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AbstractÐIn societal-scale infrastructures, such as electric
grids or transportation networks, pricing mechanisms are often
used as a way to shape users’ demand in order to lower
operating costs and improve reliability. Existing approaches to
pricing design for safety-critical networks often require that users
are queried beforehand to negotiate prices, which has proven
to be challenging to implement in the real-world. To offer a
more practical alternative, we develop learning-based pricing
mechanisms that require no input from the users. These pricing
mechanisms aim to maximize the utility of the users’ consumption
by gradually estimating the users’ price response over a span of
T time steps (e.g., days) while ensuring that the infrastructure
network’s safety constraints that limit the users’ demand are
satisfied at all time steps. We propose two different algorithms
for the two different scenarios when, 1) the utility function is
chosen by the central coordinator to achieve a social objective
and 2) the utility function is defined by the price response under
the assumption that the users are self-interested agents. We prove

that both algorithms enjoy Õ(T 2/3) regret with high probability.
We then apply these algorithms to demand response pricing for
the smart grid and numerically demonstrate their effectiveness.

I. INTRODUCTION

In safety-critical infrastructure systems, such as power

and transportation networks, prices or tolls are often used

to improve efficiency while ensuring safety constraints (e.g.

power line or road capacities) are honored. Optimal design of

such prices requires knowledge of self-interested users’ pref-

erences/utility functions, which are not often apriori available

to any central coordinator. As such, one popular approach is

to employ distributed resource allocation mechanisms such

as network utility maximization (NUM), e.g., [1], [2]. These

approaches are well suited for finding optimal shadow prices in

such multi-agent network systems via prescribed interactions

between agents with private preferences [3]±[5]. After the

distributed optimization protocol converges, optimal prices

may be posted, and the users will adjust their demand in

response to the posted prices. However, in spite of their

popularity in research papers, such resource allocation mecha-

nisms have not been widely implemented in real-world safety-

critical networks, such as power systems, due to several factors

including: 1) the need for back and forth communications with

users to negotiate over optimal prices; 2) they require fully

automated personal demand management mechanisms to be

adopted by each individual user in order to implement the
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distributed optimization protocol; 3) they require all users to

take part in the protocol and cooperate with the central entity.

To circumvent these issues, in this paper, we adopt an

alternative viewpoint wherein, instead of employing distributed

mechanisms to find optimal prices given unknown user pref-

erences, the central coordinator aims to learn the users’ pref-

erences over a span of T days through repeated interactions.

Each day, the central coordinator posts a price and observes

the users’ noisy response through their resource consumption,

and based on these observations, refines its knowledge of the

users’ preferences.

Adopting a learning-based pricing framework introduces

several novel challenges that are not present in conventional

approaches. The first challenge is ensuring the infrastructure’s

safety constraints when posting prices each day. As the price

response of the users is being learnt and is hence not entirely

known, the central coordinator needs to ensure that any posted

price will not lead to user demand that will violate the

network’s constraints (e.g., power flow constraints in demand

response applications). The second challenge is ensuring the

efficiency of the posted prices. Despite the fact that the central

coordinator lacks full knowledge of the users’ preferences, it

still needs to ensure that the aggregate utility of the users due

to the resource consumption is high over the span of T days.

To model this problem, we study two different frameworks,

Safe Price Response (SPR) and Safe Utility Maximization

(SUM). The SPR and the SUM problems differ in that, in

the former, the utility functions for different user groups are

chosen by the central coordinator and, in the latter, the utility

functions are defined by the price response function under the

assumption that the users are self-interested agents. SPR is

appropriate when the optimization objective (i.e. the utility

function) is a design choice of the central coordinator to

achieve social objectives, while SUM is appropriate when the

users are assumed to be self-interested agents and the goal is

to maximize the total private benefit of these agents.

The contributions of this work are summarized as follows:

• We introduce two new learning-based frameworks for

pricing design in safety-critical networks that are appli-

cable for the two typical settings where 1) the utility

functions are designed by a central entity and 2) the

utility functions are defined by the user’s response to

prices under the assumption that the users behave as self-

interested agents.

• Relative to prior works such as [3]±[5], our frameworks

are more practical for safety-critical pricing applications

because they do not require prices to be negotiated with

users beforehand to ensure safety;
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• We propose two bandit algorithms for these frameworks

and prove that they enjoy sublinear regret and satisfy the

safety constraints at all rounds with high probability;

• We apply these algorithms to demand response in the

smart grid and demonstrate their effectiveness through

simulation of a real distribution network.

Related Work: Evidently, this work is related to existing

approaches for demand management in safety-critical infras-

tructure. Several works [6]±[8] take a mechanism design

perspective, where the system users are modeled as strategic

agents in their interactions with the central coordinator (e.g.

a user may submit untruthful estimates of future demand to

reduce their own costs). In this paper, we take a different

perspective in that we model the users’ demand to be a private

function of the price that does not change in response to

the central coordinator’s pricing policy. This is more closely

related to distributed resource allocation approaches, which

are useful for finding optimal shadow prices in multi-agent

systems with private utility functions. The most relevant

distributed resource allocation framework is Network Utility

Maximization (NUM), which allows for a resource allocation

problem with private utility functions to be decomposed such

that it can be solved in a distributed fashion where a central

coordinator communicates with each user [9], [10]. NUM

has been applied to congestion control for internet networks

[4], [5] as well as the control of power and transportation

systems [1], [2], [11]. Recently, a NUM algorithm that respects

stage-wise constraints was presented in [12]. Another class of

distributed resource allocation approaches consider a fully dis-

tributed system with cooperative agents and limited informa-

tion sharing [3], [13]. Our problem formulations are different

than existing distributed resource allocation approaches in that

there is noisy bandit feedback from users, a parametric form

for the price response, and stage-wise safety constraints that

must always be respected in spite of uncertainty about the

users’ response.

Given that this work is focused on learning in safety-critical

applications, learning-based control techniques (surveyed in

[14]) are particularly relevant because they use previous data

to improve performance while ensuring safe operation. This

includes learning-based adaptive control [15], [16], learning-

based robust control [17], learning-based robust MPC [18]

and model predictive safety certification [19]. Although we

use similar techniques to ensure safety, our problem funda-

mentally differs from the aforementioned approaches because

the algorithm in our problem interacts with the same static

environment at every time step, albeit with progressively

more information (i.e. the environment does not evolve as a

dynamical system).

In addition to learning-based control, there is also relevant

literature on safe optimization. This includes constrained op-

timization algorithms with unknown constraints and feasible

iterates where the constraints are either linear [20] or nonlinear

[21], as well as online convex optimization with unknown

constraints that need to be satisfied in the long term [22] or

constraints that need to be satisfied stage-wise [23]. Several

works have also considered the problem of safe learning under

a Gaussian process prior [24], [25]. However, none of these

consider a multi-agent optimization problem with stage-wise

constraints as we do here.

Most relevant to our work, prior work has also studied

safety in linear stochastic bandits, where the reward is an

unknown linear function of the action and the learner receives

noisy bandit feedback of this action. Different types of safety

constraints have been considered, including constraints on the

objective [26], constraints on another linearly parameterized

function with bandit feedback [27] and constraints that are

linear with respect to the decision variable and the unknown

parameter [28]. Although our algorithm and analysis are

inspired by [28], the key difference is that we have multiple

constraints that jointly apply to multiple users (or equivalently,

bandits) which necessitates different analysis techniques. Refer

to Section II-C for a more detailed comparison of the analysis.

This work studies a similar, but more general problem as the

conference paper [29]. In particular, [29] only considers the

SPR problem formulation with aji ≥ 0 for all i ∈ [n], j ∈ [p],
which allows for a simpler algorithm and analysis than what

is presented here. The SUM formulation was not considered

in [29].

