replicated or parallel
applications, further improving simulation performance.

Because validation against detailed packet-level simulation
at scale is so expensive, we focus our study on a single widely
used transport protocol, DCTCP [2], with FIFO queues with
ECN packet marking at each switch [27]. We also focus on
queue dynamics rather than packet loss; most data center
networks are provisioned and engineered for extremely low
packet loss [28, 29]. We note that these assumptions are not
fundamental to our approach. We show Parsimon general-
izes to two other transport protocols, DCQCN [36] and the
delay-based TIMELY [19]. Validation of other transport pro-
tocols [3, 14, 16, 21], switch queueing disciplines [1, 9, 11, 21],
and packet loss remains future work. We note that modern
data center transport layer protocols are adept at quickly
adapting to the presence and absence of congestion, and so
we caution our results may not extend to older transport
protocols where convergence time is a large factor.

Parsimon speeds up simulations by reasoning about links
independently, which enables massive parallelization, but at
acostin accuracy. As we will see in §3.6, anything that creates
standing congestion both at the core and at the edge, or when
cross traffic is correlated across multiple hops, will result in
less accurate estimates. While our methods are designed to fa-
vor overestimating rather than underestimating tail latencies,
this property is only evaluated experimentally (§5). In general
there is no formal guarantee, since factors like congestion
control can in theory behave in arbitrary ways that render
less appropriate the approximation of considering links inde-
pendently. We assume that we can simulate for long enough
for the network to reach equilibrium; studies of short term
transient behavior should not use our approach. We do not
provide predictions at the level of an individual flow, but we
are able to show that Parsimon is accurate for sub-classes of
traffic for mixed workloads. We do not attempt to model end
host scheduling delay of packet processing, even though that
may have a large impact on network performance [14, 15];
we leave addressing that to future work.

To assess accuracy, we compare distributions of flow com-
pletion time (FCT) slowdown, defined as the observed FCT di-
vided by the best achievable FCT on an unloaded network, and
we say a flow is complete when all of its bytes have been deliv-
ered to its destination. Fig. 1 shows a sample of our results for

686 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

the 6,144 host network mentioned above, running a published
industry traffic matrix [28] and flow size distribution [21], and
with standard settings for burstiness and over-provisioning.
We describe the details of this and other experiments later in
the paper. Depicted are FCT slowdown distributions binned
by flow size. While ns-3 took nearly 11 hours on this con-
figuration, Parsimon was able to match flow-size specific
performance of ns-3 in 79 seconds (a 492 times speedup) on a
single 32-way multicore server with an error of 9% at the 99th
percentile. Given a small cluster of simulation servers, we
estimate a completion time of 21 seconds using our approach.

In our evaluation, we scan the parameter space to identify
circumstances where our approximations are less accurate.
Link clustering improves performance but hurts accuracy
somewhat; this tradeoff can be avoided by using more simula-
tion cores. Without clustering, accuracy suffers when there is
high utilization of links in the core (above 50%), there are high
levels of oversubscription, and a large fraction of network
traffic is due to flows that finish within a single round trip.
Generally, a combination of factors is required for poor accu-
racy. In 85% of the configurations we test, the error relative
to ns-3 is under 10%.

Parsimon source code and evaluation scripts are publicly
available at https://github.com/netiken.

2 Parsimon Overview

This paper describes a set of methods to quickly and scalably
estimate distributions of flow performance in data center
networks. These techniques are implemented in a prototype
called Parsimon, designed to provide the following:

o Fast, scalable estimates. We aim to supply estimates
two to three orders of magnitude faster than full-fidelity
simulation. Given enough cores, execution time should
remain bounded regardless of network size.

e Tightlatency bounds, including tail performance.
Our approximations bias slightly towards overestima-
tion, but still provide close estimates even for the 95th
or 99th percentile of the distribution for a given flow
length.

e Minimal restrictions on topology and workload.
Our methods are largely independent of both topology
and workload, although some combinations of topol-
ogy and workload will have lower accuracy.

Fig. 2 illustrates the intuition behind its core method, and
Fig. 3 depicts its workflow. The user supplies 1) a description
ofthe topology, as a set of nodes and links, and 2) the workload,
as a set of flows and routes. In our implementation, we gen-
erate the flow list by sampling from the traffic matrix and the
flow size distribution, with inter-arrival times determined by
a burstiness parameter. Once inputs are supplied, Parsimon
proceeds in several steps:

Decomposition. To start, flows are assigned to each link
they traverse, e.g., for a fat tree using ECMP. Then, for each

link I, Parsimon generates a custom backend simulation with
a topology selected to determine—as accurately as possible—
the contribution of I to the end-to-end flow completion times
(FCTs) of the flows passing through it. Each of these backend
simulations can run in parallel.

Clustering. Depending on the size of the topology, there
may be tens or hundreds of thousands (or more) of link-level
simulations to perform. Fortunately, data center topologies
exhibit notable symmetries, and industry has reported that
the same is true for many of their workloads [28]. Parsimon
can optionally cluster links with similar workloads together.
Only one representative from each cluster need be simulated;
the rest of the link-level simulations are pruned. Clustering
is discussed in more detail in §4.2.

Simulation. The next step is to simulate all cluster repre-
sentatives in parallel. The decomposition step resulted in a
topology and a workload for each link-level simulation, and
we can use any simulation backend. Our prototype supports
two: ns-3 and a custom high-performance link-level simula-
tor (§4.1). This allows us to directly validate our link-level
simulator against ns-3. However, other efficient models, such
as fluid flow [18] or machine learned models could be used
here instead, for different tradeoffs of performance and ac-
curacy. Each link-level simulation produces a distribution of
the delay contributed by that link to the flow completion time
(FCT), bucketed by flow size. Note this is not the link’s propa-
gation delay—we calculate that contribution directly from the
topology. These distributions—described in the next section
(8§3)—are organized according to the original input topology,
as depicted in Fig. 2. Recall that only one representative from
each cluster is simulated; every other link is populated with
the distributions of its cluster representative.

Aggregation. The last step is to aggregate the link-level
results into estimates for entire paths through the network.
These estimates are also represented as delay distributions.
Conceptually, Parsimon obtains a delay distribution for a path
by convolving together the appropriate distributions from
each of the path’s component links. Since there are multiple
distributions per link and potentially many paths through the
network, we do not compute convolutions up-front. Instead,
convolution is done on-demand via Monte Carlo sampling; a
by-product is that we can efficiently produce estimates for in-
dividual source-destination pairs, virtual networks, or classes
of service (§A). To make a single point prediction for a flow
taking some path through the network, Parsimon uses the
flow size to find the appropriate distribution for each link, sam-
ples a value from each of them, and combines them together.
This process is repeated for each flow.

At a bird’s-eye view, Parsimon’s method is simple: to ac-
celerate FCT estimates, we estimate the effect of each link
independently and in parallel. Then to make predictions about
the whole network, we combine the results. However in our
experience, the accuracy of the method hinges tightly on the

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 687

https://github.com/netiken

Decomposition & simulation

Link-level simulation

Link-level delay distributions

Aggregation

fr
fw * fx * fy * fz

Figure 2. Overview of Parsimon. First, for any path, Parsimon estimates the contribution of each component link to delays in flow
completion times, represented as a probability distribution. Parsimon then combines delays along the path using Monte Carlo simulation
(see §3). Further, for added performance, link-level simulations are optimized and redundant simulations (due to e.g., ECMP or symmetries

in workload patterns) are pruned (see §4).

L—»{ Flows
: | ‘ distribution

/ Generate I e e e
N flows / [\\‘,
— — ~ — ~
HE { Decompose { Aggregate
P \ \.

Traffic
matrix

FCT

Topology

Link-level Parsimon Link-level
Flow size sims (1) delays
distribution
Vo (N\ ink-levi (o
coe Vo (Cluster L|.nk e { Simulate)
H A J sims (2) \‘ J

Figure 3. An illustration of Parsimon’s workflow. All inputs and
outputs are shown in the top row. Rectangular boxes are inputs
and outputs, rounded boxes are intermediate artifacts, and ovals
are Parsimon’s actions.

quality of the link-level estimates and subsequent aggrega-
tion. For example, when generating the backend simulations,
we have observed that failure to adequately capture perti-
nent features of the network severely degrades the quality
of Parsimon’s estimates. Similarly, link-level results must
be processed and aggregated with care to preserve accuracy
across all flow sizes. §3 describes these techniques in detail.

3 Key Methods: Decompose and Aggregate

Together, the methods for decomposition and aggregation are
what enables Parsimon’s scaling, and while we later engage
additional techniques for further speed-up, they are a byprod-
uct of—and not independent from—these more essential meth-
ods. Decisions made during this step are also the central de-
terminers of accuracy. This section describes these processes
in detail: how link-level topologies are generated, how the
link-level data are post-processed and stored, and finally how
they are aggregated to produce end-to-end estimates.

3.1 Generating Link-Level Workloads

To start, Parsimon associates each link with the flows passing
through it. Since links are bidirectional, there are two sets
of flows—and consequently two link-level simulations—per
link. Parsimon populates links with flows using flows’ routes.
Then for each link and in each direction, the associated flows
constitute the input workload to the link-level simulation. The
sizes and arrival times of the flows pass though unmodified.

3.2 Generating Link-Level Topologies

Once the link-level workloads are in place, we generate the
link-level topologies. In this step, we think of each link as
contributing some amount of delay to end-to-end FCTs. Any
given flow will accrue these delays at each hop, depending
on—for example—how much bandwidth is available and how
much queueing is present. Highly-loaded links are expected
to contribute more delay, while rarely utilized links will con-
tribute relatively little.

