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Abstract—In societal-scale infrastructures, such as electric
grids or transportation networks, pricing mechanisms are often
used as a way to shape users’ demand in order to lower
operating costs and improve reliability. Existing approaches to
pricing design for safety-critical networks often require that users
are queried beforehand to negotiate prices, which has proven
to be challenging to implement in the real-world. To offer a
more practical alternative, we develop learning-based pricing
mechanisms that require no input from the users. These pricing
mechanisms aim to maximize the utility of the users’ consumption
by gradually estimating the users’ price response over a span of
T time steps (e.g., days) while ensuring that the infrastructure
network’s safety constraints that limit the users’ demand are
satisfied at all time steps. We propose two different algorithms
for the two different scenarios when, 1) the utility function is
chosen by the central coordinator to achieve a social objective
and 2) the utility function is defined by the price response under
the assumption that the users are self-interested agents. We prove
that both algorithms enjoy O(Tz/ 3) regret with high probability.
We then apply these algorithms to demand response pricing for
the smart grid and numerically demonstrate their effectiveness.

I. INTRODUCTION

In safety-critical infrastructure systems, such as power
and transportation networks, prices or tolls are often used
to improve efficiency while ensuring safety constraints (e.g.
power line or road capacities) are honored. Optimal design of
such prices requires knowledge of self-interested users’ pref-
erences/utility functions, which are not often apriori available
to any central coordinator. As such, one popular approach is
to employ distributed resource allocation mechanisms such
as network utility maximization (NUM), e.g., [1], [2]. These
approaches are well suited for finding optimal shadow prices in
such multi-agent network systems via prescribed interactions
between agents with private preferences [3]-[5]. After the
distributed optimization protocol converges, optimal prices
may be posted, and the users will adjust their demand in
response to the posted prices. However, in spite of their
popularity in research papers, such resource allocation mecha-
nisms have not been widely implemented in real-world safety-
critical networks, such as power systems, due to several factors
including: 1) the need for back and forth communications with
users to negotiate over optimal prices; 2) they require fully
automated personal demand management mechanisms to be
adopted by each individual user in order to implement the
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distributed optimization protocol; 3) they require all users to
take part in the protocol and cooperate with the central entity.

To circumvent these issues, in this paper, we adopt an
alternative viewpoint wherein, instead of employing distributed
mechanisms to find optimal prices given unknown user pref-
erences, the central coordinator aims to learn the users’ pref-
erences over a span of 1" days through repeated interactions.
Each day, the central coordinator posts a price and observes
the users’ noisy response through their resource consumption,
and based on these observations, refines its knowledge of the
users’ preferences.

Adopting a learning-based pricing framework introduces
several novel challenges that are not present in conventional
approaches. The first challenge is ensuring the infrastructure’s
safety constraints when posting prices each day. As the price
response of the users is being learnt and is hence not entirely
known, the central coordinator needs to ensure that any posted
price will not lead to user demand that will violate the
network’s constraints (e.g., power flow constraints in demand
response applications). The second challenge is ensuring the
efficiency of the posted prices. Despite the fact that the central
coordinator lacks full knowledge of the users’ preferences, it
still needs to ensure that the aggregate utility of the users due
to the resource consumption is high over the span of 1" days.

To model this problem, we study two different frameworks,
Safe Price Response (SPR) and Safe Utility Maximization
(SUM). The SPR and the SUM problems differ in that, in
the former, the utility functions for different user groups are
chosen by the central coordinator and, in the latter, the utility
functions are defined by the price response function under the
assumption that the users are self-interested agents. SPR is
appropriate when the optimization objective (i.e. the utility
function) is a design choice of the central coordinator to
achieve social objectives, while SUM is appropriate when the
users are assumed to be self-interested agents and the goal is
to maximize the total private benefit of these agents.

The contributions of this work are summarized as follows:

o We introduce two new learning-based frameworks for
pricing design in safety-critical networks that are appli-
cable for the two typical settings where 1) the utility
functions are designed by a central entity and 2) the
utility functions are defined by the user’s response to
prices under the assumption that the users behave as self-
interested agents.

« Relative to prior works such as [3]-[5], our frameworks
are more practical for safety-critical pricing applications
because they do not require prices to be negotiated with
users beforehand to ensure safety;



o We propose two bandit algorithms for these frameworks
and prove that they enjoy sublinear regret and satisfy the
safety constraints at all rounds with high probability;

o« We apply these algorithms to demand response in the
smart grid and demonstrate their effectiveness through
simulation of a real distribution network.

Related Work: Evidently, this work is related to existing
approaches for demand management in safety-critical infras-
tructure. Several works [6]-[8] take a mechanism design
perspective, where the system users are modeled as strategic
agents in their interactions with the central coordinator (e.g.
a user may submit untruthful estimates of future demand to
reduce their own costs). In this paper, we take a different
perspective in that we model the users’ demand to be a private
function of the price that does not change in response to
the central coordinator’s pricing policy. This is more closely
related to distributed resource allocation approaches, which
are useful for finding optimal shadow prices in multi-agent
systems with private utility functions. The most relevant
distributed resource allocation framework is Network Utility
Maximization (NUM), which allows for a resource allocation
problem with private utility functions to be decomposed such
that it can be solved in a distributed fashion where a central
coordinator communicates with each user [9], [10]. NUM
has been applied to congestion control for internet networks
[4], [5] as well as the control of power and transportation
systems [1], [2], [11]. Recently, a NUM algorithm that respects
stage-wise constraints was presented in [12]. Another class of
distributed resource allocation approaches consider a fully dis-
tributed system with cooperative agents and limited informa-
tion sharing [3], [13]. Our problem formulations are different
than existing distributed resource allocation approaches in that
there is noisy bandit feedback from users, a parametric form
for the price response, and stage-wise safety constraints that
must always be respected in spite of uncertainty about the
users’ response.

Given that this work is focused on learning in safety-critical
applications, learning-based control techniques (surveyed in
[14]) are particularly relevant because they use previous data
to improve performance while ensuring safe operation. This
includes learning-based adaptive control [15], [16], learning-
based robust control [17], learning-based robust MPC [18§]
and model predictive safety certification [19]. Although we
use similar techniques to ensure safety, our problem funda-
mentally differs from the aforementioned approaches because
the algorithm in our problem interacts with the same static
environment at every time step, albeit with progressively
more information (i.e. the environment does not evolve as a
dynamical system).

In addition to learning-based control, there is also relevant
literature on safe optimization. This includes constrained op-
timization algorithms with unknown constraints and feasible
iterates where the constraints are either linear [20] or nonlinear
[21], as well as online convex optimization with unknown
constraints that need to be satisfied in the long term [22] or
constraints that need to be satisfied stage-wise [23]. Several
works have also considered the problem of safe learning under
a Gaussian process prior [24], [25]. However, none of these

consider a multi-agent optimization problem with stage-wise
constraints as we do here.