Organization: Our study of the SPR and SUM problems

are located in Section II and III respectively. Additionally,

the algorithms developed for these problems are applied to

demand response in smart grid in Section IV.

Notation: For a positive integer n, we use [n] to refer to

the set of positive integers from 1 to n inclusive. For a vector

or matrix A, its transpose is denoted A⊤. When A is square,

its minimum and maximum eigenvalues are denoted λmin(A)
and λmax(A) respectively. For a vector v and positive definite

matrix P , we use ∥v∥ to refer to the euclidean norm of v and

∥v∥P to refer to
√
v⊤Pv. For a d-dimensional vector or d-

tuple v and positive integer i, we denote the ith element of v
as vi. In d dimensions, the non-negative orthant and positive

orthant are referred to as Rd
+ and R

d
++ respectively. We use Õ

to refer to Big-O notation that ignores logarithmic factors. A

vector of zeros and a vector of ones are indicated by 0 and 1

respectively, where the size is inferred by context. For vectors

u and v, the notation u ≻ v indicates that each element of

u is greater than the corresponding element of v and u ⪰ v
indicates that each element of u is greater than or equal to

the corresponding element of v. For a set A, intA refers to

the interior of A and bdA refers to the boundary of A. The

domain of a function f is denoted by domf .

II. THE SAFE PRICE RESPONSE (SPR) PROBLEM

In this section, we first describe the SPR problem, and then

present an algorithm and theoretical performance guarantees

to address this problem. The problem setup, algorithm, and

regret analysis are presented in Sections II-A, II-B, and II-C.

A. Problem Setup

We pose a resource allocation problem involving repeated

interactions between a central coordinator and n users. At each

time step t in horizon [T ], there is an interaction between each

user i ∈ [n] and the central coordinator in which the central

coordinator chooses a price γt
i and user i responds with a
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resource consumption xt
i. The physical limits of the system

are specified by p linear constraints on the consumption vector

xt = [xt
1 xt

2 ... xt
n]

⊤. The objective of the central coordinator

is to maximize the total user utility (defined later), while

ensuring that the constraints are satisfied at every t ∈ [T ].
We adopt a parametric form for the price response function

of the users. Specifically, we assume that the average resource

consumption of user i in response to the price γt
i is given by

its average price response function,

xt
i = xi(γ

t
i ; θ

∗
i ) = hi(γ

t
i )

⊤θ∗i , (1)

where θ∗i ∈ R
m
+ is a nonzero parameter that is unknown to the

central coordinator and hi : R → R
m
+ is a known continuous

and non-increasing function where domhi = R. Equation

(1) models each user’s price response as an unknown mix of

given price response signatures, where hi specifies the set of

possible price response signatures that may be present in the

user population and θ∗i specifies what (unknown) mix of these

price response signatures make up user i’s price response.

For example, in the electricity demand response set up,

the total price response of each user to posted prices is

composed of the sum of usage of individual flexible appliances

(e.g., electric vehicle or dishwasher) and flexible appliances

have a limited number of ways to respond to prices (which

is justified given the automated nature of price response

from home energy management systems, the limited types of

flexible appliances, and the common electricity load patterns

of electricity customers). For example, time shiftable loads

with similar energy demand and similar deadlines would show

similar price response signatures. The response of an electric

vehicle to posted prices can be determined by the charging

rate, the amount of required charge, and the charging deadline.

If these parameters were known, the response can be fully

determined. However, since this is not the case, we assume

that each appliance can have one of a number of known

price response signatures captured by hi(γ
t
i ). The central

coordinator does not know the exact combination of active

price response signatures in each user’s home (captured by

θ∗i ) and as such, needs to learn this information by choosing

prices and observing the electricity usage of the homes. We

provide a more in-depth discussion of the electricity demand

response example in Section IV.

The average price response function is non-increasing by

definition, which is natural as consumption of a resource

will generally not increase as price increases. Also, due to

inherent stochasticities present in the users’ behaviors, the

central coordinator observes the average resource consumption

with some additive noise µt
i. Specifically, on day t, the central

coordinator observes the following response:

x̄t
i = xi(γ

t
i ; θ

∗
i ) + µt

i. (2)

We assume the following noise model on µt
i, which is often

used in similar problems (e.g. [23], [28], [30]).

Assumption 1. For all i ∈ [n] and t ∈ [T ], the noise µt
i

is conditionally σ-subgaussian such that, given the history

F t
i = σ(γ1

i , γ
2
i , ..., γ

t+1
i , µ1

i , µ
2
i , ..., µ

t
i), E[µ

t
i|F t−1

i ] = 0 and

E[eλµ
t
i |F t−1

i ] ≤ exp(λ
2σ2

2 ), ∀λ ∈ R.

In choosing the price vector γt = [γt
1 γt

2 ... γt
n]

⊤ for the

users at each time step t ∈ [T ], there are various objectives

that the central coordinator might have depending on the

specific application. For example, in infrastructure systems that

supply critical resources, it is important that the allocation of

resources is fair such that under-served communities are not

charged high prices, or large consumers do not block access

to resources. In any case, the central coordinator can design

utility functions for each user to achieve the objective at hand.

Utility functions map the resource consumption of a user to

utility and have been extensively studied (e.g. [31]±[33]). Here,

the utility function for user i is the strictly increasing function

fi : R → R, which means that the total utility for the system

at time step t is
∑n

i=1 fi(x
t
i).

Despite the high utility that comes with unrestricted con-

sumption, there are physical limits on the system that restrict

which consumption vectors are allowable. These limits are

specified by p linear constraints on the users’ consumptions,

such that the set of feasible consumption vectors is compact

and defined as

Ē =

{

x ∈ R
n :

n∑

i=1

ajixi ≤ cj , ∀j ∈ [p]

}

, (3)

where {aji}i∈[n],j∈[p] and {cj}j∈[p] are known to the central

coordinator. Since the central coordinator only has access

to noisy observations of the price response, it is in general

impossible to design any method that enforces constraint (3)

deterministically over the course of T days without additional

(but unrealistic) assumptions. As such, we take the next alter-

native, which is to slightly relax this requirement of safety and

ensure it with a high probability jointly throughout the T day

operating time of our system. That is, the central coordinator

needs to ensure that every consumption vector xt is in Ē for

all t in [T ] with high probability. Note that this is different

from a regular chance constraint, which ensures constraint

satisfaction with a certain probability per time step, meaning

that the violation probability would compound as T grows.

Since any feasible algorithm will ensure that all consumption

vectors are in Ē with high probability, the following Lipschitz

assumption on fi only needs to hold for feasible consumption

vectors.

Assumption 2. For all i ∈ [n], the utility function fi is M -

Lipschitz such that |fi(x1
i )−fi(x

2
i )| ≤ M |x1

i −x2
i | for all x1,

x2 in Ē.

Given the model that has been specified so far, we can see

that if the central coordinator had full information (i.e. knew

{θ∗i }∀i∈[n]) they would choose the price for every time step

as

γ∗ ∈ argmax
γ∈D̄

n∑

i=1

fi(xi(γi; θ
∗
i )), (4)

where γ = [γ1 γ2 ... γn]
⊤ and

D̄ =

{

γ ∈ R
n :

n∑

i=1

ajixi(γi; θ
∗
i ) ≤ cj , ∀j ∈ [p]

}

, (5)

which we call the feasible price set. The central coordi-

nator cannot simply solve (4) and choose γ∗ immediately
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because the θ∗i are unknown to them. Instead, the central

coordinator uses the information from previous time steps (i.e.