For each link and in each direction, we generate a topology
and perform a simulation using just the flows traversing that
link. Once the simulation is finished, the delay caused by the
link for a given flow is computed by taking the observed FCT
and removing the ideal FCT for that flow size. (For a flow
of size s traversing a link of speed C and propagation delay
I, the ideal FCT is s/C +1.) This intuitively captures all de-
lays incurred due to queueing, congestion control, bandwidth
sharing, and so on at the target link.

In generating a per-link topology, our goal is to isolate and
measure the expected delay contribution of the target link. A
simple but inefficient strategy would be to use the original
topology, but with only the traffic traversing the target link,
without any cross traffic. This would be relatively accurate at
measuring the delay contributed by the target link, albeit a bit
conservative. Upstream cross traffic congestion will slightly
smooth out downstream congestion at the target link, and so
removing cross traffic would make the queue distribution at
the target link slightly worse than in reality.

Although relatively accurate and parallelizable, simulating
every link on the original network topology would still be inef-
ficient, as packet-level simulation cost is roughly proportional
to the number of packets simulated times the number of hops
each packet takes through the network. Because we run the
link simulation separately in each direction on every packet
that passes through that link, this would inflate the aggregate
computational cost of the simulation by a multiplicative factor
of roughly half the average network path length—a significant
factor for large-scale networks. Instead, we want to simulate
only a small constant number of hops per target link.

An extreme alternative would be to simulate only the target
switch queue. This is inaccurate for two reasons. First, we

688 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

(] (]
© OO O

Figure 4. An illustration of how Parsimon generates link-level topologies. Simulations are unidirectional, and a different topology is used
for (A) first-hop links, (B) switch-to-switch links, and (C) last-hop links. For illustration purposes, each link in the original topology has
a propagation delay of one. To the left is the original topology; to the right are the corresponding link-level topologies, with new propagation
delays annotated. Bold lines denote links whose bandwidths have been artificially increased during topology generation.

need to preserve end-to-end round trip delays, as these affect
the speed of the congestion control adaptation to congestion
or its absence; hosts closer to the target adapt faster than
those farther away. Second, we need to preserve the spacing
of packets induced by the original topology—a large flow does
not immediately dump all of its data into the queue for the
target link; instead, those packets arrive spaced apart by the
edge link capacity. Ignoring this effect would lead to larger
queues and more delay at the simulated link than would occur
at that link in the original network.

Thus, we construct a topology for each link-level simula-
tion that reflects a performance-accuracy tradeoff, attempting
to capture the most important effects for computing the delay
contributed by the target link. Fig. 4 shows how topologies are
minimized. The generated topology takes one of three shapes,
depending on the location and direction of the target link: (i)
afirst-hop up-link from a host to a ToR, (ii) a switch-to-switch
link in the middle of the network, or (iii) a last-hop downlink
from a ToR to a host.

Suppose the traffic through the target link originates from
sources S and terminates in destinations T In case A of Fig. 4,
we connect the target link directly to each host in T via a ded-
icated link. If the target link is a switch-to-switch link (case
B), we remove intermediate hops and connect the hosts in S
directly to the input, and the output directly to the hostsin T.
Lastly, if the target link is a last hop (case C), then the hosts in
S are connected directly to the input. Rewriting the topology
in this manner ensures that packets can traverse at most three
hops, regardless of the size of the original topology.

Modeling round-trip delay. Next, we set the link delaysin
each constructed topology to match the round trip delays in
the original network. For example, in case A of Fig. 4, the round-
trip time between host @ and host 2 is 8 in both the original
topology and the generated topology, even though Parsimon
has removed intermediate hops between the switch and host
2. Fig. 4 is meant as illustrative; as with ns-3, Parsimon can
model arbitrary round-trip delays.

In data center networks, congestion controllers play a large
role in determining the extent to which longer flows yield
throughput to benefit the latency of short flows. Most algo-
rithms such as DCTCP [2], DCQCN [36], and TIMELY [19]

are end-to-end in the sense that sources adjust their send-
ing rates based on feedback echoed from destinations [11].
With an end-to-end control loop, a source must wait an entire
round-trip time (RTT) before being able to adapt its sending
rate based on congestion feedback, resulting in longer queue
lengths with higher RTTs. Thus, correctly modeling RTTs is
essential to correctly modeling queue dynamics.

Selecting link bandwidths. Insome cases, we artificially
increase the bandwidth of downstream links to ensure that
they do not artificially add congestion. We say such links are
inflated. For example, in cases A and B of Fig. 4, the bandwidths
of the last-hop links are inflated. We want any queueing to be
due to the target link and not the downstream link. By inflat-
ing downstream links, we remove store and forward delay (a
small packet following a large packet would otherwise need
to queue for the downstream link); it also addresses the case
where core links are fatter than downstream links. Queueing
at the downstream link itself is accounted for in case C. By
contrast, we do not inflate first-hop links in cases B and C, as
this would enable a long flow to arrive at the target link at a
higher rate than it would in practice.

A cluster of sources sending simultaneously through an
oversubscribed top-of-rack (ToR) switch in the original net-
work will be throttled beyond what is implied by the edge link
capacity. To improve simulation speed, we ignore this effect
and are therefore slightly conservative in our estimates for
oversubscribed networks.

Correcting for ACK traffic. Since Parsimon only simu-
lates one direction at a time, we must account for the load
induced by acknowledgments due to traffic in the reverse
direction. This is usually small, but can be significant at high
load and where average packet size is small. Instead of model-
ing ACK traffic in detail, we apply a simple rule, mechanically
reducing the forward bandwidth on each simulated link by the
average volume consumed by ACKs for flows in the opposite
direction over the course of the simulation. This correction
is applied to all links but is most necessary for the target link.
Note that Parsimon does not account for extra delay caused
by ACK jitter on the reverse path; this could be an issue when
applying our ideas to networks with bandwidth asymmetry
between forward and reverse paths [5].

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation

689

3.3 Post-Processing Link-Level Results

Each link-level simulation produces an FCT for each flow in
the link-level workload, and these FCTs are used to compute
delays. Recall from §3.2 that the delay is just the observed
FCT minus the ideal FCT on an unloaded network. For each
flow, we could, theoretically, estimate the end-to-end delay as
some function of the delay contributed by each link for that
flow. We discuss how that function works in Parsimon, along
with its sources of bias, later in this section.

First, we address a different issue. Recall that we cluster
similar links together (§4.2) so that we only simulate the flows
through a single representative link for each cluster of links.
Thus, to compute the end-to-end delay for a particular flow,
we take a sample from the delay distributions at each hop in
the path, or from the hop’s standin representative.

In post-processing the link-level results and constructing
these distributions, our primary objective is to support accu-
rate estimates for all flow sizes. It is not enough to produce
the correct FCT distribution across the entire workload; we
must also accurately estimate the FCT distribution for short
flows containing just a few packets as well as for long flows
that last for hundreds of round trips. This extra requirement
necessitates some post-processing before distributions can
be constructed. Here we describe how this is done.

Packet-normalized delay. Maintaining accuracy acrossall
flow sizes would not be possible if we used delays directly. For
example, long flows, which may experience variations in their
bandwidth share over time, will almost always experience
more absolute delay than short flows.

As a start, we can address this by normalizing delays by
flow size: after computing the delay for a particular flow, we
can then divide the delay by the flow’s size in packets. We call
the resulting metric the packet-normalized delay, and it has
the intuitive interpretation of summarizing the flow’s aver-
age delay per packet. Link-level distributions are constructed
from packet-normalized delays rather than absolute delays.
We normalize by the number of packets instead of the num-
ber of bytes because flows are discretized into—and therefore
delays are incurred by—packets. Further, normalizing by the
number of bytes loses accuracy for small flows, especially
those smaller than the maximum packet size. For example,
a 10 byte packet would be delayed by the same amount as
would a 100 byte packet if it arrived in the switch queue just
behind a jumbo (9 KB) frame [31].

Bucketing distributions. Even with packet-normalized
delays, we should still expect long flows to have different
delay distributions than short flows. The FCT of a long flow
is mainly determined by the throughput it achieves, while
the FCT of a short flow depends on how much queueing it
encounters. Further, congestion control algorithms trade the
throughput of long flows for the latency of shorter ones to
varying degree. An aggressive congestion control algorithm

could try to keep queues near-empty [16], resulting in smaller
short-flow delay and larger long-flow delay:.

To ensure that estimates for different flow sizes are accu-
rate, it is necessary to sample each packet-normalized delay
from the appropriate distribution. We bucket the distribution
of packet-normalized delays by flow size. Buckets need to
contain enough samples to form statistically meaningful dis-
tributions, but they should also be small enough so that the
values come from flows with similar delay characteristics (i.e.,
similarly-sized flows).

Parsimon uses a simple bucketing algorithm. In brief, we
start with a packet-normalized delay per flow, and we sort
them according to flow size. Then, starting with the short-
est flow, we begin populating buckets. For each bucket b, let
maxf;, and minf, be the maximum and minimum flow sizes
associated with b, respectively, and let n; be the number of
elements in b. Each bucket b apart from the last one is locally
subject to two constraints

np>B and
for some choice of B and x. Globally, Parsimon also ensures
buckets are contiguous and non-overlapping. For any bucket,
once the two local constraints are satisfied, Parsimon begins
populating the next bucket, and the final bucket is assigned
whatever elements remain.