Most relevant to our work, prior work has also studied
safety in linear stochastic bandits, where the reward is an
unknown linear function of the action and the learner receives
noisy bandit feedback of this action. Different types of safety
constraints have been considered, including constraints on the
objective [26], constraints on another linearly parameterized
function with bandit feedback [27] and constraints that are
linear with respect to the decision variable and the unknown
parameter [28]. Although our algorithm and analysis are
inspired by [28], the key difference is that we have multiple
constraints that jointly apply to multiple users (or equivalently,
bandits) which necessitates different analysis techniques. Refer
to Section II-C for a more detailed comparison of the analysis.

This work studies a similar, but more general problem as the
conference paper [29]. In particular, [29] only considers the
SPR problem formulation with aj; > 0 for all ¢ € [n], j € [p],
which allows for a simpler algorithm and analysis than what
is presented here. The SUM formulation was not considered
in [29].

Organization: Our study of the SPR and SUM problems
are located in Section II and III respectively. Additionally,
the algorithms developed for these problems are applied to
demand response in smart grid in Section IV.

Notation: For a positive integer n, we use [n] to refer to
the set of positive integers from 1 to n inclusive. For a vector
or matrix A, its transpose is denoted AT. When A is square,
its minimum and maximum eigenvalues are denoted A,,;,,(A)
and A4 (A) respectively. For a vector v and positive definite
matrix P, we use ||v]| to refer to the euclidean norm of v and
|lv]|p to refer to Vo T Puv. For a d-dimensional vector or d-
tuple v and positive integer i, we denote the ith element of v
as v;. In d dimensions, the non-negative orthant and positive
orthant are referred to as Ri and Ri . respectively. We use )
to refer to Big-O notation that ignores logarithmic factors. A
vector of zeros and a vector of ones are indicated by 0 and 1
respectively, where the size is inferred by context. For vectors
u and v, the notation w > v indicates that each element of
u is greater than the corresponding element of v and u >~ v
indicates that each element of w is greater than or equal to
the corresponding element of v. For a set A, intA refers to
the interior of A and bdA refers to the boundary of A. The
domain of a function f is denoted by domf.

II. THE SAFE PRICE RESPONSE (SPR) PROBLEM

In this section, we first describe the SPR problem, and then
present an algorithm and theoretical performance guarantees
to address this problem. The problem setup, algorithm, and
regret analysis are presented in Sections II-A, II-B, and II-C.

A. Problem Setup

We pose a resource allocation problem involving repeated
interactions between a central coordinator and n users. At each
time step ¢ in horizon [T, there is an interaction between each
user ¢ € [n] and the central coordinator in which the central
coordinator chooses a price 7! and user i responds with a



resource consumption z!. The physical limits of the system
are specified by p linear constraints on the consumption vector
ot = [z} 24 ... 2! 7. The objective of the central coordinator
is to maximize the total user utility (defined later), while
ensuring that the constraints are satisfied at every t € [T].

We adopt a parametric form for the price response function
of the users. Specifically, we assume that the average resource
consumption of user 4 in response to the price 7! is given by
its average price response function,

ot = xi(v};07) = hi(7)) " 65, (1)

where 6 € R’ is a nonzero parameter that is unknown to the
central coordinator and h; : R — R’ is a known continuous
and non-increasing function where domh; = R. Equation
(1) models each user’s price response as an unknown mix of
given price response signatures, where h; specifies the set of
possible price response signatures that may be present in the
user population and 0 specifies what (unknown) mix of these
price response signatures make up user ¢’s price response.

For example, in the electricity demand response set up,
the total price response of each user to posted prices is
composed of the sum of usage of individual flexible appliances
(e.g., electric vehicle or dishwasher) and flexible appliances
have a limited number of ways to respond to prices (which
is justified given the automated nature of price response
from home energy management systems, the limited types of
flexible appliances, and the common electricity load patterns
of electricity customers). For example, time shiftable loads
with similar energy demand and similar deadlines would show
similar price response signatures. The response of an electric
vehicle to posted prices can be determined by the charging
rate, the amount of required charge, and the charging deadline.
If these parameters were known, the response can be fully
determined. However, since this is not the case, we assume
that each appliance can have one of a number of known
price response signatures captured by h;(v!). The central
coordinator does not know the exact combination of active
price response signatures in each user’s home (captured by
07) and as such, needs to learn this information by choosing
prices and observing the electricity usage of the homes. We
provide a more in-depth discussion of the electricity demand
response example in Section IV.

The average price response function is non-increasing by
definition, which is natural as consumption of a resource
will generally not increase as price increases. Also, due to
inherent stochasticities present in the users’ behaviors, the
central coordinator observes the average resource consumption
with some additive noise u!. Specifically, on day ¢, the central
coordinator observes the following response:

T; = ai(7;;07) + pi- 2)
We assume the following noise model on ,uﬁ, which is often
used in similar problems (e.g. [23], [28], [30]).

Assumption 1. For all i € [n] and t € [T), the noise u!
is conditionally o-subgaussian such that, given the history
th :fg(’Y}”YZQ’ "'7’Y’f+2]"4"t}7 /.1422, ) /"Li)’ E[#§|f’f_1] = 0 and
Ele™:|Fi 7] < exp(22),VA € R

In choosing the price vector v = [y 44 ... 4%]T for the
users at each time step ¢ € [T, there are various objectives
that the central coordinator might have depending on the
specific application. For example, in infrastructure systems that
supply critical resources, it is important that the allocation of
resources is fair such that under-served communities are not
charged high prices, or large consumers do not block access
to resources. In any case, the central coordinator can design
utility functions for each user to achieve the objective at hand.
Utility functions map the resource consumption of a user to
utility and have been extensively studied (e.g. [31]-[33]). Here,
the utility function for user ¢ is the strictly increasing function
fi : R = R, which means that the total utility for the system
at time step ¢ is >, f;(zh).

Despite the high utility that comes with unrestricted con-
sumption, there are physical limits on the system that restrict
which consumption vectors are allowable. These limits are
specified by p linear constraints on the users’ consumptions,
such that the set of feasible consumption vectors is compact
and defined as

n
E:{xER”:Zaﬁxigcj,Vje[p]}, 3)

i=1
where {a;i}ien),jep) and {c¢;};e[p) are known to the central
coordinator. Since the central coordinator only has access
to noisy observations of the price response, it is in general
impossible to design any method that enforces constraint (3)
deterministically over the course of T days without additional
(but unrealistic) assumptions. As such, we take the next alter-
native, which is to slightly relax this requirement of safety and
ensure it with a high probability jointly throughout the T day
operating time of our system. That is, the central coordinator
needs to ensure that every consumption vector z¢ is in E for
all ¢ in [T] with high probability. Note that this is different
from a regular chance constraint, which ensures constraint
satisfaction with a certain probability per time step, meaning
that the violation probability would compound as 7' grows.
Since any feasible algorithm will ensure that all consumption
vectors are in E with high probability, the following Lipschitz
assumption on f; only needs to hold for feasible consumption
vectors.