{(γτ , xτ )}t−1
τ=1) to choose the current price γt

i . The central

coordinator’s performance in this task is measured by how

close the total realized utility is to the optimal utility over T
time steps, which is referred to as regret:

RT =

T∑

t=1

n∑

i=1

[

fi
(
xi(γ

∗
i ; θ

∗
i )
)
− fi

(
xi(γ

t
i ; θ

∗
i )
)]

(6)

The central coordinator’s objective is to ensure that there is

low regret and that, with high probability, every γt is in D̄ for

all t ∈ [T ].
Given the stated problem, we make a technical assumption

on the price response function in the following.

Assumption 3. For all i ∈ [n], there exists a constant S such

that ∥θ∗i ∥ ≤ S. Also, hi satisfies limγi→−∞ hi(γi) = ∞ and

limγi→∞ hi(γi) = 0 for all i ∈ [n].

The first part of this assumption ensures that the norm of

θ∗i is bounded by S which is standard in the bandit learning

literature, e.g. [30], [34]. In a real-world setting, an appropriate

S can be found with domain knowledge. For example, in the

demand response setup, an appropriate S can be chosen by

finding the worst-case estimates of the size of each appliance

in each home. The second part of Assumption 3 ensures that

there is a price (which may be negative) that will persuade the

user to consume any non-negative quantity of the resource.

This will generally be satisfied in real-world settings because

the price could be negative, i.e. the central coordinator would

pay the user to consume the resource. Such negative prices

are occasionally used in power systems, for example.

As defined thus far, the problem does not provide the

central coordinator with enough information to choose initial

prices that satisfy the constraints. To remedy this, we ensure

by assumption that the prior knowledge on θ∗, i.e. the fact

that ∥θ∗i ∥ ≤ S for all i in [n], is enough information for

the central coordinator to construct a set of prices that is

strictly within D̄. To state such an assumption, we first

define the initial confidence set for θ∗ = (θ∗1 , θ
∗
2 , ..., θ

∗
n) as

C0 = C0
1 × C0

2 × ...× C0
n, where

C0
i = {θi ∈ R

m
+ : ∥θi∥ ≤ S} (7)

for all i in [n]. Since θ∗ is known to be in C0, it follows that

D0 :=

{

γ ∈ R
n :

n∑

i=1

ajiθ
T
i hi(γi) ≤ cj − ζ,

∀j ∈ [p], ∀θ ∈ C0

} (8)

is a subset of D̄ for any ζ ≥ 0. In Assumption 4, we assume

that D0 is nonempty for some ζ, providing the algorithm with

a set of prices that are initially known to strictly satisfy the

constraints. We will also consider a set that is known to be

larger than D̄ given that θ∗ ∈ C0,

D̂0 :=

{

γ ∈ R
n : ∃θ ∈ C0 s.t.

n∑

i=1

ajiθ
T
i hi(γi) ≤ cj ,

∀j ∈ [p]

}

.

(9)

Algorithm 1 Safe Price Response Algorithm

Input: {hi}i∈[n], {aji}i∈[n],j∈[p], {cj}j∈[p], {fi}i∈[n], S, L
1: for t = 1 to T ′ do

2: Broadcast γt ∼ Unif(D0) to the users.

3: Observe noisy consumption x̄t.

4: end for

5: Construct confidence set CT ′

with (12).

6: Construct safe price set DT ′

with (14).

7: for t = T ′ + 1 to T do

8: Find optimistic price γt with (15).

9: Broadcast γt to the users.

10: Observe noisy consumption x̄t.

11: Update confidence set Ct with (12).

12: Update safe price set Dt with (14).

13: end for

Since each price in D̂0 only needs to satisfy the constraints for

some θ ∈ C0, any algorithm that incorporates the information

that θ∗ ∈ C0 will only choose prices that are in D̂0. Therefore,

by assuming that the norm of hi is bounded for any price in

D̂0, Assumption 4 ensures that the norm of hi is bounded by

a constant L for any prices that are chosen by the algorithm.

In the real-world, such a constant L can be simply calculated

given that hi and D̂0 are known to the central coordinator.

Assumption 4. There exists positive constants ζ and κ such

that the initial safe set D0 is nonempty and |aji| ≤ κ for

all i in [n] and j in [p]. Additionally, there exists a positive

constant L such that maxi∈[n] ∥hi(γi)∥ ≤ L for all γ ∈ D̂0.

Also, there does not exist a nonzero αi ∈ R
m for each i ∈ [n]

such that α⊤
i hi(γi) = 0 for all [γ1 γ2 ... γn]

⊤ in D0.

In addition to what has already been discussed, Assumption

4 also specifies that 1) |aji| is bounded by some constant

κ for all i, j and that 2) the elements of hi are linearly

independent on D0. Note that point 1 is mild given that the

value of |aji| is known and will be finite in any real-world

application and therefore such a κ can simply be calculated.

The linear independence assumption of point 2 specifies that

the elements of hi are not scalar multiples of each other for

all prices in D0. This ensures that sampling D0 will provide

sufficient information about every dimension of θ∗i . In practice,

this requires that the selected price response signatures are

sufficiently different, which is a design choice.

With the problem established, we develop an appropriate

algorithm in the next section.

B. Proposed Algorithm

The proposed algorithm (Algorithm 1) first performs pure

exploration by choosing prices in the initial safe set D0 for an

appropriately chosen duration T ′, and then for the remaining

time steps, chooses the prices via the optimism in the face

of uncertainty (OFU) paradigm restricted to prices that are

known to satisfy the constraints. As proven in the analysis,

this algorithm achieves sublinear regret while ensuring that

the prices are in the feasible price set D̄ for all time steps

with high probability.
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In order to both implement OFU and determine which prices

are safe, the proposed algorithm uses previous price response

information {(γτ , xτ )}t−1
τ=1 to construct confidence sets in

which θ∗i lie with high probability. Given the regularized least-

squares estimator for θ∗i at time step t with regularization

paramater ν > 0,

θ̂ti = [V t
i ]

−1
t∑

s=1

hi(γ
s
i )x̄

s
i , (10)

where the gram matrix is

V t
i = νI +

t∑

s=1

hi(γ
s
i )hi(γ

s
i )

⊤, (11)

we use a modified version of the confidence set developed in

[30].

Theorem 1. (Theorem 1 in [30] modified for multiple users)

Let Assumptions 1 and 3 hold. Recall the definition of V t
i in

(11). Then for all i in [n] and t ≥ 0, we have with probability

at least 1− δ that θ∗i lies in the set

Ct
i =

{

θi ∈ R
m
+ :

∥
∥
∥θi − θ̂ti

∥
∥
∥
V t
i

≤
√

βt, ∥θi∥ ≤ S

}

(12)

where

√

βt = σ

√

m log
(1 + tL2/ν

δ/n

)

+
√
νS.

The pure exploration phase of the algorithm is used to

control the minimum eigenvalue of V T ′

i and hence control

the size of the confidence set CT ′

. In order to shrink the

confidence set in a controlled manner, the algorithm samples

prices IID from the initial safe set D0. Formally, we can

state that as γt iid∼ Unif(D0) for all t in [1, T ′]. As proven in

Lemma 1, this exploration strategy ensures that the parameter

λ− (defined in (13)) is strictly greater than zero. This means

that the confidence set CT ′

will shrink with T ′ and therefore

guarantees that the algorithm will have sublinear regret.

Lemma 1. Let Assumption 4 hold. Then, with Algorithm 1 we

have that

λ− := min
i∈[n]

[

λmin

(

E
[
hi(γ

t
i )hi(γ

t
i )

⊤
] )

]

> 0, (13)

for all t in [1, T ′].

Proof. The proof is given in Lemma 6 in Appendix A.

