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Abstract—The fast development in Deep Learning (DL) has
made it a promising technique for various autonomous robotic
systems. Recently, researchers have explored deploying DL mod-
els, such as Reinforcement Learning and Imitation Learning, to
enable robots for Radio-frequency Identification (RFID) based
inventory tasks. However, the existing methods are either fo-
cused on a single field or need tremendous data and time to
train. To address these problems, this paper presents a Cross-
Modal Reasoning Model (CMRM), which is designed to extract
high-dimension information from multiple sensors and learn
to reason from spatial and historical features for latent cross-
modal relations. Furthermore, CMRM aligns the learned tasking
policy to high-level features to offer zero-shot generalization
to unseen environments. We conduct extensive experiments in
several virtual environments as well as in indoor settings with
robots for RFID inventory. The experimental results demonstrate
that the proposed CMRM can significantly improve learning
efficiency by around 20 times. It also demonstrates a robust
zero-shot generalization for deploying a learned policy in unseen
environments to perform RFID inventory tasks successfully.

Index Terms—Imitating Learning, RFID inventory, Long-
horizon tasks, Cross-modal reasoning, multiple sensing spaces

I. INTRODUCTION

The Radio-frequency Identification (RFID) technology pro-

vides a low-cost and easy-to-deploy inventory solution that

has been widely deployed in retail stores, factories, and

warehouses [1], [2]. This paper presents a learning-based

model that enables robots to perform RFID-based automated

inventory in unstructured environments. From previous stud-

ies [3], [4], this requires a robot with continuous control

capabilities for long-horizon action planning, which remains to

be a significant challenge for autonomous embodied agents [5],

[6]. To efficiently and effectively scan all RFID tags in

an unstructured environment, the robot must perceive the

surrounding spatial space and align it with the RFID sensing

space. Furthermore, optimized action planning should rely on

current and historical observations to build complete tasking
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state information since the robot’s sensors can only partially

observe the environmental spaces.

Recent developments in Deep Reinforcement Learning

(DRL) and Imitation Learning (IL) have shown great promise

in enabling robots to learn policies for more accomplishing

complex tasks [7]–[9]. However, the current DRL, IL, and

their combined methods require tremendous training data to

succeed [4], [10], [11], resulting in unsustainable training

costs for our RFID inventory tasks in an unstructured real-

world environment. This data-hungry problem is imposed by

their inherent low learning efficiency. First, training policy

from observed low-level features causes the lack of the ability

to learn critical features that affect the action. Second, the

latent relationship between features and actions is inefficiently

and insufficiently explored by current learning models. Other

learning-based methods [12], [13] tend to bypass the complex-

ity of long-horizon tasks by predicting a sub-goal and then rely

on the robot’s built-in ability to achieve the sub-goal. Usually,

the sub-goal is selected from its existing known states, such

as the position in an image from a static top-view camera.

These methods usually work well in small-scaled scenarios,

such as a fixed robotic arm for pick-and-place tasks, which

only require a few steps with all states known or being easy

to predict. However, the robot must explore large and unknown

spaces in the RFID inventory task, making these methods

unsuitable. Additionally, training the model to learn a robotic

policy directly in a physical environment is costly, sometimes

even infeasible and dangerous. To bridge this gap, we can

train a policy in a virtual environment and then fine-tune it

for a real robotic application [14]. However, the “reality gap”

challenges this methodology, a phenomenon where the virtual-

learned policies cannot be directly applied to real robotic

applications [15].

This research addresses the above challenges with a pro-

posed Cross-Modal Reasoning Model (CMRM), which could

efficiently align the information between RFID sensing and

spatial spaces and learn the latent cross-space relations from

current and historical observations. The main contribution of

our work is summarized as follows:978-1-6654-3540-6/22 © 2023 IEEE
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tions. In this experiment, we train a task policy π by the

collected demonstrations D and evaluate π in the concep-

tual apparel store. During the demonstration and evaluation,

racks’ positions, sizes, and RFID tags’ amount are randomly

generated in each episode. To reduce the burden of manual

demonstration collection, we limit the racks’ positions to

a 10 × 10m2 area adjacent to the robot’s start position.