Assumption 2. For all i € [n], the utility function f; is M-
Lipschitz such that | f;(x;) — fi(x7)| < M|xj — 23| for all x*,
22 in E.

Given the model that has been specified so far, we can see
that if the central coordinator had full information (i.e. knew
{07 }vie[n)) they would choose the price for every time step
as

v* € argmax Y fi(zi(vi;0])), )
veD =1
where v = [y1 72 ... V] and

D= {fye]R”:Zajixi(%;Gi*)gcj,Vje [p]}, 5)

i=1
which we call the feasible price set. The central coordi-
nator cannot simply solve (4) and choose ~* immediately



because the 6 are unknown to them. Instead, the central
coordinator uses the information from previous time steps (i.e.
{(v7,27)}:ZY) to choose the current price +!. The central
coordinator’s performance in this task is measured by how
close the total realized utility is to the optimal utility over T’
time steps, which is referred to as regret:

T n
e =33 [fi(wi360) = filesi560)] - ©
t=1 i=1
The central coordinator’s objective is to ensure that there is
low regret and that, with high probability, every ~* is in D for
all t € [T].
Given the stated problem, we make a technical assumption
on the price response function in the following.

Assumption 3. For all i € [n], there exists a constant S such
that ||07| < S. Also, h; satisfies lim., o hi(7;) = oo and
limy, o0 hi(7:) = O for all i € [n].

The first part of this assumption ensures that the norm of
07 is bounded by .S which is standard in the bandit learning
literature, e.g. [30], [34]. In a real-world setting, an appropriate
S can be found with domain knowledge. For example, in the
demand response setup, an appropriate S can be chosen by
finding the worst-case estimates of the size of each appliance
in each home. The second part of Assumption 3 ensures that
there is a price (which may be negative) that will persuade the
user to consume any non-negative quantity of the resource.
This will generally be satisfied in real-world settings because
the price could be negative, i.e. the central coordinator would
pay the user to consume the resource. Such negative prices
are occasionally used in power systems, for example.

As defined thus far, the problem does not provide the
central coordinator with enough information to choose initial
prices that satisfy the constraints. To remedy this, we ensure
by assumption that the prior knowledge on 6*, i.e. the fact
that ||| < S for all ¢ in [n], is enough information for
the central coordinator to construct a set of prices that is
strictly within D. To state such an assumption, we first

define the initial confidence set for 0* = (67,0;,...,0%) as
C’=C) x CY x ... x CY, where
C7 = {6: e R :[|6.] < S} ™

for all i in [n]. Since 6* is known to be in C?, it follows that

D° = {7 ER™: > a;ib] hi(vi) < ¢ — ¢,
i=1 3

Vj € [p],Vh € CO}

is a subset of D for any ¢ > 0. In Assumption 4, we assume
that D° is nonempty for some ¢, providing the algorithm with
a set of prices that are initially known to strictly satisfy the
constraints. We will also consider a set that is known to be
larger than D given that 6* € C°,

ﬁO = {’y cR":30 e CO S.t. Zaﬂeg‘rhl(%) < Cj,
= ©)
Vj € [p]}-

Algorithm 1 Safe Price Response Algorithm

Input: {hi}ic(n). {ajiticm, e {¢i}iem {fitiem: S L
1: for t =1to T’ do
2 Broadcast 7! ~ Unif(DY) to the users.
3 Observe noisy consumption Z'.
4: end for

5: Construct confidence set C7" with (12).

6

7

8

9

: Construct safe price set DT with (14).
cfort=T"4+1to T do
Find optimistic price v with (15).

: Broadcast 7! to the users.
10: Observe noisy consumption Z'.
11: Update confidence set C* with (12).
12: Update safe price set D! with (14).
13: end for

Since each price in DO only needs to satisfy the constraints for
some € CY, any algorithm that incorporates the information
that 8* € C° will only choose prices that are in D°. Therefore,
by assuming that the norm of h; is bounded for any price in
DO, Assumption 4 ensures that the norm of h; is bounded by
a constant L for any prices that are chosen by the algorithm.
In the real-world, such a constant L can be simply calculated
given that h; and DO are known to the central coordinator.

Assumption 4. There exists positive constants ( and k such
that the initial safe set D° is nonempty and |aj;| < k for
all i in [n] and j in [p]. Additionally, there exists a positive
constant L such that max;c(n) [|hi(vi)|| < L for all v € Do,
Also, there does not exist a nonzero a; € R™ for each i € [n)
such that o] hi(v;) = 0 for all [y1 vz ... ya]" in DO.

In addition to what has already been discussed, Assumption
4 also specifies that 1) |a;;| is bounded by some constant
K for all 4,5 and that 2) the elements of h; are linearly
independent on D°. Note that point 1 is mild given that the
value of |aj;| is known and will be finite in any real-world
application and therefore such a s can simply be calculated.
The linear independence assumption of point 2 specifies that
the elements of h; are not scalar multiples of each other for
all prices in DY. This ensures that sampling D will provide
sufficient information about every dimension of ;. In practice,
this requires that the selected price response signatures are
sufficiently different, which is a design choice.

With the problem established, we develop an appropriate
algorithm in the next section.

B. Proposed Algorithm

The proposed algorithm (Algorithm 1) first performs pure
exploration by choosing prices in the initial safe set D for an
appropriately chosen duration 77, and then for the remaining
time steps, chooses the prices via the optimism in the face
of uncertainty (OFU) paradigm restricted to prices that are
known to satisfy the constraints. As proven in the analysis,
this algorithm achieves sublinear regret while ensuring that
the prices are in the feasible price set D for all time steps
with high probability.



In order to both implement OFU and determine which prices
are safe, the proposed algorithm uses previous price response
information {(y7,27)}._} to construct confidence sets in
which 0 lie with high probability. Given the regularized least-
squares estimator for §; at time step ¢ with regularization

paramater v > 0,
t

0f = [V hi(ag)a, (10)
s=1
where the gram matrix is
t
Vi=vI+Y hi(y))hi()7, (11)
s=1

we use a modified version of the confidence set developed in
[30].