For time steps after the pure exploration phase, the al-

gorithm chooses actions optimistically within a conservative

inner approximation of the feasible price set, which we call

the safe price set. The safe price set is defined as

Dt =

{

γ ∈ R
n :

n∑

i=1

ajixi(γi; θi) ≤ cj , ∀j ∈ [p], ∀θ ∈ Ct

}

(14)

where Ct = Ct
1 × Ct

2 × ... × Ct
n. Equation (14) implies

that for any γ ∈ Dt and any θ ∈ Ct, it holds that

[x1(γ1, θ1), ..., xn(γn, θn)]
⊤ is in the feasible consumption set

Ē. Since θ∗ is in Ct for all t ∈ [T ] with high probability (due

to Theorem 1), any γ ∈ Dt will yield a feasible consumption

vector with the same probability. Therefore, the algorithm

ensures that the price vectors at all time steps are feasible

with high probability by choosing each price vector γt from

the safe price set Dt. Among the price vectors in Dt, the

algorithm chooses one that is optimistic, i.e. the algorithm

finds a γt such that

(γt, θ̃t) ∈ argmax
(γ,θ)∈Dt−1×Ct−1

n∑

i=1

fi
(
hi(γi)

⊤θi
)
. (15)

For each time step after the pure exploration phase (when t >
T ′) the algorithm broadcasts the optimistic price found with

(15), observes the noisy consumption x̄t and then updates the

confidence set Ct. In the next section we provide theoretical

regret guarantees for the proposed algorithm.

C. Regret Analysis

In this section, we prove that, with high probability, the

regret of the proposed algorithm is Õ(T 2/3) as given by

Theorem 2. This regret bound is comparable with similar

safe learning algorithms as [23] and [28] give the same order

bound.

Theorem 2. Let Assumptions 1±4 hold. Then with probability

at least 1−2δ, we have that the regret of Algorithm 1 satisfies

RT ≤nM max(LS, 1)

√

8(T − T ′)βTm log

(

1 +
TL2

mν

)

+ 2MnLST ′ +
4
√
2(T − T ′)κMn2L2S

√

βT

ζ
√

2ν + λ−T ′

when T ′ ≥ tδ = 8L2

λ−
log(nmδ ). In particular, choosing T ′ =

max(n2/3T 2/3, tδ) ensures that RT ∈ Õ(n5/3T 2/3).

The complete proof of Theorem 2 is given in Appendix A of

the full online version of this paper in [35]. This proof relies on

a decomposition of the instantaneous regret that separates (I)

the instantaneous regret due to the difference between the safe

price set Dt and the true price set D̄, and (II) the instantaneous

regret due to the size of the confidence set for θ∗i . Given the

definition of instantaneous regret,

rt =

n∑

i=1

[
fi
(
hi(γ

∗
i )

⊤θ∗i
)
− fi

(
hi(γ

t
i )

⊤θ∗i
)]

, (16)

we have the decomposition rt = rIt + rIIt , where

rIt =

n∑

i=1

[

fi

(

hi(γ
∗
i )

⊤θ∗i

)

− fi

(

hi(γ
t
i )

⊤θ̃ti

)]

,

rIIt =
n∑

i=1

[

fi

(

hi(γ
t
i )

⊤θ̃ti

)

− fi

(

hi(γ
t
i )

⊤θ∗i

)]

.

(17)

Establishing the bound on rIIt uses similar techniques to the

stochastic linear bandit analysis, such as [30]. Bounding rIt is

somewhat more challenging and existing theory proves to be

largely insufficient.

We bound rIt for all time steps greater than T ′ in Lemma 2.
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Lemma 2. Let Assumptions 1±4 hold. Then, the set of prices

chosen by Algorithm 1 for time steps t greater than T ′ ≥ tδ ,

{γt
i}∀i∈[n],t>T ′ , satisfies

rIt =
n∑

i=1

[

fi

(

hi(γ
∗
i )

⊤θ∗i

)

− fi

(

hi(γ
t
i )

⊤θ̃ti

)]

≤ 4
√
2κMn2L2S

√

βT

ζ
√

2λ+ λ−T ′
,

with probability at least 1− 2δ.

Proof sketch: The complete proof of Lemma 2 is given in

Appendix A. This proof draws inspiration from [28] in that

it considers a line segment between a point in the initial safe

set and the optimal solution, and then tracks the growth of the

safe set along this line segment by relating it to the shrinkage

of the paramater confidence set (i.e. Ct in this case). Despite

the influence from [28], our problem requires more complex

work and new techniques to handle two primary challenges:

(a) the fact that there are nonlinear basis functions (i.e. hi), and

(b) the fact that there multiple constraints that jointly apply to

multiple users.

Due to challenge (a), we cannot take the natural approach

of using a line segment in the price domain (i.e. a line

segment from a point in D0 to γ∗), because the constraint

is nonlinear with respect to the price. To work around this

issue, we consider a line segment in the domain of h =
[h1(γ1)

⊤ h2(γ2)
⊤ ... hn(γn)

⊤]⊤. As a result, each of the

constraints are linear with respect to any point on the line

segment, making it feasible to bound. However, this intro-

duces additional challenges because there needs to be careful

consideration of which values the h vector can take given the

range of each hi function.

Challenge (b) makes it difficult both to determine which

constraint this line segment crosses and to bound the growth

of the safe set across multiple users. To address this challenge,

we use the increasing property of fi to show that at least one

constraint is tight on the optimal solution and use this fact to

relate the growth of the safe set to the minimum eigenvalue

of the gram matrix.

In the next section, we extend the work from the price

response problem to a setting where the utility function is

a property of the user rather than being chosen by the central

coordinator.

III. SAFE UTILITY MAXIMIZATION (SUM) PROBLEM

In this section, we consider the setting where the user utility

functions fi(·) are not designed by the central coordinator, but

are instead defined by the price response of the users under

the assumption that the users are self-interested agents. In par-

ticular, the price response function xi(γi, θi) now corresponds

to the profit-maximizing consumption, with the profit due to

consumption xi taken to be the utility fi(xi, θi) minus the cost

γixi. That is, we want fi to be defined such that

xi(γi, θi) = argmax
xi

(fi(xi, θi)− γixi). (18)

This setting is especially useful because it captures the behav-

ior of rational self-interested agents, which are prevalent in

safety-critical infrastructure systems. For example, electricity

customers will choose an electricity consumption that maxi-

mizes the benefit (or utility) that they get from the electricity

minus the costs of the electricity (e.g. [1], [11] use such

a model). We will specify the specific structure of utility

functions that can concurrently satisfy (18) and (1).

Given that our problem is utility-maximizing and satisfies

this profit-maximizing property, it can also be viewed as a safe

version of the dual NUM problem (see [9]) with a specific

structure for the utility function and noisy observations of the

consumption. Our problem is considered to be safe because,

unlike conventional dual NUM, it ensures that the resource

constraints are satisfied at each time step. Therefore, our work

may find further application in areas in which dual NUM

algorithms have traditionally been used, as well as in safety-

critical areas that may benefit from NUM-type algorithms.

The problem setup, proposed algorithm and regret analysis

are given in Sections III-A, III-B and III-C, respectively.

A. Problem Setup

In this setting, the utility functions are not known to the

central coordinator. Instead, the utility functions, denoted

by
¯
fi, are defined in terms of the price response function

xi(·) given that the price response is the profit-maximizing

consumption. That is, the utility function for user i, denoted

¯
fi : R++ ×R

m → R, is differentiable with respect to the first

argument and is implicitly defined as

xi(γi, θi) = argmax
xi∈R++

(

¯
fi(xi, θi)− γixi

)
, (19)

where xi(·) is the price response function in (1). It follows

from its definition that
¯
fi(xi, θi) represents the utility that a

self-interested user gets from a consumption of xi, given that

her price response function is xi(·, θi).
To ensure that

¯
fi is well defined and satisfies the same

properties of the utility functions as in the SPR setting (e.g.

increasing, Lipschitz), we make the following modifications

to the price response functions. We first specify that hi is

differentiable and strictly decreasing. This is more restrictive

than the SPR setting as hi is specified as continuous and non-

increasing in that case. These restrictions on hi ensure that

¯
fi(·, θi) is unique up to an additive constant for a given price

response function xi(·, θi) as proven in Appendix B of the full

online version [35]. We also make the following assumption on

the price response, which is a stronger version of Assumption

3 from the SPR setting.