In practice, we find B = 100 and x = 2 works well. Data
center workloads have heavy-tailed flow size distributions
in which short flows arrive much more frequently than long
ones. With these parameters, the first buckets will have size
boundaries that are approximately powers of two, and as
flows get larger, buckets will cover larger and larger ranges.
This is the desired behavior. Intuitively, a queueing-sensitive
1 KB flow should not be grouped with a throughput-sensitive
1 GB flow, but a 1 GB flow can be grouped with a 10 GB
flow provided the distribution of throughput is stable on long
timescales. Accuracy across different flow sizes at finer or
coarser resolution can be achieved by modulating x. We ex-
amined sensitivity to the number of buckets by decreasing x
for selected experiments and found no meaningful change in
the predicted distributions.

maxfy, > x*minfp,

In summary, each link-level simulation produces FCTs, and
these FCTs are used to construct bucketed distributions of
packet-normalized delay. Since different links have different
workloads, bucketing is performed on a per-link basis. This
means that the links in any given path are likely to have dif-
ferent bucket sizes with different flow size ranges. In the next
subsection (§3.4) we describe how the data are aggregated.

3.4 Aggregating Link-Level Estimates

For any given range of flow sizes, the final distribution of
(packet-normalized) delay for any path through the network
can be estimated by selecting an appropriate distribution from
each component link and then performing an n-ary convolu-
tion. However, the efficiency of this step must be considered.
Since there are multiple distributions per link and potentially

690 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

D=P)

Figure 5. An illustration of how Parsimon aggregates link-level
results into a path-level point estimate. Parsimon samples a
packet-normalized delay (§3.3) from each link along the path, and
combines these to estimate the end-to-end absolute delay D.

many paths through the network, performing all convolu-
tions up front and storing one path-level distribution per path,
per flow-size range would be costly in space and in time.

To avoid these costs, Parsimon uses an on-demand sam-
pling strategy to perform the convolution. Recall that the
simulation step resulted in bucketed distributions of packet-
normalized delay per link, organized in a graph isomorphic to
the original topology. Parsimon makes this graph a queryable
object that is capable of supporting point estimates. Given a
size, a source, and a destination, Parsimon computes a path
from the source to the destination and uses the size to select
a distribution per-link. Then, one packet-normalized delay
is sampled from each distribution and the results are subse-
quently combined into a point estimate. Suppose there are n
hops and let D},D5,...,D;, be the sampled packet-normalized
delays. Then, the end-to-end absolute delay D is computed as

n n n
PY'D; = YDiP = Y Di = D,
i=1 i=1 i=1

where P is the input flow size in packets and D; is the absolute
delay for hop i. Fig. 5 illustrates this process. Finally, to obtain
a distribution of end-to-end delay estimates, we need only
sample enough point estimates for the desired flow size range
and source destination pairs.

3.5 Primary Source of Speedup

Parsimon speeds up large network simulations by consid-
ering the effect of each link in isolation, allowing it to scale
in the size of the simulated network and the number of pro-
cessing cores. Although the link is the unit of decomposition,
Parsimon’s scaling ability is determined not by the total the
number of links, but rather by the fraction of total packets
traversing any link. In other words, Parsimon’s speed-up de-
pends on the number of busy links and how well the load is
balanced among them. This explains why Parsimon is most
suited for large data center networks, where the total work-
load comprises many source destination pairs with many
paths between them. If a network traffic is heavily skewed
such that most of the workload traverses only a few paths,
the amount of speedup will be limited.

3.6 Primary Sources of Error

To balance accuracy and performance, Parsimon makes a
number of approximations, with some having more of an
effect on accuracy than others. Here we catalog some of the
main sources of error, describing 1) how we expect the errors

to manifest and 2) what modifications, if any, could be made
to address them.

Bottleneck fan-in. Tosimulateagiventargetlinkinthe net-
work, Parsimon constructs a topology that connects all of the
source nodes feeding traffic directly into that target. In prac-
tice, of course, there would be multiple stages of fan-in, and
that fan-in would tend to spread out any burst of arriving flows
due to upstream bandwidth capacity constraints. Any target
link would experience slightly less queueing and less conges-
tion in reality than in Parsimon. Of course, Parsimon also
simulates the upstream link; because it is closer to the sources,
its traffic and queueing behavior would be a closer model to
what would happen in a full network-wide simulation.
Because Parsimon sums the delay contributed by each hop
along a flow’s path, the lack of fan-in will tend to slightly over-
estimate the delays caused by downstream links. Put another
way, any delay induced by fan-in constraintsis counted twice—
once when we simulate the upstream link and again when we
simulate the downstream link. In our evaluation, accuracy is
slightly lower for networks with higher degrees of oversub-
scription, as we would expect. We could potentially remove
this inaccuracy by including the upstream fan-in as part of the
topology for each link simulation. Since simulation time is pro-
portional to the number of hops, this would decrease individ-
ual link simulation efficiency by a small but significant factor.

Lack of traffic smoothing. Similarly, any cross-traffic that
shares a portion of a path with traffic destined for the target
link will tend to smooth out traffic before it reaches the target.
Parsimon does notinclude any cross-traffic in its per-link sim-
ulation, making it slightly overestimate the queueing delay
at the target link. Assuming the simulation is stable—that the
arrival rate does not exceed the service rate for any link—the
target link will experience the correct long-term average rate,
but without as much smoothing as would happen in practice.
We see evidence of this effect in our evaluation, where error
is slightly larger for workloads with a predominance of short
flows which would benefit more from smoothing. Of course,
correctly modeling the effect of cross-traffic on the traffic ar-
riving at a downstream link would be difficult to accomplish
without reverting to a full network simulation.

Link-level independence. A more fundamental approxi-
mationis thatlink-level simulations are treated independently.
This technique enables wholesale parallelization, but its accu-
racy depends on the amount of correlation between the traffic
intensities on the various hops along the path. The more corre-
lated the traffic, the more error Parsimon’s method produces.

Since Parsimon produces estimates by convolving delay
distributions (adding independent random variables), full ac-
curacy requires the mutual independence of delays among
the links in every path. Consider a single-packet flow that
traverses two hops, both with load /. If the delays along the
two hops are independent, the probability that the flow will
encounter no queueing is simply (1 —[)2. However, if both

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 691

hops tend to have queueing at the same time (i.e., if the traf-
fic intensities and therefore the delays are correlated), then
that probability is closer to 1 —I. Since Parsimon does not
distinguish between these two scenarios, the difference is not
reflected in its estimates.

In very large networks with thousands of hosts and paths,
and with realistic workloads, we expect the effects of corre-
lation to be small. A basic result of queueing theory is that
under some circumstances it is possible to analyze queues
independently, even when the output of one queue connects
to the input of another, so that queue behaviors are obviously
correlated. One view of our work is that we are empirically
observing that data center networks approximately admit
product-form solutions for their equilibrium state queue dis-
tributions under realistic workloads.

However, some networks use PFC [36] to reduce packet loss
due to go-back N error handling in some RDMA network in-
terface cards. Because PFC suffers from head-of-line blocking,
PFC can cause correlated congestion across multiple links, and
so Parsimon would not be a good choice for modeling such
networks. If correlation is a problem, we could potentially
measure the degree of correlation and apply a correcting factor
during the convolution step, but we leave that for future work.

One bottleneck at a time. Estimating the performance of
long flows comes with an additional difficulty which is also
exacerbated by correlated delays. While a single packet flow
can only reside in one queue at a time, a long flow can be back-
logged on multiple links at the same time. Depending on the
specific congestion control mechanism, the throttling back
of a long flow (the delay it experiences) is typically not the
sum of the delays it would experience on individual links (as
Parsimon approximates), but rather only the delay caused by
the true (instantaneous) bottleneck. Since Parsimon sums all
delays, it will overestimate the end-to-end delay for the long
flow that encounters simultaneous cross-traffic congestion
at multiple points along its path. In summary, Parsimon is
more accurate when the congestion is episodic and tempo-
rary, appearing at different links at different times, and less
accurate when congestion is persistent across multiple edge
and core links of a given path.

Congestion on any link (and therefore simultaneous con-
gestion on multiple links) becomes more common with higher
network load, and we see this effect in our evaluation. We
can potentially correct for this bias by using a more complex
function for combining link delays when overall network uti-
lization is high. Because network operators are often willing
to over-provision their network hardware to reduce applica-
tion tail latency, this is rare in practice. For example, some
recent end-to-end congestion protocols, such as Homa [21],
simply assume that network congestion predominantly oc-
curs at the last hop of each path. We do not make such an
assumption; we handle congestion equally wherever it might
occur. However, we do assume that congestion events are not
persistent and network wide.

Our approximations are biased toward producing overesti-
mates rather than underestimates, because we expect network
operators to be more sensitive to over-promising tail behav-
ior, even if that comes at the cost of being too conservative
with respect to capacity planning. Additional analyses on the
errors induced by these approximations can be found in the
appendix (§C).

4 Complementary Methods

The previous section described how we decompose a single
large network simulation into many small, independent ones
that can be executed in parallel and later combined. This sec-
tion describes additional optimizations that reduce, cluster,
and prune these link-level simulations for better computa-
tional efficiency. These reduce the number of cores needed to
simulate a given network within some time bound, or equiv-
alently, the execution time on a single server machine.

4.1 Fast Link-Level Simulation

By far the largest computational cost in Parsimon are the
link-level simulations. Initially we used ns-3 as our link-level
backend. However, as a general-purpose simulator, ns-3 is
designed to support arbitrary protocols with arbitrary exten-
sions, all the way down to hardware models. This is more
flexible but means that every packet in ns-3 generates events
atevery host, queue, and link—as well as throughout the hosts’
modeled network stacks.