Theorem 1. (Theorem 1 in [30] modified for multiple users)
Let Assumptions 1 and 3 hold. Recall the definition of V! in
(11). Then for all i in [n] and t > 0, we have with probability
at least 1 — 0 that 07 lies in the set

il < VB0l < S} (12)

Cf:{eieRT:‘

where

VBt=o mlog(ﬂ) VVUS.
5/n

The pure exploration phase of the algorlthm is used to
control the minimum eigenvalue of VT and hence control
the size of the confidence set C” . In order to shrink the
confidence set in a controlled manner, the algorithm samples
prices IID from the initial safe set D°. Formally, we can
state that as 7' Unif(DY) for all ¢ in [1,7"]. As proven in
Lemma 1, this exploration strategy ensures that the parameter
A_ (defined in (13)) is strictly greater than zero. This means
that the confidence set CT" will shrink with 7” and therefore
guarantees that the algorithm will have sublinear regret.

Lemma 1. Let Assumption 4 hold. Then, with Algorithm I we
have that

[ . (AN (AT
A= min [)\mm(E [hi (v i (1) ])} >0, (13)

forall t in [1,T"].
Proof. The proof is given in Lemma 6 in Appendix A. [

For time steps after the pure exploration phase, the al-
gorithm chooses actions optimistically within a conservative
inner approximation of the feasible price set, which we call
the safe price set. The safe price set is defined as

Dt = {fy cR": Zajixi('yi;ﬁi) <¢;,Vj € [p],v8 € C*

=1 (14)
where C* = Cf x C% x ... x CL. Equation (14) implies
that for any v € D! and any # € C% it holds that
[21(71,601), s Tr(Vn, )] T is in the feasible consumption set
E. Since 0* is in C* for all ¢t € [T] with high probability (due

to Theorem 1), any v € D' will yield a feasible consumption
vector with the same probability. Therefore, the algorithm
ensures that the price vectors at all time steps are feasible
with high probability by choosing each price vector 7* from
the safe price set D!. Among the price vectors in D¢, the
algorithm chooses one that is optimistic, i.e. the algorithm
finds a v such that

i(vi) " 0:)

(v,0") € argmax Zfl

(v.0)eDi-1xCt=1

5)

For each time step after the pure exploration phase (when ¢ >
T’) the algorithm broadcasts the optimistic price found with
(15), observes the noisy consumption z and then updates the
confidence set C*. In the next section we provide theoretical
regret guarantees for the proposed algorithm.

C. Regret Analysis

In this section, we prove that, with high probability, the
regret of the proposed algorithm is @(TQ/ 3) as given by
Theorem 2. This regret bound is comparable with similar
safe learning algorithms as [23] and [28] give the same order
bound.

Theorem 2. Let Assumptions 1-4 hold. Then with probability
at least 1 — 20, we have that the regret of Algorithm 1 satisfies

2
Ry <nM max(LS, 1)\/8(T —T"8Tmlog (1 + TL)
my

4v2(T — T")kMn?L2S+/BT

+2MnLST' +
N ES K
when T > ts = %\%2 log(™§*). In particular, choosing T" =

max(n?/3T2/3 ts) ensures that Ry € O(n5/3T2/3),

The complete proof of Theorem 2 is given in Appendix A of
the full online version of this paper in [35]. This proof relies on
a decomposition of the instantaneous regret that separates (I)
the instantaneous regret due to the difference between the safe
price set D' and the true price set D, and (II) the instantaneous
regret due to the size of the confidence set for 6. Given the
definition of instantaneous regret,

re =Y [fi (hi(3})767)

— fi (ha(¥))707)] (16)
i=1
we have the decomposition r; = r{ + 7!, where
=3 [ (men70) = £ (ma) )]
o (17)

y —Z[fz( ICONA RGN

Establishing the bound on 7/ uses similar techniques to the

stochastic linear bandit analysis, such as [30]. Bounding r/ is
somewhat more challenging and existing theory proves to be
largely insufficient.

We bound r/ for all time steps greater than 7" in Lemma 2.



Lemma 2. Let Assumptions 1-4 hold. Then, the set of prices
chosen by Algorithm 1 for time steps t greater than T' > ts,

{'Yf}we[n],DT/, satisfies

n

=30 [ (n)T0) - £ (mah 8|

1=1
- 426 Mn2L2 S/ BT
T2+ AT

with probability at least 1 — 2.

Proof sketch: The complete proof of Lemma 2 is given in
Appendix A. This proof draws inspiration from [28] in that
it considers a line segment between a point in the initial safe
set and the optimal solution, and then tracks the growth of the
safe set along this line segment by relating it to the shrinkage
of the paramater confidence set (i.e. C* in this case). Despite
the influence from [28], our problem requires more complex
work and new techniques to handle two primary challenges:
(a) the fact that there are nonlinear basis functions (i.e. h;), and
(b) the fact that there multiple constraints that jointly apply to
multiple users.

Due to challenge (a), we cannot take the natural approach
of using a line segment in the price domain (i.e. a line
segment from a point in DY to v*), because the constraint
is nonlinear with respect to the price. To work around this
issue, we consider a line segment in the domain of h =
[h1(v1) T ha(y2)" ... hu(7n)T]T. As a result, each of the
constraints are linear with respect to any point on the line
segment, making it feasible to bound. However, this intro-
duces additional challenges because there needs to be careful
consideration of which values the h vector can take given the
range of each h; function.

Challenge (b) makes it difficult both to determine which
constraint this line segment crosses and to bound the growth
of the safe set across multiple users. To address this challenge,
we use the increasing property of f; to show that at least one
constraint is tight on the optimal solution and use this fact to
relate the growth of the safe set to the minimum eigenvalue
of the gram matrix.

In the next section, we extend the work from the price
response problem to a setting where the utility function is
a property of the user rather than being chosen by the central
coordinator.

III. SAFE UTILITY MAXIMIZATION (SUM) PROBLEM

In this section, we consider the setting where the user utility
functions f;(-) are not designed by the central coordinator, but
are instead defined by the price response of the users under
the assumption that the users are self-interested agents. In par-
ticular, the price response function z;(~y;, 8;) now corresponds
to the profit-maximizing consumption, with the profit due to
consumption z; taken to be the utility f;(x;,6;) minus the cost
~v;x;. That is, we want f; to be defined such that

vy (i, 0;) = argmax(fi(zi,0;) — viwi). (18)

T;
This setting is especially useful because it captures the behav-
ior of rational self-interested agents, which are prevalent in

safety-critical infrastructure systems. For example, electricity
customers will choose an electricity consumption that maxi-
mizes the benefit (or utility) that they get from the electricity
minus the costs of the electricity (e.g. [1], [11] use such
a model). We will specify the specific structure of utility
functions that can concurrently satisfy (18) and (1).