Assumption 5. (Replaces Assumption 3) There exists positive

constants S and ρ such that ∥θ∗i ∥ ≤ S and 1
⊤θ∗i ≥ ρ. Also, the

domain of hi is the positive reals where limγi→0+ hi(γi) = ∞

and limγi→∞ hi(γi) = 0.

The first part of Assumption 5 is rather mild as it only

adds the condition that 1⊤θ∗i ≥ ρ to Assumption 3. However,

the second part of Assumption 5 is somewhat stronger than

the equivalent part of Assumption 3 because it ensures that

there exists a positive price (versus a real-valued price in

Assumption 3) that will compel the user to consume any non-

negative quantity of the resource. Examples of basis functions
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that satisfy these assumptions (where m = 1, i.e. θi is a scalar)

are hi(γi) = 1/γi which corresponds to xi(γi, θi) = θi/γi
and

¯
fi(xi, θi) = θi log(xi), as well as hi(γi) = 1/

√
γi which

corresponds to xi(γi, θi) = θi/
√
γi and

¯
fi(xi, θi) = −θ2i /xi.

1

Now that the utility function for this setting has been

specified, we define the optimal price vector for this setting

¯
γ∗ ∈ argmax

γ∈D̄

n∑

i=1 ¯
fi(xi(γi, θ

∗
i ), θ

∗
i ), (20)

where D̄ is the feasible price set defined in (5). Using the

definition of optimal prices, we can then define the regret due

to the prices {
¯
γt
i}i∈[n],t∈[T ] as

¯
RT =

T∑

t=1

n∑

i=1

[

¯
fi(xi(

¯
γ∗
i , θ

∗
i ), θ

∗
i )−

¯
fi(xi(

¯
γt
i , θ

∗
i ), θ

∗
i )
]
.

(21)

Note that the only difference between the definition of both the

optimal price and regret in this setting versus the SPR setting

is that
¯
fi is used in place of the SPR utility function fi.

Given that Assumption 5 provides an additional restriction

on the parameter θ∗i (i.e. the condition that 1
⊤θ∗i ≥ ρ),

we need to define the initial confidence set for this setting

(equivalent to (7)),

¯
C0

i = {θi ∈ R
m
+ : ∥θi∥ ≤ S,1⊤θi ≥ ρ} (22)

with
¯
C0 =

¯
C0

1 ×
¯
C0

2 × ... ×
¯
C0

n. As in the SPR setting, we

use
¯
C0 to define a set of prices that is contained in D̄ and

a set of prices that contains D̄ which are
¯
D0 = {γ ∈ R

n :
∑n

i=1 ajiθ
T
i hi(γi) ≤ cj − ζ, ∀j ∈ [p], ∀θ ∈

¯
C0} and

¯
D̂0 :=

{
γ ∈ R

n : ∃θ ∈
¯
C0 s.t.

∑n
i=1 ajiθ

T
i hi(γi) ≤ cj , ∀j ∈ [p]

}
,

respectively. In the following assumption, we assume that
¯
D0

is nonempty, hi(γi) has bounded norm for all γ ∈
¯
D̂0 and

that the elements of hi are linearly independent (equivalent

to Assumption 4).

Assumption 6. (Replaces Assumption 4) There exists positive

constants ζ and κ such that
¯
D0 is nonempty and |aji| ≤ κ for

all i in [n] and j in [p]. Additionally, there exists a positive

constant L such that maxi∈[n] ∥hi(γi)∥ ≤ L for all γ ∈
¯
D̂0.

Also, there does not exist a nonzero αi ∈ R
m for each i ∈ [n]

such that α⊤
i hi(γi) = 0 for all [γ1 γ2 ... γn]

⊤ in
¯
D0.

Note that Assumption 6 is the same as Assumption 4 from

the SPR setting, except it incorporates the additional prior

information that 1⊤θi ≥ ρ for all i in [n].
We then use

¯
C0

i to state an assumption which ensures

that
¯
fi is Lipschitz. This assumption uses the inverse of

the price response function, which we denote gi(xi, θi)
such that xi(gi(xi, θi), θi) = xi for any xi in R++ and

gi(xi(γi, θi), θi) = γi for any γi in R++. In Lemma 11 in

Appendix B1 of the full online version of this paper [35],

gi(xi, θi) is proven to exist and to be equal to ∂
∂xi¯

fi(xi, θi)
for all xi in R++.

Assumption 7. For all x in Ē and θ in
¯
C0, there exists

positive constants Γ, L and K such that gi(xi, θi) ≤ Γ,

1We give examples with m = 1 because in more complicated settings,
there may not be a closed-form expression for the utility function. See (51) in
the full online version [35] for an integral expression for the utility function.

Algorithm 2 Safe Utility Maximization Algorithm

Input: {hi}i∈[n], {aji}i∈[n],j∈[p], {cj}j∈[p], {
¯
fi}i∈[n], S, L,

ρ, x0, f0

1: for t = 1 to T ′ do

2: Broadcast γt ∼ Unif(
¯
D0) to the users.

3: Observe noisy consumption x̄t.

4: end for

5: Construct confidence set
¯
CT ′

with (23).

6: Construct safe price set
¯
DT ′

with (24).

7: for t = T ′ + 1 to T do

8: Choose some
¯
θ̌t in

¯
Ct−1.

9: Find optimistic price
¯
γt with (25).

10: Broadcast
¯
γt to the users.

11: Observe noisy consumption x̄t.

12: Update confidence set
¯
Ct with (23).

13: Update safe price set
¯
Dt with (24).

14: end for

∥hi(gi(xi, θi))∥ ≤ L, and h′
i(gi(xi, θi)) ⪯ −1K for all

i ∈ [n]. Additionally, there exists a point x0 in E such that

¯
fi(x

0
i , ·) is η-Lipschitz on

¯
C0

i for all i in [n].

The first part of Assumption 7 provides bounds on

gi(xi, θi), hi(gi(xi, θi)) and h′
i(gi(xi, θi)) for values of xi

and θi that the central coordinator might use as arguments for

the utility function when estimating the optimal utility (i.e. the

central coordinator initially knows that θ∗ is in
¯
C0 and that

the optimal x is in Ē). The second part of Assumption 7 is

mild as it only states that
¯
fi(xi, ·) is Lipschitz for a single

value of xi = x0
i . Along with the other assumptions, this is

sufficient to ensure that
¯
fi(xi, ·) is Lipschitz for all x ∈ Ē. In

order to bound x0 in the analysis, we use the fact that Ē is

bounded by definition (in Section II-A) to define the positive

constant ξ as satisfying |x1−x2| ⪯ 1ξ for all x1 and x2 in Ē.

In the next section, we propose an algorithm to address this

problem setup.

B. Proposed Algorithm

The proposed algorithm for this setting (Algorithm 2) oper-

ates nearly the same as the SPR algorithm with the exception

being that the confidence set and the optimistic price are

defined differently. Incorporating Assumption 5 into (12), the

confidence set for θ∗i in this setting is

¯
Ct

i =

{

θi ∈ R
m
+ :

∥
∥
∥θi − θ̂ti

∥
∥
∥
V t
i

≤
√

βt, ∥θi∥ ≤ S,1⊤θi ≥ ρ

}

.