Instead, we implemented a custom and minimal simula-
tor optimized for high fidelity single link simulation. This
backend only models the workload, topology, queueing, and
congestion control. For congestion control, our prototype
implements DCTCP’s core algorithm [2] in a few tens of lines
of code. For example, we do not need to model the mecha-
nism for carrying ECN bits from switches back to endpoints.
Switching to a custom simulator speeds up the individual link
simulations by roughly an order of magnitude, with negligible
loss of accuracy. Reducing the simulation time of the worst
case (most congested) link also reduces the critical path dra-
matically. If more simulation features are needed, Parsimon
can use ns-3 at the cost of using more cores.

4.2 Clustering and Pruning Simulations

Lastly, we recall that Parsimon’s decomposition results in two
simulations per link: one in each direction (§3.1). On a large-
scale 6,144-host topology we use for evaluation, there are over
9,000 links, and therefore over 18,000 simulations generated.
Fortunately, data center topologies commonly induce sym-
metries that render some of these simulations redundant. For
example, up-links in the same ECMP grouping can be assumed
to have the same characteristics and traffic patterns. Further-
more, the workloads themselves may also induce symmetries
due to communication patterns and load balancing [28].

We can take advantage of these symmetries by clustering
links that carry similar traffic and only simulating one rep-
resentative from each cluster. Then, in each cluster, all links

692 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Algorithm 1 Greedy link clustering

> links here are unidirectional
> list of list of links

1: unclustered «— ALLLINKS
2: clusters « []

3: while not EmpTY(unclustered) do
4: members « []

5 representative «— PoPFIRsT(unclustered)

6 PusH(members, representative) > with initial member
7 for candidate in unclustered do > find other members
8
9

> new cluster

rfeature «— FEATURE(representative)
cfeature «— FEATURE(candidate)

10: if IsCLoseEENoUGH(rfeature, cfeature) then

11: PusH(members, candidate) > new member
12: RemovE(unclustered, candidate)

13: PusH(clusters, members)

14: return clusters

inherit the delay distribution produced by the representa-
tive link. Parsimon’s clustering requirement is quite specific,
which limits the range of popular clustering algorithms that
can be used. Let ;,l; € L be any two link-level simulations,
and let d: LXL — R be a distance function. Ideally,

l; and [, are clustered together < d(I,l;) <k,

where € is some bound. The left-to-right direction preserves
accuracy; the right-to-left supports efficiency. Most centroid-
based and density-based clustering algorithms aren’t designed
to provide the left-to-right property. Instead, Parsimon uses
Alg. 1. This algorithm greedily clusters simulations together,
using a distance function that predicts which links will have
similar delay profiles. In our prototype, we check that the
link flow size and inter-arrival time distributions—as well as
their load levels—are close. We find this provides a reasonable
tradeoff between efficiency and accuracy, but users can turn
off the optimization at the cost of using more cores. Further
details about the clustering can be found in the appendix (§D).

5 Evaluation

Parsimon’s goal is to quickly estimate tail latencies for a vari-
ety oflarge data center networks and workloads. In evaluating
Parsimon, we would like to assess 1) Parsimon’s accuracy
and performance at the scale of thousands of hosts, and 2)
how accuracy is affected by a wide range of variables over the
workload and the topology.

Our strategy is as follows. Using workloads extracted from
industry datasets, we start with a 384-rack, 6144-host topol-
ogy to evaluate Parsimon’s speed and accuracy in one sce-
nario at scale. Then, to evaluate nearly 200 other topology
and workload scenarios, we downsample the workload so
that it can run on a smaller 256-host topology. This allows us
to run enough ns-3 simulations quickly enough to perform
a detailed sensitivity analysis.

To more clearly illustrate sources of error in Parsimon, we
also construct and evaluate Parsimon on synthetic workloads
on a small-scale parking lot topology in Appendix §C.

Variant Clustering? Link-level backend
Parsimon No custom
Parsimon/C Yes custom
Parsimon/ns-3 No ns-3
Parsimon/inf — custom

Table 1. The Parsimon variants under consideration. Parsimon/inf
is a variant that assumes infinite cores and memory.

5.1 General Setup

Each scenario we consider has six components: 1) a topology
size, 2) an oversubscription factor, 3) a traffic matrix, 4) a flow
size distribution, 5) a burstiness level, and 6) a maximum load
level. Here, we briefly describe how these are specified and
configured. We also discuss which Parsimon variants we will
assess and how we establish a baseline.

Topology and oversubscription. To mimic an industry
topology, our topologies are modeled after Meta’s data center
fabric [4]. In brief, there are three layers of switches: hosts
connected to a top-of-rack switch (ToR) with 10 Gbps links
constitute a rack, racks connected to each other via fabric
switches with 40 Gbps links constitute a pod, and pods con-
nected to each other via spine switches with 40 Gbps links
constitute a cluster. Spine switches are organized in planes.
We can modulate the size of a topology (corresponding to a
cluster) by adjusting the number of pods, the number of racks
per pod, and the number of hosts per rack, and we can mod-
ulate the oversubscription factor by adjusting the number of
spines per plane.

Traffic matrices. The traffic matrices are extracted from
the datasets accompanying Roy et al.’s study of Meta’s data
center network [28]. The data only allow us to construct re-
liable rack-to-rack matrices. When sampling workloads, we
use the matrices to generate rack-to-rack traffic, but once a
rack is chosen, we select its hosts uniformly at random. This
may bear semblance to reality: according to Roy et al., Meta’s
racks typically only contain servers in the same role, and load
balancing is used pervasively. We use traffic matrices from
three different clusters: a database cluster (matrix A), a web
server cluster (matrix B), and a Hadoop cluster (matrix C).
Fig. 6a shows 32-rack samples of the matrices.

Flow sizes and burstiness. We use three flow size distribu-
tions, estimated from published data in Roy et al.’s study [28].
These are reproduced in Fig. 6b. For inter-arrival times, we use
the log-normal distribution to model bursty traffic, and we
modulate the burstiness by adjusting the log-normal shape
parameter o. For low burstiness, we select 0=1, and for high
burstiness, we choose o=2.

Maximum load level. When setting aload level, we ensure
that the offered rate is less than the link capacity for each link
by specifying the maximum load level that any link can have.
Note that a given maximum load level may result in different
link load distributions, depending on the traffic matrix and
the topology. Fig. 6¢ shows the distribution of normalized link

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 693

100 104 10° 103 10°

—— CacheFollower
WebServer

—— Matrix A Matrix B =wee Matrix C

1-to-1 oversubscription 4-to-1 oversubscription

T
10°

Matrix A Matrix B Matrix C

(a) Traffic matrices (32-rack sample)

Flow size (KB, log scale)

(b) Flow size distributions

1.0 e
n
g os
T 0.0 T T T T T
10* 0.0 05 1.0 0.5 1.0

Normalized load Normalized load

(c) Normalized link load distributions

Figure 6. In the evaluation, we model workloads using data from Roy et al.’s study of Meta’s data center network [28]. The traffic matrices in
Fig. 6a are extracted from the accompanying dataset, and the flow size distributions in Fig. 6b are estimated from the published data. Lastly, for
a given topology, the distribution of link loads depends on 1) the traffic matrix and 2) the degree of oversubscription. Fig. 6¢ shows the link loads
induced by the matrices in Fig. 6a on two 32-rack topologies with different overprovisioning. The x-axis is normalized to the maximum link load.

Estimator Time Speed-up
ns-3 10h 48m 26s -
Parsimon 4m 13s 154X
Parsimon/C 1m 19s 492X
Parsimon/inf 21s 1864x

Table 2. Running times and speed-up of Parsimon variants
for five seconds of simulated time on a large oversubscribed
network with thousands of hosts. We find that Parsimon estimates
latencies orders of magnitude faster than does ns-3. If there is ample
opportunity for clustering or if there are infinite compute resources,
speed-up is substantially further increased. Measurements were
taken on a 32-core machine.

loads on a 32-rack topology with the traffic matrices in Fig. 6a
and two different oversubscription factors. When describing
how loaded a topology is, we will usually specify the average
load of the top 10% most loaded links.

Parsimonvariants and baseline. To establishabaseline for
Parsimon’s accuracy and performance, we use ns-3 with the
optimized build profile. We also consider several Parsimon
variants, summarized in Table 1. By default, Parsimon uses
the custom link-level backend (§4.1) with clustering turned
off. This expresses a lower bound on Parsimon’s expected
speed-up given a particular machine. Parsimon/C adds clus-
tering to the default variant using the methods described
at the end of §4.2, and Parsimon/ns-3 replaces the default’s
custom backend with ns-3. Lastly, Parsimon/inf provides an
estimate of Parsimon’s performance given infinite cores and
infinite memory, computed by adding the run time of the
longest link-level simulation to the fixed costs of network
setup and convolution sampling. This represents an upper
bound on the Parsimon’s achievable performance. All per-
formance measurements are taken on a 32-core AMD Ryzen
Threadripper 3970X.

5.2 Analysis on a Large-Scale Network

Here we evaluate Parsimon’s accuracy and performance on
a 384-rack, 6144-host topology. The topology has eight pods,
48 racks per pod, and 16 hosts per rack, with 2-to-1 oversub-
scription. For the workload, we use matrix B, the WebServer
flow size distribution, and high burstiness (o = 2). We set a

maximum link load of about 50%, which gives the 100 most
loaded links an average load of 32%, and the top 10% most
loaded links an average load of about 15%. We configure all
simulations to run for five seconds of simulated time. To es-
tablish a baseline, we first run the scenario in ns-3, then we
run the scenario in Parsimon and Parsimon/C (see Table 1).
Due to memory constraints we omit Parsimon/ns-3 here, but
we include its analysis at smaller scale in §5.3.