Given that our problem is utility-maximizing and satisfies
this profit-maximizing property, it can also be viewed as a safe
version of the dual NUM problem (see [9]) with a specific
structure for the utility function and noisy observations of the
consumption. Our problem is considered to be safe because,
unlike conventional dual NUM, it ensures that the resource
constraints are satisfied at each time step. Therefore, our work
may find further application in areas in which dual NUM
algorithms have traditionally been used, as well as in safety-
critical areas that may benefit from NUM-type algorithms.

The problem setup, proposed algorithm and regret analysis
are given in Sections III-A, III-B and II-C, respectively.

A. Problem Setup

In this setting, the utility functions are not known to the
central coordinator. Instead, the utility functions, denoted
by fi, are defined in terms of the price response function
x;(+) given that the price response is the profit-maximizing
consumption. That is, the utility function for user ¢, denoted
fi :Ryp x R™ — R, is differentiable with respect to the first

argument and is implicitly defined as

(i, 0;) = argmax (fi(zi,0;) — vizi) , (19)

T, €ER 4
where x;(-) is the price response function in (1). It follows
from its definition that f;(z;,6;) represents the utility that a
self-interested user gets from a consumption of x;, given that
her price response function is x;(-,0;).

To ensure that f; is well defined and satisfies the same
properties of the utility functions as in the SPR setting (e.g.
increasing, Lipschitz), we make the following modifications
to the price response functions. We first specify that h; is
differentiable and strictly decreasing. This is more restrictive
than the SPR setting as h; is specified as continuous and non-
increasing in that case. These restrictions on h; ensure that
fi(+,0;) is unique up to an additive constant for a given price
response function z; (-, ;) as proven in Appendix B of the full
online version [35]. We also make the following assumption on
the price response, which is a stronger version of Assumption
3 from the SPR setting.

Assumption 5. (Replaces Assumption 3) There exists positive
constants S and p such that ||0}| < S and 179 > p. Also, the
domain of h; is the positive reals where lim.,,_,o+ h;(7;) = 0o
and lim.y, o hi(7;) = 0.

The first part of Assumption 5 is rather mild as it only
adds the condition that 176} > p to Assumption 3. However,
the second part of Assumption 5 is somewhat stronger than
the equivalent part of Assumption 3 because it ensures that
there exists a positive price (versus a real-valued price in
Assumption 3) that will compel the user to consume any non-
negative quantity of the resource. Examples of basis functions



that satisfy these assumptions (where m = 1, i.e. 6; is a scalar)
are h;(y;) = 1/v; which corresponds to x;(7;,6;) = 6;/7:
and f;(x;,0;) = 0;log(x;), as well as h;(v;) = 1/,/7; which
corresponds to z;(v;, ;) = 0;//7; and fi(z;,0;) = —607 /z;. !
Now that the utility function for this setting has been
specified, we define the optimal price vector for this setting

0;),07), (20)

€ arg max i i
0l gVGDZf i(vs

where D is the feasible price set defined in (5). Using the
definition of optimal prices, we can then define the regret due

to the prices {7} }icin] ter] as

T n
Br =33 [filwilr;,67),07) -

t=1 i=1

ft($1(72>6*) 6‘1*)] .

(2D
Note that the only difference between the definition of both the
optimal price and regret in this setting versus the SPR setting
is that f; is used in place of the SPR utility function f;.
Given that Assumption 5 provides an additional restriction
on the parameter ¢ (i.e. the condition that 1T9;k > p),
we need to define the initial confidence set for this setting
(equivalent to (7)),

CY={0; eRT : ||6;]| < S,170, > p} (22)

with C0 = CY x C9 x ... x CY. As in the SPR setting, we
use CO to define a set of prices that is contained in D and
a set of prices that contains D which are D° = {y e R*:
Sy aifThi(yi) < ¢ — ¢, V) € [p],¥8 € C°} and D° :=
{’Y eR”:30 € CO st Z?:l ainiThi(%) < Cj,Vj S [p]},
respectively. In the following assumption, we assume that D°
is nonempty, h;(7;) has bounded norm for all v € D° and
that the elements of h; are linearly independent (equivalent
to Assumption 4).

Assumption 6. (Replaces Assumption 4) There exists positive
constants ¢ and k such that D° is nonempty and la;i| < & for
all i in [n] and j in [p]. Additionally, there exists a positive
constant L such that max;cp [|hi(vi)|| < L for all v € D
Also, there does not exist a nonzero o; € R™ for each i € [n]
such that o hi(v;) = 0 for all [y1 ¥2 ... ¥a]" in D°.

Note that Assumption 6 is the same as Assumption 4 from
the SPR setting, except it incorporates the additional prior
information that 176; > p for all 4 in [n].

We then use C! to state an assumption which ensures
that f; is Lipschitz. This assumption uses the inverse of
the price response function, which we denote g;(x;,6;)
such that x;(g;(x;,6;),0;) = z; for any x; in R, and
gi(x;(7i,0;),0;) = ; for any 7; in Ry ;. In Lemma 11 in
Appendix B1 of the full online version of this paper [35],
gi(x;,0;) is proven to exist and to be equal to a%ifi(x,;,&,;)
for all z; in R, .

Assumption 7. For all x in E and 0 in C°, there exists
positive constants T, L and K such that g;(z;,0;) < T,

'We give examples with m = 1 because in more complicated settings,
there may not be a closed-form expression for the utility function. See (51) in
the full online version [35] for an integral expression for the utility function.

Algorithm 2 Safe Utility Maximization Algorithm

Input: {hi}icpn). {ajiticn)jepl> {¢i}iem {fitiem) S5 L,
0 £0
ps x°, f
:fort=1to T’ do
Broadcast 7! ~ Unif(D?) to the users.
Observe noisy consumption Z°.
: end for

1
2
3
4
5. Construct confidence set CT" with (23).
6
7
8
9

: Construct safe price set DT/ with (24).
cfort=T"+1t0 T do
Choose some #* in C*~1,

: Find optimistic price 4" with (25).
10: Broadcast '_yt to the users.
11: Observe noisy consumption Z°.
12: Update confidence set C* with (23).
13: Update safe price set D! with (24).
14: end for

[hi(gi(xi, 00) < L, and hi(gi(zi,0:)) = —1K for all
1€ [ |. Additionally, there exists a point z° in E such that
1i(22,+) is m-Lipschitz on C for all i in [n].

The first part of Assumption 7 provides bounds on
gi(xi,ﬁi), hz(gz(xl,ﬁl)) and h;(gl(mz,ﬁz)) for values of Z;
and 6; that the central coordinator might use as arguments for
the utility function when estimating the optimal utility (i.e. the
central coordinator initially knows that 6* is in CY and that
the optimal z is in E). The second part of Assumption 7 is
mild as it only states that f;(z;,-) is Lipschitz for a single
value of z; = z?. Along with the other assumptions, this is
sufficient to ensure that f;(x;,-) is Lipschitz for all z € E. In
order to bound z° in the analysis, we use the fact that E is
bounded by definition (in Section II-A) to define the positive
constant & as satisfying |z! — 22| < 1¢ for all ! and 22 in E.
In the next section, we propose an algorithm to address this
problem setup.