The entire demonstrated set D consists of 103 episodes of

successful RFID inventory, a total of 247K robot operation

steps. We create three more demonstration sets, D40, D60,

and D80, by sampling the original D with 40, 60, and 80

episodes, respectively. To assess the learning efficiency of our

CMRM, we independently train four policies, π40, π60, π80,

and π with D40, D60, D80, and D. We set the sequence

length T = 64 to train all the policies. Then, we deploy

these policies in the conceptual apparel store and assess them

regarding the percentage of scanned tags (i.e., the number of

all scanned tags to the ground-truth number of tags in all

episodes, including the failed ones), average tasking steps,

and average number of collisions. During this evaluation, the

environment is randomized in the same setting as we collect

the demonstrations regarding the positions, size of racks, and

RFID tags amount. Thus, experimental scenarios are different

from the demonstrations but with similar distributions. Each

policy is used for 30 episodes of inventory tasks, and the

experimental results are presented in Table I.

TABLE I: Learning Efficiency

Policy Scanned percentage Average steps Average collisions

D 100% 2407.8 0.8
π40 76.1% 4088.2 1.9
π60 82.2% 4029 0.3
π80 85.20% 3485.4 1.44
π 93.6% 3288.6 1.21

Table I shows that the proposed CMRM can learn an

effective policy to conduct the task from 103 episodes of

demonstration that only consume about 247K robot operation

steps. Compared with the prior work [4], which requests

around 250×20, 000 = 5, 000, 000 steps to reach a similar task

performance, the proposed CMRM can significantly improve

the learning efficiency by about 20 times. We train our model

of 18.9 million parameters on a single NVIDIA RTX3090

24GB GPU with 250 episodes, which takes 0.4 hours with

a 75% occupancy rate, that’s 10.7 TeraFLOPs in theoretical.

b) Generalizing to Unseen Scenarios: Next, we test

whether CMRM generalizes to new environments. In this

experiment, we deploy the well-trained policy, π, for RFID

inventory tasks in two unseen environments: a new conceptual

virtual apparel store and a photo-realistic apparel store. In the

conceptual apparel store, the racks’ positions are randomized

in the 25×25m2 room, with a greater variety of experimental

scenarios out of the distribution of the training set D. The

photo-realistic apparel store provides a close to the real

environment with complex object shapes, virtual appearances,

and spatial structure. Illustrated by Fig. 4b, the photo-realistic

virtual apparel store imposes significant tasking complexities

and challenges for π, which was trained by the demonstrations

collected from the conceptual store. We assess π with 50

episodes in each environment, and the results are summarized

in Table II.

TABLE II: Zero-shot Generalization to New Environments

Environment Scanned Average Average
percentage steps collisions

Concept store 87.9% 3417 2.7
Photo-real store 83.8% 4002 3.8

In Table II, we find that CMRM provides a robust zero-

shot generalization in both unseen environments by achieving

the same level of performance as the simple and known envi-

ronments that are shown in Table I. Qualitatively, we observe

that the policy π enables the robot to precisely move toward

correct target objects, such as apparel racks, clearly indicating

that the learned policy conditioned on abstract features could

overcome the significant discrepancies among seen and unseen

environments and provide a robust task strategy.

c) Ablation Study & Comparison With Baseline Model:

To evaluate the importance of several CMRM designs, we

conducted 3 ablation studies and also compared them to a

baseline model. The result is shown in Table III. We trained

each model with 300 episodes and ran in the same conceptual

apparel store. First, we trained the model πrt18 to evaluate the

Semantic Feature Extractor design by replacing the pre-trained

CLIP with a pre-trained Resnet18 with other parameters

remaining the same. As we can see, the scanned percentage

decreased largely, from 93.6% to 84.2%. Second, we trained

the model πatt to evaluate the Spatial Feature Extractor by

removing the FCNs in the Action Decoder and replacing

the Transformer decoder layer with the Transformer encoder

layer. Table III shows that its scanned percentage decreased

slightly to 90.8%. Last, we implemented a baseline model,

πrirl, introduced in [3], which used simple FCNs with 128

hidden feature sizes. The result indicates this model behaves

poorly on this task.

TABLE III: Ablation Studies & Compare to a Baseline Model

Policy Scanned percentage Average steps Average collisions

π 93.6% 3288.6 1.21
πrt18 84.2% 3993.04 1.18
πatt 90.8% 3305.08 1.05

πrirl [3] 56.2% 4639.68 3.25

d) Real-Robot Experiment: To further evaluate the gener-

alization of our model, we assess if the virtually trained policy

can be directly deployed in a real robot. We use the same

trained policy π to the LoCoBot robot in our Lab for the RFID

inventory task as shown in Fig. 4c. We conducted 10 episodes

by randomly placing the RFID-attached boxes and the robot in

the room. Due to limited resources, we only placed 51 RFID

tags in these experiments. In this small-scale experiment, the

CMRM achieves a result of 96.3% scanned percentage with

an average of 1, 362.8 steps and 0.75 collisions. Here, the high

scan rate is due to our small group of tags, and fewer average
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