(23)

The safe price set is then

¯
Dt =

{

γ ∈ R
n :

n∑

i=1

ajixi(γi; θi) ≤ cj , ∀j ∈ [p], ∀θ ∈
¯
Ct

}

(24)
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where
¯
Ct =

¯
Ct

1 × ¯
Ct

2 × ...×
¯
Ct

n. Using these definitions, the

optimistic price is found by first choosing some
¯
θ̌t in

¯
Ct−1

and then solving

(
¯
γt,

¯
θ̃t) ∈ argmax

(γ,θ)∈
¯
Dt−1×

¯
Ct−1

n∑

i=1 ¯
fi
(
hi(γi)

⊤θi,
¯
θ̌ti
)

(25)

Note that this price update is nearly the same as the price

update in the SPR setting, with the exception being that

¯
fi(·,

¯
θ̌ti) is used instead of fi(·) where

¯
θ̌t is chosen arbitrarily

in
¯
Ct−1. Although the optimistic price update (25) maximizes

the approximate utility
∑n

i=1
¯
fi(·,

¯
θ̌ti) rather than the true

utility
∑n

i=1
¯
fi(·, θ∗i ) (since θ∗ is unknown), the algorithm

still enjoys sublinear regret because the difference between

¯
fi(xi,

¯
θ̌ti) and

¯
fi(xi, θ

∗
i ) shrinks with time horizon. This is

due to the pure exploration phase, which ensures that Ct−1

shrinks with the time horizon and therefore that the distance

between
¯
θ̌t and θ∗ shrinks as well. The complete regret bound

for this algorithm is given in the next section.

C. Regret Analysis

In this section, we extend the SPR regret analysis in Section

II-C to this setting. The main result is Theorem 3, which gives

the regret bound for this setting.

Theorem 3. Let Assumptions 1, 5±7 hold. Then, with proba-

bility at least 1− 2δ, we have that

¯
RT ≤nΓmax(LS, 1)

√

8(T − T ′)βTm log

(

1 +
TL2

mν

)

+ 2ΓnLST ′ +
4
√
2(T − T ′)κΓn2L2S

√

βT

ζ
√

2ν + λ−T ′

+
4
√
2n(T − T ′)(η + ξL

ρK )
√

βT

√

2ν + λ−T ′
.

when T ′ ≥ tδ = 8L2

λ−
log(nmδ ). In particular, choosing T ′ =

max(n2/3T 2/3, tδ) guarantees that
¯
RT ∈ Õ(T 2/3n5/3).

The proof of Theorem 3 is in Appendix B of the full online

version of this paper in [35]. We can see that the first three

terms of the regret bound in Theorem 3 match the bound for

the SPR setting (Theorem 2) except that Γ appears in this

bound where M appears in the SPR bound. The fourth term in

the regret bound comes from the error in the second argument

of the utility function, i.e. the difference between
¯
fi(xi, ˇ

¯
θti)

and
¯
fi(xi, θ

∗
i ) for some xi. However, the bound in Theorem

3 is still the same order as Theorem 2 from the SPR setting.

IV. APPLICATION TO DEMAND RESPONSE IN SMART GRID

In this section, we apply the SPR and SUM algorithms to

demand response (DR) in smart grid. DR is a mechanism

by which an aggregator (or other organization that supplies

power) can modify the electricity usage of its customers, some-

times through variable pricing. This is advantageous because

it can reduce the costs for the aggregator and its customers,

and improve reliability [36]. One popular type of DR program

is day-ahead real-time pricing (RTP), where each day the

Fig. 1. The aggregator does not specifically know how each electricity
customer will respond to prices beforehand as each customer has an unknown
mix of flexible loads and unique user preferences. Despite having limited
knowledge as such, the aggregator needs to choose prices such that the utility
is high and the distribution network constraints are satisfied.

aggregator posts prices for each time interval in the next day.

In choosing these prices, the aggregator aims to ensure that the

utility provided by the electricity consumption is high for the

users (i.e., they are satisfied), while maintaining low costs for

providing that electricity. It is also paramount that the prices be

chosen such that the customers’ consumption does not violate

the physical limits of the grid to avoid service outages and

repair costs. Our approach to day-ahead RTP, based on the

algorithms developed in this paper, achieves high utility and

ensures that cost constraints and grid constraints are satisfied

without knowing the specific flexibility or responsiveness of

the customer’s load beforehand. This is illustrated in Fig. 1.

For the remainder of this section, we formulate a day-ahead

RTP problem that is utility maximizing and safe with regard

to system constraints, and then show, through simulation, that

the SPR and SUM algorithms are effective for this problem.

A. Demand Response Formulation

Each day (time step) t, the aggregator (central coordina-

tor) posts prices γt
i,v for each time period v in [V ] and

customer (user) i in [n]. Customer i then responds with

a noisy power consumption for each period in the day2,

denoted x̄i(γ
t
i ; θi) = [x̄i,1(γ

t
i ; θi) ... x̄i,V (γ

t
i ; θi)]

⊤ where

x̄i,v(γ
t
i ; θi) = xi,v(γ

t
i ; θi) + µt

i,v and γt
i = [γt

i,1 ... γt
i,V ].

As before, we use a parametrically linear model for the

consumption xi,v(γ
t
i ; θi) = hi,v(γ

t
i )

⊤θi and take the noise µt
i,v

to be conditionally subgaussian. Note that the consumption

at each period v is allowed to depend on the price at all the

periods in the day to account for inter-temporal flexibility. The

central coordinator observes the noisy consumption x̄i(γ
t
i , θi)

for all customers on each day, and uses this to inform the

choice of prices on future days.

When choosing prices, the aggregator aims to maximize

utility while satisfying grid constraints and cost constraints.

We denote the utility function for customer i as the increasing

function Ui : R
V → R. The grid constraints are on the

2Although the consumption x̄i and price γ
t
i are vectors in the demand

response formulation, the results from the SPR and SUM formulation, where
they are scalars, can be easily extended to this case. In stating our theoretical
results, this vector case is not adopted for brevity of notation.
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nodal voltages ut
v and the distribution line power flows ptv:

umin ≤ ut
v ≤ umax and ptv ≤ Smax for all v ∈ [V ] and

t ∈ [T ]. The nodal voltages and power flows are related to the

consumption via the power flow model. In particular, we use

the LinDistFlow model [37] for a feeder network to express the

reliability constraints linearly with respect to the consumption,

of the form
∑n

i=1 ajixi(γ
t
i ) ⪯ 1cj for all j in [p], t in [T ].

Cost constraints can be implemented by specifying a limit on

the total power supplied to the users at each period in the day

according to the supply price and cost limit at that period.

With the objective and constraints defined, we have that the

optimal prices satisfy

γ∗ ∈ argmax
γ∈RV ×n

n∑

i=1

Ui(xi(γi))

s.t.

n∑

i=1

ajixi(γi) ⪯ 1cj , ∀j ∈ [p]

(26)

In the next section, we discuss the price response model that

is used to define the price response function.

B. Price Response Model

In order to capture the consumption behavior of a customer

in response to electricity prices (i.e. specify hi in (1)), we

use the price response model developed in [38], which itself

uses the appliance model in [39]. This appliance model

considers clusters of appliances which each have a set of

feasible consumption profiles (a consumption profile specifies

the consumption from those appliances for each period in the

day). For example, one cluster might represent electric vehicles

(EV) which need to be fully charged within a specific time

frame subject to power limits. Depending on how tight the time

frame is, there might be several different consumption profiles

for the electric vehicles that would satisfy these charging

requirements. Refer to [39] for further discussion on modeling

other appliance types.