B. Proposed Algorithm

The proposed algorithm for this setting (Algorithm 2) oper-
ates nearly the same as the SPR algorithm with the exception
being that the confidence set and the optimistic price are
defined differently. Incorporating Assumption 5 into (12), the
confidence set for 8 in this setting is

Ci = {91- ER™ :
‘ v vt S \//K?a HGLH S S, ]_TGZ Z p}

The safe price set is then

(23)

D' = {7 ER™: Y azmi(vi;0:) < ¢;,Vj € [p],V0 € Ct}
=1 (24)



where C' = Ct x C x ... x C!. Using these definitions, the
optimistic price is found by first choosing some #' in C*~!
and then solving

n

Zfi (hi() " 6:,6})

arg max |
(v,0)eDt=1xCt=1 4

(4,6 € (25)
Note that this price update is nearly the same as the price
update in the SPR setting, with the exception being that
fi(-, %) is used instead of f;(-) where 6" is chosen arbitrarily
in C*~1. Although the optimistic price update (25) maximizes
the approximate utility >, f;(-,0%) rather than the true
utility >, fi(+,67) (since 6* is unknown), the algorithm
still enjoys sublinear regret because the difference between
fi(x;,0%) and fi(x;,0F) shrinks with time horizon. This is
due to the pure exploration phase, which ensures that C*~!
shrinks with the time horizon and therefore that the distance
between 6* and 6* shrinks as well. The complete regret bound
for this algorithm is given in the next section.

C. Regret Analysis

In this section, we extend the SPR regret analysis in Section
II-C to this setting. The main result is Theorem 3, which gives
the regret bound for this setting.

Theorem 3. Let Assumptions 1, 5-7 hold. Then, with proba-
bility at least 1 — 20, we have that

2
Ry <nT'max(LS, 1)\/8(T —T"BTmlog (1 + TL)
my

4v/2(T — T')kT'n?L2S /BT
(V20 + AT
Wo(T - T')(n+ $2)v/BT
" VAT '

when T' > t5 = 8)%2 log(™*). In particular, choosing T" =
max(n?/3T2/3 ts) guarantees that Ry € O(T?/3n/3).

+ 2I'nLST’ +

The proof of Theorem 3 is in Appendix B of the full online
version of this paper in [35]. We can see that the first three
terms of the regret bound in Theorem 3 match the bound for
the SPR setting (Theorem 2) except that I' appears in this
bound where M appears in the SPR bound. The fourth term in
the regret bound comes from the error in the second argument
of the utility function, i.e. the difference between f;(z;,0})
and fi(x;,0;) for some x;. However, the bound in Theorem
3 is still the same order as Theorem 2 from the SPR setting.

IV. APPLICATION TO DEMAND RESPONSE IN SMART GRID

In this section, we apply the SPR and SUM algorithms to
demand response (DR) in smart grid. DR is a mechanism
by which an aggregator (or other organization that supplies
power) can modify the electricity usage of its customers, some-
times through variable pricing. This is advantageous because
it can reduce the costs for the aggregator and its customers,
and improve reliability [36]. One popular type of DR program
is day-ahead real-time pricing (RTP), where each day the

A Aggregator )
User ; _'_',F('\-.

=R g
ﬁ — @ Preferences e ,,:i i | | R
*= /A
Unknown Mix e A %
of Flexible N 4
Loads
. . - K v . d .
Shared Distribution Network with Constraints on Power
Fig. 1. The aggregator does not specifically know how each electricity

customer will respond to prices beforehand as each customer has an unknown
mix of flexible loads and unique user preferences. Despite having limited
knowledge as such, the aggregator needs to choose prices such that the utility
is high and the distribution network constraints are satisfied.

aggregator posts prices for each time interval in the next day.
In choosing these prices, the aggregator aims to ensure that the
utility provided by the electricity consumption is high for the
users (i.e., they are satisfied), while maintaining low costs for
providing that electricity. It is also paramount that the prices be
chosen such that the customers’ consumption does not violate
the physical limits of the grid to avoid service outages and
repair costs. Our approach to day-ahead RTP, based on the
algorithms developed in this paper, achieves high utility and
ensures that cost constraints and grid constraints are satisfied
without knowing the specific flexibility or responsiveness of
the customer’s load beforehand. This is illustrated in Fig. 1.
For the remainder of this section, we formulate a day-ahead
RTP problem that is utility maximizing and safe with regard
to system constraints, and then show, through simulation, that
the SPR and SUM algorithms are effective for this problem.

A. Demand Response Formulation

Each day (time step) ¢, the aggregator (central coordina-
tor) posts prices 7;, for each time period v in [V] and
customer (user) ¢ in [n]. Customer ¢ then responds with
a noisy power consumption for each period in the day?,
denoted z;(v4;0;) = [Ti1(7}60:) .. Tiv(7f;0:)]T where
Tiw(v0:) = @iw(v0:) + pf, and vf = [vf, . Afy]
As before, we use a parametrically linear model for the
consumption ; ,(v; 0;) = h; (v!) " 0; and take the noise uﬁ’v
to be conditionally subgaussian. Note that the consumption
at each period v is allowed to depend on the price at all the
periods in the day to account for inter-temporal flexibility. The
central coordinator observes the noisy consumption Z;(v}, 6;)
for all customers on each day, and uses this to inform the
choice of prices on future days.

When choosing prices, the aggregator aims to maximize
utility while satisfying grid constraints and cost constraints.
We denote the utility function for customer ¢ as the increasing
function U; : RV — R. The grid constraints are on the

2 Although the consumption Z; and price 'y,f are vectors in the demand
response formulation, the results from the SPR and SUM formulation, where
they are scalars, can be easily extended to this case. In stating our theoretical
results, this vector case is not adopted for brevity of notation.



nodal voltages u! and the distribution line power flows p!:

Umin < Ul < Umar and pl < Sy, for all v € [V] and
t € [T)]. The nodal voltages and power flows are related to the
consumption via the power flow model. In particular, we use
the LinDistFlow model [37] for a feeder network to express the
reliability constraints linearly with respect to the consumption,
of the form > ; aj;x;i(7}) < 1¢; for all j in [p], ¢ in [T7].
Cost constraints can be implemented by specifying a limit on
the total power supplied to the users at each period in the day
according to the supply price and cost limit at that period.
With the objective and constraints defined, we have that the
optimal prices satisfy

~* € arg max Z Ui(zi(v))

,YG]RVXn i—1

S.t. Zajixi(%) = 1Cj7 Vj e [p]
=1

(26)

In the next section, we discuss the price response model that
is used to define the price response function.