Fig. 7 shows the accuracy of Parsimon relative to ns-3
across four flow size bins. We find that across all bins, both vari-
ants accurately estimate tail latencies. If we consider all flow
sizes together, we find that Parsimon and Parsimon/C overes-
timate the p99 FCT slowdown by 8.8% and 7.5%, respectively.

Table 2 shows the running time and speed-up for each
estimator, which includes topology generation and convolu-
tion sampling overheads where applicable. While ns-3 took
nearly 11 hours, Parsimon without clustering took four min-
utes and 13 seconds, for a speed-up of 154X. If we turn clus-
tering on by using Parsimon/C, the running time is further
reduced to one minute and 19 seconds, for a speed-up of
492x. ! In this case, only 25% of links were simulated; the rest
were pruned. Lastly, Parsimon/inf estimates Parsimon’s best
possible performance given infinite compute resources. The
longest-running single-link simulation took 11 seconds, and
with the additional 10 seconds required for network setup
and convolution sampling, the fastest projected running time
is 21 seconds.

We chose an oversubscribed topology to slightly disad-
vantage Parsimon’s method, as oversubscription can lower
Parsimon’saccuracy. §5.3 analyzes the effect of oversubscrip-
tion in more detail. We also ran the above experiment on a
topology without oversubscription, which for the same maxi-
mum load setting increased the top 10% average link load from
15% to 25%. We found Parsimon’s p99 accuracy improved
from 9% to about 7%, while Parsimon/C’s accuracy remained

!We advise caution both in interpreting this number and in generalizing
it to scenarios at large. While our workloads are modeled after industry data,
they are still synthetic. There may be more or less opportunity to cluster and
prune link-level simulations, depending on the structure of real workloads
and the quality of the clustering algorithm.

694 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

Smaller than 10 KB

ns-3 Parsimon =~ e Parsimon/C

10 KB to 100 KB

100 KB to 1 MB

5 10 5 10

FCT slowdown FCT slowdown

2.5 5.0 7.5 10.0
FCT slowdown

FCT slowdown

Figure 7. CDFs of FCT slowdown estimated by ns-3 and two Parsimon variants (note the y-axis). On a large network with 6,144 hosts,
an industry traffic matrix (matrix B), and 2-to-1 oversubscription in the core, Parsimon’s latency estimates are similar to those produced
by full-fidelity simulation. Table 2 shows the performance of each estimator.

Parameter Sample space

1-to-1, 2-to-1, 4-to-1

Matrix A, Matrix B, Matrix C
CacheFollower, WebServer, Hadoop
Low (o=1), High (c=2)

26% to 83% (continuous range)

Oversubscription
Traffic matrix

Flow size distribution
Burstiness

Max load

Table 3. The sample space for the sensitivity analysis in §5.3.

1.00 a2 e e e
0.75
w
8 0.50 Max load range (max top 10% avg load)
025 —— 26% - 41% (34%) 41% - 56% (50%)
' 56% - 83% (68%) =-=-+ all scenarios
0.00 1 '
T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5

Error of p99 FCT slowdown

Figure 8. CDFs of p99 error between Parsimon and ns-3 across all
scenarios drawn from the sample space in Table 3. The distributions
are binned by maximum load. In parentheses, we give the maximum
value for the top 10% average load in each bin. Under common
conditions of low to moderate load, Parsimon’s estimates for the
p99 FCT slowdown are reliably within 10% of the ground truth.

approximately the same. However, because aggregate load in-
creased, ns-3 took 27 hours for five seconds of simulated time,
and speed-ups for Parsimon, Parsimon/C and Parsimon/inf
were 152X, 872X, and 3487X, respectively. Parsimon/C bene-
fited from the increased number of links in each ECMP group-
ing, allowing it to prune 85% of the link-level simulations.

5.3 Sensitivity Analysis at Small Scale

Next we turn our attention to how different aspects of work-
loads and topologies affect Parsimon’s accuracy. To be able
to simulate enough scenarios in ns-3 for a sensitivity analysis,
we downsample the topologies and traffic matrices to 32 racks.
The resulting topologies have two pods, 16 racks per pod, and
eight hosts per rack, and the number of spines per plane varies
to accommodate different oversubscription factors.

Our approach is as follows. First, we construct a sample
space over the parameters defining the workload and the

topology (aside from the number of servers, which is fixed).
The sample space is shown in Table 3. Then, we sample 192
scenarios uniformly at random, and we run ns-3 and the de-
fault Parsimon variant on each of them for several seconds
of simulated time. Next, for each scenario, we take the p99
FCT slowdown estimated by both ns-3 and Parsimon, and we
compute the error between them. If these values are n and
p respectively, then the error is (p — n)/n. Negative values
indicate that Parsimon produced an underestimate.

Since we have one error value per scenario, the errors give
rise to distributions of error associated with the original sam-
ple space. Now what remains is to determine how the work-
load and topology parameters affect error distributions. To
start, recall from the discussion in §3.6 that the magnitude
of error is expected to be load-dependent, with higher errors
typically manifesting at higher loads, so we begin by exam-
ining the effect of the maximum load setting on Parsimon’s
accuracy.

Maximum load. Fig. 8 shows the error distributions binned
by maximum load. Among all scenarios, Parsimon’s p99 es-
timates are within 10% of ns-3’s estimates 85% of the time At
high load, we observe larger overestimates of up to 52% in
the worst case. In the most highly-loaded group of scenarios—
with maximum link loads between 56% and 83%—Parsimon
is within 10% of ns-3 62% of the time, with an average error
of about 11%. However, this includes scenarios where 10% of
the links have an average load of up to 68%, which is much
higher than what is reported in the literature. For example,
Roy et al. report that in Meta’s data center network, 99% of
host links are less than 10% loaded, and the top 5% of core
links have loads between 23% and 46% [28]. Among scenar-
ios where the maximum link load is between 26% and 41%,
Parsimon is within 10% of ns-3 100% of the time. If we further
include scenarios with maximum link loads between 41% and
56%, that number falls to 96%. Finally, while Parsimon’s tech-
niques tend to overestimate latencies, in 3% of the scenarios,
Parsimon underestimates p99 slowdown by up to 2%.

Other parameters. We next turn to the effects of all other
workload and topology parameters. We start by only consid-
ering scenarios where the maximum link load is less than or
equal to 50%; this will tell us whether any of the parameters

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 695

N ' Z : E ’ | : +
0.0 -
T T T T T T
Matrix A Matrix B Matrix C CacheFollower WebServer Hadoop
Matrix Flow size distribution

:;:Q@Q:?q;

T
1-to-1 2-to-1 4-to-1
Oversubscription

Error of p99 FCT slowdown

Burstiness (log-normal o)

(a) Max load < 50%

0.6 - 1

0.2 1 1
. <g> < ‘ B>
T T T T T
Matrix A Matrix B Matrix C
Matrix Flow size distribution

s d 4

T T
1-to-1 2-to-1 4-to-1
Oversubscription

T
CacheFollower WebServer Hadoop

Error of p99 FCT slowdown

Burstiness (log-normal o)

(b) Max load > 50%

Figure 9. Distributions of p99 error between Parsimon and ns-3, faceted by different workload and topology parameters. For each distribution
we show the median, the quartiles, and a rotated kernel density estimation. We consider the low-load regime (Fig. 9a) and the high-load
regime (Fig. 9b) separately. At low load, the workload and topology parameters only have a modest effect on Parsimon’s accuracy, but at high
load, the conditions leading to the largest errors come into view: high load, high oversubscription, with very short flows. Note the different

y-axes between the two load regimes.

Error Maxload Matrix Sizes Oversub o

51.9% 77.6% A WebServer 4-to-1
30.1% 67.3% A WebServer 4-to-1

_—m NN

29.6% 67.0% A WebServer 4-to-1
25.6% 65.9% A WebServer 4-to-1
24.6% 73.2% B WebServer 4-to-1

Table 4. The five scenarios with the highest error values from the
sensitivity analysis in §5.3.

have a large effect on accuracy in the low-load regime. Fig. 9a
shows the median error and error distributions as a violin
plot for low-load scenarios grouped by traffic matrix, flow
size distribution, oversubscription, and burstiness. Overall,
changes to these parameters appear only to have a modest
effect. The choice of traffic matrix has the clearest trend, but
load is a confounder here: recall from Fig. 6¢ that different
traffic matrices yield different link load distributions for the
same maximum load setting.

When we look at the high load regime in Fig. 9b, a clear
picture comes into view. We see much longer tails in error
distributions for matrix A, the WebServer flow size distribu-
tion, and 4-to-1 oversubscription. Together with Fig. 9a, this
suggests that none of these settings has a strong effect on its
own, but coupled together in the high load regime, they have a
pronounced effect on Parsimon’s accuracy. Matrix A induces
higher average load and has more cross-rack traffic, making it
more likely for its flows to encounter multiple simultaneous
bottlenecks. The WebServer flow size distribution is domi-
nated by short flows (Fig. 6b), a third of which are smaller
than 1 KB and 80% of which are smaller than 10 KB. Because
more of the traffic completes within a single round trip, there
is more ephemeral congestion and bandwidth smoothing can
have a larger impact.