Given that there are several possible consumption profiles

for each appliance cluster, the price response model in [38]

considers two mechanisms by which price impacts a cus-

tomer’s power consumption: (1) the cost-minimizing appliance

scheduling by the home energy management system (HEMS)

and (2) the adjustment of the customer’s preferences in re-

sponse to electricity prices. Mechanism (1) specifies that the

HEMS will choose the consumption profile for each appliance

cluster that minimizes the cost of operating that appliance

while mechanism (2) specifies that the customer’s usage of

each appliance cluster varies according to price equally for all

periods in the day. We assume that the way in which the HEMS

schedules appliances and the customer’s preference adjustment

function are known, while the number of appliances that

each customer has in each appliance cluster (specified by

each element of θi) is unknown. Note that our approach and

algorithms could accommodate a more general model, but we

use this one to provide an example of how the approach and

algorithm can be used.

C. Test Setup

To evaluate the performance of our algorithms in the de-

mand response problem through simulation, we use a real

radial distribution network with n = 37 customers as specified

in [38] (originally from [40]). For this distribution system,

we use the power limits specified for each line given in

[38] and the nodal voltage limits of 0.95 and 1.05 p.u. (with

12.5kV base) as given in [40]. We use T = 365 days and

V = 3 periods, with m = 2 different appliance clusters. One

appliance cluster is for appliances that operate at the same

time regardless of price and includes lighting (200 W, on for

intervals {2, 3}) and cooking (500 W, on for interval 3). The

other appliance cluster is for flexible appliances that can be

scheduled at several different times and includes EV charging

(500 W, on for 1 interval in {1, 3}), washer/drier (300 W,

on for 1 interval in {2, 3}), HVAC (600 W, on for 1 interval

in {1, 2, 3}) and entertainment (200 W, on for 1 interval in

{2, 3}). We use shifted sigmoids (1/(1 + eγ
⊤

i 1−5)) for the

preference adjustment functions of the clusters. Also, we use

Ui(xi) = bi log(xi + 1) where bi ∼ U [0, 1] (for the SPR

Algorithm), choose the unknown parameter [θi]k ∼ U [0.5, 1]
for each k in [m], take the variance proxy as σ = 1.5 for the

SPR experiments and σ = 3 for the SUM experiments, where

µt
i,v ∼ N (σ). For the algorithm parameters, we use ν = 10 for

the regularization parameter, T ′ = 52 ≈ T 2/3 for the duration

of the safe exploration phase and δ = 0.01 for the confidence

parameter. To make the algorithms tractable, we consider a

finite set of prices in that the set of possible prices for each

user at each time step is {2, 5}. We also divide the users in to

three groups and use the same price for each of these groups to

reduce the number of prices that need to be considered. These

groups are (1) users 11-25, (2) users 29-35, and (3) users

1-10, 26-28. To reduce the computational load of the SUM

experiments, the users in each group in the SUM experiments

are assumed to have the same price response function. We also

calculate the SUM utility with a smoothed version of the price

response as detailed in Appendix D in the full online version

in [35]. Also, note that we do not incorporate the assumed

bounds on θi (i.e. ∥θi∥ ≤ S, 1⊤θi ≥ ρ) when calculating the

confidence sets for θi.

D. Simulation Results

The SPR Algorithm (Algorithm 1) was implemented for

the specified demand response problem and simulated for five

trials, each with different realizations of the noise. For all five

trials, there were zero constraint violations. The rolling sum of

the instantaneous regret for each trial is shown in the left-hand

side of Fig. 2.

Similarly, the SUM Algorithm (Algorithm 2) was imple-

mented for the demand response problem. In five trials,

there were zero constraint violations. The rolling sum of the

instantaneous regret for each trial is shown in the right-hand

side of Fig. 2.

Fig. 2 provides experimental evidence that the regret of

both algorithms grows sub-linearly with respect to time.

This provides validation of the stated theoretical results, and
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Fig. 2. The rolling sum of the instantaneous regret of the Safe Price Response
(SPR) and Safe Utility Maximization (SUM) algorithms for five trials of the
demand response problem.

demonstrates the algorithms’ performance in a realistic de-

mand response setting.

V. CONCLUSION

In this paper, we present two novel safe optimization

problems with applications to pricing design for safety-critical

infrastructure systems. We propose algorithms for each of

these problems and prove in our analysis that they both enjoy

sublinear regret. We then demonstrate the real-world applica-

bility of these algorithms by simulating them being used for

DR pricing in a distribution network. These simulations also

provide numerical validation for the theoretical results.

Despite the efficacy of our approach, there are some lim-

itations. Firstly, our problem formulation requires that a set

of safe prices is initially known by the algorithm. This is

a fundamental limitation of any problem formulation with

uncertain constraints that need to be satisfied at every time

step because, in such a setting, the algorithm cannot ensure

safety in the initial rounds without prior information. That said,

it may be challenging in some real-world settings to accurately

determine a set of safe prices without some (potentially unsafe)

experimentation.

Another limitation of our approach is that it only considers

linear constraints. As a result, this work cannot be directly

applied to safe pricing settings with nonlinear constraints.

An important such example is power flow constraints in

the smart grid, which can be more accurately specified by

nonlinear constraints. We leave the problem of safe pricing

under nonlinear constraints as future work.
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APPENDIX

A. Proof of Lemma 2.3

Note that, in this section, many of the statements only hold

with high probability (i.e. they rely on Theorem 1 and Lemma

7). For brevity, this is not referenced at each step but the

probability of the complete bound is discussed at the end.

First, we define some sets that allow us to more easily bound

the growth of the safe decision set. We first have an expanded

confidence set for θ∗i that is centered at θ∗i instead of θ̂i :

C̃t
i = {θi ∈ R

m
+ : ∥θi − θ∗i ∥V t

i
≤ 2

√

βt, ∥θi∥ ≤ S}. (27)

Note that Ct
i ⊆ C̃t

i as we can use the triangle inequality with

any θi ∈ Ct
i to get ∥θi − θ∗i ∥V t

i
= ∥θi − θ̂i + θ̂i − θ∗i ∥V t

i

≤ ∥θi − θ̂i∥V t
i
+ ∥θ̂i − θ∗i ∥V t

i
≤ 2

√

βt. We then use this

expanded confidence set to define a shrunk safe price set,

D̃t = {γ ∈ R
n :

n∑

i=1

ajixi(γi; θi) ≤ cj , ∀θ ∈ C̃t, ∀j ∈ [p]},

(28)

where C̃t = C̃t
1 × C̃t

2 × ... × C̃t
n. The remaining anal-

ysis deals with the h vector, which is defined as h =
[h1(γ1)

⊤ h2(γ2)
⊤ ... hn(γn)

⊤]⊤. Accordingly, we define a

safe set for the h vector:

G̃t = {[h1(γ1)
⊤ ... hn(γn)

⊤]⊤ : [γ1 ... γn]
⊤ ∈ D̃t}. (29)

3The missing proofs in this section are given in the full online version [35].

We also have the initial safe set for the h vector:

G0 = {[h1(γ1)
⊤ ... hn(γn)

⊤]⊤ : [γ1 ... γn]
⊤ ∈ D0} (30)

Note that, by definition, C̃t ⊆ C0 for all t ≥ 1 which implies

that D0 ⊆ D̃t for all t ≥ 1 and that G0 ⊆ G̃t for all t ≥ 1.