B. Price Response Model

In order to capture the consumption behavior of a customer
in response to electricity prices (i.e. specify h; in (1)), we
use the price response model developed in [38], which itself
uses the appliance model in [39]. This appliance model
considers clusters of appliances which each have a set of
feasible consumption profiles (a consumption profile specifies
the consumption from those appliances for each period in the
day). For example, one cluster might represent electric vehicles
(EV) which need to be fully charged within a specific time
frame subject to power limits. Depending on how tight the time
frame is, there might be several different consumption profiles
for the electric vehicles that would satisfy these charging
requirements. Refer to [39] for further discussion on modeling
other appliance types.

Given that there are several possible consumption profiles
for each appliance cluster, the price response model in [38]
considers two mechanisms by which price impacts a cus-
tomer’s power consumption: (1) the cost-minimizing appliance
scheduling by the home energy management system (HEMS)
and (2) the adjustment of the customer’s preferences in re-
sponse to electricity prices. Mechanism (1) specifies that the
HEMS will choose the consumption profile for each appliance
cluster that minimizes the cost of operating that appliance
while mechanism (2) specifies that the customer’s usage of
each appliance cluster varies according to price equally for all
periods in the day. We assume that the way in which the HEMS
schedules appliances and the customer’s preference adjustment
function are known, while the number of appliances that
each customer has in each appliance cluster (specified by
each element of 6;) is unknown. Note that our approach and
algorithms could accommodate a more general model, but we
use this one to provide an example of how the approach and
algorithm can be used.

C. Test Setup

To evaluate the performance of our algorithms in the de-
mand response problem through simulation, we use a real
radial distribution network with n = 37 customers as specified
in [38] (originally from [40]). For this distribution system,
we use the power limits specified for each line given in
[38] and the nodal voltage limits of 0.95 and 1.05 p.u. (with
12.5kV base) as given in [40]. We use T' = 365 days and
V = 3 periods, with m = 2 different appliance clusters. One
appliance cluster is for appliances that operate at the same
time regardless of price and includes lighting (200 W, on for
intervals {2,3}) and cooking (500 W, on for interval 3). The
other appliance cluster is for flexible appliances that can be
scheduled at several different times and includes EV charging
(500 W, on for 1 interval in {1,3}), washer/drier (300 W,
on for 1 interval in {2,3}), HVAC (600 W, on for 1 interval
in {1,2,3}) and entertainment (200 W, on for 1 interval in
{2,3}). We use shifted sigmoids (1/(1 + €7 1=5)) for the
preference adjustment functions of the clusters. Also, we use
Ui(z;) = b;log(x; + 1) where b; ~ U[0,1] (for the SPR
Algorithm), choose the unknown parameter [0;];, ~ U[0.5, 1]
for each k in [m], take the variance proxy as o = 1.5 for the
SPR experiments and ¢ = 3 for the SUM experiments, where
1% ,, ~ N (). For the algorithm parameters, we use v = 10 for
the regularization parameter, 7" = 52 ~ T2/ for the duration
of the safe exploration phase and § = 0.01 for the confidence
parameter. To make the algorithms tractable, we consider a
finite set of prices in that the set of possible prices for each
user at each time step is {2, 5}. We also divide the users in to
three groups and use the same price for each of these groups to
reduce the number of prices that need to be considered. These
groups are (1) users 11-25, (2) users 29-35, and (3) users
1-10, 26-28. To reduce the computational load of the SUM
experiments, the users in each group in the SUM experiments
are assumed to have the same price response function. We also
calculate the SUM utility with a smoothed version of the price
response as detailed in Appendix D in the full online version
in [35]. Also, note that we do not incorporate the assumed
bounds on 0; (i.e. ||6;]] < S, 176, > p) when calculating the
confidence sets for 6;.

D. Simulation Results

The SPR Algorithm (Algorithm 1) was implemented for
the specified demand response problem and simulated for five
trials, each with different realizations of the noise. For all five
trials, there were zero constraint violations. The rolling sum of
the instantaneous regret for each trial is shown in the left-hand
side of Fig. 2.

Similarly, the SUM Algorithm (Algorithm 2) was imple-
mented for the demand response problem. In five trials,
there were zero constraint violations. The rolling sum of the
instantaneous regret for each trial is shown in the right-hand
side of Fig. 2.

Fig. 2 provides experimental evidence that the regret of
both algorithms grows sub-linearly with respect to time.
This provides validation of the stated theoretical results, and
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Fig. 2. The rolling sum of the instantaneous regret of the Safe Price Response
(SPR) and Safe Utility Maximization (SUM) algorithms for five trials of the
demand response problem.

demonstrates the algorithms’ performance in a realistic de-
mand response setting.

V. CONCLUSION

In this paper, we present two novel safe optimization
problems with applications to pricing design for safety-critical
infrastructure systems. We propose algorithms for each of
these problems and prove in our analysis that they both enjoy
sublinear regret. We then demonstrate the real-world applica-
bility of these algorithms by simulating them being used for
DR pricing in a distribution network. These simulations also
provide numerical validation for the theoretical results.

Despite the efficacy of our approach, there are some lim-
itations. Firstly, our problem formulation requires that a set
of safe prices is initially known by the algorithm. This is
a fundamental limitation of any problem formulation with
uncertain constraints that need to be satisfied at every time
step because, in such a setting, the algorithm cannot ensure
safety in the initial rounds without prior information. That said,
it may be challenging in some real-world settings to accurately
determine a set of safe prices without some (potentially unsafe)
experimentation.

Another limitation of our approach is that it only considers
linear constraints. As a result, this work cannot be directly
applied to safe pricing settings with nonlinear constraints.
An important such example is power flow constraints in
the smart grid, which can be more accurately specified by
nonlinear constraints. We leave the problem of safe pricing
under nonlinear constraints as future work.
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APPENDIX
A. Proof of Lemma 2.

Note that, in this section, many of the statements only hold
with high probability (i.e. they rely on Theorem 1 and Lemma
7). For brevity, this is not referenced at each step but the
probability of the complete bound is discussed at the end.

First, we define some sets that allow us to more easily bound
the growth of the safe decision set. We first have an expanded
confidence set for §; that is centered at 8 instead of 0; :

Ct = {0; € RY - [|0; — 07 ||lye < 2/B% 6] < S} @7)
Note that C* C C? as we can use the triangle inequality with
any 0, € C! to get ||0; — 0F[|y: = [0, — 0; + 6, — 0F ||y

< |16; — éz‘HV,; + |16 — 07lv: < 24/B". We then use this
expanded confidence set to define a shrunk safe price set,

Dt = {"}/ S Rn . Zaﬂxl(%,&) § cj,VG c ét,Vj c [p]},

= (28)
where C* = C! x C4 x ... x C%. The remaining anal-
ysis deals with the h vector, which is defined as h =
R1(v1) T ha(v2)T ... hn(ym)T]T. Accordingly, we define a
safe set for the h vector:

G'={h(m)" - hu(y) "] i1 - )T € DY (29)

3The missing proofs in this section are given in the full online version [35].