Finally, oversubscription has an effect at high load: if we
removed all scenarios with 4-to-1 oversubscription, the max-
imum error would only be 20% rather than 52%, even at high
load. In addition to the double counting of delays described in
§3.6, oversubscription can also increase correlations in link
delays. To achieve 4-to-1 oversubscription in topologies as
small as these, there are only four spine switches per plane
forwarding traffic between groups of 16 racks, leaving rel-
atively few paths through the core. Fewer paths can result
in higher degrees of correlation—especially with matrix A,
whose traffic is primarily inter-rack (Fig. 6a). Finally, this
setting combined with the short flows from the WebServer
distributions gives rise to errors of up to 52%.

Table 4 lists the scenarios with the top five highest error
values. Four have matrix A, all have the WebServer distribu-
tion, and all five have 4-to-1 oversubscription. In this group,
the average maximum load is 70.2%. Since we expect the
combination of all-to-all workload, heavily oversubscribed
topology, and persistently high core utilization to occur rela-
tively infrequently, the data suggest that Parsimon maintains
good accuracy under common conditions.

Mixed Workloads. We also use the small topology to study
the Parsimon prediction error for subsets of traffic in hetero-
geneous workloads in Appendix §A.

5.4 Analysis of One Configuration

We pick one representative scenario to examine in more de-
tail, to test if our approach is robust to alternate definitions
of tail latency, congestion control protocol, workload, and
topology. To pick a scenario whose accuracy is somewhat
worse than the average case, we rank-order all scenarios by
error and select the one at the 85 percentile. This has matrix
A, the Hadoop flow size distribution, low burstiness, 2-to-1
oversubscription, and a maximum load of 68% (with a top 10%
average load of 56%).

696 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

ns-3 Parsimon e Parsimon/C ===+ Parsimon/ns-3
10 Smaller than 10 KB 10 KB to 1 MB Larger than 1 MB
. " —— —
w f
Q09 f
© f
| .1
I i
0.8-7 T T T — T
0 20 0 20 0 20

FCT slowdown FCT slowdown FCT slowdown

Figure 10. CDFs of FCT slowdown estimated by ns-3 and
Parsimon for the scenario whose error is at the 85" percentile of
the p99 error distribution. Note the y-axis. Even though the accuracy
here is worse than in the common case, Parsimon’s estimates
remain close across most of the tail. Also shown is Parsimon/ns-3.

Protocol Max load Error in p99 FCT slowdown

<10KB 10KB-1MB >1MB
DCTCP 45% 1.4% 9.2% 15.9%
TIMELY 45% 4.0% 17.9% 13.7%
DCQCN 45% 5.9% 11.6% 12.8%
DCTCP 56% 2.8% 9.2% 14.6%
TIMELY 56% 8.1% 20.0% 11.3%
DCQCN 56% 7.6% 14.6% 12.2%
DCTCP 67% 13.8% 11.3% 13.6%
TIMELY 67% 13.3% 18.2% 5.0%

DCQCN 67% 18.0% 15.2% 13.6%

Table 5. Prediction error of Parsimon/ns-3 for estimated p99 FCT
slowdown with three different congestion control protocols for
the sample configuration at different load levels and for different
request sizes.

Tail distribution. Operators may differ in their definitions
of tail latency, e.g., focusing on the 90th or 99.9th percentile,
rather than just the 99th FCT slowdown. Fig. 10 shows the tail
of the cumulative distribution of FCT slowdown for different
flow sizes for the selected configuration, for ns-3 and each of
the Parsimon variants. The prediction error is similar across
the tail of the distribution for this scenario, with little accuracy
difference between any of the variants.

Transport protocols. We use the sample scenario to test
the generality of Parsimon to two additional congestion con-
trol protocols, DCQCN [36] and TIMELY [19]. DCQCN is
designed for RDMA traffic, while TIMELY uses network de-
lay, rather than ECN signals, to detect congestion. To focus
on prediction error for our approximation methods, we use
the pre-existing ns-3 implementation of the protocols as the
Parsimon link level simulator for this part of the evaluation.
Note that Parsimon and Parsimon/ns-3 exhibit a few percent
difference in p99 error for DCTCP for this configuration. Be-
cause the prediction error for different congestion control
protocols may depend on the amount of congestion, we also
run the experiment at varying load levels.

Table 5 shows the prediction error for Parsimon/ns-3 rela-
tive to ns-3 in the estimated p99 FCT slowdown at three load

levels for the three transport protocols, aggregated by request
size. For this configuration, Parsimon is most accurate for
small flows and low to moderate maximum link utilization,
and that is true for all three congestion control protocols.
DCTCP has somewhat lower error for small and medium size
flows at low to moderate utilization. Relative error is higher
for larger transfers and higher maximum link utilization, with
no clear pattern in the error for different protocols.

Simulated link failures. We also use the sample configu-
ration to examine the prediction accuracy for topologies with
simulated link failures in Appendix §B.

6 Conclusion

In this paper, we propose and evaluate a new method for com-
puting a conservative estimate of flow-level tail latency for
large scale data center networks, given an arbitrary traffic ma-
trix, topology, flow size distribution, and inter-arrival process.
Our approach decomposes the problem into a large number of
individual link simulations, specially constructed to produce
accurate estimates of the probability distribution of delay
contributed by congestion at each link. We then mechanically
combine these link-level delay distributions to produce flow-
level estimates. On a large-scale network using a commercial
workload, our approach outperforms ns-3 by a factor of 492
on a single multicore server with a loss of accuracy of less
than 9% in the tail of the latency distribution.

Acknowledgments. We are grateful to Vincent Liu, Jeff
Mogul, our shepherd Arpit Gupta, and the anonymous review-
ers for their feedback and useful comments. This work was
supported in part by NSF grants CNS-2006346, CNS-2006827, a
CiscoResearch Center Award, and a Google Research Award.

References

[1] A.G. Alcoz, A. Dietmiiller, and L. Vanbever. SP-PIFO:
Approximating Push-In First-Out Behaviors using
Strict-Priority Queues. In 17th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
20), pages 59-76, 2020.

[2] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye,
P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan.
Data Center TCP (DCTCP). In Proceedings of the ACM
SIGCOMM 2010 Conference, pages 63—74, 2010.

[3] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar,
A.Vahdat, and M. Yasuda. Less Is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center.
In 9th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 12), pages 253-266, 2012.

[4] A. Andreyev. Introducing Data Center Fabric, the
Next-Generation Facebook Data Center Network.
https://engineering.fb.com/2014/11/14/production-
engineering/introducing-data-center-fabric-the-
next-generation-facebook-data-center-network/, 2014.

[5] H. Balakrishnan, V. N. Padmanabhan, and R. H. Katz.
The Effects of Asymmetry on TCP Performance. Mobile

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 697

https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://engineering.fb.com/2014/11/14/production-engineering/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

(7]

(8]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(18]

Networks and Applications, 4(3):219-241, 1999.

F. Baskett, K. M. Chandy, R. R. Muntz, and F. G. Palacios.
Open, Closed, and Mixed Networks of Queues with
Different Classes of Customers. Journal of the ACM
(JACM), 22(2):248-260, 1975.

B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes. Borg, omega, and kubernetes. ACM Queue,
14:70-93, 2016.

M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A.
Docauer, et al. Andromeda: Performance, Isolation, and
Velocity at Scale in Cloud Network Virtualization. In
15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 373-387, 2018.
A.Demers,S.Keshav, and S. Shenker. Analysis and Simu-
lation of a Fair Queueing Algorithm. In Proceedings of the
ACM SIGCOMM 1989 Conference, pages 514528, 2020.
R. M. Fujimoto. Parallel Discrete Event Simulation.
Communications of the ACM, 33(10):30-53, 1990.

P. Goyal, P. Shah, K. Zhao, G. Nikolaidis, M. Alizadeh,
and T. E. Anderson. Backpressure Flow Control. In 19th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22), pages 779-805, 2022.

J. R. Jackson. Networks of Waiting Lines. Operations
Research, 5(4):518-521, 1957.

F. P. Kelly. Networks of Queues. Advances in Applied
Probability, 8(2):416-432, 1976.

G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld, M. Ryan,
etal. Swift: Delay is Simple and Effective for Congestion
Control in the Datacenter. In Proceedings of the ACM
SIGCOMM 2020 Conference, pages 514-528, 2020.
J.Li,N.K. Sharma, D.R. K. Ports, and S. D. Gribble. Tales
of the tail: Hardware, os, and application-level sources
of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC 14, page 1-14, 2014.

Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z.Cao,M. Zhang, F.Kelly, M. Alizadeh, and M. Yu. HPCC:
High Precision Congestion Control. In Proceedings of
the ACM SIGCOMM 2019 Conference, page 44-58, 2019.
V. Liu, D. Halperin, A. Krishnamurthy, and T. Anderson.
F10: A Fault-Tolerant Engineered Network. In 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13), pages 399-412, 2013.

V. Misra, W.-B. Gong, and D. Towsley. Fluid-Based
Analysis of a Network of AQM Routers Supporting TCP
Flows with an Application to RED. In Proceedings of the
ACM SIGCOMM 2000 Conference, pages 151-160, 2000.
R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and
D. Zats. TIMELY: RTT-Based Congestion Control for
the Datacenter. In Proceedings of the ACM SIGCOMM
2015 Conference, page 537-550, 2015.