Next, we consider a line from a point in G0 to the optimal

h vector. Let h∗ = [h1(γ
∗
1 )

⊤ ... hn(γ
∗
n)

⊤]⊤ and h0 be any

element in G0. Then, we can use αt to track the safe set

along a line as αt = max{α ∈ [0, 1] : αh∗ + (1 − α)h0 ∈
G̃t}. Let zt = αth∗ + (1 − αt)h0 and zti = αth∗

i + (1 −
αt)h0

i . We can then bound rIt+1 with αt by using the fact that
∑n

i=1 fi(hi(γ
t+1
i )⊤θ̃t+1

i ) ≥ ∑n
i=1 fi([z

t
i ]
⊤θ∗i ) (which follows

from (15)).

rIt+1 =

n∑

i=1

[fi(hi(γ
∗
i )

⊤θ∗i )− fi(hi(γ
t+1
i )⊤θ̃t+1

i )]

≤
n∑

i=1

[fi(hi(γ
∗
i )

⊤θ∗i )− fi([z
t
i ]
⊤θ∗i )]

≤ M

n∑

i=1

|hi(γ
∗
i )

⊤θ∗i − [zti ]
⊤θ∗i |

= M

n∑

i=1

|(h∗
i − h0

i )
⊤θ∗i |(1− αt)

≤ M

n∑

i=1

∥h∗
i − h0

i ∥∥θ∗i ∥(1− αt)

≤ 2MnLS(1− αt)

(31)

Then, we establish a lower bound on αt by first showing

that at least one constraint is tight on the optimal solution. We

first show that the problem can be expressed as optimization

over the consumption in Lemma 3.

Lemma 3. Let Assumption 3 hold. Then the optimal

consumption x∗ = [h1(γ
∗
1 )

⊤θ∗1 ... hn(γ
∗
n)

⊤θ∗n]
⊤ sat-

isfies x∗ ∈ argmaxx∈E

∑n
i=1 fi(xi), where E =

{
x ∈ R

n
++ :

∑n
i=1 ajixi ≤ cj , ∀j ∈ [p]

}
.

Proof. Consider the set of feasible consumption

vectors, Ẽ =
{[

h1(γ1)
⊤θ∗1 ... hn(γn)

⊤θ∗n
]⊤

: γ ∈ D̄
}

.

We can see that argmaxx∈Ẽ

∑n
i=1 fi(xi) contains

[h1(γ
∗
1 )

⊤θ∗1 ... hn(γ
∗
n)

⊤θ∗n]
⊤, where γ∗ is defined in

(4). Therefore, it only remains to be shown that Ẽ is equal to

E. To do so, we consider the range of values that hi(γi)
⊤θ∗i

can take for γ ∈ D̄ and hence the values that are in Ẽ.

Since hi(y) is continuous, hi(y)
T θ∗i is continuous as a

function of y. Also, Assumption 3 and the fact that θ∗i
is nonzero imply that limy→−∞ hi(y)

T θ∗i = ∞ and that

limy→∞ hi(y)
T θ∗i = 0. Therefore, by the Intermediate Value

Theorem, for every xi ∈ R+, there exists a y ∈ R such

that xi = hi(y)
T θ∗i . Thus, Ẽ contains all x ≻ 0 such that

∑n
i=1 ajixi ≤ cj for all j in [p] and therefore equals E.

Using this result, we then show that at least one constraint

is tight on the optimal solution in Lemma 4.

Lemma 4. Let Assumption 3 hold. Then, there exists a

constraint j in [p] such that
∑n

i=1 ajix
∗
i = cj , where x∗ is an

optimal consumption as defined in Lemma 3.
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Lemma 5. Let Assumption 3 hold. Then with probability at

least 1− δ, there exists j in [p] such that

max
θ∈C̃t

n∑

i=1

ajiθ
⊤
i z

t
i = cj . (32)

To lower bound αt, we use Lemma 5 which gives that there

is a j in [p] such that maxθ∈C̃t

∑n
i=1 ajiθ

T
i z

t
i = cj . Therefore,

cj = max
θ∈C̃t

n∑

i=1

aji[z
t
i ]
⊤θi (33)

≤
n∑

i=1

max
θi∈C̃t

i

ajiα
t[h∗

i ]
⊤θi +

n∑

i=1

max
θi∈C̃t

i

aji(1− αt)[h0
i ]

⊤θi

= αt
n∑

i=1

max
θi∈C̃t

i

aji[h
∗
i ]

⊤θi

︸ ︷︷ ︸

b∗

+(1− αt)
n∑

i=1

max
θi∈C̃t

i

aji[h
0
i ]

⊤θi

︸ ︷︷ ︸

b0

Next, we bound b∗. In order to do so, we need the following

lemmas, together which lower bound the minimum eigenvalue

of the gram matrix after the pure exploration phase.

Lemma 6. (Duplicate of Lemma 1) Let Assumption 4 hold.

Then, with Algorithm 1 we have that

λ− := min
i∈[n]

[

λmin

(

E
[
hi(γ

t
i )hi(γ

t
i )

⊤
] )

]

> 0, (34)

for all t in [1, T ′].

Lemma 7. (Lemma 1 in [28] modified for multiple users) It

holds with probability at least 1−δ that λmin(V
T ′

i ) ≥ ν+λ−T ′

2 ,

for T ′ ≥ tδ := 8L2

λ−
log(nmδ ) and all i in [n].

We can then establish a bound on b∗ for T ≥ t+ 1 > T ′:

b∗
(a)

≤
n∑

i=1

(

aji[h
∗
i ]

⊤θ∗i + 2|aji|
√

βt∥h∗
i ∥[V t

i
]−1

)

(b)
= cj +

n∑

i=1

2|aji|
√

βt∥h∗
i ∥[V t

i
]−1

(c)

≤ cj +

n∑

i=1

2|aji|
√

βt∥h∗
i ∥

√

λmin(V
T ′+1
i )

(d)

≤ cj +

n∑

i=1

2|aji|
√

2βt∥h∗
i ∥

√

2ν + λ−T ′

(e)

≤ cj +
2nκL

√

2βT

√

2ν + λ−T ′
=: cj + ℓt (35)

The step (a) is due to the closed form solution for the support

function of an ellipsoid (e.g. [41] Eq. 19.13), (b) is due to

Lemma 5, (c) is due to the fact that λmin(V
t
i ) ≥ λmin(V

T ′

i ) for

t ≥ T ′, (d) is due to Lemma 7 and (e) is due to Assumptions 3,

4, and the fact that βt increases with t. Using the same process,

we can see that b0 ≤ c0j + ℓt, where c0j =
∑n

i=1 ajiθ
T
i h

0
i .

We can now return to bounding αt in (33). Because G0 ⊆
G̃t for all t ≥ 1, we know that h0 is in G̃t for all t ≥ 1. We

use the following Lemma to show that b∗ ≥ cj .

Lemma 8. Assume the same as Lemma 5 and let j
be a constraint satisfying Lemma 5. Then, we have that

maxθ∈C̃t

∑n
i=1 ajiθ

⊤
i h

∗
i ≥ cj .

Therefore, we know that b∗ ≥ cj and b0 ≤ cj (as

[h0,⊤
1 θ1 ... h0,⊤

n θn]
⊤ is in E for all θ in C0), which imply

that b∗ − b0 ≥ 0 and c̃j = cj − b0 ≥ 0. With these facts in

mind and the bounds on b∗ and b0, we have that

cj ≤ αtb∗ + (1− αt)b0

⇒ αt ≥ cj − b0

b∗ − b0
=

c̃j
b∗ − b0

≥ c̃j
cj + ℓt − b0

=
c̃j

c̃j + ℓt
(36)

From the bound on b0, we also have that

c̃j = cj − b0 ≥ cj − c0j − ℓt ≥ ζ − ℓt, (37)

where the last inequality follows from Assumption 4 which

implies that for any h in G0 (such as h0), it holds that cj −
∑n

i=1 ajih
⊤
i θ

∗
i ≥ ζ for all j in [p]. Thus, 1 − αt ≤ ℓt

c̃j+ℓt ≤
ℓt

ζ . Therefore, we have the bound on rIt+1 for all t such that

T ≥ t+ 1 > T ′ ≥ tδ:

rIt+1 ≤ 4
√
2κMn2L2S

√

βT

ζ
√

2ν + λ−T ′
(38)

Note that this bound only holds if both the events in Theorem

1 and Lemma 7 hold. Since each of these events happen with

probability at least 1− δ, they jointly hold with probability at

least 1− 2δ by the union bound.
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