We also have the initial safe set for the h vector:

G’ = {[hl('Yl)T hn(Vn)T]T S

Note that, by definition, Ct C CY for all ¢t > 1 which implies
that D° C D! for all + > 1 and that G° C G for all ¢ > 1.

Next, we consider a line from a point in G° to the optimal
h vector. Let h* = [hi(7F)T ... hno(7)T]T and KO be any
element in G°. Then, we can use o' to track the safe set
along a line as o' = max{a € [0,1] : ah* + (1 — a)h® €
G'}. Let 28 = ath* 4+ (1 — a')h0 and 2! = ofh? + (1 —
a')hY. We can then bound r/, | with o by using the fact that
S filh (Y TO) > 300 fi([24]T0;) (which follows
from (15)).

)" € D%} (30)

ri = D Uil 07) = filhi(y ) O]

IN

[fi(ha(77) "07) = fill=]"07)]

«
Il

1M 11M-

<MY Jhi(y]) 67 — 2176

=1

=M |(h; —h)TE;I(1 - o)

1=1

€2y

<MY | = RY(1I6;1I(L o)
i=1

<2MnLS(1 - at)

Then, we establish a lower bound on «; by first showing
that at least one constraint is tight on the optimal solution. We
first show that the problem can be expressed as optimization
over the consumption in Lemma 3.

Lemma 3. Let Assumption 3 hold. Then the optimal
consumption x* = |[hy(7F)T0F hn(y)T02]T sat-
isfies x* € argmax,cp .., fi(xi), where E =
{zeRr, Y ajzi <cj, Vje[p}

Proof. Consider the set of feasible consumption
vectors, E = {[hl(%)TGi‘ hn(fyn)THfl]T iy € D}.
We can see that argmax, ;.. fi(z;) contains
[y (yi) 0% R (vE)T0%]T, where ~* is defined in

(4). Therefore, it only remains to be shown that Eis equal to
E. To do so, we consider the range of values that h;(v;) "6}
can take for 7 € D and hence the values that are in E.
Since h;(y) is continuous, h;(y)T6; is continuous as a
function of y. Also, Assumption 3 and the fact that 6;
is nonzero imply that lim, , hi(y)T0; = oo and that
limy 0 hi(y)T 0 = 0. Therefore, by the Intermediate Value
Theorem, for every x; € Rj, there exists a y € R such

that z; = h;(y)70F. Thus, E contains all x = 0 such that
o ajiw; < cj for all j in [p] and therefore equals E. [

Using this result, we then show that at least one constraint
is tight on the optimal solution in Lemma 4.

Lemma 4. Let Assumption 3 hold. Then, there exists a
constraint j in [p| such that Y, aj;x} = cj, where x* is an
optimal consumption as defined in Lemma 3.



Lemma 5. Let Assumption 3 hold. Then with probability at
least 1 — 6, there exists j in [p| such that

maxg aﬂﬁ z

960’

(32)

To lower bound af, we use Lemma 5 which gives that there
is a j in [p] such that max,.a > i ajib] zf = ¢;. Therefore,

Cj; = Inax E CLJZ i

960*
E max aﬁa
i=1 GieC?

=a Z max aﬂ 170 +(1 — ot Z max aﬂ[hO]TGi
0;€C

(33)

IN

'r 01T
0; + maxallfcu h;] ' 0;
Ze i a1~ o]

b* b0

Next, we bound b*. In order to do so, we need the following
lemmas, together which lower bound the minimum eigenvalue
of the gram matrix after the pure exploration phase.

Lemma 6. (Duplicate of Lemma 1) Let Assumption 4 hold.
Then, with Algorithm I we have that

e . . . t . t\T
A= min [)\mm (IE [hi (v i (1) ])} >0, (34)
forall tin [1,T"].

Lemma 7. (Lemma 1 in [28] modified for multiple users) It
holds with probability at least 1—§ that /\m,-,,(VZ-T/) >
Jor TV > ts := % log(™*) and all i in [n).

We can then establish a bound on b* for T >t +1 > T":
(a)

b <> (alhi)T0; + 2lagilv/B b )

i=1

®) - :

= ¢j + D 2ajil VB v+
i=1

© n 2 S t h*

<o) —F—C bl T

>\mm (VT/+1 )

“’<)C}+Z”:2\aj¢|\/2ﬁfllh?||
T = Vawt AT

© N 2nkLr/28T
o
7 S AT

The step (a) is due to the closed form solution for the support
function of an ellipsoid (e.g. [41] Eq. 19.13), (b) is due to
Lemma 35, (c) is due to the fact that Ay (V') > )\mm(V ) for
t > T’,(d) is due to Lemma 7 and (e) is due to Assumptions 3,
4, and the fact that 3¢ increases with ¢. Using the same process,
we can see that b° < 9 + £, where ¢§ = 377" | a;i0] hY.

We can now return to bounding o in (33). Because G° C
G* for all + > 1, we know that h° is in G* for all + > 1. We
use the following Lemma to show that b* > c;.

i=1

=: Cj + ft (35)

Lemma 8. Assume the same as Lemma 5 and let j
be a constraint satisfying Lemma 5. Then, we have that
maxgecn Yoy a5i; hi > cj.

Therefore, we know that b* > ¢; and O < cj (as
(h9 76, ... h9T6,]T is in E for all 0 in C°), which imply
that b* — 8% > 0 and Cj =c¢j — b° > 0. With these facts in
mind and the bounds on b* and b°, we have that

cj < a'b* + (1 —ah)p’
0 ~ ~ ~
+ Cj —-b Cj Cj Cj (36)
> = > =
R T T Iy T R
From the bound on b°, we also have that
Gi=c; =0 >c¢—c) 1> 1, (37)

where the last inequality follows from Assumption 4 which
implies that for any h in G° (such as h°), it holds that cj —

S ajih]0F > ¢ for all j in [p]. Thus, 1 — ot < +Ef <

£ Therefore, we have the bound on ri,, for all ¢ such that
T>t+1>T >ts:

o 4{ 26Mn?L2S+\/BT
bh S 2+ AT

Note that this bound only holds if both the events in Theorem
1 and Lemma 7 hold. Since each of these events happen with
probability at least 1 — 4, they jointly hold with probability at
least 1 — 26 by the union bound.

(38)
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