[20]

[21]

(30]

(31]

(33]

(34]

J. C. Mogul and]J. Wilkes. Nines are Not Enough: Mean-
ingful Metrics for Clouds. In Proceedings of the Workshop
on Hot Topics in Operating Systems, pages 136-141, 2019.
B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A Receiver-Driven Low-Latency Transport
Protocol Using Network Priorities. In Proceedings of the
ACM SIGCOMM 2018 Conference, pages 221-235, 2018.
D. Nicol and R. Fujimoto. Parallel Simulation Today.
Annals of Operations Research, 53(1):249-285, 1994.
ns-3 Network Simulator. https://www.nsnam.org, 2020.
OpenSim. OMNeT++. https://www.omnetpp.org, 2018.
OPNET Network Simulator, 2015.

V. Paxson and S. Floyd. Why We Don’t Know How to
Simulate the Internet. In Proceedings of the 1997 Winter
Simulation Conference, pages 1037-1044, 1997.

K. Ramakrishnan and S. Floyd. A Proposal to Add
Explicit Congestion Notification (ECN) to IP. Technical
report, RFC 2481, January, 1999.

A.Roy, H. Zeng,]. Bagga, G. Porter, and A. C. Snoeren.
Inside the Social Network’s (Datacenter) Network. In
Proceedings of the ACM SIGCOMM 2015 Conference,
pages 123-137, 2015.

A.Singh,]J.Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Ger-
mano, A. Kanagala, J. Provost, J. Simmons, E. Tanda,
J. Wanderer, U. Hélzle, S. Stuart, and A. Vahdat. Jupiter
Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network. In Proceedings
of the ACM SIGCOMM 2015 Conference, page 183-197,
2015.

B. K. Szymanski, A. Saifee, A. Sastry, Y. Liu, and
K. Madnani. Genesis: A System for Large-scale Parallel
Network Simulation. In Proceedings of the 16th Workshop
on Parallel and Distributed Simulation (PADS), 2002.

R. Winter, R. Hernandez, G. Chawla, A. Faustini, C. Sol-
der, T. Scheibe, D. Law, S. Ayandeh, B. Booth, B. Kohl,
C. Lavacchia, S. Krishnamurthy, R. Karthikeyan, E. Mul-
tanen, and M. Wadekar. Ethernet Jumbo Frames. http:
//www.ethernetalliance.org/wp-content/uploads/
2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf, 2009.
Q. Yang, X. Peng, L. Chen, L. Liu, J. Zhang, H. Xu, B. Li,
and G. Zhang. DeepQueueNet: Towards Scalable and
Generalized Network Performance Estimation with
Packet-Level Visibility. In Proceedings of the ACM
SIGCOMM 2022 Conference, pages 441-457, 2022.

Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy. High-
Resolution Measurement of Data Center Microbursts. In
Proceedings of the 2017 Internet Measurement Conference,
pages 78-85, 11 2017.

Q. Zhang, K. K. Ng, C. Kazer, S. Yan, J. Sedoc, and V. Liu.
MimicNet: Fast Performance Estimates for Data Center
Networks with Machine Learning. In Proceedings of the
ACM SIGCOMM 2021 Conference, pages 287-304, 2021.

698 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

https://www.nsnam.org
https://www.omnetpp.org
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf
http://www.ethernetalliance.org/wp-content/uploads/2011/10/EA-Ethernet-Jumbo-Frames-v0-1.pdf

Name Matrix Sizes Maxload o

Wo A CacheFollower ~20% 2
W1 B WebServer ~20% 2
W2 C Hadoop ~20% 2

Table 6. The three workloads mixed together in §A.

[35] S. Zhao, R. Wang, J. Zhou, J. Ong, J. C. Mogul, and
A. Vahdat. Minimal Rewiring: Efficient Live Expansion
for Clos Data Center Networks. In 16th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI 19), pages 221-234, 2019.

[36] Y. Zhu, H. Eran, D. Firestone, C. Guo, M. Lipshteyn,
Y. Liron, J. Padhye, S. Raindel, M. H. Yahia, and
M. Zhang. Congestion Control for Large-Scale RDMA
Deployments. In Proceedings of the ACM SIGCOMM
2015 Conference, page 523-536, 2015.

A Mixed Workloads

Parsimon’s methods are designed to estimate performance
distributions rather than per-flow metrics. However, it is often
useful to aggregate FCT performance estimates in different
ways. For example, an operator may wish to estimate the
performance of individual virtual networks or individual ser-
vices. In this section, we conduct a simple experiment to assess
Parsimon’s ability to estimate performance for separate ag-
gregates.

We start by mixing three different workloads—each with its
own traffic matrix and flow size distribution—into one work-
load. Table 6 summarizes their differences. Each workload has
a maximum load setting of 20% and a high burstiness setting
(0=2), and their combination results in a maximum link load
of about 50%. We run the combined workload on the small-
scale topology with 2-to-1 oversubscription from §5.3, and
we observe the accuracy for each workload faceted by flow
size. Fig. 11 shows the cumulative distribution function (CDF)
of FCT slowdown for ns-3 and Parsimon. We observe that
across all workloads and flow size bins, Parsimon maintains
good accuracy.

B Link Failures

One operational use case for Parsimon is to estimate counter-
factual network performance in the presence of potential
link failures or planned outages. In this section, we use the
sample scenario from §5.4 (matrix A, the Hadoop flow size
distribution, low burstiness, 2-to-1 oversubscription, and a
maximum link load of 68%) to evaluate Parsimon for this
use case. For this configuration, the error in estimated p99
FCT slowdown between ns-3 and Parsimon was around 10%.
Since link failures increase the load on the remaining links,
we should expect some decreased accuracy for Parsimon in
this case. On the other hand, simulating all possible network
failures in ns-3 would be prohibitively expensive.

ns-3 Parsimon

1 0l/VO | Smaller than 10 KB _ W0 | 10 KB to 1 MB _WO | Larger than 1 MB

w
0 0.9 4 4
]

0.8 T T T T T T

10YV1 | Smaller than 10 KB W1 | 10 KB to 1 MB W1 | Larger than 1 MB
. — T /’ — T -

w
0 0.9 4 4
]

0.8 T T T T T T

1 OYVZ | Smaller than 10 KB _ W2 [10 KB to 1 MB _W?2 | Larger than 1 MB
. - Ve

7

w
0 0.9 1 1
@)

0.8 T T T T T

T
0 10 20 0 10 20 0 10 20
FCT slowdown FCT slowdown FCT slowdown

Figure 11. CDFs of FCT slowdown for ns-3 and Parsimon,
bucketed by workload and flow size. Note the y-axes. When mixing
workloads in a single simulation, Parsimon can accurately estimate
performance distributions for individual workloads in addition to
full-network aggregates.

e

N

o
1

H .04 —
-§ ns-3

0.95 i
20144 N Parsimon
5 8 0.90
hd [w]
& 0.12 0.85
o
.
N 0.80-T7 T T T
g 0.10 0 10 20 30
w FCT slowdown

(a) p99 errors (b) CDF with the max p99 error (0.144)

Figure 12. Errors between ns-3 and Parsimon in estimated FCT
slowdowns when there is a link failure. Fig. 12a shows the error
distribution for p99 estimates from ten trials—each with one random
link failure—with the dashed line showing the error with no link
failure. Fig. 12b shows the CDF of FCT slowdowns for the trial with
the highest p99 error. For the small oversubscribed topology used in
this experiment, a link failure modestly increases estimation error.

In selecting links to fail, we only consider links in ECMP
groupings, such that the failure of one link causes traffic to be
routed to the other links in the group. In Meta’s data center
fabric [4], this corresponds to links between fabric switches
and spine switches and links between ToR switches and fabric
switches. In the small 32-rack topology used here (§5.3 for
details), there are 96 such links. We run ten trials, each time
picking a random one of the links to fail, keeping the workload
constant. We note that this setting represents a particularly
bad case for Parsimon: in addition to the high link loads, the
scenario uses an all-to-all communication pattern on a small
and oversubscribed topology, which means each link failure
in the core can have an outsized effect on other core links.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 699

¥ QK

O T » S SO

O O

Figure 13. The parking lot topology used in §C. In this topology,
zero sends to six, one sends to two, three sends to four, and five
sends to six. We refer to the traffic from zero to six as main traffic
and to all other traffic as cross traffic. The bolded red links contain
both main traffic and cross traffic, and we call them congested links.

ns-3 Parsimon

With cross traffic Without cross traffic

1.0 B

0.0 = T T T T T T T
1.0 1.5 2.0 2.5 1.0 11 1.2 1.3
FCT slowdown FCT slowdown

Figure 14. CDFs of FCT slowdown estimated by ns-3 and Parsimon
for the main traffic, both with and without cross traffic. When there is
cross traffic, errors arising from first-hop delays are second-order, as
most delays are cause by queueing on the congested links. However,
when there is no cross traffic, those errors become dominant. The
graph on the right uses the same workload as the one on the left,
except the cross traffic is removed. Note the different x-axes.

Fig. 12a shows the distribution of errors in p99 estimates.
With a single link failure, the errors range from 11% to 14%,
with a median error of 12%. Fig. 12b shows the estimated CDFs
of FCT slowdown for the trial with the highest error.

C Studying Error Sources

Recall from §3.6 that Parsimon’s approximations induce er-
rors in its end-to-end estimates. In this appendix, we use
microbenchmarks to study the effects of some pathological
cases on Parsimon’s accuracy. For an initial discussion on
these topics, please refer to §3.6.

Throughout, we use the parking lot topology shown in
Fig. 13 with 40 Gbps links. The flow of traffic through the
topology is shown with arrows and described in the caption.
We refer to the traffic from node zero to node six as main traffic
and to all other traffic as cross traffic. The bolded red links
contain both main traffic and cross traffic, and we call them
congested links. In all experiments, we set the load of the main
traffic to 25%. When there is cross traffic, its load is also 25%,
yielding a total load of 50% on all three congested links. Lastly,
to isolate the effects on the main path from zero to six, we
measure FCT slowdown distributions only for the main traffic.

C.1 First-Hop Delays

First, consider the case where all traffic in Fig. 13 originates
from node zero and is destined to node six, and recall that

all links have the same capacity. In a real network, all queue-
ing in this scenario would occur at the first hop. Subsequent
hops would see traffic completely smoothed, and they would
therefore contributing zero queueing delay.

If we re-examine how link-level topologies are constructed
in Fig. 4, we see that this smoothing effect is captured, since all
traffic passes through edge links with the original edge-link ca-
pacities. However, for the link-level topologies in cases B and
C of Fig. 4, it is possible for first-hop edge links to contribute
delays that will be (erroniously) attributed to the target link. In
most cases, we expect the magnitude of this error tobe small. A
target link will almost always have multiple sources, and only
the traffic passing through the target link is simulated. Con-
sequently, the first-hop delays in link-level simulation are ex-
pected to be small compared to delays accrued at target links.

The scenario which we first described—in which all traf-
fic on a path originates from a single source—represents the
worst case. Here, all target links (aside from the first hop) con-
tribute no queueing delay, thus magnifying the error induced
by repeatedly counting the first-hop delays for each target
link. Fig. 14 shows this effect. In this experiment, the main
traffic consists of one kilobyte flows, and the cross traffic con-
sists of 10 kilobyte flows. All traffic follows a Poisson arrival
process. With cross traffic, we see from the graph on the left
that Parsimon accurately estimates the FCT slowdown dis-
tribution of the main traffic. However, when we remove the
cross traffic, as done to produce the graph on the right, we see
substantial error in Parsimon’s estimates due to the first-hop
delays previously described. We note that this error exists even
when there is cross traffic, but the error contributes so little to
total delays—which are dominated by queueing at congested
links—that Parsimon still maintains good accuracy.

C.2 Correlated and Simultaneous Delays

Next we examine the effect of correlated and simultaneous
delays on Parsimon’s accuracy. We begin by artificially corre-
lating delays and examining the effect on estimated slowdown
distributions. Note that if the delays along a path are positively
correlated—for example, if the probability of encountering
delay at hop i+1 is higher given there is delay at hop i—then
we also expect to see more simultaneous delays along the
path. We create these correlated delays by modulating the
cross traffic. For regular unmodified cross traffic, we use the
same setup as in the previous subsection (§C.1). To artificially
correlate delays, we replicate the exact sequence of flows from
source one on sources three and five in Fig. 13, so that all three
sources of cross traffic send the same flows at the same time.
This produces an extreme case of correlation.

Because short-flow and long-flow estimates have different
sources of error, we separate the two cases when generating
the main traffic. For short flows we use the same one kilobyte
flows as before, and for long flows we generate flows that
are 10 times the maximum bandwidth-delay product, or 400

700 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

ns-3 Parsimon

Regular cross traffic Identical cross traffic

1.0 - — R —

o
S o5

0.0 T T T T T T T T T

1.0 15 2.0 25 1.0 15 2.0 25 3.0
FCT slowdown FCT slowdown
(a) Short flows (1 KB), Poisson cross traffic
ns-3 Parsimon
Regular cross traffic Identical cross traffic

1.0
w
0 0.5
O

0.0

T T T T T
5 10 5 10 15

FCT slowdown FCT slowdown
(b) Long flows (400 KB), Poisson cross traffic

Figure 15. CDFs of FCT slowdown estimated by ns-3 and
Parsimon for the main traffic with regular or identical cross traffic.
The main traffic consists either of short flows (Fig. 15a) or long
flows (Fig. 15b). When delays are artifically correlated by replicating
the same cross traffic across hosts, accuracy decreases for both
short and long flows, with long flows seeing larger errors. In fact,
long-flow estimates have significant error even when delays are not
explicitly correlated; this is due to the simultaneous delays induced
by the smooth Poisson cross traffic.

ns-3 Parsimon

Regular cross traffic Identical cross traffic

1.0 —

0.0

T T T T T T T T T
5 10 15 20 0 5 10 15 20

FCT slowdown FCT slowdown
Figure 16. CDFs of FCT slowdown for the same scenario as in
Fig. 15b, but with bursty cross traffic (log-normal inter-arrival times,
o0=2). When the cross traffic is bursty, long flows experience fewer
simultaneous delays with regular cross traffic. This results in less
error in Parsimon’s estimates.

kilobytes. Fig. 15 shows the effect of correlating delays on
Parsimon’s accuracy for short and long flows.

Short-flow main traffic. Inthe case of short flows (Fig. 15a),
a chief effect of increased correlation is to alter the probability
that a flow will encounter queueing. For example, suppose
a short flow traverses only two links at 50% utilization. If
the delays of the two links are independent, we can estimate
the probability that the flow encounters no delay (i.e., no
queueing) as 50% X 50% = 25%. However, if the delays are

perfectly positively correlated, then the probability that the
flow encounters no delay increases to 50%. Parsimon does not
capture this effect because it treats all links independently;
in this experiment, this manifests as slight overestimates in
FCT slowdown distributions.

Long-flow main traffic. While the total delay for a short
flow can be thought of as the sum of individual link delays,
the same reasoning does not straightforwardly extend to long
flows. Unlike a short flow, a long flow occupies multiple hops
at the same time, and only the bottleneck at each instant con-
tributes to end-to-end delay. Summing link delays is therefore
only appropriate if different hops contribute significant delays
at largely different times. However, Parsimon always aggre-
gates individual link contributions by adding them, regardless
of whether a link was the bottleneck when the delay was in-
curred. When we turn our attention to Fig. 15b, we see that not
only is the effect of identical cross traffic more severe, but also
there is significant error even with regular cross traffic. This is
because the cross traffic is smooth (recall that it uses uniform
flow sizes and a Poisson arrival process). Smooth traffic results
in small but frequent delays at congested links, increasing the
chance that long flows will experience simultaneous delays.

In Fig. 16, we duplicate the scenario in Fig. 15b, except we
make the cross traffic bursty by using a log-normal inter-
arrival time distribution with shape parameter o =2. Because
the cross traffic is bursty, there is less simultaneous delay
in the regular case, and the induced error is less dominant.
Consequently, Parsimon’s estimates are closer to the ground
truth in the graph on the left. Identical cross traffic still in-
duces large and frequent simultaneous delays, so the errors
remain in the graph on the right.

D Clustering Details

Here we briefly describe the distance function and the thresh-
olding critera we use in the evaluation (§5) for clustering link-
level simulations. First, recall from §4.2 that the link features
we extract are 1) the average load, 2) the flow size distribution,
3) the inter-arrival time distribution. For any two links, we
compute distances between their features, and we cluster the
links together if the distances are under some threshold.

Distance functions. To compute a distance between link
loads, we compute the error. If a and b are two link loads, error
e is computed as

la—bl

a

To compare distributions, there are many options. We opt for
a function that is 1) easily interpretable, 2) scale-independent,
and 3) adequately captures differences in the tail. To com-
pute a distance between two distributions, we extract 1,000
percentiles from each of them, and we compute a weighted
mean absolute percentage error (WMAPE) between them.
Suppose A and B are the sequences of extracted percentiles.

USENIX Association

20th USENIX Symposium on Networked Systems Design and Implementation 701

Then, WMAPE is computed as
ie1|Ai—Bil
1Al
For our purpose, A; and B; are non-negative for all i. We note
it is a bit counterintuitive for our distance functions not to
commute. However, we have found that it is easy to set thresh-

olds for these metrics, and they produce adequate clustering
for the workloads under study.

WMAPE =

Distance thresholds. Recall that we only want to cluster
two links together if we expect their simulation outputs to be
similar. Consequently, when setting a threshold for link loads
we must consider the network and the workload being as-
sessed. At high load, small differences in link loads can yield

large differences in the tails of FCT distributions; in these
cases, we typically set tighter thresholds to preserve accuracy
(as usual, this is subject to a speed-accuracy trade-off). For
highly-loaded networks, we commonly require e <0.001 or
e <0.002 for links to be clustered together. Ideally, this deci-
sion would be made on a link-by-link basis, so that tighter
thresholds would be set only for high-load links—doing so
may allow for more liberal clustering of the low-load links
contributing little delay, resulting in more pruned simula-
tions. However, the current prototype sets a single threshold
per simulation. To set a threshold between distributions, we
typically require WMAPE <0.1.

702 20th USENIX Symposium on Networked Systems Design and Implementation

USENIX Association

	Abstract
	1 Introduction
	2 Parsimon Overview
	3 Key Methods: Decompose and Aggregate
	3.1 Generating Link-Level Workloads
	3.2 Generating Link-Level Topologies
	3.3 Post-Processing Link-Level Results
	3.4 Aggregating Link-Level Estimates
	3.5 Primary Source of Speedup
	3.6 Primary Sources of Error

	4 Complementary Methods
	4.1 Fast Link-Level Simulation
	4.2 Clustering and Pruning Simulations

	5 Evaluation
	5.1 General Setup
	5.2 Analysis on a Large-Scale Network
	5.3 Sensitivity Analysis at Small Scale
	5.4 Analysis of One Configuration

	6 Conclusion
	References
	A Mixed Workloads
	B Link Failures
	C Studying Error Sources
	C.1 First-Hop Delays
	C.2 Correlated and Simultaneous Delays

	D Clustering Details

